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Abstract. A Hybrid Single-Particle Lagrangian Integrated
Trajectory version 4 (HYSPLIT-4) inverse system that is
based on variational data assimilation and a Lagrangian dis-
persion transfer coefficient matrix (TCM) is evaluated us-
ing the Cross-Appalachian Tracer Experiment (CAPTEX)
data collected from six controlled releases. For simplicity,
the initial tests are applied to release 2, for which the HYS-
PLIT has the best performance. Before introducing model
uncertainty terms that will change with source estimates, the
tests using concentration differences in the cost function re-
sult in severe underestimation, while those using logarithm
concentration differences result in overestimation of the re-
lease rate. Adding model uncertainty terms improves results
for both choices of the metric variables in the cost function.
A cost function normalization scheme is later introduced to
avoid spurious minimal source term solutions when using
logarithm concentration differences. The scheme is effec-
tive in eliminating the spurious solutions and it also helps
to improve the release estimates for both choices of the met-
ric variables. The tests also show that calculating logarithm
concentration differences generally yields better results than
calculating concentration differences, and the estimates are
more robust for a reasonable range of model uncertainty pa-
rameters. This is further confirmed with nine ensemble HYS-
PLIT runs in which meteorological fields were generated
with varying planetary boundary layer (PBL) schemes. In
addition, it is found that the emission estimate using a com-
bined TCM by taking the average or median values of the

nine TCMs is similar to the median of the nine estimates us-
ing each of the TCMs individually. The inverse system is then
applied to the other CAPTEX releases with a fixed set of ob-
servational and model uncertainty parameters, and the largest
relative error among the six releases is 53.3 %. At last, the
system is tested for its capability to find a single source loca-
tion as well as its source strength. In these tests, the location
and strength that yield the best match between the predicted
and the observed concentrations are considered as the inverse
modeling results. The estimated release rates are mostly not
as good as the cases in which the exact release locations are
assumed known, but they are all within a factor of 3 for all
six releases. However, the estimated location may have large
errors.

1 Introduction

The transport and dispersion of gaseous and particulate pol-
lutants are often simulated to generate pollution forecasts for
emergency responses or produce comprehensive analyses of
the past for better understanding of the particular events. La-
grangian particle dispersion models are particularly suited to
provide plume products associated with emergency response
scenarios. While accurate air pollutant source terms are cru-
cial for the quantitative predictions, they are rarely provided
in most applications and have to be approximated with a lot
of assumptions. For instance, the smoke forecasts over the
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continental US operated by the National Oceanic and At-
mospheric Administration (NOAA) using the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Draxler and Hess, 1997; Stein et al., 2015) in support of the
National Air Quality Forecast Capability (NAQFC) rely on
outdated fuel loading data and a series of assumptions related
to smoke release heights and strength approximation (Rolph
et al., 2009).

Observed concentration, deposition, or other functions of
the atmospheric pollutants such as aerosol optical thickness
measured by satellite instruments can be used to estimate
some combination of source location, strength, and tempo-
ral evolution using various source term estimation (STE)
methods (Bieringer et al., 2017; Hutchinson et al., 2017).
Among the applications, the recent Fukushima Daiichi nu-
clear power plant accidents saw the most implementations
of the STE methods to estimate the radionuclide releases.
The STE methods range from simple comparisons between
model outputs and measurements (e.g., Chino et al., 2011;
Katata et al., 2012; Terada et al., 2012; Hirao et al., 2013;
Kobayashi et al., 2013; Oza et al., 2013; Katata et al., 2015;
Achim et al., 2014) to sophisticated ones using various dis-
persion models and inverse modeling schemes (e.g., Stohl
et al., 2012; Winiarek et al., 2012; Saunier et al., 2013;
Winiarek et al., 2014; Chai et al., 2015). Another active field
for STE applications is the estimation of the volcanic ash
emissions. Many attempts have been made for several ma-
jor volcano eruptions (Wen and Rose, 1994; Prata and Grant,
2001; Wilkins et al., 2014, 2016; Chai et al., 2017).

While there are many STE methods applied to reconstruct
the emission terms, it is still a state of the art. Two popu-
lar advanced inverse modeling approaches are cost-function-
based optimization methods and those based on Bayesian in-
ference. However, it is difficult to evaluate the STE without
knowing the actual sources for most applications. Chai et al.
(2015) generated pseudo-observations using the same disper-
sion model in their initial inverse experiment tests, which are
often called “twin experiments”. Such tests allow observa-
tional errors to be added realistically (e.g., Chai et al., 2015),
but it is non-trivial to represent the model errors incurred by
other model parameters such as the uncertainties of the mete-
orological field. One way to objectively evaluate the inverse
modeling results is to compare the predictions with the inde-
pendent observations or withheld data. However, such indi-
rect comparisons still cannot provide quantitative error statis-
tics for the source terms.

There have been some tracer experiments conducted to
study the atmospheric transport and dispersion with con-
trolled releases. In these experiments, the source terms
were well-quantified and comprehensive measurements were
made subsequently over an extended area (e.g., Draxler et al.,
1991; Van Dop et al., 1998). With the known source terms,
they provide a unique opportunity to evaluate the STE meth-
ods. Singh and Rani (2014) and Singh et al. (2015) used mea-
surements from recent dispersion experiment (Fusion Field

Trials 2007) data to evaluate a least-squares technique for
identification of a point release. The European Tracer Exper-
iment (ETEX) data set was also used to study the STE meth-
ods based on the principle of maximum entropy and a least-
squares cost function (Bocquet, 2005, 2007, 2008). However,
such formal evaluation of the STE methods is still very lim-
ited.

