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Abstract. Paleoclimate reconstruction based on assimilation
of proxy observations requires specification of the control
variables and their background statistics. As opposed to nu-
merical weather prediction (NWP), which is mostly an initial
condition problem, the main source of error growth in deter-
ministic Earth system models (ESMs) regarding the model
low-frequency response comes from errors in other inputs:
parameters for the small-scale physics, as well as forcing
and boundary conditions. Also, comprehensive ESMs are
non-linear and only a few ensemble members can be run
in current high-performance computers. Under these condi-
tions we evaluate two assimilation schemes, which (a) count
on iterations to deal with non-linearity and (b) are based on
low-dimensional control vectors to reduce the computational
need. The practical implementation would assume that the
ESM has been previously globally tuned with current obser-
vations and that for a given situation there is previous knowl-
edge of the most sensitive inputs (given corresponding uncer-
tainties), which should be selected as control variables. The
low dimension of the control vector allows for using full-
rank covariances and resorting to finite-difference sensitivi-
ties (FDSs). The schemes are then an FDS implementation of
the iterative Kalman smoother (FDS-IKS, a Gauss–Newton
scheme) and a so-called FDS-multistep Kalman smoother
(FDS-MKS, based on repeated assimilation of the observa-
tions). We describe the schemes and evaluate the analysis
step for a data assimilation window in two numerical ex-
periments: (a) a simple 1-D energy balance model (Ebm1D;
which has an adjoint code) with present-day surface air tem-
perature from the NCEP/NCAR reanalysis data as a target
and (b) a multi-decadal synthetic case with the Community
Earth System Model (CESM v1.2, with no adjoint). In the

Ebm1D experiment, the FDS-IKS converges to the same pa-
rameters and cost function values as a 4D-Var scheme. For
similar iterations to the FDS-IKS, the FDS-MKS results in
slightly higher cost function values, which are still substan-
tially lower than those of an ensemble transform Kalman fil-
ter (ETKF). In the CESM experiment, we include an ETKF
with Gaussian anamorphosis (ETKF-GA) implementation as
a potential non-linear assimilation alternative. For three itera-
tions, both FDS schemes obtain cost functions values that are
close between them and (with about half the computational
cost) lower than those of the ETKF and ETKF-GA (with
similar cost function values). Overall, the FDS-IKS seems
more adequate for the problem, with the FDS-MKS poten-
tially more useful to damp increments in early iterations of
the FDS-IKS.

1 Introduction

Earth system models (ESMs) to simulate the Earth sys-
tem and global climate are usually developed using the
present and recent historical climates as references, but
climate projections indicate that future climates will lie
outside these conditions. Paleoclimates very different
from these reference states therefore provide a way to
assess whether the ESM sensitivity to forcings is com-
patible with the evidence given by paleoclimatic records
(Kageyama et al., 2018). Coupled atmosphere–ocean gen-
eral circulation models (AOGCMs) and comprehensive
ESMs have enabled the paleoclimate community to gain
insights into internally generated and externally forced
variability and to investigate climate dynamics, modes of
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variability (e.g. Ortega et al., 2015; Zanchettin et al., 2015),
and regional processes in detail
(e.g. PAGES 2k-PMIP3 group, 2015). However, AOGCMs
and comprehensive ESMs demand high computational
resources, which severely limits the length and number of
affordable model integrations in current high-performance
computers (HPCs). Thus, the last millennium ensem-
ble with the Community Earth System Model (CESM)
(CESM-LME; Otto-Bliesner et al., 2016), which is still a
considerable achievement, has only m= 10 members for the
full-forcing transient simulations for the years 850–2005 in
the Common Era. Also, the multi-model ensemble in the
Paleoclimate Model Intercomparison Project (PMIP) for
experiments contributing to the Coupled Model Intercom-
parison Project (CMIP, since CMIP6) relies on coherent
modelling protocols followed by the paleoclimate modelling
teams in independent HPCs (e.g. Jungclaus et al., 2017).
On the other hand, the gathering and analysis of existing
and new paleoclimate proxy records to create multiproxy
databases also relies on collective efforts focused on specific
time spans, such as the global multiproxy database for tem-
perature reconstructions of the Common Era (PAGES2K)
(PAGES2k Consortium, 2017) or the Multiproxy Ap-
proach for the Reconstruction of the Glacial Ocean surface
(MARGO) database (MARGO Project Members, 2009),
which focuses on the Last Glacial Maximum (LGM), a
period between 23 000 and 19 000 years before present
(BP). The quantitative fusion of comprehensive ESMs and
paleoclimate proxy observations should provide deeper
insight into past climate low-frequency variability, which
(here and throughout the article) we refer to as variability
on timescales 30–50 years or longer (e.g. as Christiansen
and Ljungqvist, 2017). However, this fusion is hampered
by the high computational demand of AOGCMs and
comprehensive ESMs.

The issue of fusing data into models arises in scientific
areas that enjoy a profusion of data and use costly models.
In the geophysical community this is referred to as inverse
methods and data assimilation (DA), whose aim is finding
the best estimate of the state (the analysis) by combining in-
formation from the observations and from the numerical and
theoretical knowledge of the underlying governing dynami-
cal laws. Most known DA methods stem from Bayes’ theo-
rem (Lorenc, 1986), and each is made practical by making
approximations (Bannister, 2017). In numerical weather pre-
diction (NWP) the assimilation is mostly an initial condition
problem. In contrast, the climate of a sufficiently long tra-
jectory is typically much less sensitive to initial conditions,
being essentially a sample of the underlying true model cli-
mate contaminated by a small amount of deterministic noise
due to the finite integration interval (Annan et al., 2005b).
The low-frequency errors in deterministic ESMs are there-
fore mostly dependent on model errors, including the param-
eters for the small-scale physics, and errors in forcings and
boundary conditions.

DA has been used as a technique for low-frequency past
climate field reconstruction (CFR) with real case studies,
such as the assimilation of marine sediment proxies of sea
surface temperature (SST) in a regional ocean model of the
North Atlantic at the termination of the Younger Dryas (YD)
cold interval (Marchal et al., 2016), and synthetic studies,
such as the assimilation of tree-ring width into an atmo-
spheric GCM (AGCM) (Acevedo et al., 2017), analysis of
time-averaged observations (Dirren and Hakim, 2005), or
evaluation of particle filters for paleodata assimilation (Du-
binkina et al., 2011). Including model parameters as control
variables, early work in climate analysis was done by Har-
greaves and Annan (2002), who evaluated a Markov chain
Monte Carlo (MCMC) method with a simple ESM. Later,
the technique of state augmentation with model parameters
(e.g. Friedland, 1969; Smith et al., 2011) and an ensemble
Kalman filter (EnKF) (Evensen, 1994) was used by Annan
et al. (2005a) and Annan et al. (2005b) in synthetic experi-
ments with an Earth system model of intermediate complex-
ity (EMIC) and with an AGCM coupled to a slab ocean, re-
spectively. The additional issue of sparsity in paleoclimate
proxies was addressed by Paul and Schäfer-Neth (2005) for
climate field reconstructions with an EMIC and manual tun-
ing. More recent applied work, in part motivated by the non-
linearity of climate models, has used four-dimensional vari-
ational DA (4D-Var). Thus, Paul and Losch (2012) applied
4D-Var with a conceptual climate model, and Kurahashi-
Nakamura et al. (2017) used 4D-Var with the Massachusetts
Institute of Technology general circulation model (MITcgm)
for ocean state estimation considering joint initial conditions,
atmospheric forcings, and an ocean vertical diffusion coeffi-
cient as control variables to analyse the global ocean state
in equilibrium conditions during the Last Glacial Maximum
(LGM). We share the motivation of this recent work but put
the focus on deterministic and comprehensive ESMs. As, in
general, these models are not suited to automatic differentia-
tion (AD) and the development of hand-coded tangent linear
and adjoint models is out of reach (so, standard 4D-Var and
related hybrid approaches such as En4DVar are not applica-
ble), we seek assimilation strategies that take into account
the non-linearity in ESMs and the computational constraints
with current HPCs for low-frequency analysis.

Questions remain about how one should choose the con-
trol vector for the assimilation. Regarding its dimension, one
possibility is to select a relatively high-dimensional control
vector and to resort to ensemble methods, which involve a
low-rank representation of covariances. An example is the
(adjoint-free) iterative ensemble Kalman smoother (IEnKS)
in Bocquet and Sakov (2014), which counts on iterations to
deal with non-linearity. Also, the IEnKS has been evaluated
in a synthetic study with the low-order model Lorenz-95 by
state augmentation (Bocquet and Sakov, 2013). However, the
ensemble (low-rank) covariances and sensitivities would be
noisy because of the small ensemble size. An alternative is
to resort to a low-dimensional control vector so that its er-
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ror covariance is explicitly represented, and the low dimen-
sion allows for an estimation of the sensitivity of the obser-
vation space to the control vector by conducting individual
perturbation experiments of the control variables: i.e. a finite-
difference sensitivity (FDS) estimation. With respect to ad-
joint sensitivities, FDS estimation has the disadvantages that
the computing cost is proportional to the dimension of the
state vector and that the choice of the perturbations is criti-
cal. Too-small perturbations lead to numerical errors, while
too-high perturbations lead to truncation errors. An advan-
tage is that FDS considers the full physics of the non-linear
model.

In any case, in a practical application of such a low-
dimensional control vector approach (whose dimension
would be imposed by computational constraints), the se-
lection of the control variables should be carefully done.
From all available model inputs, the selected control vari-
ables (given their respective background uncertainties) and
model should try to explain most of the observed variability.
In turn, this assumes (a) a general need to perform sensitiv-
ity analysis beforehand and (b) that the model has been pre-
viously comprehensively tuned. The exclusion of relatively
less sensitive inputs from the control vector and the previ-
ous tuning would reduce possible compensation effects (i.e.
that increments in the control vector due to the assimilation
take partial responsibility for errors elsewhere). Nonetheless,
some error compensation will always be present (for exam-
ple, this is intrinsic to the common tuning of the coupled
ESM, which follows tuning of individual components) and
very difficult to deal with. A striking example is given by
Palmer and Weisheimer (2011), who report how an inade-
quate representation of horizontal baroclinic fluxes resulted
in a climate model error equal in magnitude and opposite
to the systematic error caused by insufficiently represented
vertical orographic wave fluxes. Thus, the selected control
vector has the responsibility of embracing the model climate
background uncertainty, and their updated values will likely
compensate for non-accounted errors. For low-frequency cli-
mate analysis it is very likely that after some years of model
integration, the modelled climate is less sensitive to (reason-
able) initial conditions than to other possible inputs. Thus,
one would generally select the most sensitive parameters for
the model physics, forward operators, forcings, and bound-
ary conditions for a given situation as a control vector.

