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Abstract. Comparing model output and observed data is an
important step for assessing model performance and qual-
ity of simulation results. However, such comparisons are of-
ten hampered by differences in spatial scales between local
point observations and large-scale simulations of grid cells
or pixels. In this study, we propose a generic approach for
a pixel-to-point comparison and provide statistical measures
accounting for the uncertainty resulting from landscape vari-
ability and measurement errors in ecosystem variables. The
basic concept of our approach is to determine the statistical
properties of small-scale (within-pixel) variability and obser-
vational errors, and to use this information to correct for their
effect when large-scale area averages (pixel) are compared to
small-scale point estimates. We demonstrate our approach by
comparing simulated values of aboveground biomass, woody

productivity (woody net primary productivity, NPP) and res-
idence time of woody biomass from four dynamic global
vegetation models (DGVMs) with measured inventory data
from permanent plots in the Amazon rainforest, a region with
the typical problem of low data availability, potential scale
mismatch and thus high model uncertainty. We find that the
DGVMs under- and overestimate aboveground biomass by
25 % and up to 60 %, respectively. Our comparison metrics
provide a quantitative measure for model–data agreement
and show moderate to good agreement with the region-wide
spatial biomass pattern detected by plot observations. How-
ever, all four DGVMs overestimate woody productivity and
underestimate residence time of woody biomass even when
accounting for the large uncertainty range of the observa-
tional data. This is because DGVMs do not represent the
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relation between productivity and residence time of woody
biomass correctly. Thus, the DGVMs may simulate the cor-
rect large-scale patterns of biomass but for the wrong rea-
sons. We conclude that more information about the underly-
ing processes driving biomass distribution are necessary to
improve DGVMs. Our approach provides robust statistical
measures for any pixel-to-point comparison, which is appli-
cable for evaluation of models and remote-sensing products.

1 Introduction

The rate of environmental change in tropical South America
and in particular in the Amazon region has been unprece-
dented in the last decades (e.g. Lewis et al., 2011; Davidson
et al., 2012). Estimates of the amount of carbon stored in
tropical rainforest biomass differ strongly (Avitabile et al.,
2016; Baccini et al., 2012; Saatchi et al., 2011; Mitchard et
al., 2014). In addition, estimated carbon release to the atmo-
sphere from land-use change is uncertain (e.g. Houghton et
al., 2012; Baccini et al., 2017; Song et al., 2015; Harris et al.,
2012). Nonetheless, a successful implementation of protec-
tion incentives, e.g. for reducing emissions from deforesta-
tion and degradation (REDD+), requires both accurate esti-
mates of existing regional carbon stocks as well as improved
projections of future scenarios (e.g. Langner et al., 2014).

Dynamic global vegetation models (DGVMs) are impor-
tant tools to estimate impacts of climate and land-use change
on the carbon cycle (e.g. Cramer et al., 2004; Sitch et al.,
2008). To correctly capture carbon dynamics in tropical
forests, DGVMs need to improve the simulation approach
of drought-related mortality and other types of tree mortal-
ity that control stand density (Pillet et al., 2018), they need
to include more detailed gap dynamics influencing stand
dynamics (Espírito-Santo et al., 2014; Rödig et al., 2017),
and they need to incorporate how nutrient availability lim-
its woody productivity (Quesada et al., 2012; Johnson et
al., 2016). At the same time, model evaluation based on
available data is necessary for which the primary source of
data is ground-based observations of aboveground biomass
(AGB) obtained from forest census data (Lopez-Gonzalez et
al., 2011, 2014; Brienen et al., 2014, 2015; Mitchard et al.,
2014; Johnson et al., 2016). When conducting model–data
comparisons at the plot scale, the spatial resolution of both
come into focus. The size of forest plots is typically of the
order of 1 ha or less, whereas average DGVM grid-cell reso-
lution is determined by the available gridded climate dataset,
which is usually about several thousand square kilometres
(> 100 000 ha). Plot observations are affected by observa-
tional errors, uneven spatial distribution (Saatchi et al., 2015)
and spatial variability due to natural gap dynamics (Cham-
bers et al., 2013), and are thus likely to exhibit substantial
deviation from average large-scale properties. The problem
of comparing point data with model results obtained at grid-

cell (pixel) size occurs in many applications of remote sens-
ing and ecological modelling.