A HYSPLIT inverse system based on 4D-Var data as-
similation and a transfer coefficient matrix (TCM) was de-
veloped and applied to estimate a cesium-137 source from
the Fukushima nuclear accident using air concentration mea-
surements (Chai et al., 2015). The system was further devel-
oped to estimate the effective volcanic ash release rates as
a function of time and height by assimilating satellite mass
loadings and ash cloud top heights (Chai et al., 2017). In this
study, the Cross-Appalachian Tracer Experiment (CAPTEX)
data are used to evaluate the HYSPLIT inverse modeling sys-
tem. The paper is organized as follows. Section 2 describes
the CAPTEX experiment, HYSPLIT-4 model configuration,
and the source term inversion method. Section 3 presents
emission inversion results, and a summary is given in Sect. 4.

2 Method

2.1 CAPTEX experiment

The CAPTEX experiment consisted of seven near-surface re-
leases of the inert tracer perfluoro-monomethyl-cyclohexane
(PMCH) from Dayton, Ohio, USA, and Sudbury, Ontario,
Canada, during September and October 1983 (Draxler,
1987). Table 1 lists the locations, time, amounts, and mea-
surement counts of the seven releases. Samples were col-
lected at 84 different measurement sites distributed from
300 to 1100 km downwind of the emission source, as ei-
ther 3 or 6 h averages up to 60 h after each release (NOAA
ARL, 2018a). Figure 1 shows the distribution of measure-
ment sites and the two source locations. Release 6 is excluded
from the testing as in the earlier studies using CAPTEX data
(e.g., e.g., Hegarty et al., 2013; Ngan et al., 2015) due to
low detection at the measurement sites. Note that 3.4 fL L−1

has been subtracted from all CAPTEX measurements to re-
move background and “noise” in sampling where the ambi-
ent background concentration is constant at 3.0 fL L−1 (Fer-
ber et al., 1986). At ground level, 1 fL L−1 is equivalent to
15.6 pg m−3. Duplicate sample analyses showed that the ma-
jority of the data have a mean standard deviation estimated
as 10.8 % but contaminated samples may have standard de-
viation as large as 65 % (Ferber et al., 1986).

2.2 HYSPLIT

In this study, the tracer transport and dispersion are modeled
using the HYSPLIT model (version 4, NOAA ARL, 2018b)
in its particle mode in which three-dimensional (3-D) La-
grangian particles released from the source location passively
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Table 1. The locations, time, amounts, and measurement counts (Mobs) of each CAPTEX release from Dayton, Ohio, USA, and Sudbury,
Ontario, Canada, during September and October 1983.

No. Site (latitude, longitude) Release time Amount Mobs

1 Dayton (39.80◦, −84.05◦) 17:00–20:00 Z, 18 Sep 1983 208 kg 395
2 Dayton (39.90◦, −84.22◦) 17:05–20:05 Z, 25 Sep 1983 201 kg 400
3 Dayton (39.90◦, −84.22◦) 19:00–22:00 Z, 2 Oct 1983 201 kg 404
4 Dayton (39.90◦, −84.22◦) 16:00–19:00 Z, 14 Oct 1983 199 kg 367
5 Sudbury (46.62◦, −80.78◦) 03:45–06:45 Z, 26 Oct 1983 180 kg 357
6 Dayton (39.90◦, −84.22◦) 15:30–16:00 Z, 28 Oct 1983 32 kg –
7 Sudbury (46.62◦, −80.78◦) 06:00–09:00 Z, 29 Oct 1983 183 kg 358

Figure 1. Distribution of the 84 measurement sites and two CAP-
TEX source locations (Dayton, Ohio, USA, shown as a red dia-
mond, and Sudbury, Ontario, Canada, shown as a green cross).

follow the wind field (Draxler and Hess, 1997, 1998; Stein
et al., 2015). A particle release rate of 50 000 particles h−1 is
used for all calculations. Random velocity components based
on local stability conditions are added to the mean advection
velocity in the three wind component directions. The meteo-
rological data used to drive the HYSPLIT are time averaged
from the Advanced Research Weather Research and Fore-
casting (WRF) model (ARW, version 3.2.1) simulation re-
sults at 10 km resolution and they are identical to those used
by Hegarty et al. (2013). The 10 km run was nested inside a
larger domain at 30 km resolution, over which the simulation
was started using the North American Regional Reanalysis
(NARR) at 32 km (Mesinger et al., 2006). In the WRF sim-
ulations, 3-D grid nudging of winds was applied in the free
troposphere and within the planetary boundary layer (PBL).
There are 43 vertical layers, with the lowest one being ap-
proximately 33 m thick. Tracer concentrations are computed
over each grid cell by summing the mass of all particles in
the cell and dividing the result by the cell’s volume. In this
study, the concentration grid cells have 0.25◦ resolution in

both latitude and longitude directions and vertically they ex-
tend 100 m from the ground.

To avoid running the HYSPLIT modeling repeatedly, a
TCM is generated similar to the previous HYSPLIT inverse
modeling studies (Chai et al., 2015, 2017). As described in
Draxler and Rolph (2012), independent simulations are per-
formed with a unit emission rate from each source location
and a predefined time segment. Each release scenario is sim-
ply a linear combination of the unit emission runs.