Also, regarding initial conditions in a sequence of multi-
decadal and longer data assimilation windows with transient
forcings, there is no clear consensus about how one should
approach the initialization at each DAW. For example, Hol-
land et al. (2013) indicate that initialization had little im-
pact (in general, limited to a couple of years) on Arctic and
Antarctic sea ice predictability in the Community Climate
System Model 3 (CCSM3) in a perfect-model framework.
However, in a later synthetic study including assimilation
with a perfect-model framework and an Earth system model
of intermediate complexity (EMIC), Zunz et al. (2015) ob-

tained a similar interannual predictability (∼ 3 years), but
noted that the initialization for the DAW can still influ-
ence the state at multi-decadal timescales (although with a
larger impact of external forcing). Among others, we men-
tion these examples as sea ice has been related to changes in
atmospheric circulation patterns and teleconnections with the
tropical Pacific and Atlantic oceans (e.g. Meehl et al., 2016;
Marchi et al., 2018), and these relatively fast climate dy-
namics can, for example, influence the onset or termination
of glacial conditions and stronger climate changes. On the
other hand, given the limited predictability at multi-decadal
timescales (and to reduce computational costs), the reinitial-
ization in paleo-DA has often be removed after the assimila-
tion altogether, with a common initial integration being ap-
plied as background climate for a number of DAWs. This
has been named offline assimilation (e.g. Steiger et al., 2014;
Hakim et al., 2016; Klein and Goosse, 2017; Acevedo et al.,
2017). The perspective of the offline approach can be modi-
fied when model parameters are included in the control vec-
tor because, as opposed to initial conditions, the impact of
model parameters does not decay with the model integra-
tion. In general, updated model parameters as part of the as-
similation and their physically consistent climate would then
be used as (augmented) initial conditions for a subsequent
DAW.

Throughout this study, all observations available during a
data assimilation window (DAW) are assimilated in paral-
lel. This has been termed four-dimensional data assimilation
or asynchronous data assimilation and is also commonly re-
ferred to as the smoothing problem (Sakov et al., 2010). Here
we choose the term smoother for the evaluated schemes, but
they could just as well be termed asynchronous (or four-
dimensional) filters. This study focuses on evaluating two
assimilation schemes for low-frequency past climate recon-
struction. They are based on finite-difference sensitivities
(FDSs) and low-dimensional control vectors and rely on iter-
ations to account for non-linearity. The schemes are then an
FDS implementation of the iterative Kalman smoother (FDS-
IKS, a Gauss–Newton scheme) and an alternative named the
FDS-multistep Kalman smoother (FDS-MKS, based on re-
peated assimilation of the observations). Other paleoclimate
assimilation issues, such as sparsity, measurement error char-
acteristics (e.g. temporal autocorrelation), representation er-
ror, the development of forward operators for specific proxies
(proxy system models) (e.g. Evans et al., 2013; Dee et al.,
2016), and further complexities in the model–observation
comparison (e.g. Goosse, 2016; Weitzel et al., 2018), are not
addressed in this paper.

The rest of this article is organized as follows. In Sect. 2,
within the broader context of the joint state-parameter es-
timation problem, we summarize the strong-constraint in-
cremental 4D-Var formulation (Courtier et al., 1994) from
a perspective for which the state vector is augmented with
the model parameters to arrive, under given assumptions,
at the formulation of the iterative Kalman smoother (IKS)
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scheme as implemented here. Then, we describe the sensi-
tivity estimation and the two schemes, the FDS-IKS and the
FDS-MKS, in a concise algorithmic format. The description
of our implementation of the Gaussian anamorphosis (GA),
which we applied along with an ensemble transform Kalman
filter (ETKF-GA) as an alternative non-linear assimilation
approach, is also included in Sect. 2. In Sect. 3 we con-
duct an experiment with a simple 1-D energy balance model
(Ebm1D) and present-day NCEP/NCAR reanalysis surface
air temperature as a target, and in Sect. 4 we conduct an iden-
tical twin experiment with CESM, assimilating MARGO-
like data (MARGO uncertainties, timescales, and locations)
as an example of a paleoclimate observing dataset. Ebm1D
is amenable to automatic differentiation, so that we applied
4D-Var and ETKF as benchmark schemes. CESM lacks an
adjoint, and we applied ETKF and ETKF-GA as benchmark
schemes. The experimental set-up, results, and a discussion
are given in each case. We finish with conclusions in Sect. 5.

2 Assimilation schemes

2.1 Analysis approach

The problem is to estimate the mean state (seasonal and an-
nual means) of a past climate state along a time window
for multi-decadal and longer timescales. From a variational
perspective, in NWP this would be referred to as a four-
dimensional variational data assimilation (4D-Var) problem,
in which the initial conditions of a model integration are es-
timated subject to model dynamics and according to back-
ground and observation uncertainties within a data assimila-
tion window (DAW). In NWP, the background (or prior) is
normally given by a previous model forecast. In this article,
time tk and its index k measure time relative to the start of
the DAW, which is t0, using conventions similar to those of
4D-Var. We use notation as close as possible to that of Ide et
al. (1997). We consider a discrete non-linear time-invariant
dynamical system model in which xk ∈ Rn is the state vector
at time tk , and θk ∈ Rq is a vector of selected inputs in ad-
dition to initial conditions (model parameters, forcings, and
boundary conditions). We assume a gridded system, in which
specification of the model state and other inputs at time tk
uniquely determine the model state at all future times and that
θk is constant during the DAW (i.e. θ ≡ θk+1 = θk). For ex-
ample, within θ , one can include a constant error term (a bias
to be estimated as part of the assimilation) in a prescribed
transient radiative constituent (e.g. a CH4 time series).

Then, we consider an augmented state vector z,

z=

[
x

θ

]
, (1)

and an augmented deterministic non-linear dynamics opera-
torM : Rn+q→ Rn+q such that

zk+1 =M(zk), k = 0,1, . . . (2)

Observations at time tk are represented by the vector yo
k ∈

Rpk and related to the model state by

yo
k = y

zk + εk ≡Hk(zk)+ εk, (3)

whereHk : Rn+q→ Rpk is a deterministic non-linear obser-
vation operator that maps from the augmented state zk to the
observation space, and εk ∈ Rpk is a realization of a noise
process, which consists of measurement errors and represen-
tation errors (errors due to unresolved scales and processes,
observation operator errors, and pre-processing or quality-
control errors; Janjić et al., 2017). We assume εk is a Gaus-
sian variable with mean 0 and covariance matrix Rk . The er-
ror covariance matrix of a state zk = [xT

k ,θ
T
]
T, where the

superscript “T” denotes matrix transposition, at any time tk
within the DAW is

Pk =
[

Pxxk Pxθk
(Pxθk )T Pθθ

]
, (4)

where Pxxk ∈ Rn×n is the error covariance matrix of xk ,
Pθθ ∈ Rq×q is the error covariance matrix of θ , and Pxθk ∈
Rn×q is the error covariance between xk and θ . The goal in
4D-Var is then to find the initial state z0 that minimizes a
non-quadratic cost function given by

J1(z0)=
1
2
‖ z0− z

b
0‖P−1

0
+

1
2
‖ ŷo
− Ĥ(z0)‖R̂−1 , (5)

where ‖ a‖2A−1 ≡ a
TA−1a. The first term (the background

term, Jb) measures the deviation between zb
0 and z0, with

the background-error covariance matrix P0 as L2 norm. The
second term (the observation term, Jo) measures the devi-
ation between ŷo

∈ Rp (where p =
∑nk
k=0pk , indicating all

observations throughout the DAW) and its model equivalent
ŷz ≡ Ĥ(z0) using the observation-error covariance matrix R̂
as L2 norm. Ĥ(z0) : Rn+q→ Rp is a generalized observa-
tion operator mapping from the augmented initial state to all
the observations at any time in the DAW (i.e. Ĥ≡H ◦M).
The maximum a posteriori estimation in Eq. (5) is also
known as conditional mode estimation or the maximum of
the conditional density. As presented by Lorenc (1986) from
a Bayesian view, this is the maximum likelihood of the state
under a Gaussian assumption for the various error terms. The
cost function (Eq. 5) is subject to the states satisfying the
non-linear dynamical system (Eq. 2) and is known as strong-
constraint variational formulation, while the additional inclu-
sion of a term for the model error would lead to a weak-
constraint 4D-Var. The solution to the functional J1(z0) is
za

0, with the resulting states along the DAW referred to as the
analysis.

In general, an exact solution cannot be found. In the in-
cremental formulation of 4D-Var, the solution to Eq. (5) is
approximated by a sequence of minimizations of quadratic
cost functions. Thus, incremental 4D-Var has first an outer
loop, for which zl0 provides the current approximation and
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initially for l = 1, z1
0 = z

b
0. The innovations are then given

by the residual between the observations and the mapping of
the initial state in the current approximation into observation
space:

δŷl = ŷo
− Ĥ(zl0), (6)

where the computation of the initial state mapped to obser-
vation space, Ĥ(zl0), has the form[
Ĥ(zl0)

]
k
=Hk

[
M(zl0, t0, tk)

]
=Hk(zlk). (7)

Then, incremental 4D-Var has an inner loop, for which two
approximations are conducted. The first is

Hk(zk)−Hk(zlk)≈Hk(z
l
k)(zk − z

l
k), (8)

where Hk(z
l
k) is the Jacobian ofHk(•) evaluated at zlk . Hk is

referred to as the tangent linear operator in the DA literature.
Second, the dynamical model is also linearized, obtaining the
tangent linear model (TLM):

M0:k =
∂M(zl0, t0, tk)

∂z0
, (9)

so that Ĥ= [(H0)
T, (H1M0:1)

T, . . . (H1M0:nk )
T
]
T, leading

to the generalized linearization

Ĥ(z0)− Ĥ(zl0)≈ Ĥ(zl0)δz0, (10)

where δz0 = z0−z
l
0 is the increment. By considering Eqs. (6)

and (10), the generalized error term ε̂ in Eq. (5) for all obser-
vations in the DAW can be expressed as

ε̂ = ŷo
− Ĥ(z0)

= δŷl − Ĥ(z0)+ Ĥ(zl0)

≈ δŷl − Ĥlδz0, (11)

where Ĥl
≡ Ĥ(zl0). This approximation of ε̂ is introduced in

Eq. (5), leading to a quadratic cost function with the incre-
ment δz0 as argument

J2(δz0)=
1
2
‖ δz0− (z

b
0− z

l
0)‖P−1

0
+

1
2
‖ δŷl − Ĥlδz0‖R̂−1 . (12)

The minimization of J2(δz0) is the inner loop, which
is conducted by gradient descent algorithms (e.g. Lawless,
2013) until it meets a given criterion, yielding an optimal
δzl+1

0 . Then, the outer loop takes control, whereby the esti-
mate of the initial state is updated with the estimated incre-
ment zl+1

0 = zl0+δz
l+1
0 . Incremental 4D-Var has been shown

to be an inexact Gauss–Newton method applied to the origi-
nal non-linear cost function (Lawless et al., 2005).