So far, we are lacking a reliable and objective method to
compare simulation results from DGVMs at grid-cell scale
(pixel) and plot (point) observations. Several studies, which
evaluated patterns of interpolated maps from plot data and
model simulations, concluded that the observed and simu-
lated spatial patterns do not match (e.g. Johnson et al., 2016).
Here, we complement these findings by providing quantita-
tive statistical measures for such comparisons and present an
approach for performing pixel-to-point comparisons while
accounting for different statistical properties of point and
pixel values and their uncertainties. The basic concept of the
approach is to determine statistical properties from small-
scale variability and observational errors in ecosystem vari-
ables in order to account for these effects when comparing
large-scale area averages (pixels) and small-scale plot esti-
mates (points).

We apply our approach by comparing point estimates
of ecosystem properties obtained from forest inventories
(Mitchard et al., 2014; Brienen et al., 2015) to corresponding
simulated pixel values from four state-of-the-art DGVMs.
Similar to Johnson et al. (2016), we focus on three ecosys-
tem properties that are well defined and represented in both
DGVMs and forest inventories: (i) aboveground biomass
(AGB, in Mg C ha−1); (ii) aboveground woody productivity
(WP, in Mg C ha−1 yr−1); and (iii) residence time of woody
biomass (τ in years).

We evaluate the accuracy of the spatial pattern of these
three ecosystem properties and provide statistical measures
for the quality of model simulations in comparison to obser-
vations, thereby accounting for small-scale landscape vari-
ability and associated measurement errors. We demonstrate
the strength of our approach by highlighting its applicability
for model evaluation and model benchmarking.

In particular, we address three research questions.

1. How well do models represent variations in AGB across
the Amazon region? We expand the pure (visual) qual-
itative comparison by deriving three statistical metrics
for a quantitative comparison.

2. How large are the differences between observed and
simulated spatial biomass patterns (based on the pre-
sented metrics), in particular when considering different
allometric equations? We discuss the effects of inade-
quate data and associated model uncertainty.

3. What can we learn from the spatial heterogeneity and
underlying drivers of spatial biomass patterns? We anal-
yse simulated and observed patterns of WP and τ .
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Figure 1. Schematic overview of the three steps in the pixel-to-
point comparison. Note that we refer to “landscape” as the region
of interest for which point and pixel data are available. (a) The mean
and global variability at the point scale are calculated from all plots
across the landscape; (b) the within-pixel variability is calculated
from all plots within the distance of the pixel size (i.e. the red arrow
corresponds with pixel size); (c) the mean and global variability is
calculated from the pixel values and the three comparison metrics
are derived. Note: a block bootstrapping with 10 000 repetitions is
performed to derive confidence intervals of the comparison metrics.
The detailed set of equations to calculate maximum similarity, PA
and SP can be found in the Supplement.

2 Methods

Landscape variability depends on the extent and heterogene-
ity of the study area (Turner et al., 2001). Point measure-
ments within a pixel of larger spatial scale, for example, may
reveal small-scale spatial variabilities within the pixel. We
derive a “within-pixel variability” that so far has not been
accounted for in earlier approaches. We present three steps
to calculate three metrics that provide a measure on the best
achievable correlation between point and pixel values (see
Fig. 1).

2.1 A generic method for point-to-pixel comparisons

2.1.1 Calculate the “global variability” across the
region of interest

Assume that we have a dataset X with a number N of point
observations xi at location i (e.g. plot observations from in-
ventory data). In the first step, we calculate the mean x and
variance σ 2

x across all plots in a region (e.g. across the Ama-
zon region). The variance σ 2

x denotes the global variability

(i.e. the variability across the whole Amazon region) at the
point scale (Fig. 1a).

2.1.2 Calculate within-pixel variability

In the second step, we identify within-pixel variability from
point measurements. With coarser pixel resolution, the spa-
tial variability (here: global variability) is reduced. In order
to compare pixel values against point values, the global vari-
ability at the point scale needs to be reduced by the within-
pixel variability (variability component εi ; Fig. 1b).

The variability component εi is assumed to be normally
distributed with zero mean and variance σ 2

ε :

εi ∼N
(

0,σ 2
ε

)
. (1)

Based on the variability component εi , we estimate the
within-pixel variance σ 2

ε from the point observations by
analysing their covariance, which is equivalent to the nugget
effect (i.e. the sum of variance caused by small-scale variabil-
ity and observation error) in a semivariogram (see methods
in the Supplement). Due to the limited amount of inventory
data, we assume here that σ 2

ε is stationary across the region
of interest (for details on that assumption see discussion and
results in the Supplement).