2.3 Emission inversion

Similar to Chai et al. (2015), the unknown releases can be
solved by minimizing a cost functional that integrates the dif-
ferences between model predictions and observations, devi-
ations of the final solution from the first guess (a priori), as
well as other relevant information written into penalty terms
(Daley, 1991). For the current application, the cost functional
F is defined as

F =
1
2

M∑
i=1

N∑
j=1

(qij − q
b
ij )

2

σ 2
ij

+
1
2

M∑
m=1

(chm− c
o
m)

2

ε2
m

, (1)

where qij is the discretized source term at hour i and loca-
tion j for which an independent HYSPLIT simulation has
been run and recorded in a TCM. qbij is the first guess or a
priori estimate and σ 2

ij is the corresponding error variance.
Note that all tracer sources in this study were at ground level
and the release heights in the HYSPLIT were set as 10 m
for all of the following test cases. We also assume the un-
certainties of the release at each time and location are inde-
pendent of each other so that only the diagonal term of the
typical a priori error variance σ 2

ij appears in Eq. (1). ch and
co denote HYSPLIT-predicted and measured concentrations,
respectively. The observational errors ε2

m are assumed to be
uncorrelated. As the term ε2

m is essentially used to weight
(chm− c

o
m)

2 terms, the uncertainties of the model predictions
and the representative errors should be included in addition
to the observational uncertainties. This will be further dis-
cussed in Sect. 3.2. A large-scale bound-constrained limited-
memory quasi-Newton code, L-BFGS-B (Zhu et al., 1997)
is used to minimize the cost functional F defined in Eq. (1)
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when multiple parameters need to be determined. As shown
by Chai et al. (2015), the metric variable can be changed
from concentration to logarithm concentration. Both choices
of metric variable will be tested here. Note that the cases
presented in this study are all formulated as overdetermined
problems.

3 Results

3.1 Recovering emission strength without model
uncertainty

As an initial test, the exact release location and time are both
assumed known and the only unknown variable left to be de-
termined is the release rate or the total release amount. For
this type of one-dimensional problem, an optimal emission
strength can be easily found without having to use sophis-
ticated minimization routines. For instance, the F may be
directly calculated for a number of emission strength values,
and the resulting F = F(q) plot will reveal the optimal q
strength that is associated with the minimalF . Note that such
an optimal solution not only depends on the chosen parame-
ters in Eq. 1 but also highly depends on the HYSPLIT model
setup and the meteorological fields.

Both Hegarty et al. (2013) and Ngan et al. (2015) showed
that the HYSPLIT dispersion model performed better for re-
lease 2 than the other releases. Thus, release 2 is initially cho-
sen to perform a series of inverse modeling tests. Assuming
no prior knowledge of the emission strength, the first guess is
given as qb = 0, and σ = 104 kg h−1 is assumed. Sensitivity
tests show that when qb is changed to 100 kg h−1, the emis-
sion strength estimates are nearly unchanged with the same
or larger σ .

Firstly, no model uncertainties are considered to contribute
to ε. The observational uncertainties are formulated to in-
clude a fractional component f o×co and an additive part ao.
Note that this general formulation is chosen for its simplic-
ity. It should be replaced when more uncertainty information
is available. Table 2 lists the emission strength q that gen-
erates the minimal cost function for a series of f o and ao

combinations, where f o ranges from 10 % to 50 %, and ao is
assigned as 10, 20, and 50 pg m−3. All the emission strength
values obtained are significantly lower than the actual release
of 67 kg h−1. It shows that a larger f o value tends to have a
smaller q estimate, but a larger ao results in a larger q. The
significant underestimation of the release strength is caused
by the implicit assumption of a perfect model when ε does
not include the model uncertainties. Figure 2 shows the com-
parison between the predicted and measured concentrations
when the actual release rate of 67 kg h−1 is applied. Large
discrepancies still exist even when the exact release is known
and used in the simulation. For the measured zero concen-
trations, most of the predicted values are non-zero and can
be above 1000 pg m−3. As εm = ao for these zero concentra-

Figure 2. Comparison between the predicted and measured con-
centrations for release 2 during the CAPTEX experiment. In the
HYSPLIT simulation, at the exact release location, an emission rate
of 67 kg h−1 was applied from 17:00 to 20:00 Z on 25 Septem-
ber 1983. A constant 1 pg m−3 is added to both predicted and mea-
sured concentrations to allow logarithm calculation.

tions, (c
h
m−c

o
m)

2

ε2
m

will dominate the cost function when ao is not
large enough. This explains that the underestimation is not as
severe for ao = 50 pg m−3 as that for ao = 10 pg m−3. While
ε do not change with f o for the zero concentrations, smaller

f o values help increase the weighting of the terms (chm−c
o
m)

2

ε2
m

associated with large measured concentrations. So, the esti-
mated emission strength when f o = 10 % is better than when
f o = 50 %.

As stated in Chai et al. (2015), the metric variable in
Eq. (1) can be changed to ln(c), i.e., replacing (chm−c

o
m)with

ln(chm)−ln(com). A constant 0.001 pg m−3 is added to both chm
and com to allow the logarithm operation for zero concentra-
tions. In such a case, εln(c)

m can be calculated as

εln(c)
m = ln

(
1+ f o+

ao

com

)
. (2)

Note that 0.001 pg m−3 is also added to com in the second
term to avoid dividing by zero. The ao

com
term in Eq. (2) makes

ε
ln(c)
m larger for measured low concentrations than those mea-

sured high concentrations. It causes more weighting towards
measured high concentrations and results in overestimation
shown in Table 3. The measured zero concentrations have
little effect on the final emission strength estimates. Table 3
shows that the emission strengths are overestimated but are
within a factor of 2 over the actual release of 67 kg h−1, for
all f o and ao combinations. The similar trends of how q
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changes with f o and ao are also observed here; i.e., a larger
ao or a smaller f o tends to have a larger q estimate.

While using logarithm concentration as the metric variable
yields better emission estimates than using concentration as
the metric variable, the results in Table 3 are apparently sys-
tematically overestimated compared to the systematically un-
derestimated results in Table 2. In addition, the f o and ao

combinations associated with the best emission estimates in
Tables 2 and 3 appear to be in the opposite corners of the
tables.

3.2 Recovering emission strength with model
uncertainty

To consider the model uncertainties in a simplified way, ε2

will be formulated as

ε2
m =

(
f o× com+ a

o
)2
+

(
f h× chm+ a

h
)2
. (3)

As ao and ah affect the ε2 in a similar way, the representa-
tive errors caused by comparing the measurements with the
predicted concentrations averaged in a grid can be included
in either ah or ao.