In our context in this paper, we assume Gaussian statis-
tics and a perfect-model framework except for the sources of
model uncertainty in z0. Thus, the conditional mode given

by the minimization of Eq. (12) is also the conditional mean
(also called the minimum variance estimate) given by the ex-
plicit solution

δzl+1
0 = zb

0− z
l
0+Kl

[δŷl − Ĥl(zb
0− z

l
0)], (13)

where Kl is known as the Kalman gain matrix given by

Kl
= P0(Ĥl)T[ĤlP0(Ĥl)T+ R̂]−1. (14)

So, the inner loop is omitted and the state vector is explic-
itly updated as

zl+1
0 = zl0+ δz

l+1
0

= zb
0+Kl(ŷo

− Ĥ(zl0)− Ĥl(zb
0− z

l
0)). (15)

Thus, like incremental 4D-Var, the iterative approach de-
scribed by Eq. (15) gives an approximation to the conditional
mode or maximum likelihood of the cost function (Eq. 5). It-
erative methods have a long history for DA applications in
non-linear systems. Jazwinski (1970) considers local (con-
ducted over a single assimilation cycle) and global (con-
ducted over several assimilation cycles) iterations of the ex-
tended Kalman filter (EKF). Local iterations of the Kalman
filter are designed to deal with non-linear observation opera-
tors and non-Gaussian errors. The locally iterative (extended)
Kalman filter (IKF) is a Gauss–Newton method for approx-
imating a maximum likelihood estimate (Bell and Cathey,
1993), and actually it is algebraically equivalent to non-linear
three-dimensional variational (3D-Var) analysis algorithms
(Cohn, 1997). For the first loop, the IKF is identical to an
EKF (see e.g. Jazwinski, 1970). Later, Bell (1994) showed
that the iterative Kalman smoother (IKS) represents a Gauss–
Newton method to obtain an approximate maximum likeli-
hood, as was shown later for incremental 4D-Var (Lawless
et al., 2005). The IKF and the IKS circumvent the need for
choosing a step size, which is sometimes a source of diffi-
culty in descent methods. However, as with a Gauss–Newton
method, not even local convergence is guaranteed. Equa-
tion (15) is actually akin to the formulation of the IKF, but
generalized to a DAW, and it is therefore an IKS. It dif-
fers, though, from the IKS formulation in Bell (1994) in
that Eq. (15) is a strong-constraint version (cost term for the
model neglected) without the backward pass (see Fig. 1 in
Bell, 1994).

Now, it remains to be seen how one would apply a scheme
such as Eq. (15) for multi-decadal and longer-term paleo-
climate analysis. In the last years there has been a growing
effort toward the development of stochastic physical param-
eterizations in weather forecast and climate models. How-
ever, stochastic parameterization is still in its infancy in com-
prehensive ESMs. For deterministic parameterizations, on
which we focus here, the model climate converges to its own
dynamical attractor, and the climate of a sufficiently long
model trajectory is typically much less sensitive to initial
conditions than to other model inputs.
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In general, ensemble methods rely on perturbations δz0 of
the control vector to estimate the sensitivity matrix Ĥl . Two
general kinds of simulations and climate analysis are of inter-
est to the paleoclimate community: the so-called equilibrium
simulations and the transient ones. Equilibrium simulations
are subject to solar forcing prescribed to a specific calen-
dar year and fixed radiative constituents in the atmosphere,
representing a situation when the past climate is considered
stable. The goal is to evaluate the low-frequency seasonal
and annual means and variability within these relatively long-
term stable climate conditions (e.g. Eeemian, LGM, or mid-
Holocene). In these simulations, the model is integrated until
it reaches equilibrium conditions. Typically, starting from a
standard climatology (e.g. the World Ocean Atlas), it takes a
few thousand years for an ESM integration to converge to its
equilibrium (even in the deepest ocean) for stationary forc-
ings. After an initial spin-up similar to the equilibrium con-
ditions, transient simulations with ESMs then use the corre-
sponding time-varying solar forcing and normally use pre-
scribed time series of radiative atmospheric constituents re-
constructed from observations for the time window of in-
terest, as well as transient boundary conditions. From an
assimilation perspective, irrespective of whether the analy-
sis is for equilibrium or transient forcing, the perturbation
of model parameters and other inputs introduces a shock at
the start of the model integration (in some way analogous
to shocks in unbalanced ocean–atmosphere coupled models
initialized with uncoupled data assimilation in NWP). And
further than the initial oscillations, the model climatology in
the first years of model integration is not consistent with the
perturbed parameters. Thus, the estimation of the sensitivi-
ties Ĥl can be spurious in the first years of model integration,
and also the innovations do not result from the model cli-
matology. It is convenient then to set up a model integration
time threshold and to disregard sensitivities earlier than this
time. For such a purpose, we loosely define a model quasi-
equilibrium condition as the situation in which a model cli-
matology is in reasonable physical consistency with the con-
trol vector (initial conditions plus model parameters, etc.).
With equilibrium simulations, a quasi-equilibrium time tq
can, for example, be evaluated based on the convergence on
the maximum meridional overturning circulation, for which
each ensemble member will converge towards its own attrac-
tor. By the time this convergence is reached, the correlations
between the atmosphere, surface climate, ocean mixed layer,
and (paleoclimate) observation space should be fully devel-
oped. Then, low-frequency climate means (annual and/or
seasonal) after the integration time to quasi-equilibrium, tq ,
would be evaluated against the climate proxy database (e.g.
MARGO for the mean annual and seasonal climate across
the LGM) to obtain the sensitivity Ĥl and the innovations
δŷl at each iteration. This is the approach followed by the
experiments in this study.

For the more general transient forcing situation, in a cur-
rent DAW, the effects from a perturbed control vector and

from transient forcing are entangled. As opposed to the equi-
librium simulations, integration times here match physical
forcing times. Observations earlier than a specified tq should
be now disregarded, and quasi-equilibrium here would not
refer to a model state, which will be transient as the forc-
ings, but (as above) to a situation in which the model state
is physically consistent with the input given in the control
vector. At each DAW, one could first estimate tq by conduct-
ing an “equilibrium” simulation with forcings and boundary
conditions prescribed to those at the start of the integration
time (the DAW). Then, use this estimate as a surrogate for
the transient tq . This would, however, increase computations.
Alternatively, one could set up a tq based on previous expe-
rience and tests for equilibrium forcings.

In both cases, it is unlikely that errors in initial condi-
tions are among the most sensitive ones out of all possible
input errors for the evaluated integration times after quasi-
equilibrium. Thus, for low-frequency past climate analysis,
it should be generally acceptable to exclude x0 from the con-
trol variables, allowing for a reduced problem. In the fol-
lowing, we take this assumption. To simplify the notation,
we then define G as a generalized (deterministic) observa-
tion operator mapping a vector θ into the observation space:
G : Rq 7−→ Rp, which follows

[G(θ)]k =
[
Ĥ(z0)

]
k

∣∣∣∣
tk≥tq

, (16)

where tq represents the model integration time to quasi-
equilibrium. Instead of Eq. (5), a reduced problem is posed
now by minimization of the non-quadratic cost function

J (θ)=
1
2
‖ θ − θb

‖P−1
θθ
+

1
2
‖ ŷo
−G(θ)‖R−1 . (17)

After the assimilation, a forward integration with the up-
dated θa leads to its physically consistent climate estimate.
The sensitivity matrix, or Jacobian of G, is noted as G ∈
Rp×q . The trivial substitutions into the incremental formu-
lation (12) and its solution (Eq. 15), with estimation of G via
finite differences, lead to the finite-difference sensitivity iter-
ative Kalman smoother (FDS-IKS), which is summarized in
Sect. 2.3. The finite-difference sensitivity multistep Kalman
smoother (FDS-MKS), described in Eq. 2.4, is an alternative
approach to deal with non-linearity.

2.2 Background-error covariances and sensitivity
estimation

The current implementation of variational assimilation is dif-
ferent in each operational NWP centre. A recent review of
operational methods of variational and ensemble-variational
data assimilation is given by Bannister (2017). However, for
many geophysical models, codes are not suited to automatic
differentiation and it is extremely complex to develop and
maintain tangent linear and adjoint codes. This has motivated
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more recent research toward (adjoint-free) ensemble DA
methods for high-dimensional models. Lorenc (2013) rec-
ommended using the term “EnVar” for variational methods
using ensemble covariances. Thus, Liu et al. (2008) proposed
(the later called) 4DEnVar as a way to estimate the general-
ized sensitivities of the observation space to initial conditions
based on an ensemble of model integrations within a 4D-
Var formulation. Gu and Oliver (2007) introduced a scheme
called ensemble randomized maximum likelihood filter (En-
RML) for online non-linear parameter estimation, which was
later adapted as a smoother, the batch-EnRML, by Chen and
Oliver (2012). The EnRML estimates sensitivities by multi-
variate linear regression between the ensemble model equiva-
lent of the observations and the ensemble perturbations to the
control vector. These are therefore mean ensemble sensitiv-
ities. The iterative EnKF (IEnKF) is similar to the EnRML,
but instead uses an ensemble square root filter and rescales
the ensemble perturbation (deflates) before and (inflates) af-
ter propagation of the ensemble as an alternative to estimate
the sensitivities (Sakov et al., 2012). In this way the estimated
sensitivities are more local about the current estimation. An
extension to the IEnKF as a fixed-lag smoother led to the
IEnKS in Bocquet and Sakov (2014). However, while in the
4D-Var approach the computing cost of the sensitivities with
the adjoint method is independent of the dimension of the
control vector in the cost function, in numerical estimates of
the sensitivities the computing cost increases with the size
of the control vector. The low-rank property of the ensemble
covariances in ensemble methods means that sampling error
problems will inevitably arise when the number of ensemble
members is small in comparison with the size of the control
vector. Instead, as indicated above, in the low-dimensional
control vector schemes evaluated here, the background-error
covariance is a full-rank explicit matrix at the expense of
computations being linearly proportional to the size of the
control vector.