The global variance at the point scale σ 2
x now differs from

the corrected global variance at the pixel scale, σ 2
x,corr, as

variances add quadratically, assuming that the (small scale)
variability component εi has errors uncorrelated to the global
distribution of x.

σ 2
x,corr = σ

2
x − σ

2
ε . (2)

2.1.3 Metrics for the comparison of two datasets with
different spatial resolutions

In a third step, we compare the point data xi with simulated
data yi at the pixel scale. Similar to the above procedure, we
calculate the mean y and variance σ 2

y for the simulated pixels
that contain point observations (hereby we assign each point
observation the pixel value in which the point is located).
We then compare the simulation results by applying three
metrics:

1. Mean bias (MB): the ratio of means y/x across the
whole region as a measure of the mean bias in the pat-
terns which is not affected by small-scale variability;

2. Pattern amplitude (PA): the ratio of standard deviations
σy/σx,corr using the corrected global variability (i.e. re-
moved within-pixel variability) and serves as a measure
of differences in pattern amplitude or in the variability
in the simulated and observed data;

3. Similarity of pattern (SP): we use rcorr as a measure
of the similarity of the “shape” of spatial patterns,
i.e. the spatial correlation of simulated and observed
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data (see the Supplement). Accordingly, we can cal-
culate the maximum achievable correlation coefficient
rmax, which is derived from correlating the observa-
tional dataset at the point scale to the same observa-
tional dataset at the pixel scale (see Fig. 1a, b and the
Supplement).

The limited number of point observations and their non-
random spatial distribution in the Amazon region affects
the accuracy of the comparison. We therefore estimate con-
fidence intervals for the comparison metrics MB, PA and
SP, respectively, by applying a bootstrapping technique
(10 000 repetitions). Because the estimation of σ 2

ε is based
on the analysis of the spatial correlation structure of the
data, a block-bootstrapping is performed (Politis and Ro-
mano, 1994). For each permutation, the domain of observa-
tions is randomly divided into 100 tiles (random orientation
and offset, ca. pixel size) from which a random recombina-
tion is drawn with replacement. This technique assures that
the spatial correlation structure of the data remains intact.

2.2 Application of the pixel-to-point comparison to
simulated and observed data from the Amazon
region

2.2.1 Observed data at the point scale: description of
site-level data

The observed data at the point scale are forest-census-based
plot measurements across the Amazon region, in which all
plots that were subject to anthropogenic disturbances, includ-
ing selective logging, were excluded (Brienen et al., 2015).
The average plot size is∼ 1.2 ha (Brienen et al., 2015) so that
the plots incorporate most size classes of natural gaps, par-
ticularly as the plot data were averaged across sites occurring
within the same pixel. Across the plot network, the biases in-
troduced into the estimate of carbon balance by 1 ha plots
not sampling the very largest and rarest natural gaps are in
fact very small (Espírito-Santo et al., 2014). We use datasets
of AGB (Lopez-Gonzalez et al., 2011, 2014; Mitchard et al.,
2014), WP and woody loss (WL; Brienen et al., 2014). WP
and WL are derived “ from the sum of biomass growth of
surviving trees and trees that recruited (that is, reached a di-
ameter ≥ 100 mm), and mortality [=woody loss] from the
biomass of trees that died between censuses” (Brienen et al.,
2015). We convert AGB, WP and WL from dry biomass to
carbon mass (see methods in the Supplement). For the calcu-
lation of AGB, we use different allometric equations that ac-
count for regional differences in wood density or tree height
(Table S1). We exemplify our comparison metrics based on
AGB calculated from the three-parameter moist tropical for-
est allometry from Chave et al. (2005), where tree height is
estimated from the diameter at breast height (DBH) individu-
ally for each stem based on the region-specific Weibull mod-
els from Feldpausch et al. (2012). Wood density is estimated
for each stem using the mean value for the species in the

Global Wood Density Database (Chave et al., 2009; Zanne et
al., 2009), or the mean for the genus using congeneric taxa
from Mexico, Central America and tropical South America
if no data were available for that species (Mitchard et al.,
2014). We here evaluate the principal AGB dataset (KDHρ)

from Mitchard et al. (2014) in more detail (the other allomet-
ric equations are presented in the Supplement).