With logarithm concentration as the metric variable,
(ε

ln(c)
m )2 is comprised of two parts, as

(
εln(c)
m

)2
=

[
ln
(

1+ f o+
ao

com

)]2

+

[
ln
(

1+ f h+
ah

chm

)]2

. (4)

Note that a constant small number (0.001 pg m−3) is added
to denominators com and chm to avoid dividing by zero.

Since the predicted concentrations chm in Eqs. (3) and (4)
will vary when source term estimates change, the model un-
certainties will depend on the current release parameters.
Thus, the model uncertainty terms are not static during the
inverse modeling and they change along with the source esti-
mates. Using concentration and logarithm concentration as
the metric variable, respectively, Tables 4 and 5 show the
emission strength estimates with different f h and ah, while
keeping f o = 20 %, ao = 20 pg m−3. Additional tests with
other chosen f o and ao values show similar but slightly dif-
ferent results. For brevity, they are not presented here. It
should be noted that the model uncertainties are not equiva-
lent to model errors. Although dispersion model simulations
can have large errors due to various reasons including the
source term uncertainties, the model uncertainties are used
to indicate that the model is not perfect even with the “op-
timal” model parameters. Similar to the weak constraint ap-
plied in operational 4D-Var data assimilation systems (Zu-
panski, 1997; Tremolet, 2006), introducing model uncertain-
ties is mainly intended to relax the model constraint for im-
perfect models. Here, the f h and ah parameters are given

similar ranges to those given to the observational uncertainty
parameters.

When concentration is used as the metric variable, the
emission strength estimates with model uncertainties consid-
ered are improved over those without model uncertainties.
The estimates of emission strength generally increase with
the model uncertainty, either through ah or f h, except for
f h = 50 %, when the q estimates slowly decreases with ah.
When f h = 0 %, ah = 10, 20, and 50 pg m−3, while ao =
20 pg m−3; the q estimates, 7.7, 9.1, and 13.6 kg h−1, are in
line with the results shown in Table 2, where q = 7.1 kg h−1

for ao = 20 pg m−3 and q = 12.6 kg h−1 for ao = 50 pg m−3.
However, the trend of how q estimates change with f h is op-
posite to how q estimates change with f o. Table 4 shows
that the emission strength increases with the model uncer-
tainty factor f h. With f h = 20 %, the release estimates of
48.5, 50.4, and 53.5 kg h−1 are all within 30 % of the ac-
tual release rate of 67 kg h−1. Instead of the underestima-
tion shown in Table 2, the release estimates are overestimated
when f h = 50 % is assumed.

With logarithm concentration as the metric variable, larger
ah or f h results in slightly smaller q estimates. While how
q estimates change with f h is similar to how they change
with f a in Table 3, how q estimates change with ah is op-
posite to how q estimates change with ao before introduc-
ing model uncertainties. Equation (4) shows that f o and f h

affect (εln(c)
m )2 in a simple monotonic way, while the effect

of ahm is complicated, as it is divided by the chm value that
varies with the source terms. Table 5 shows that the source
terms are no longer overestimated as those in Table 3. In
fact, all cases have slight to moderate underestimation, with
the worst results being q = 42.6 kg h−1 when f h = 50 % and
ah = 50 pg m−3. Another aspect of using logarithm concen-
tration as the metric variable is that the range of the release
estimates listed in Table 5 is not as large as that in Table 4,
which resulted from using concentration as the metric vari-
able for the same 12 combinations of ah and f h.

3.3 Cost function normalization

Without model uncertainties, the weighting terms for each
model–observation pair do not change with emission esti-
mates. When ε2

m and (εln(c)
m )2 are formulated as in Eqs. (3)

and (4), respectively, they vary with emission estimates. This
may cause complication in some circumstances when loga-
rithm concentration is used as the metric variable. To avoid
having zero source as a global minimizer in such situations,
the sum of the weights of the mismatch between model simu-
lation and observations is kept unchanged for varying qij by
normalizing it with the weight sum when qij = qbij , as shown
in Eq. (5).
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Table 2. Emission strength of release 2 that minimizes F for different observational errors, defined as ε = f o× co+ ao. Concentration is
used as the metric variable.

Emission (kg h−1) ao = 10 pg m−3 ao = 20 pg m−3 ao = 50 pg m−3

f o = 10 % 7.1 11.1 17.4
f o = 20 % 4.1 7.1 12.6
f o = 30 % 2.9 5.2 10.0
f o = 50 % 1.8 3.4 7.1

Table 3. Emission strength of release 2 that minimizes F for different observational errors, defined as ε = f o× co+ao. Logarithm concen-
tration is chosen as the metric variable; i.e., (chm− c

o
m) in Eq. (1) is replaced with ln(chm)− ln(com).

Emission (kg h−1) ao = 10 pg m−3 ao = 20 pg m−3 ao = 50 pg m−3

f o = 10 % 115.2 119.8 124.7
f o = 20 % 106.3 112.9 119.8
f o = 30 % 101.2 108.5 116.3
f o = 50 % 94.4 101.2 109.6

F =
1
2

M∑
i=1

N∑
j=1

(qij − q
b
ij )

2

σ 2
ij

+
1
2

M∑
m=1

(chm− c
o
m)

2

ε2
m

×

∑M
m=1

1
εbm

2∑M
m=1

1
ε2
m

(5)