While the relation between G and Pk is implied in the pre-
vious section, it is instructive to look at it in some detail. Let
us consider the case of a specific observation time tk . The
Kalman gain matrix (disregarding the loop index, if any) for
the components of the model input θ , which we denote in this
section as Kkθ , can be expressed in the two following ways:

Kkθ = PkHT
k [HkPk(Hk)

T
+Rk]−1

= PθθGT
k [GkPθθ (Gk)

T
+Rk]−1, (18)

where the first way is the standard one in Kalman smoother
expressions, including parameter estimation via state vector
augmentation, and the second one is a parameter space for-
mulation, which we apply here. Both are equivalent, but the
covariance information in Pk has been transferred to Gk , or
the sensitivity matrix, in the second expression. Let us further
consider the case that at tk there is a single observation y of
a state variable within the vector zk , denoted as xky , and we
focus on the representer matrix for a single parameter θ i . The

covariance between θ i and the observation y is expressed in
both cases as

(PkHT
k )[θ i,y] = σxky θ i

∂y

∂xky
,

(PθθGT
k )[θ i,y] =

q∑
j=1

σθj θ i
∂y

∂θ j
, (19)

which, as ∂y
∂θj
=

∂y
∂xky

∂xky
∂θj

, indicates that the linear equality

σxky θ i =

q∑
j=1

σθj θ i
∂xky

∂θ j
(20)

is taken from a bottom-up approach in the parameter space
formulation, in which all sources of uncertainty are specif-
ically evaluated to compose the covariance σxky θ i . In our
experiments with ETKF and ETKF-GA, with parameter
augmentation, the first alternative in Eq. (19) is used, and
the generalized sensitivity matrix G is not explicitly com-
puted. So, for comparison with the finite-difference sensitiv-
ity (FDS) schemes, we estimate an ensemble-based average
sensitivity matrix by solving for G in 1Y=G1θ , where
1θ ∈ Rq×m is the matrix of random model parameter per-
turbations drawn from Pθθ around the background values,
and1Y ∈ Rp×m represents the resulting perturbations in the
observation space. In an iterative approach the sensitivities
would need to be evaluated for perturbations around the cur-
rent estimate.

Alternatively, finite-difference sensitivity (FDS) directly
samples from the conditional probability density function
(CPDF) of the perturbed variable, as the remaining con-
trol variables are kept to their current estimate. However,
the computing requirements in FDS are linearly proportional
to the size of the input vector, its numerical estimation of
derivatives is inaccurate, and the associated error can be
unacceptably large due to inadequate choice of the finite-
differencing step size. High perturbations increase the trun-
cation error, which increases linearly with the perturbation
magnitude, while as the magnitude of the perturbation gets
smaller the accuracy of the differentiation degrades by the
loss of computer precision (Dennis and Schnabel, 1996). It
is possible to do more than one perturbation experiment by
sampling from the CPDF for each parameter and estimat-
ing the sensitivity by univariate regression, which amelio-
rates the problem of non-optimal perturbations, and we in-
clude a few tests in this sense for the first experiment in this
study (see Appendix A). However, it is currently computa-
tionally difficult to do more than one perturbation per con-
trol variable with comprehensive ESM and long integrations
(and one might as well resort to ensemble approaches – full-
rank in this case – if more computations were possible). The
sensitivity estimates by forward finite differences at a loop l
(initially, the background) are then computed at each column
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Gl
:,i as

Gl
:,i ≈

G(θ l + δθ i)−G(θ l)
δθi

, i = 1, . . .,q, (21)

where for each parameter, δθi is a small perturbation (or vari-
ation) to the current approximation of θi , and δθ i is the vec-
tor 0 ∈ Rq but with element θi replaced by δθi . As indicated,
the estimation of sensitivities by local finite-difference ap-
proximations results from sampling the conditional density
function in the control vector space.

2.3 Finite-difference sensitivity iterative Kalman
smoother

The algorithm we describe here, denoted as finite-difference
sensitivity iterative Kalman smoother (FDS-IKS), is a
Gauss–Newton scheme akin to the IKF and the IKS. The
“FDS” acronym clarifies that the scheme is (a) expressed
in terms of explicit sensitivities to all variables in the con-
trol vector, and (b) these local sensitivities are estimated nu-
merically by individual perturbation experiments for each
variable in the control vector. The scheme then uses a full-
rank representation of the background-error covariance ma-
trix (hence, it is not called an ensemble method). It is a
smoother rather than a filter as it assimilates (future) obser-
vations along a DAW to update the control variables, appli-
cable since the start of the DAW. After iterations are stopped
(due to convergence criterion or reaching a maximum itera-
tion number), a model reintegration with the updated control
vector θa leads to the analysis (or climate field reconstruc-
tion) over the DAW.

For any natural number l, the FDS-IKS provides the up-
date

θa
= θ l, Pa

θθ = Plθθ .

The sequences {θ l : l ≥ 0} and {Plθθ : l ≥ 0} are defined in-
ductively as follows

θ0
= θb, P0

θθ = Pb
θθ ,

θ l+1
= θb
+Kl
[y−G(θ l)−Gl(θb

− θ l)], (22)

Pl+1
θθ = (I−KlGl)Pb

θθ , (23)

where for notational convenience

Gl
≡G(θ l) (24)

and

Kl
= Pb

θθ (G
l)T
(

GlPb
θθ (G

l)T+R
)−1

. (25)

Equations (22) and (25) show that, as in the IKS and in-
cremental 4D-Var, the FDS-IKS uses the initial background-
error statistics Pb

θθ along all iterations. The updated Pa
θθ is

just calculated in the last iteration.

2.4 Finite-difference sensitivity multistep Kalman
smoother

Here, a multistep approach is conducted by inflating the
observation-error covariance matrix R and recursively apply-
ing a standard Kalman smoother over the assimilation win-
dow with the inflated R and the same observations. The mul-
tistep idea of inflating R for repeated assimilation of the ob-
servations was proposed by Annan et al. (2005a) and fur-
ther clarified and applied by Annan et al. (2005b) for an at-
mospheric GCM using the EnKF with parameter augmenta-
tion. Their approach is designed for steady-state cases, for
which time-averaged climate observations corresponding to
a long DAW can be assumed as constant along a sequence
of smaller assimilation sub-windows into which the DAW is
divided. The model parameters are then sequentially updated
in small increments and the loss of balance in a more general
non-linear model should be reduced with the multistep ap-
proach (Annan et al., 2005b). The inflation weights are such
that in a linear case, after the predefined sequence of integra-
tions and assimilations, the solution is identical to that of the
single step scheme along the whole DAW.

The multistep strategy was termed multiple data assimila-
tion (MDA) by Emerick and Reynolds (2013) in the context
of ensemble smoothing and was then further developed by
Bocquet and Sakov (2013, 2014) in their iterative ensemble
Kalman smoother (IEnKS), whereby the weights for the in-
flation of R were applied in overlapping data assimilation
windows (MDA IEnKS). We apply here the MDA strategy
to a recursive formulation of the KF in terms of FDS esti-
mates for the dual observation space to the control vector,
and here we denote the scheme as finite-difference sensitiv-
ity multistep Kalman smoother (FDS-MKS). As the inflation
of R results in a reduced influence of the observations at each
iteration, the increments in the early iterations are relatively
reduced with respect to the FDS-IKS, making the FDS-MKS
potentially more stable. We note, however, that the inflation
of R modifies the direction of the increment in non-linear
cases. Thus, it does not converge to the same (local) min-
imum as the FDS-IKS (or 4D-Var), but to an approximate
point in the control space. In contrast with the scheme in An-
nan et al. (2005b), the FDS-MKS considers recursive integra-
tion along the complete DAW (and non-overlapping DAWs).
Thus, it is not restricted to steady-state conditions.

The scheme considers the total increment in the state vec-
tor that would result from the linear assimilation of one
specific observation and alternatively conducts a recursive
sequence of assimilations of the same observation whose
sum of fractional increments equals the total increment.
This is achieved by considering the observation-error vari-
ance at loop l to be the product of an inflation factor β l
and the variance of the “complete” observation as σ 2

yl
=

β lσ
2
y . As the (linear) increment is inversely proportional

to the observation-error variance, for the total increment to
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be the same in both situations the condition that (σ 2
y )
−1
=∑Nl

l=1(σ
2
yl
)−1
=
∑Nl
l=1(β lσ

2
y )
−1 must be fulfilled. This leads

to the constraint

Nl∑
l=1

β−1
l = 1. (26)

Here, the sensitivity matrix G is estimated at each recur-
sive step (iteration), similarly to the FDS-IKS. However, the
error covariance Pθθ is also updated at each iteration. Hence,
as indicated in Eq. (20), the covariance between any climatic
variable and an input θi (σxky θ i ) is also affected by the sensi-
tivity of the climatic variable to other inputs. The FDS-MKS
is a recursive direct method as an attempt to solve the prob-
lem in a pre-specified finite sequence of iterations Nl :

θa
= θNl , Pa

θθ = PNlθθ .

The sequences {θ l : l = 0, . . ., Nl} and {Plθθ : l =
0, . . .,Nl} are defined inductively as follows

θ0
= θb, P0

θθ = Pb
θθ ,

θ l+1
= θ l +Kl

[y−G(θ l)], (27)

Pl+1
θθ = (I−KlGl)Plθθ , (28)

where for notational convenience

Gl
≡G(θ l) (29)

and

Kl
= Plθθ (G

l)T
(

GlPlθθ (G
l)T+β lR

)−1
. (30)

Regarding β, a possible step size approach is to set the
inflation weight constant for all the iterations, which given
Eq. (26) leads to β =Nl1, where the column vector 1 ∈ RNl
has all values set to 1. However, as the iterations proceed, the
updated background covariance decreases so the fractional
increments get smaller. A more even distribution of fractional
increments, with likely improved stability, can be given by
decreasing inflation weights as the iterations proceed, so ini-
tial weights are relatively higher. Thus, among other possible
solutions for the inflation factor at step l, here we adopt the
expression

β l = (Nl − l+ 1)
Nl∑
n=1

n−1, (31)

which satisfies the requirement of Eq. (26). A numerical ad-
vantage of inflating R for the multiple data assimilation ap-
proach is that it reduces the condition number of the matrix
to be inverted in the assimilation at each iteration. A practical
advantage of the FDS-MKS with respect to the FDS-IKS is
that the number of iterations is predefined. With given com-
puter resources and model computational throughput statis-
tics, it is possible to evaluate how many ESM integrations are

affordable and set the FDS-MKS inflation weights and com-
puting schedule accordingly. This does not mean, though,
that the FDS-IKS would not converge closer to the (local)
minimum of the cost function with the same iterations. Also,
without specific consideration of constraint (Eq. 26), the idea
of inflating R has also been considered by previous studies
as a mechanism to improve initial sampling for the EnKF
(Oliver and Chen, 2008) and also to damp model changes
at early iterations in Newton-like methods (Wu et al., 1999;
Gao and Reynolds, 2006).