2.2.2 Simulated data at the pixel scale: description of
DGVM simulations

We use outputs from four state-of-the-art DGVMs, namely
the Lund-Potsdam-Jena model with managed Land (LPJmL,
Bondeau et al., 2007; Gerten et al., 2004; Sitch et al., 2003),
the Joint UK Land Environment Simulator (JULES), v. 2.1.
(Best et al., 2011; Clark et al., 2011), the INtegrated model of
LAND surface processes (INLAND) model (a development
of the IBIS model; Kucharik et al., 2000) and the Organis-
ing Carbon and Hydrology In Dynamic Ecosystems (OR-
CHIDEE) model (Krinner et al., 2005). A short descrip-
tion of each of the applied models is provided in the Sup-
plement. The models were applied to the Amazon region
covering the area of 88 to 34◦W and 13◦ N to 25◦ S at a
spatial resolution of 1◦× 1◦ lat/long. The resolution of the
DGVMs is defined by the resolution of the climate input data
for which we used bias-corrected NCEP meteorological data
(Sheffield et al., 2006). Model runs were performed based on
the standardized Moore Foundation Andes-Amazon Initia-
tive (AAI) modelling protocol (Zhang et al., 2015). The same
set of models and output variables was analysed in Johnson
et al. (2016).

2.2.3 Comparing inventory and simulation results

In our application, dataset X corresponds to the inventory
measurements at the point scale (Fig. 1a). For this dataset, we
have to derive the within-pixel variability (Fig. 1b). Dataset
Y corresponds to the simulated pixel values (Fig. 1c). Hence,
the pixel scale is defined by the resolution of the model sim-
ulation (1◦×1◦, approximately 12 200 km2, Fig. 1c). We cal-
culate the three metrics (Sect. 2.1.3) from the observed and
simulated ecosystem variables AGB, WP and τ .

3 Results

3.1 Comparison of aboveground biomass (AGB)

The visual comparison indicates that the spatial pattern of
AGB from the plots (Figs. 2a and S1) differs from the spatial
patterns of AGB simulated by either DGVM (Fig. 2c–f). In
addition, the DGVM patterns are vastly different among each
other.

Mean x and global variability σx in AGB for all plot ob-
servations across the Amazon region (Fig. 3a) range from
134 to 153 and from 36 to 50 Mg C ha−1, respectively

Geosci. Model Dev., 11, 5203–5215, 2018 www.geosci-model-dev.net/11/5203/2018/
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Figure 2. Estimates of aboveground biomass (AGB) from forest plots in 1◦×1◦ pixels. (a) Mean AGB per pixel derived from inventory data
based on one allometric equation (KDHρ , see the Supplement for explanation and other allometric equations). (b) Number of plots per pixel
and (c–f) simulated AGB from four DGVMs.

Figure 3. Distribution of aboveground biomass (AGB in Mg C ha−1) from the four DGVMs and from the observational plots (see also
Table S2 and S3). The figure shows (a) the mean value (white dot) and distribution from bootstrapping of absolute AGB values from the four
simulations and observed data (grey violin shapes). (b) Mean bias as the ratio of mean simulated and mean observed AGB (y/x).

(Table S2), depending on the allometric equation applied.
Within-pixel variability σε, as calculated from Eq. (S1),
ranges between 28 and 36 Mg C ha−1. The corrected vari-
ability in observed AGB at the pixel scale (σx,corr) is thus
substantially lower than the global variability and ranges be-
tween 22 and 39 Mg C ha−1 (Fig. 4a, Table S2). Based on
these estimates we calculate the maximum achievable coef-
ficients rmax for a comparison between pixel averages and
point estimates of 0.61 to 0.78 for different allometric equa-
tions (Fig. 5).