Figure 3 shows the cost function as a function of source
strength when (εln(c)

m )2 is defined as in Eq. (4), with f h = 0,
ah = 50 pg m−3, f o = 10 %, ao = 20 pg m−3. Before intro-
ducing cost function normalization, a global minimal cost
function appears when release strength approaches zero,
while a local minimal cost function exists at 56.8 kg h−1.
Several such instances were found when ah = 50 pg m−3 and
when f h is 0 or 10 %, while both f o and ao are relatively
small. The smaller cost function when release strength ap-
proaches zero is due to the increasing (εln(c)

m )2 in Eq. (4) as
chm gets smaller. While the model–observation differences are
not smaller for lower release strength, the drastic increase of
(ε

ln(c)
m )2 when ah = 50 pg m−3 and f h is 0 % or 10 % results

in smaller cost function with decreasing source strength.
Figure 3 shows that the cost function has the minimum

at q = 67.3 kg h−1 after normalization. Note that the dra-
matic difference of the cost function magnitude before and
after the normalization is due to the extremely small value
of
∑
m=1

1
εbm

2 calculated at qb = 0. Tables 6 and 7 show the

emission strength estimates after cost function normalization
with different f h and ah, while keeping f o = 20 %, ao =
20 pg m−3, using concentration and logarithm concentration
as the metric variables, respectively. Note that f o = 20 %
was chosen for the cases listed in Table 7, while f o = 10 %
was chosen in Fig. 3 to illustrate the potential problem. How
estimates change with f h and ah in Tables 6 and 7 is similar

Figure 3. Cost function as a function of source strength when
(ε

ln(c)
m )2 is defined as in Eq. (4) before and after cost function nor-

malization, with f h = 0, ah = 50 pg m−3, f o = 10 %, and ao =
20 pg m−3.

to what is shown in Tables 4 and 5. The estimates are gener-
ally closer to the actual release than those obtained without
the cost function normalization.

When having concentration as the metric variable and
with f h = 50 %, the emission strength estimates are 64.7,
64.7, and 65.3 kg h−1 for ah = 10, 20, and 50 pg m−3, re-
spectively. They are all within 5 % of the actual release rate.
However, f h less than or equal to 20 % results in signifi-
cant underestimation. When having logarithm concentration
as the metric variable, the source term estimates are not very
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Table 4. Emission strength of release 2 that minimizes F for different f h and ah. Concentration is taken as the metric variable. ε2
=

(f o× co+ ao)2+ (f h× ch+ ah)2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 7.7 9.1 13.6
f h = 10 % 15.9 22.1 32.9
f h = 20 % 48.5 50.4 53.5
f h = 50 % 114.0 111.8 104.3

Table 5. Emission strength of release 2 that minimizes F for different f h and ah. Logarithm concentration is taken as the metric variable.
(ε

ln(c)
m )2 = [ln(1+ f o+ ao

com
)]2+ [ln(1+ f h+ ah

chm
)]2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 64.7 58.5 53.5
f h = 10 % 61.5 55.7 49.4
f h = 20 % 58.5 53.0 46.6
f h = 50 % 55.1 49.4 42.6

sensitive to f h and ah values, and the results listed in Ta-
ble 7 are all within 20 % of the actual release rate. Among
those estimates, a result of 67.3 kg h−1 when f h = 10 % and
ah = 10 pg m−3 is almost identical to the actual release rate.

3.4 Ensemble

Ngan and Stein (2017) simulated CAPTEX releases using a
variety of PBL schemes. In their configuration, WRF version
3.5.1 was used with 27 km grid spacing and 33 vertical lay-
ers. The NARR data set was used for the initial conditions
and lateral boundary conditions. The WRF model was ini-
tialized every day at 06:00 UTC, and the first 18 h of spin-up
time in the 42 h simulation were discarded. The PBL schemes
used to create the WRF ensemble were the Yonsei University
(Hong et al., 2006, YSU), Mellor–Yamada–Janjic (Janjic,
1994, MYJ), quasi-normal scale elimination (Pergaud et al.,
2009, QNSE), MYNN 2.5 level TKE (Nakanishi and Niino,
2006, MYNN), ACM2 (Pleim, 2007, ACM2), Bougeault and
Lacarrere (Bougeault and Lacarrère, 1989, BouLac), Univer-
sity of Washington (Bretherton and Park, 2009, UW), to-
tal energy mass flux (Angevine et al., 2010, TEMF), and
Grenier–Bretherton–MaCaa (Grenier and Bretherton, 2001,
GBM) schemes. Nine simulations were conducted with the
PBL schemes and their associated surface layer schemes, ex-
cept for the YSU, BouLac, UW, and GBM cases in which
the MM5 Monin–Obukhov surface scheme was applied. The
land-surface model was Noah land-surface model (Chen and
Dudhia, 2001), except ACM2 in which the Pleim–Xiu land-
surface model was used.

An individual TCM is generated using each of the nine
simulations. The nine TCMs can be used to estimate the
emission strengths independently following the same pro-

cedure described previously. Tables 8 and 9 show the third
(25th percentile), fifth (median), and seventh (75th per-
centile) emission strengths of the nine estimates that min-
imize the normalized F defined in Eq. (5) with different
f h and ah, while keeping f o = 20 %, ao = 20 pg m−3, using
concentration and logarithm concentration as the metric vari-
ables, respectively. The 25th percentile and 75th percentile
values are mostly within 5 % of the median estimates. While
the median estimates show the same trends with f h and ah as
the results in Tables 6 and 7, they are significantly larger due
to the meteorological model differences. Apparently, the dif-
ferences among the simulations with different PBL schemes
are smaller than the differences between the ensemble sim-
ulations here and the simulation used in the earlier sections.
This suggests that uncertainties of the emission strength are
probably larger than the ranges indicated by the 25th and
75th percentile values. The results using logarithm concen-
tration as the metric variable are quite robust with the listed
model uncertainty parameters. However, the estimates using
concentration as the metric variable are very sensitive to f h

and ah. This is consistent with results shown in Sect. 3.2 and
3.3.