2.5 Early-stopped iterations for the FDS-MKS

The computational cost of the ESM integrations is much
higher than that of the assimilation steps as considered in
the FDS-MKS for a low-dimensional control vector. In this
study, we do not evaluate adaptive strategies for the planning
of the weights in the FDS-MKS. However, the evolution of
the increments in the control variables along the iterations
could potentially be used to guide the size of β l at each loop
and even to conduct an early stopping of the iterations. At
each iteration, it is possible to compute the standard update
using the corresponding pre-planned weight β l and simulta-
neously to compute an alternative update with early termi-
nation of the iterations by applying a completion weight βcl
that both terminates the iterations and fulfils the condition of
Eq. (26) as an alternative to β l in Eq. (30):

βcl =

[
1−

l−1∑
j=1

β−1
j

]−1

. (32)

Comparison of the sequence of increments given by the
fractional steps of the FDS-MKS with those with simultane-
ous early-stopped solutions may be used to support replan-
ning weights and even to decide on an early stopping of the
iterations using the update given by using the completion
weight as a final solution.

2.6 ETKF and Gaussian anamorphosis

The ensemble Kalman filter (EnKF) was introduced by
Evensen (1994). It makes it possible to apply the Kalman
filter to high-dimensional discrete systems when the explicit
storage and manipulation of the system-state error covari-
ance is impossible or impractical. The EnKF methods may
be characterized by the application of the analysis equa-
tions given by the Kalman filter to an ensemble of forecasts.
One of the main differences among the several proposed ver-
sions of ensemble Kalman filters is how the analysis ensem-
ble is chosen. Ensemble square root filters use determinis-
tic algorithms to generate an analysis ensemble with the de-
sired sample mean and covariance (e.g. Bishop et al., 2001;
Whitaker and Hamill, 2002; Tippett et al., 2003). Here, in
our experiments with global model parameters, we use the
mean-preserving ensemble transform Kalman filter (ETKF),
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or “symmetric solution”, described by Ott et al. (2004) and
also referred to as the “spherical simplex” solution by Wang
et al. (2004). The mean-preserving ETKF is unbiased (Liv-
ings et al., 2008; Sakov and Oke, 2008).

Still, for the (En)KF to be optimal, three special condi-
tions need to apply: (1) Gaussianity in the prior, (2) linearity
of the observation operator, and (3) Gaussianity in the addi-
tive observational error density. In order to better deal with
non-linearity, a number of studies have addressed the use of
transformation of the model background and observation to
obtain a Gaussian distribution such that the (En)KF can be
applied under optimal conditions. This pre-processing trans-
formation step is known as Gaussian anamorphosis (GA)
(e.g. Chìles and Delfiner, 2012). The GA procedure was in-
troduced into the context of data assimilation by Bertino
et al. (2003) and has been applied for many years in the field
of geostatistics (e.g. Matheron, 1973; Deutsch and Journel,
1998).

It is not standard, however, how the GA should be ap-
plied in the context of DA (Amezcua and Leeuwen, 2014).
The process of GA involves transforming the state vector
and observations {z,y} into new variables {̃z, ỹ} with Gaus-
sian statistics. The (En)KF analysis is computed with the new
variables, and the resulting analysis is mapped back into the
original space. For the transformations, the GA makes use of
the integral probability transform theorem.

In a theoretical framework and with simple experiments,
Amezcua and Leeuwen (2014) evaluated several approaches
using univariate GA transformations. As a key point, they
found that when any of the above (1)–(3) conditions are vio-
lated the analysis step in the EnKF will not recover the exact
posterior density in spite of any transformation. Also, they
concluded that when ensemble sizes are small and knowl-
edge of the conditional py|x(y|x) is not too precise, it is per-
haps better to rely on independent marginal transformations
for both a state variable x and observation y than on joint
transforms. For field variables, one can consider them to have
homogeneous distributions, so that each kind of model vari-
able is transformed using the same monovariate anamorpho-
sis function at all grid points of the model (e.g. Simon and
Bertino, 2009, 2012), or apply local transformation functions
at different grid points (Béal et al., 2010; Doron et al., 2011;
Zhou et al., 2011). In both cases, the GA in these studies has
been applied to the filtering problem. In the context of low-
frequency past climate analysis, the temporal dimension has
to be considered. For example, point (2) above would refer to
the linearity in the generalized observation operator, which
includes the model dynamics. Given the considerations in
Amezcua and Leeuwen (2014), the sparsity of low-frequency
paleoclimate records, and the lack of homogeneity in global
ESM variables, here we follow the approach in Béal et al.
(2010).

In our implementation of the ETKF we augmented the
state vector with the model equivalent of the observations.
We evaluated transformations of the control variables as

well as transformations in sea surface temperature (SST)
as observed variables. We transformed the control variables
marginally. Regarding SST, due to sparsity and heterogene-
ity, we consider it not possible to estimate the marginal distri-
bution of the low-frequency paleoclimate observations with
enough confidence to support a transformation. Thus, in our
experiments we estimated the marginal distribution of the
model equivalent of the SST observations, as derived from
the background ensemble, and also used the same transfor-
mation for the SST observations. The transformation then
operates in the marginals in an independent way at each grid
point:

x̃ =8−1
x̃ (Px(x)) g1(•)= gx→x̃(•)=8

−1
x̃ (Px(•)), (33)

ỹ =8−1
x̃ (Px(y)) g2(•)= gx→x̃(•)=8

−1
x̃ (Px(•)), (34)

where Pξ (ξ) denotes the cumulative density function (CDF),
and 8ξ̃ (•) explicitly indicates that the CDF in the trans-
formed space is that of a Gaussian random variable. For
comparison, Eq. (33) corresponds to transformation (c) in
Amezcua and Leeuwen (2014). Tests with standard ETKF
are included in the two experiments below. A test with ETKF
including GA as just described is included in experiment 2,
with CESM.

As indicated, here we use empirical cumulative density
functions (CDFs) for the anamorphosis based on the back-
ground ensemble. The risk of using the tails of the trans-
formation function during the anamorphosis of the ensem-
ble is significant, and tail estimation can highly impact the
analysis. Here, we obtained linear tails following Simon and
Bertino (2009, 2012), which consists of extrapolating to in-
finity the first and last segments of the interpolation func-
tion with the same slope. In practice, we just extrapolated in
each direction until twice the original range of the Gaussian
variable x̃. Then, we truncate (only) the physical coordinate
in tail points in the transformation function to its physical
bound in case it is exceeded. Then, we set the two first mo-
ments of the target Gaussian variable x̃ to those of the origi-
nal ensemble (see Sect. 4.4 in Bertino et al., 2003).

3 Experiment 1: 1-D energy balance model

3.1 Model description

This experiment is based on a conceptual one-dimensional,
south–north, energy balance model (Ebm1D; Paul, 2018), for
which Paul and Losch (2012) (PL2012 hereafter) conduct a
number of 4D-Var experiments. Ebm1D is based on (a) the
difference between absorbed solar radiation Qabs and out-
going longwave radiation F↑∞ at the top of the atmosphere
(TOA) on the one hand and (b) the divergence of the hor-
izontal heat transport 1Fao on the other hand. In Ebm1D,
the climate is expressed in terms of just the zonally averaged
surface temperature Ts.
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Table 1. 1-D energy balance model. PD1 tests. Parameter definition and first-guess values.

Symbol (µ,σ ) Units Description References∗

Ho (70.0, 15.0) m Ocean mixed-layer depth Hartmann (1994, p. 84)

Linearized longwave radiation

A (205.0, 7.0) W m−2 Constant term Hartmann and Short (1979, set 2)

Diffusion coefficients

K0 (1.5× 105, 1.5× 105) m2 s−1 Constant term
K2 (−1.33, 0.75) Second-order coefficient North et al. (1983)
K4 (0.67, 0.6) Fourth-order coefficient North et al. (1983)

∗ References just for the mean values.

PL2012 evaluate several climate conditions and uncertain
parameter scenarios, including present-day and Last Glacial
Maximum (LGM) climate states. Then, with the model con-
strained by the present-day and LGM parameter estimates,
they conduct climate projections under several CO2 forcing
scenarios. We revisit their PD1 scenario: a present-day test
with five (scalar) parameters, summarized in Table 1, as con-
trol variables. Here we summarize the model in relation to
these parameters, and the reader is referred to PL2012 for
a thorough description of all model parameters and related
equations. The ocean mixed-layer depth, Ho, controls the
effective heat capacity of the atmosphere–ocean system. A
is a constant term in the calculation of the outgoing long-
wave radiation F↑∞, which also depends linearly on the sur-
face temperature and the logarithm of the ratio of the ac-
tual value of the atmospheric CO2 concentration to a refer-
ence value (Eq. 6 in PL2012). Meridional heat transport is
treated as a diffusive process driven by latitudinal tempera-
ture gradients, whereby the horizontal heat transport depends
linearly on a thermal diffusion coefficient Kao(x) given by
Kao(x)=Ko(1+K2x

2
+K4x

4), where K0, K2, and K4 are
the remaining three parameters included in the control vector
(Table 1), and x = sin8, where 8 is latitude.