The models simulate a continuous cover of biomass across
the Amazon region at a spatial resolution of 1◦× 1◦ pixel
size. For our comparison, we only use the simulated pixel
values of AGB at each plot location. Thus, the estimated sta-

tistical properties are not representative for the entire Ama-
zon region but only for a relatively small subset of pixels
(i.e. 98 pixels as in Fig. 2a, b). For simulated AGB from
the four DGVMs, we estimate a mean y of 114 Mg C ha−1

for INLAND, 151 Mg C ha−1 for JULES, 217 Mg C ha−1 for
ORCHIDEE and 170 Mg C ha−1 for LPJmL (Fig. 3a, Ta-
ble S3). Depending on the allometric equation applied to
calculate observed biomass (Table S1), INLAND underesti-
mates mean AGB by 15 %–25 %. LPJmL and ORCHIDEE
overestimate AGB by 11 %–26 % and 42 %–62 %, respec-
tively. JULES deviates only by 1 % from AGB derived from
the two-parameter allometric equations, but overestimates
AGB derived from all three-parameter allometric equations
by 12 % (Table S3).

www.geosci-model-dev.net/11/5203/2018/ Geosci. Model Dev., 11, 5203–5215, 2018
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Figure 4. (a) Standard deviations of AGB (in Mg C ha−1) for the four models and observational data (for the other allometric equations see
also Table S2, S3). For the observational data, the global variability at the point scale (“observed”) and the corrected variability at the pixel
scale (“corrected”) is given; (b) ratio of standard deviations without correcting for within-pixel variability (c) corrected metrics of pattern
amplitude (σy/σx,corr).

Figure 5. The similarity of the observed vs. simulated spatial pat-
tern of AGB at the pixel scale (as indicated by r given in bars). The
similarity is calculated for different versions of observed AGB de-
rived from six allometric equations (indicated by the colours, see
Table S1). The dashed lines show the maximum achievable cor-
relation coefficients rmax from the observational data and for the
different allometric equations.

Mean global variability in simulated AGB, σy , ranges
between 13 Mg C ha−1 (JULES) and 62 Mg C ha−1 (OR-
CHIDEE; Fig. 4a and Table S3). Without correcting for
small-scale variability σε in the point-to-pixel comparison,
we would conclude that the pattern amplitude simulated by
ORCHIDEE and LPJmL agree quite well with observed pat-
terns (Fig. 4b). However, when accounting for the lower cor-
rected variability (σx,corr), because the error of observation-
based estimates at the pixel level is smaller, it becomes eas-
ier to falsify models with uncertain data. We find that LPJmL
and ORCHIDEE both overestimate the observed spatial am-
plitude by 43 % and 62 %, respectively (Fig. 4c and see Ta-
ble S3 for other allometric equations). For INLAND and
JULES, on the other hand, we find a corresponding under-
estimation of pattern amplitude by 14 % and 65 %, respec-

tively. We also note that confidence intervals for σy/σx,corr
are large in particular for ORCHIDEE and LPJmL (Fig. 4c).

Correlation coefficients indicating the similarity of simu-
lated and observed patterns of AGB range from 0.25 to 0.53
(corrected) across all models (Table S3). The highest simi-
larity of pattern (i.e. best correlation values rcorr) is found
for ORCHIDEE, lowest similarity of pattern for LPJmL.
Across the three models INLAND, JULES and LPJmL, gen-
erally, higher similarity of pattern is found for the allometric
equations that include regional height models and mean or
species-specific wood density (KDHρ , KDH; Fig. 5).

3.2 Comparison of woody productivity (WP)

Mean x and variability at the pixel scale σx,corr of observed
WP are 2.57 and 0.38 Mg C ha−1 yr−1, respectively. There
seems to be a weak spatial pattern in the plot estimates at
pixel level (Fig. 6a), which is not reflected by the models
(Fig. 6c–f). The DGVMs display a distinct pattern of WP
across the region that strongly differs among the four models
(Fig. 6c–f).

Mean WP simulated by the DGVMs (y) is between 4
and 5 Mg C ha−1 yr−1 for LPJmL and JULES, and between
8 and 9 Mg C ha−1 yr−1 for INLAND and ORCHIDEE (Ta-
ble S4). All DGVMs strongly overestimate mean WP (Ta-
ble 1a). In addition, most models overestimate the pattern
amplitude, and the simulated variability ranges between 0.72
and 1.6 Mg C ha−1 yr−1 (Table S4). Pattern similarity of ob-
served and simulated data is low ranging from 0.03 to 0.50
(Table 1a), even with a relatively low maximum achievable
correlation of 0.65 (Table 1a).