Instead of using each individual TCM generated from nine
simulations independently, the nine TCMs can be combined
into one matrix by taking the median or average values. The
combined TCM can then be used to estimate the source
terms. The results for concentration and logarithm concen-
tration metric variables are listed in Tables 10 and 11, re-
spectively. They show that the emission estimates using the
median transfer coefficients of the nine TCMs are very close
to the median of the nine estimates using the nine simula-
tions individually. For the cases with logarithm concentra-
tion as the metric variable, the emission estimates using the
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Table 6. Emission strength of release 2 that minimizes normalized F defined in Eq. (5) for different f h and ah. Concentration is taken as
the metric variable. ε2

= (f o× co+ ao)2+ (f h× ch+ ah)2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 7.7 9.1 13.6
f h = 10 % 10.9 15.1 26.4
f h = 20 % 32.9 35.6 41.3
f h = 50 % 64.7 64.7 65.3

Table 7. Emission strength of release 2 that minimizes normalized F defined in Eq. (5) for different f h and ah. Logarithm concentration is
taken as the metric variable. (εln(c)

m )2 = [ln(1+ f o+ ao

com
)]2+ [ln(1+ f h+ ah

chm
)]2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 69.3 64.0 62.1
f h = 10 % 67.3 63.4 60.9
f h = 20 % 65.3 61.5 59.1
f h = 50 % 61.5 58.0 55.1

median value of the nine TCMs are all within 3.1 % of the
median values of the nine estimates obtained with each indi-
vidual TCM. For the cases with concentration as the metric
variable, the average relative differences are 6.4 %, with the
maximum relative difference being 10.8 % when f h = 10 %
and ah = 50 pg m−3. Combining the TCMs by taking the me-
dian value generates slightly better results than combining
the TCMs by taking the average value does.

Similar to what was found in earlier sections and also in
Chai et al. (2015), the cases having logarithm concentration
as the metric variable generally yield better results than those
having concentration as the metric variable. It is probably
due to the large range of the concentrations. When having
concentration as the metric variable, certain model uncer-
tainty parameters yield good source terms, but the estimates
are quite sensitive to the choices of the model uncertainty
parameters. However, it is not easy to find such model un-
certainty parameters that would yield satisfactory results for
applications when the actual releases are indeed unknown.
The results here and in the previous sections show that the
estimates having logarithm concentration as the metric vari-
able are quite robust for a reasonable range of model uncer-
tainty parameters. For these reasons, logarithm concentration
is chosen as the metric variable for the later tests.

3.5 Source location and other releases

In addition to the source strength, the source location and
its temporal variation can be retrieved with adequate ac-
curacy using the HYSPLIT inverse system described here
if there are sufficient measurements available. For instance,
Chai et al. (2015) estimated 99 6 h emission rates of the ra-
dionuclide cesium-137 from the Fukushima nuclear accident

using 1296 daily average air concentration measurements at
115 stations around the globe. Here, the system’s capabil-
ity to locate a single source location will be tested using a
straightforward approach. In these tests, the release time is
assumed known, but its location and strength are left to be
determined. A region of suspect is first gridded at certain spa-
tial resolution to form a limited number of candidate source
locations. An optimal strength is then found at each candi-
date source location following the method described earlier.
The location that results in the best match between the pre-
dicted and the observed concentrations is considered as the
likely source location.

In the following tests, a 11× 11 grid with 0.2◦ resolu-
tion in both longitude and latitude directions is used to gen-
erate 121 candidate source locations. They are centered at
40.0◦ N, 84.5◦W, for releases 1–4, and centered at 46.6◦ N,
80.8◦W, for releases 5 and 7. Using the normalized F de-
fined in Eq. (5) and assuming f o = 20 %, ao = 20 pg m−3,
f h = 20 %, and ah = 20 pg m−3, a minimal cost function as-
sociated with an optimal release strength can be found at
each location. When logarithm concentration is taken as the
metric variable, the emission estimates are not sensitive to
f h and ah choices, as indicated by the results in Tables 7,
9, and 11. Figure 4 shows the 121 candidate locations and
their respective minimal cost function values for release 2.
No candidate locations are chosen to collocate with the ac-
tual source location which will be unknown for the future
applications that need to locate the sources. A global min-
imal point is found at 39.8◦ N, 84.5◦W, with Fmin = 3.14
achieved when q = 48.5 kg h−1. This grid point is taken as
the estimated source location and it is 26.4 km away from the
actual release site (39.90◦ N, 84.22◦W). The neighboring lo-
cation (39.8◦ N, 84.3◦W) which is the closest to the actual
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Table 8. The third (25th percentile), fifth (median), and seventh (75th percentile) emission strengths of nine simulations of release 2 that
minimize the normalized F defined in Eq. (5) for different f h and ah. Concentration is taken as the metric variable. ε2

= (f o×co+ao)2+
(f h× ch+ ah)2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 6.0, 7.0, 7.2 7.4, 8.8, 8.8 13.4, 15.1, 15.3
f h = 10 % 20.0, 21.0, 21.9 23.9, 26.1, 27.2 33.2, 35.2, 37.4
f h = 20 % 48.5, 49.9, 59.1 53.0, 54.6, 62.8 58.5, 62.8, 68.6
f h = 50 % 191, 205, 274 186, 197, 258 158, 168, 207

Table 9. The third (25th percentile), fifth (median), and seventh (75th percentile) emission strengths of nine simulations of release 2 that
minimize normalized F defined in Eq. (5) for different f h and ah. Logarithm concentration is taken as the metric variable. (εln(c)

m )2 =

[ln(1+ f o+ ao

com
)]2+ [ln(1+ f h+ ah

chm
)]2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 102, 106, 113 93.4, 100, 105 83.8, 88.9, 97.2
f h = 10 % 97.2, 102, 108 88.9, 96.3, 101 80.5, 85.4, 94.4
f h = 20 % 93.4, 98.2, 105 86.3, 92.5, 98.2 78.1, 82.9, 91.6
f h = 50 % 88.9, 93.4, 101 82.9, 88.0, 94.4 75.8, 81.3, 87.2

release site yields a slightly larger F = 3.17 with an opti-
mal release rate of 60.9 kg h−1. If the exact source location
is known as in the tests presented earlier, the cost function
F reaches 1.59 at its minimal point when q = 61.5 kg h−1.
Apparently, compared with those cases when the release
strength is the only unknown, finding both the source loca-
tion and its strength with the same amount of observations is
expected to be more difficult. Note that the smaller normal-
ized F values in Fig. 3 are for a case with different obser-
vation and model uncertainty parameters, where f o = 10 %,
ao = 20 pg m−3, f h = 0 %, and ah = 50 pg m−3.