3.2 Observations and cost function

As observations, we took surface air temperature (SAT) de-
rived from the NCEP/NCAR reanalysis data (Kalnay et al.,
1996). From the reanalysis data we first calculated global
zonal means of SAT. Then, we obtained SAT means for
present-day climate at each grid cell (i.e. latitude) for win-
ter (January, February, and March; JFM) and summer (July,
August, and September; JAS) in the Northern Hemisphere.
These zonal averages of SAT, Ts, were the target for the anal-
ysis. The mean of the last 10 years, out of 100 years of model
integration, was taken as the model equivalent of the observa-
tions. That is, each grid cell in the 1-D model has one obser-
vation and model equivalent for winter (JFM) and similarly

for summer (JAS) in the cost function, defined by

J (θ)=
1
2
‖ θ − θb

‖P−1
θθ
+

1
2
‖ ŷ−G(θ)‖

W
1
2 R−1W

1
2
, (35)

where W is a diagonal matrix, whose diagonal is a vector of
weights w ∈ Rp given to the observations. This cost function
can be written as J (θ)= Jb(θ)+Jo(θ). The observational
target and control variables are identical to those in PL2012,
but they did not include a background term Jb in the cost
function. Like PL2012, we assumed that observation errors
are uncorrelated (R is diagonal), with all observations having
a standard deviation σT0 = 1◦ C. The explicit division of the
norm for Jo in terms of R−1 andw facilitates the comparison
of scenarios as a function of increasing observational weight.

3.3 Experimental set-up

Like PL2012, we set the grid resolution to 10◦. We assumed
a diagonal Pb

θθ , with standard deviations given in Table 1,
which we considered as reasonable. Other than the para-
metric uncertainty we considered a perfect-model assump-
tion, which is overly optimistic in this specific case as, in
addition to the 1-D Earth climate representation, there are
strongly simplified physics in the energy balance model.
While PL2012 also assume this perfect-model framework,
they point to a number of specific structural model errors.
Thus, the control variables will attempt to compensate for
the unaccounted error in either of the evaluated estimation
approaches.

For the PD1 tests, we made the observation weights w
proportional to the area of the zonal band (i.e. decreasing
toward the poles) with 6pi=1wi = 1, and we compared the
FDS-MKS, the FDS-IKS, the ETKF (m= 60 members), and
4D-Var. We evaluated a two-step and a three-step FDS-MKS
(a one-step FDS-MKS equals an FDS-EKS or a first itera-
tion of the FDS-IKS). To evaluate the resilience of the FDS
schemes to high perturbations, we conducted three tests with
different perturbation sizes for each FDS scheme. In each
one, the perturbation applied to each of the control vari-
ables was proportional to its background standard devia-
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tion by a factor SDfac. This perturbation factor was SDfac ∈
{0.001,0.01,0.1}. The evaluation of the cost function for the
ETKF (as a smoother) was conducted with a single forward
integration of the mean of the posterior control variables. In
the 4D-Var minimization, like PL2012, we used a variable-
memory quasi-Newton algorithm as implemented in M1QN3
by Gilbert and Lemaréchal (1989), and to compute the gra-
dient we used a discrete adjoint approach with the tangent
and adjoint codes generated automatically by the Transfor-
mation of Algorithms in Fortran (TAF; Giering and Kamin-
ski, 1998; Giering et al., 2005). The number of simulations
can be higher than the number of iterations as the minimizer
M1QN3 takes a step size determined by a line search that
sometimes reduces the initial unit step size (see Gilbert and
Lemaréchal, 1989). For 4D-Var, as a stopping criterion we
required a relative precision on the norm of the gradient of
the cost function of 10−4. For the assimilation in the ETKF
and FDS tests we used rDAF (García-Pintado, 2018a) and
rdafEbm1D (García-Pintado, 2018b), both working within
the R environment (R Core Team, 2018).

We conducted a number of additional tests to compare the
convergence of the FDS-IKS versus the FDS-MKS as higher
weight is given to the observations. These were named PD2
and PD3, corresponding to 6pi=1wi = 3 and 6pi=1wi = 5, re-
spectively. As these weights increase, the effect of the regu-
larization by Jb decreases, and one can expect the conver-
gence of the Gauss–Newton scheme (the FDS-IKS) to be
more difficult. A few of these additional tests evaluate how
and/or if the convergence of the FDS-IKS can be improved
(mostly in a low-regularization situation) by increasing the
number of perturbations per parameter (that is, the ensem-
ble size). The results of these additional tests are briefly de-
scribed here and expanded in Appendix A.

3.4 Results

Here we provide a succinct summary of the estimation pro-
cess. Broader explanation of the model climatology in rela-
tion to the control variables is given in PL2012. The back-
ground sensitivity of the 10-year mean surface temperature
Ts to the control variables is shown in Fig. 1 in which, to
ease comparison, the sensitivity matrix G is scaled by mul-
tiplying each of its columns by the assumed background
standard deviation of the corresponding parameter. Figure 1a
shows mean ensemble sensitivities estimated from the back-
ground ensemble for the ETKF, and Fig. 1b shows local
finite-difference sensitivities (FDSs) estimated with pertur-
bations using SDfac= 0.001. Note that these background
FDSs are identical for both the FDS-IKS and the FDS-MKS
in all scenarios (PD1, PD2, and PD3) for the same SDfac.
Each plot has its own scale to avoid flattened lines in the en-
semble sensitivity plot. For the three control variables com-
posing the thermal diffusion coefficient Kao, FDSs are more
than twice as high as the corresponding mean ensemble sen-
sitivities. However, the sensitivities to the ocean mixed-layer

depth, Ho, and to the constant term A in the longwave radi-
ation are quantitatively similar in both cases. In both, A is
negatively correlated (as expected) with Ts at all latitudes but
with a relatively low sensitivity, while the rest of the control
variables show a rather neutral, but negative, sensitivity in
the tropical belt and a positive sensitivity increasing toward
the poles (nearly symmetrical off the Equator), with weaker
scaled sensitivities for the ocean mixed-layer depth Ho. In
both cases, additional plots (not shown) depict summer sensi-
tivities similar to the corresponding winter ones. Also, FDSs
with SDfac= 0.01 (winter and summer) are very similar to
those shown in Fig. 1b. FDSs with SDfac= 0.1 are also very
close to those in Fig. 1b, but slightly lower for the Kao com-
ponents, toward those in Fig. 1a.

For the PD1 scenario, Fig. 2 summarizes the convergence,
including the FDS-IKS, the two-step and three-step FDS-
MKS, and 4D-Var; Table 2 compares the posterior control
variables and the corresponding cost function values for all
the evaluated schemes. For comparison, the convergence in
Fig. 2 is scaled as a function of the number of simulations,
which, for five control variables, is six simulations per itera-
tion in the forward FDS schemes. Convergence details are
given in Appendix A. For the PD1 scenario, 4D-Var took
141 simulations and 111 iterations to converge to the min-
imum with the convergence criterion indicated in Sect. 3.3.
A relatively improved convergence by including the regular-
ization term Jb can be seen by comparison with PL2012,
whose cost function only considered the Jo term and took
236 simulations and 190 iterations to converge (Table 3 in
PL2012). In any case, Fig. 2 shows that the 4D-Var conver-
gence became apparently similar to that of the FDS-IKS tests
from simulation 40 onwards. In Fig. 2, the three convergence
series for the FDS-IKS with the three different perturbation
parameters (SDfac ∈ {0.001,0.01,0.1}) are represented with
the same symbol. Starting with the same background cost
function value J , the two series with SDfac ∈ {0.001,0.01}
show identical results, while the series with SDfac= 0.1 is
the one that has a higher cost after the first iteration but still
reunites with the other two series after the second iteration.
However, the variations in SDfac had a very minor effect on
the FDS-MKS schemes. For the FDS-MKS schemes, we fo-
cus now on the end of their corresponding iterations. The
two-step FDS-MKS, for all SDfac values, gives final J val-
ues that are close to but slightly higher than those of the FDS-
IKS at the same number of iterations. The same happens with
the three-step FDS-MKS with respect to the third iteration
of the FDS-IKS. For 4D-Var, the convergence goes slightly
faster than for the FDS-IKS at simulation number six (first
iteration of FDS-IKS), but then it goes slower than for the
FDS-IKS after that.

Table 2 for the PD1 scenario shows that the posterior val-
ues of the control variables, as well as the corresponding cost
function values, are nearly identical for 4D-Var and the FDS-
IKS (values shown for SDfac= 0.001 perturbations, but also
similar for the higher SDfac values). The three-step FDS-
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Figure 1. Ebm1D experiment. Background sensitivity of winter surface air temperature to the control variables estimated as (a) ensemble
sensitivity (for the ETKF) and (b) finite-difference sensitivity (for the FDS-IKS and the FDS-MKS) with SDfac= 0.001. Sensitivities are
scaled by the standard deviation of the control variables, and each line refers to a column in G. Each plot uses its own scale to ease
visualization.

Table 2. Ebm1D PD1 tests. Parameter estimation and cost function values∗.

Parameter Background 4D-Var FDS-MKS2 FDS-IKS FDS-EKS ETKF3
60

Ho 70.0± 15.0 60.8 55.7± 13.7 60.9± 13.3 62.2± 14.1 62.1± 9.73
A 205.0± 7.0 209.2 209.4± 1.94 209.2± 1.96 208.8± 1.94 208.6± 2.07
K0 1.5E05± 1.5E05 2.2E05 2.1E05± 4.83E04 2.2E05± 6.7E04 2.0E05± 4.9E04 2.1E05± 6.7E04
K2 −1.33± 0.75 −1.25 −1.06± 0.37 −1.20± 0.38 −1.33± 0.43 −1.42± 0.50
K4 0.67± 0.6 0.32 0.12± 0.40 0.31± 0.39 0.35± 0.47 0.70± 0.46
Jo(θ) 14.21 8.83 8.98 8.82 11.08 11.83
J (θ) 14.22 9.47 9.55 9.47 11.56 12.20

∗ FDS schemes with SDfac= 0.001. Values are identical for SDfac= 0.01 and slightly different with a minor increase in cost function values for SDfac= 0.1 (see
Appendix A). 2 Three-step FDS-MKS. Details of cost function convergence for the two-step FDS-MKS shown in Appendix A. 3 ETKF subindex indicates the
ensemble size. Cost function obtained by reintegration of the model with the mean updated parameters.