3.3 Comparison of residence time of woody biomass (τ )

Mean x and variability at the pixel scale σx,corr of observed τ
are 74 and 28 years, respectively. Again the visual compari-
son shows that the simulations do not match the observations
(Fig. 7a vs. Fig. 7c–f). The simulated mean y of τ ranges

Geosci. Model Dev., 11, 5203–5215, 2018 www.geosci-model-dev.net/11/5203/2018/
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Figure 6. Estimates of aboveground woody productivity (WP) from forest plots in 1◦× 1◦ pixels. (a) Mean WP from inventory plots;
(b) number of plots per pixel; and (c–f) simulated WP from four DGVMs.

Table 1. Results of the point-to-pixel comparison for (a) woody productivity (WP) and (b) residence time of woody biomass (τ). The 5 %
and 95 % confidence intervals are given in brackets.

(a) Woody Mean x Corrected global variability Max. achievable
productivity (WP) (Mg ha−1 yr−1) σx,corr (Mg ha−1 yr−1) correlation rmax

Observed 2.57 0.38 0.67

Mean bias (y/x) Pattern amplitude Similarity of
(σy/σx,corr) pattern (rcorr)

INLAND 3.11 (2.91–3.31)a 2.91 (1.75–4.83)a 0.36 (0.11–0.35)
JULES 2.01 (1.88–2.14)a 1.91 (1.08–3.25)a 0.38 (0.07–0.37)
ORCHIDEE 3.55 (3.21–3.96)a 4.26 (2.64–6.96)a 0.03 (−0.25–0.01)
LPJmL 1.74 (1.63–1.83)a 1.99 (1.36–3.16)a 0.50 (0.27–0.50)

(b) Residence time (τ) x (years) σx,corr (years) rmax

Observed 73.84 28.04 0.64

Mean bias (y/x) Pattern amplitude Similarity of
(σy/σx,corr) pattern (rcorr)

INLAND 0.20 (0.17–0.24)b 0.13 (0.06–0.25)b 0.01 (−0.30–0.02)
JULES 0.42 (0.35–0.51)b 0.24 (0.07–0.46)b

−0.23 (−0.68 to −0.22)
ORCHIDEE 0.35 (0.29–0.42)b 0.24 (0.12–0.45)b 0.08 (−0.22–0.08)
LPJmL 0.47 (0.38–0.59)b 0.35 (0.19–0.61)b

−0.18 (−0.46 to −0.18)

a indicate when models overestimate observed values, b indicate underestimation.

www.geosci-model-dev.net/11/5203/2018/ Geosci. Model Dev., 11, 5203–5215, 2018
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Figure 7. Estimates of woody biomass residence time (τ) from forest plots in 1◦× 1◦ pixels. (b) Mean residence time from inventory plots;
(b) number of plots per pixel; and (c–f) simulated τ from four DGVMs.

between 15 (INLAND) and 35 (LPJmL) years with a vari-
ability of 3 (INLAND) to 8 (LPJmL) years. This is displayed
in our comparison metrics: mean bias results in very low val-
ues (i.e. strong underestimation of 53 % to 80 %; Table 1b)
and pattern amplitude is strongly underestimated by 65 % to
87 % (Table 1b). The similarity of pattern is very low for all
models (Table 1b).

4 Discussion

We present a novel approach for a pixel-to-point comparison.
We account for the reduced observed variability when go-
ing from point to pixel scale by evaluating three indicators,
i.e. the mean bias, the pattern amplitude and the similarity of
spatial pattern (Sect. 1.3). We use an example from the Ama-
zon region by comparing model output from four DGVMs
and forest inventory data. In the following, we discuss our
findings of substantial discrepancies between simulated and
observed patterns of AGB, WP and τ across the Amazon re-
gion.

4.1 How well do model simulations represent observed
biomass patterns across the Amazon?

Interpolated biomass maps from plot observations (e.g. John-
son et al., 2016; Malhi et al., 2006) should be treated with
caution since plot observations may not be representative at
the landscape scale (Chave et al., 2004). As a result, a direct
and meaningful comparison of observed and simulated maps

is currently not feasible but reliable biomass estimates are
necessary for implementation of protection incentives and
future projections of vegetation biomass. Our results demon-
strate that most models are in good agreement and deviate
from mean observational biomass by less than 20 % (i.e.
low mean bias, cf. Fig. 3) and their variability at the land-
scape scale deviates by about 40 % (i.e. pattern amplitude,
cf. Fig. 4). Such relatively good agreement was also found
in simulation runs from Delbart et al. (2010) and Johnson
et al. (2016). Our results even yield relatively high similar-
ity in observed and simulated spatial patterns of AGB at the
pixel scale (except LPJmL; cf. Fig. 5), given the fact that
the maximum achievable correlation in the data itself is only
0.6–0.8 (Fig. 5). This indicates that there is considerable un-
certainty in the data, which needs to be considered in point-
to-pixel comparisons and which we elaborate on in the fol-
lowing paragraph.