Table 12 lists the source location and strength estima-
tions for the six releases following the same procedure as
described here, where the uncertainty parameters are f o =
20 %, ao = 20 pg m−3, f h = 20 %, and ah = 20 pg m−3. Re-
leases 1 and 4 have the minimal cost function Fmin occurring
at the north boundary and the west boundary, respectively. In
such scenarios, it might be necessary to expand the suspected
source region for the future applications to find the source
locations. However, if source locations are known to reside
in the suspected region, the sources can definitely be near the
boundaries. In such cases, the point withFmin should be con-
sidered as the estimated source location. Releases 3, 5, and 7
have their Fmin occurring at inner grid points, similar to re-
lease 2 shown in Fig. 4. None of the closest candidate source
locations yield the best match between model simulation and
observations quantified by the cost function F . Among the
six releases, the estimated source location for release 2 is the
closest to its actual release site, with a distance of 26.4 km.

The release rates obtained along with the likely source lo-
cations are underestimated by a factor of 3 for release 1, and

overestimated by a factor of 3 for releases 4 and 7, while the
estimates for releases 2, 3, and 5 are much better, with rel-
ative errors of −27.6 %, −5.4 %, and 21.5 %, respectively.
Table 12 also lists the release rates q ′ estimated with the ex-
act source location assumed known. These estimates for all
releases are within a factor of 2 of the actual release rates,
and the largest relative error is 53.3 % for release 1. The
posterior uncertainties of the release rate estimates εq ′ are
also calculated and listed. They range from 1.8 kg h−1 for
release 2 to 6.2 kg h−1 for release 1. The apparent underes-
timation is likely due to the model uncertainty assumption,
including its simplified formulation as well as the chosen
parameter values. Either with the source location known or
unknown, release 2 has one of the best emission estimates
among the six releases, probably because the HYSPLIT for-
ward model has the best performance for the same release
(Hegarty et al., 2013). The significant model errors when
simulating the transport and dispersion even with the exact
source terms are mostly caused by the meteorological uncer-
tainties, while the HYSPLIT physical schemes and parame-
ters, as well as the numerical discretization, also contribute.

An assumption made in this inverse modeling algorithm
is that the differences between model and observation have
a normal distribution with a zero mean. Figure 5 shows the
probability density function (pdf) of ln(ch)−ln(co) for the six
CAPTEX releases using the estimated release rate q ′ listed
in Table 12. The pdf distribution of ln(ch)− ln(co) for re-
lease 2 is consistent with the normal distribution assump-
tion, and the pdf for release 4 shows the largest deviation
from a normal distribution, while those for the other four re-
leases resemble a normal distribution to some extent. The
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Table 10. Emission strength estimates by using the average and median value of nine simulations for release 2. The cost function is normal-
ized F as in Eq. (5). Concentration is taken as the metric variable. ε2

= (f o× co+ ao)2+ (f h× ch+ ah)2. f o = 20 %, ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 7.2, 7.5 8.9, 9.1 15.6, 15.9
f h = 10 % 22.3, 23.4 22.2, 28.0 37.0, 37.0
f h = 20 % 55.1, 53.0 59.7, 58.0 66.6, 64.7
f h = 50 % 213, 227 205, 213 178, 177

Table 11. Emission strength estimates by using the average and median value of nine simulations for release 2. The cost function is normal-
izedF as in Eq. (5). Logarithm concentration is taken as the metric variable. (εln(c)

m )2 = [ln(1+f o+ ao

com
)]2+[ln(1+f h+ a

h

chm
)]2. f o = 20 %,

ao = 20 pg m−3.

Emission (kg h−1) ah = 10 pg m−3 ah = 20 pg m−3 ah = 50 pg m−3

f h = 0 115, 108 105, 100 95.3, 90.7
f h = 10 % 110, 103 100, 95.3 91.6, 87.2
f h = 20 % 105, 100 97.2, 92.5 88.9, 85.4
f h = 50 % 100, 96.3 93.4, 88.9 86.3, 82.1

largest relative error for release 1 is likely related to the neg-
ative mean of the ln(ch)−ln(co) distribution shown in Fig. 5.
The overestimated q ′ probably results from the compensa-
tion of the model bias. Note that the better performance us-
ing ln(ch)− ln(co) than ch− co is believed to be caused by
the fact that normal distribution assumption is mostly valid
for the former but probably invalid for the latter.