MKS also (shown for SDfac= 0.001) converges to relatively
similar control variables. In this case, the FDS-EKS (first it-
eration of FDS-IKS) also obtained lower cost function values
than the ETKF. Although both obtained similar values for
Ho, A, and K0, in the ETKF case, the values of K2 and K4
(with a clear non-linear relation with the surface air tempera-
ture) diverged from the minimum obtained by 4D-Var and the
FDS-IKS. This is related to the background departure from
the minimum and the mean sensitivities used by the ETKF. In
general, one would not expect an FDS-EKS to perform better
than an ETKF with denser sampling (bigger ensemble) as in
this case. Table 2 also indicates the posterior standard devia-
tions for the Kalman-based schemes. Non-diagonal values of
Pa
θθ are not shown. There are no high differences among the

various posterior standard deviations for the Kalman-based
schemes, with some values being higher in one scheme and
others higher in a different scheme. In summary, the linear
approaches (ETKF and FDS-EKS) obtained some reduction
in the cost function values with respect to the background,
but the rest of the schemes obtained substantially lower cost
function values, with the FDS-IKS and 4D-Var converging

to the same minimum and getting the lowest J values. It
is possible that an alternative minimization for the strong-
constraint 4D-Var would have converged faster. In any case,
the FDS-IKS has been shown to have a fast convergence
in this experiment. Interestingly, Fig. 2 shows that the first
fraction of all FDS-MKS schemes had a substantially lower
cost value than either 4D-Var or any of the FDS-IKS tests.
This, along with the resilience of the FDS-MKS to relatively
high perturbations, supports the strategy of using a combina-
tion of the FDS-MKS in early iterations of a Newton-like
scheme such as the FDS-IKS, akin to Wu et al. (1999) or
Gao and Reynolds (2006). Alternatively, one can conduct a
line search along the direction given by the FDS-IKS incre-
ments at each iteration. Further details for this experiment
are in Appendix A, focusing on the convergence of FDS-IKS
versus FDS-MKS as the observational weight increases.
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Figure 2. Ebm1D experiment. Convergence as a function of the
number of simulations for the scenario PD1 (6p

i=1wi = 1). Each it-
eration of the evaluated finite-difference schemes requires six sim-
ulations (background plus number of perturbations, with one per-
turbation per parameter). Two-step and three-step FDS-MKS are
included. Each FDS scheme includes the convergence for the three
perturbation tests (details in text).

4 Experiment 2: CESM

4.1 Experimental set-up

Experiment 2 is a synthetic test with the Community Earth
System Model (CESM1.2), a deterministic ESM. The CESM
component set used here comprises the Community Atmo-
sphere Model version 4 (CAM4), the Parallel Ocean Program
version 2 (POP2), the Community Land Model (CLM4.0),
the Community Ice CodE (CICE 4) as a sea ice component,
the River Transport Model (RTM), and the CESM flux cou-
pler CPL7. The coupler computes interfacial fluxes between
the various component models (based on state variables) and
distributes these fluxes to all component models while en-
suring the conservation of fluxed quantities. Land ice is set
as a boundary condition, and the wave component is not ac-
tive. The configuration uses pre-industrial forcings and it is
a standard component set named B1850CN in the CESM1.2
list of compsets. We use a ∼ 4◦ horizontal resolution regular
finite-volume (FV) grid for the atmospheric and land compo-
nents, an FV grid with a displaced pole centred at Greenland
∼ 3◦ (version 7) for the ocean and sea ice components, and
a 0.5◦ FV grid for the river run-off component (this is also a
standard set of component grids with short name f45_g37 in
CESM1.2). For comparison, this is a coarser resolution than
that of the recent CESM Last Millennium Ensemble (Otto-
Bliesner et al., 2016).

Here we focus on the analysis for a single DAW and equi-
librium forcing and, as adequate, introduce some comments
regarding practical implementations for real cases, including
the case of transient forcings. The identical twin assimila-
tion experiment is designed to approach a case of past cli-

mate reconstruction with sparse observations, as usual in
pre-instrumental climate analysis. Specifically, we use the
features of available observations of near sea surface tem-
perature for the Last Glacial Maximum (LGM) from the
MARGO database (MARGO Project Members, 2009). The
LGM has received great attention in the paleoclimate com-
munity for its relevance to understand climate feedbacks
and future climate projections; specifically, the MARGO
database has been profusely used for qualitative and quanti-
tative model–data comparisons (e.g. Kageyama et al., 2006;
Hargreaves et al., 2011; Waelbroeck et al., 2014) as well
as in dynamical reconstruction, with the ocean model MIT-
gcm and 4D-Var, of the upper-ocean conditions in the
LGM Atlantic (Dail and Wunsch, 2014) and the global ocean
(Kurahashi-Nakamura et al., 2017). For the purpose of this
study, it is not so important that the actual climate of the
model matches that of the LGM but that the case study is re-
alistic from the estimation point of view. Thus, we make use
of the MARGO database characteristics (location, seasonal-
ity, and uncertainty), but conduct a synthetic experiment for
pre-industrial climate conditions. To do so, before starting
the experiment we spun up CESM for 1200 years starting
from Levitus climatology with standard pre-industrial condi-
tions to reach an equilibrium state. Then, we used the restart
files from the end of the spin-up time to create a 60-year con-
trol simulation (as synthetic truth), in which in addition to the
pre-industrial forcings and boundary conditions, we added a
flux term to the ocean, as detailed below.

To create the background ensemble we perturbed a num-
ber of parameters for the (deterministic) physics in both
the ocean and the atmosphere components, as well as input
greenhouse gases and an additional influx of water into the
North Atlantic Ocean. As indicated in the Introduction, the
selected control variables have the responsibility of creating
all the background uncertainty in a perfect-model scenario,
and through the assimilation they will try to compensate for
any unaccounted model error elsewhere. In a step-by-step
approach, here all perturbed model parameters and forcings
were included as control variables in the assimilation. An
obvious (still synthetic) and very useful extension would be
to perturb a wider set of model parameters and/or forcings
and boundary conditions (e.g. various ice sheet configura-
tions or alternative freshwater influx) and explicitly evaluate
the compensation effect and climate reconstruction results
by using subsets of the perturbed inputs as control vectors.
Here, the selected parameters for model physics and radiative
constituents are relevant to the global energy budget of the
Earth system, but not necessarily the most sensitive model
inputs for multi-decadal and longer scales. In real cases, the
selection of control variables (if the control vector is to be
kept low-dimensional) should be done carefully and gener-
ally based on previous global sensitivity analyses.

We included an influx of water into the North At-
lantic from melting in the Greenland ice sheet (GIS) to
the true run and as a control variable. This flux was ho-
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mogeneously distributed along the coast of Greenland and
at the ocean surface, and it is appealing to explore as a
control variable because the Atlantic meridional overturn-
ing circulation (AMOC) plays a critical role in maintain-
ing the global ocean heat and freshwater balance. It is
commonly acknowledged that North Atlantic deep water
(NADW) formation is key in sustaining the AMOC (e.g.
Delworth et al., 1997), while in turn freshwater flux in
the North Atlantic, along with surface wind forcing, ocean
tides, and convection, provides the energy for NADW for-
mation (e.g. Gregory and Tailleux, 2011). Adding this fresh-
water flux (or freshwater hosing) makes the identification of
the model parameters more complicated, but it is realistic to
expect that current paleoclimate melting estimates can hold
some bias and it is useful to know how the evaluated schemes
deal with this possibility. In real cases, flux terms have been
used in paleoclimate modelling to account for model errors.
So, they relax the perfect-model assumption in a paramet-
ric way. Here, the estimated flux term attempts to correct the
mean state towards the observations along with the model
parameters. As far as the authors know, this is the first exper-
iment with a comprehensive ESM which attempts (even in a
synthetic way) a joint flux and model parameter estimation
for climate field reconstruction, as these are more commonly
seen as competing strategies.

We initiated the background with biased control variables
with respect to the truth and a zero-mean Greenland ice sheet
freshwater flux. We used reasonable uncertainties in the con-
trol variables derived from previous publications. Separate
analyses (weakly coupled assimilation) for different model
components (atmosphere, ocean, land) may be inconsistent.
In our set-up, all observations are allowed to directly impact
model parameters from any component in the Earth system
model. This is known as strongly coupled data assimilation.
Both truth and background simulations were branched from
the same initial conditions, which allowed us to use rela-
tively short integration times (60 years) in the experiment. In
a real case with steady-state forcings (e.g. estimation of real
LGM climate state by assimilating the MARGO database),
the model should be integrated even longer towards quasi-
equilibrium to ensure that errors in the initial conditions will
not affect the analysis (or they should be accounted for).
Also, each model equivalent of the observations has to be
mapped into the corresponding spatio-temporal domain of
each paleoclimate proxy observation. Similar to the previous
experiment, for the FDS schemes, we set the perturbations
for each control variable as equal to their standard deviation
multiplied by a perturbation factor SDfac. For computational
reasons we only tested SDfac ∈ {0.001,0.1}.

The cost function was as in Eq. (17), in which the set of
control variables used for the experiment is summarized in
Table 3. Sect. 4.2 and 4.3 give brief information on the atmo-
spheric and ocean components of CESM as used in this ex-
periment. For the rest of the model components we used de-
fault configurations for the indicated CESM compset. Given

that adjoint codes are not available for CESM, here we alter-
natively tested an ETKF (with m= 60 ensemble members)
including Gaussian anamorphosis (ETKF-GA) as a possible
non-linear approach, which has a negligible extra cost over a
standard ETKF. We also evaluated the three-step FDS-MKS,
the FDS-IKS (with three as the maximum number of itera-
tions), and the ETKF, also with m= 60. For all the assimi-
lation analyses we used rDAF (García-Pintado, 2018a), and
rdafCESM (García-Pintado, 2018c).

4.2 CAM

We used the Community Atmosphere Model version
4 (CAM4) as an atmospheric global circulation model
(AGCM) component. A comprehensive description of
CAM4 can be found in Neale and Coauthors (2011). Precip-
itation and the associated latent heat release drive the Earth’s
hydrological cycle and atmospheric circulations, and many
model processes in AGCMs, including deep and shallow
convection and stratiform cloud microphysics and macro-
physics, are responsible for the partitioning of precipitation
through competition for moisture and cooperation for precip-
itation generation (Yang et al., 2013). Cumulus convection
is a key process for producing precipitation; it is also key
for redistributing atmospheric heat and moisture (Arakawa,
2004) and, consequently, the global radiative budget (Yang
et al., 2013). Since AGCMs are unable to resolve the scales
of convective processes, various convection parameteriza-
tion schemes (CPSs) have been developed based on differ-
ent types of assumptions. The CPS usually includes multiple
tunable parameters, which are related to the sub-scale inter-
nal physics and are thought to have wide ranges of possible
values (e.g. Yang et al., 2012). Also, the dependence of CPS
parameters on model grid size and climate regime is an im-
portant issue for weather and climate simulations (Arakawa
et al., 2011). In addition, AGCMs include parameterization
of macrophysics, microphysics, and subgrid vertical velocity
and cloud variability to simulate the subgrid stratiform pre-
cipitation.