4.2 How large are the differences between observed
and simulated patterns of biomass (based on the
presented metrics), in particular when considering
different allometric equations?

As discussed by several authors (e.g. Baker et al., 2004;
Chave et al., 2006, 2014; Réjou-Méchain et al., 2017) the
methodology used to convert plot measurements to actual
biomass may lead to differential biomass estimates depend-
ing on the respective assumptions of the allometric equa-
tions employed (i.e. using species-level or community mean
wood density, and region-specific or basin-wide height mod-
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els; see Table S1 in the Supplement). As a result, we find
a more or less pronounced pattern of biomass variability
across the Amazon region based on the respective assump-
tion used (cf. Figs. 2 and S1). While mean global variability
in biomass is highest for the allometric equations including
species-level wood density (cf. Fig. S1, Table S2), highest
within-pixel variability is found for biomass values estimated
from two-parameter allometric equations (Table S2) exclud-
ing tree height (cf. Table S1). This result is also reflected by
the lower maximum achievable correlation coefficient (rmax),
describing how observational data at the point scale cor-
relates with observational data at the pixel scale, which is
particularly low for the two-parameter allometric equations
(Fig. 5). Although three out of four DGVMs achieve a rela-
tively good agreement between simulated and observed pat-
terns at the pixel scale, we find substantial uncertainty in the
observational data due to spatial heterogeneity of local veg-
etation characteristics such as the structural and functional
tree species composition affecting biomass estimates across
the Amazon (see also Rödig et al., 2017). The uncertainty re-
sulting from conversion of raw inventory measurements into
biomass from different allometric equations is generally ne-
glected in model–data comparisons. However, it strongly af-
fects our pixel-to-point comparison metrics, thereby remain-
ing an important bottleneck for good model–data biomass
comparisons. We suggest to include AGB estimates with as-
sociated uncertainties, e.g. using Bayesian inference proce-
dures (see Réjou-Méchain et al., 2017) or to directly compare
modelled allometries and related parameters in DGVMs with
observational data.

4.3 What can we learn from including spatial
heterogeneity and underlying drivers of biomass?

While our approach shows that some models could provide
robust estimates for standing biomass stocks across the Ama-
zon region (cf. Fig. 2), it highlights that DGVMs currently
do not represent productivity and related turnover correctly
(i.e. the relation between productivity and residence time
of woody biomass). As a result, the models might simulate
the correct patterns for the wrong reasons as far as it can
be derived from observational data. The four DGVMs ap-
plied in this study generally capture the observed pattern of
AGB but strongly overestimate observed WP and underes-
timate τ , and, from a pixel perspective, do not show strong
variability across the Amazon region, thereby not capturing
observed gradients (cf. Fig. 6 and Table 1). WP and τ are
driving AGB and are calculated by different schemes in the
four DGVMs, e.g. regarding carbon allocation and drivers
of mortality. Ground observations suggest that forest struc-
ture, forest dynamics and species composition vary across
the Amazon region, such that variations in geology and soil
fertility or mechanical properties coincide with region-wide
variations in AGB, growth and stem mortality rates (Johnson
et al., 2016; Quesada et al., 2012). Accordingly, recent stud-