The meteorological field and the observations are the two
major inputs to the current inverse modeling. As discussed
above, better model performance of release 2 helps to lead to
better inverse results than the other releases. However, it is
impossible to eliminate the model uncertainties. In practice,
ensemble runs can be used to quantify the uncertainties and
reduce the model errors by taking the average or median val-
ues of the ensemble runs. On the other hand, increasing the
number of observations is effective to improve the inverse
modeling results and reduce the result uncertainty. In prin-
ciple, when the release strength is the only value to be de-
termined, each measurement within the predicted plume can
provide an independent estimate. However, relying on a sin-
gle observation to estimate the strength is problematic since a
particular model output can be very different from the obser-
vation and thus lead to an erroneous estimation of the source
strength when used in isolation. For instance, although the
HYSPLIT predictions of release 2 with exact source terms
are very good, compared with individual measurements, they
have severe underestimation (e.g., 0.77 pg m−3 predicted ver-
sus 686 pg m−3 measured), as well as significant overestima-
tion (e.g., 2033 pg m−3 predicted versus 31.2 pg m−3 mea-
sured). Therefore, similar to a regression technique, increas-
ing the sampling number can improve the final results, as
exemplified by the very good source term estimation for re-

lease 2 when using all the available measurements. Also note
that the samples outside predicted plumes do not contribute
to the inverse modeling. Table 1 lists the total measurement
counts for each release, but the number of measurements ac-
tually contributing to the inverse modeling are those inside
the HYSPLIT plumes, including those with zero or back-
ground concentrations. The number of such effective mea-
surements inside the plumes generated by HYSPLIT from
the exact source location and time period are reduced to 148,
237, 211, 68, 46, and 53, for releases 1–5 and 7, respectively.
The largest number of effective measurements, 237, of re-
lease 2, also indicates the best performance of the HYSPLIT
simulation among those of the six releases. The effectiveness
of the measurements will change when source location or re-
lease time is changed. The measurements that are not active
in determining the source strength with a known source lo-
cation and release time may be effective to locate the source
locations.

4 Summary

A HYSPLIT inverse system developed to estimate the source
term parameters has been evaluated using the CAPTEX data
collected from six controlled releases. In the HYSPLIT in-
verse system, a cost function is used to measure the differ-
ences between model predictions and observations weighted
by the observational uncertainties. Inverse modeling tests
with various observational uncertainties show that calculat-
ing concentration differences results in severe underestima-
tion, while calculating logarithm concentration differences
results in overestimation.
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Table 12. The source location (latitude, longitude) and release rate qmin identified by the minimal normalized cost function Fmin for each
CAPTEX release. A total of 121 candidate locations are prescribed with 0.2◦ resolution in both longitude and latitude directions, centered
at (40.0◦ N, 84.5◦W) for releases 1–4, and at (46.6◦ N, 80.8◦W) for releases 5 and 7. 1 is the distance between the point with Fmin
and the actual release site. q ′ is the estimated release rate by assuming that the actual release location is known. εq ′ is calculated using

1
(εq′ )

2 =
1

(ε
qb
)2
+
∑M
m=1

1
(q ′)2×(ε

ln(c)
m )2

, where εln(c)
m is obtained using Eq. (4). For all of the cases, f o = 20 %, ao = 20 pg m−3, f h = 20 %,

and ah = 20 pg m−3. Logarithm concentration is taken as the metric variable.

Source location (latitude, longitude) 1(km) Release rate (kg h−1)

No. Actual Estimated Actual qmin q ′ εq ′

1 39.80◦, −84.05◦ 41.0◦, −83.9◦ 134.2 69.3 23.9 106.3 6.2
2 39.90◦, −84.22◦ 39.8◦, −84.5◦ 26.4 67.0 48.5 61.5 1.8
3 39.90◦, −84.22◦ 40.8◦, −85.3◦ 135.8 67.0 63.4 41.7 2.6
4 39.90◦, −84.22◦ 40.2◦, −85.5◦ 114.1 66.3 185.7 75.1 4.6
5 46.62◦, −80.78◦ 46.2◦, −81.0◦ 49.7 60.0 72.9 42.6 3.0
7 46.62◦, −80.78◦ 47.4◦, −81.2◦ 92.5 61.0 201.0 66.0 3.9

Figure 4. Distribution of 121 candidate source locations for release
2. The minimal cost function at each location associated with an
optimal release strength is indicated by color. The cost function
defined in Eq. (5) is calculated with f o = 20 %, ao = 20 pg m−3,
f h = 20 %, and ah = 20 pg m−3. The actual source location, Day-
ton, Ohio, USA, is shown as a red diamond.

Unlike other STE applications where model uncertainties
are either ignored or assumed static, we introduce the model
uncertainty terms that depend on the source term estimates.
The model uncertainty terms improve inverse results for both
choices of the metric variables in the cost function. It is also
found that cost function normalization can avoid spurious
minimal source terms when using logarithm concentration as
the metric variable. The inverse tests show that having log-
arithm concentration as the metric variable generally yields

Figure 5. Probability density function (pdf) of ln(ch)− ln(co) for
the six CAPTEX releases. Units of ch and co are pg m−3. The
model prediction ch is calculated using the estimated release rate
q ′ listed in Table 12. ln(ch)− ln(co) is calculated when both ch and
co are non-zero. The number of data points used for pdf calculation
is 70, 184, 77, 49, 29, and 30, for releases 1–5, and 7, respectively.

better results than having concentration as the metric vari-
able. The estimates having logarithm concentration as the
metric variable are robust for a reasonable range of model un-
certainty parameters. Such conclusions are further confirmed
with nine ensemble runs where meteorological fields were
generated using a different version of the WRF meteorologi-
cal model with varying PBL schemes.

With a fixed set of observational and model uncertainty
parameters, the inverse method with logarithm concentration
as the metric variable is then applied to all of the six releases.
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The emission rates are well recovered, with the largest rela-
tive error as 53.3 % for release 1. The system is later tested
for its capability to locate a single source location as well
as its source strength. The location and strength that result
in the best match between the predicted and the observed
concentrations are considered as the inverse results. The es-
timated location is close to the actual release site for release
2 of which the forward HYSPLIT model has the best perfor-
mance. The strength estimates are all within a factor of 3 for
the six releases.
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ARL, 2018b). The CAPTEX data can be downloaded from
https://www.arl.noaa.gov/wp_arl/wp-content/uploads/documents/
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