ies highlight that variation in stem mortality rates determines
spatial variation in AGB and conclude that mortality should
be modelled on the basis of individual stems, since stem-
size distributions and stand density are important for pre-
dicting variation in AGB (Johnson et al., 2016; Rödig et al.,
2017; Pillet et al., 2018). Projected increasing disturbances
with different sizes and frequency may be an important ad-
ditional driver for further variations under future scenarios
(Espírito-Santo et al., 2014; Rödig et al., 2017). Nonethe-
less, the mechanisms leading to stem mortality need to be
implemented in models based on experimental data that are
only recently becoming available (Meir et al., 2015; Row-
land et al., 2015). Overall, the DGVMs are able to repro-
duce the observed spatial pattern of AGB across the Ama-
zon region, whereas for WP the model performance is less
good and reproduction of the spatial pattern in mortality is
generally very poor (Figs. 2, 6, 7). This suggests that mod-
els need to account for processes such as WP and mortality
more mechanistically by including factors associated with re-
source limitation and disturbance regimes (see also Johnson
et al., 2016). Recent efforts aiming at improving simulated
Amazon forest biomass and productivity by including spatial
variation in biophysical parameters (such as τ and Vcmax)
have found that using single values for key parameters limits
simulation accuracy (Castanho et al., 2013). Thus, we con-
clude that a more mechanistic representation of the processes
driving the spatial variability in carbon stocks and fluxes, for-
est structure, and tree demographic dynamics is necessary to
improve simulation accuracy (Rödig et al., 2018).

5 Future applications of the methodological approach
and outlook

In general, we assume that the basic concept of our method is
applicable to any comparison between two datasets that are
characterized by differences in spatial scale. If the process
that causes small-scale variability can be approximated as
white noise, corrected statistics can be computed. Notwith-
standing future developments of next-generation DGVMs,
the most relevant step of the presented approach is to account
for the within-pixel variability σε from the point data to allow
for a comparison of observational and simulated data. Due to
relatively sparse plot data availability, we assume here that σε
is stationary across the Amazon region. To evaluate this as-
sumption further, we have calculated a regional within-pixel
variability σε (Fig. S2) and find that it is in the range of the
Amazon-wide σε of 28 to 36 Mg C ha−1 (depending on the
allometric equation used, see Table S2). Field studies show
that forest dynamics vary locally, mostly due to variations
in natural disturbance regimes, mortality and edaphic prop-
erties (e.g. Baker et al., 2004; Chambers et al., 2013; Chave
et al., 2006; Malhi et al., 2006; John et al., 2007), which in
turn strongly influences our calculated within-pixel variabil-
ity and thus the metrics of the pixel-to-point comparison. Re-
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cent regional studies, which combine observational plot data
and remote-sensing products from applications such as LI-
DAR (regions of Peru: Marvin et al., 2014; French Guyana:
Fayad et al., 2016; Congo: Xu et al., 2017), have already
proven to detect spatial variability at high spatial resolution,
which could be used to calculate a pixel-wise within-pixel
variability based on our approach. Upcoming remote-sensing
missions as the Global Ecosystem Dynamics Investigation li-
dar (GEDI), the ESA BIOMASS mission, the NASA-ISRO
Synthetic Aperture Radar (NISAR) mission, or the proposed
Tandem-L mission (Moreira et al., 2015) will have the po-
tential to provide non-stationary values of within-pixel vari-
ability for all regions of the Amazon. Thus, it is desirable
to include regionally or locally specific estimates of σ 2

ε in
our analyses, which could be derived, for example, from the
abovementioned remote-sensing data or from individual tree-
based high-resolution simulations (e.g. Rödig et al., 2017).
In any case, we conclude that upcoming model–data com-
parison studies should at least account for stationary within-
pixel variability when comparing simulated spatial data to
data from discrete observational networks.

Code and data availability. All models are described in
more detail in the Supplement. The model code for
LPJmL is available at https://github.com/PIK-LPJmL/LPJmL
(last access: 17 December 2018) and archived under
https://doi.org/10.5880/pik.2018.002. The model code for
ORCHIDEE is available at https://doi.org/10.14768/06337394-
73A9-407C-9997-0E380DAC5597. The model code for
JULES is available from the JULES FCM repository: https:
//code.metoffice.gov.uk/trac/jules (registration required, last access:
17 December 2018). The model code for INLAND is available at
http://www.ccst.inpe.br/wp-content/uploads/inland/inland2.0.tar.gz
(last access: 17 December 2018). The permanent archive of
the observational data from Mitchard et al. (2014) can be ac-
cessed at https://doi.org/10.5521/FORESTPLOTS.NET/2014_1,
see also Lopez-Gonzales et al. (2014). The inven-
tory data from Brienen et al. (2015) are available at
https://doi.org/10.5521/ForestPlots.net/2014_4, see also Brienen et
al. (2014)..
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