Here we used CAM4 with the Zhang and McFarlane
(1995, hereafter ZM) deep convection scheme and the Hack
(1994) shallow convection scheme. For representation of
stratiform microphysics we used the scheme by Rasch and
Kristjánsson (1998), which is a single-moment scheme that
predicts the mixing ratios of cloud droplets and ice. Re-
garding cloud emissivity, clouds in CAM4 are grey bod-
ies with emissivities that depend on cloud phase, condensed
water path, and the effective radius of ice particles. By de-
fault, the CAM4 physics package uses prescribed gases ex-
cept for water vapour. In CAM4, the principal greenhouse
gases whose longwave radiative effect is included are H2O,
CO2, O3, CH4, N2O, CFC11, and CFC12. CO2 is assumed
to be well mixed. As the use of prescribed species distri-
butions is computationally less expensive than prognostic
schemes, for long-term paleoclimate analysis we would gen-
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erally favour the use of prescribed greenhouse gases, for ex-
ample as given by the recently published 156 kyr history of
atmospheric greenhouse gases by Köhler et al. (2017). Still,
we would acknowledge that these emerging datasets have an
associated uncertainty and that it is generally appropriate to
include the most influential ones as control variables in the
climate analysis so their errors can be estimated as part of
the assimilation.

In this study, as perturbed parameters and control vari-
ables we selected parameters related to the ZM deep convec-
tion scheme and the relative humidity thresholds for low and
high stable cloud formation. Also, within the radiative con-
stituents, we included invariant surface values of CO2 and
CH4 as control variables. Table 3 shows the control variables
in both CAM and POP2, and Table 5 shows the true run val-
ues in column xt .

This experiment is based on equilibrium simulations. Re-
garding real cases in transient conditions, θ could e.g. in-
clude a constant error term (i.e. a bias) for a transient green-
house gas dataset as a prescribed radiative constituent in the
atmospheric model (e.g. from Köhler et al., 2017). The es-
timated bias would be updated for successive DAWs. One
could think of more complicated autocorrelated error mod-
els for the greenhouse gas dataset (e.g. García-Pintado et al.,
2013), but it seems highly unlikely to us that available proxy
datasets for low-frequency climate variability can constrain
errors further than simple biases in GHG forcing. We did
not evaluate any parameter in relation to indirect effects of
aerosol to cloud nucleation and autoconversion, despite the
overall effect of aerosol to cloud albedo, cloud lifetime, and
climate, so this remains largely uncertain (Chuang et al.,
2012).

4.3 POP2

As an ocean component, we used POP2 (Smith et al., 2010).
Subgrid-scale mixing parameterization includes horizontal
diffusion and viscosity and vertical mixing. For horizontal
diffusion we chose an anisotropic mixing of momentum and
the Gent and McWilliams (1990) parameterization, which
forces the mixing of tracers to take place along isopycnic sur-
faces with activated submesoscale mixing. The main draw-
back in the Gent and McWilliams (1990) scheme is that it
nearly doubles the running time with respect to other sim-
pler schemes. For vertical mixing, we chose the K-profile
parameterization (KPP) of Large et al. (1994). In KPP mix-
ing, the interior mixing coefficients (viscosity and diffusiv-
ity) are computed at all model interfaces on the grid as the
sum of individual coefficients corresponding to a number
of different physical processes. The first coefficients are de-
noted as background diffusivity κω and background viscosity
υω (not to be confused with the “background” in assimilation
terminology), which represents diapycnal mixing due to in-
ternal waves and other mechanisms in the mostly adiabatic
ocean. Other coefficient are associated with shear instability

mixing, convective instability, and diffusive convective in-
stability. The background viscosity is allowed to vary with
depth, but here we assumed a depth-constant vertical viscos-
ity κω = bckgrnd_vdc1, where bckgrnd_vdc1 is a model in-
put parameter. The model then computes υω = Prκω, where
Pr is the dimensionless Prandtl number (set to Pr= 10 in the
model).

As control variables in POP2 we chose the Gent–
McWilliams isopycnic tracer diffusion parameter and the
(constant with depth) KPP background viscosity, both with
default values for the truth. A third control variable in POP2
was the total freshwater influx from the Greenland ice sheet,
which we distributed homogeneously along the coast of
Greenland and only at the ocean surface.

4.4 Observations

The observational dataset is composed of point samples of
climate averages for the last 20 years out of a total 60 years
of integration time in a true simulation. The synthetic obser-
vations were located at the horizontal locations and 10 m of
depth of the MARGO database, and the sampling character-
istics reproduce those of MARGO. The MARGO database is
a synthesis of six different proxies and is considered to rep-
resent the combined expertise of at least a sizeable fraction
of the LGM paleocommunity. The observational uncertainty
was taken from the MARGO database as input to the assimi-
lation, but we did not add any error to the synthetic observa-
tions. MARGO provides observations (or reconstructions) of
near sea surface temperature (SST) for the Last Glacial Max-
imum (LGM). The proxy types on which the SST estimates
are based are (a) microfossil based (planktonic foraminifera,
diatom, dinoflagellate cyst, and radiolarian abundances) and
(b) geochemical paleothermometers (alkenone unsaturation
ratios (UK

′

37 ) and planktonic foraminifera Mg /Ca). Details
on the database are given in MARGO Project Members
(2009).

In summary, MARGO provides seasonal means for North-
ern Hemisphere winter (January, February, and March; JFM)
and summer (July, August, and September; JAS), as well
as annual means. However, the data availability for each of
the three temporal means (winter, summer, and annual) is
different for each proxy type. Specifically, diatoms are just
available for Southern Hemisphere summer; dinoflagellates,
foraminifera, and Mg /Ca are available for the three tem-
poral means; and UK

′

37 values are only available as annual
means. The observation errors are assumed uncorrelated, but
each individual record in MARGO contains a specific un-
certainty. Mapped into the SST space, the range of standard
deviations in MARGO is within 0.79 and 4.87 ◦C, with rel-
atively homogeneous uncertainty ranges among proxy types.
Figure 3 shows the type and location of the proxy data. In ad-
dition to the locations and uncertainty, we emulated the tem-
poral mean availability of the observations, with all tempo-
ral means calculated over the last 20 years of the integration
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Table 3. CESM definition of control variables.

COMP.name1 Description Units

CAM.cldfrc_rhminh minimum relative humidity for high stable cloud formation (–)
CAM.cldfrc_rhminl minimum relative humidity for low stable cloud formation (–)
CAM.ch4vmr greenhouse gases, CH4 volume mixing ratio ppb
CAM.co2vmr greenhouse gases, CO2 volume mixing ratio ppm
CAM.zmconv_c0_lnd autoconversion coefficient over land in ZM deep convection (–)
CAM.zmconv_c0_ocn autoconversion coefficient over ocean in ZM deep convection (–)
CAM.zmconv_ke evaporation efficiency in ZM deep convection (–)
POP2.bckgrnd_vdc1 KPP mixing: background vertical diffusivity (Ledwell) cm2 s−1

POP2.hmix_gm_nml.ah Gent–McWilliams isopycnic tracer diffusion (Redi)2 cm2 s−1

POP2.freshwater_gis freshwater influx homogeneously distributed around Greenland Sv

1 COMP.name: CESM component and parameter name. 2 We constrained POP2.hmix_gm_nml.ah_bolus to equal
POP2.ah.hmix_gm_nml.ah in the background and updates.

time in the true simulation. Thus, the synthetic observations
in the experiment, as well as those in MARGO, impose a less
restrictive constraint not only in areas in which observations
are more sparse, but also in those locations for which just one
season or just annual means are available.

4.5 Results

4.5.1 Non-linearity and Gaussian anamorphosis
transformations

The need for non-linear estimation is justified based on the
assumed non-linear relationship between the control vari-
ables and the observation space. In this experiment, non-
linearity is imposed by the Earth system model, which di-
rectly generates SST as the observed variable. In a more gen-
eral case of past climate analysis, the forward operator (proxy
system model) can impose further non-linearity when the ob-
served variables are direct proxy records (e.g. foraminiferal
counts, tree-ring widths, speleothems, etc.). In addition to
model and forward operator non-linearity, non-Gaussianity
in the control variables also renders (En)KF non-optimal.
Here we conducted a test with ETKF including the Gaus-
sian anamorphosis (GA) transformation (ETKF-GA). The
test transforms the control variables, whose background de-
viations from Gaussianity here derive from imposed bounds,
and the SST in both the model equivalent of the observations
and the observations themselves with the strategy explained
in Sect. 2.6. In this section, we show an example of non-
Gaussianity and non-linearity in this experiment, which are
the motivation for the iterative FDS schemes evaluated in this
paper as well as for testing the Gaussian anamorphosis. Spe-
cific estimation results are given in Sect. 4.5. Note that no
transformation has been applied to the FDS schemes.

In the ETKF-GA test, we conducted the marginal Gaus-
sian anamorphosis for all the variables in the control vector.
Table 4 shows the p values of the Shapiro–Wilk normality
test (Shapiro and Wilk, 1965) conducted on the original (raw)

Table 4. CESM experiment. P values of Shapiro–Wilk normality
test for the ensemble of original control variables (Raw) and trans-
formed by Gaussian anamorphosis (Ana).

Parameter Raw Ana

CAM.cldfrc_rhminh 0.80 1.00
CAM.cldfrc_rhminl 0.07 0.69
CAM.zmconv_c0_lnd 0.14 0.98
CAM.zmconv_c0_ocn 0.22 0.87
CAM.zmconv_ke 0.72 1.00
CAM.ch4vmr 0.54 1.00
CAM.co2vmr 0.24 1.00
POP2.bckgrnd_vdc1 0.95 1.00
POP2.hmix_gm_nml.ah 0.97 1.00
POP2.imau_gis 0.40 0.99

control vector and the anamorphosed ones (ana). The sec-
ond column shows that Gaussianity is improved in all cases,
with most of them even reaching a p value= 1. We note that
despite the fact that the GA was applied to all the control
vectors, the raw samples of the background control variables
also had a p value> 0.05 in all cases. For the SST observa-
tions, we evaluated the marginal normality of the raw SST
with the Shapiro–Wilk test. Then, we only applied the GA
transformations at locations with the background SST devi-
ating significantly from Gaussianity.

The minimum relative humidity for high stable cloud
formation (CAM.cldfrc_rhminl parameter), given its back-
ground uncertainty, was shown to have a strong effect on SST
in the experiment. In most locations of the global ocean the
marginal background SST had a non-Gaussian but still uni-
modal probability density function. Especially complicated
was the North Atlantic, with strongly bimodal background
distributions in some locations. One of these cases is depicted
in Fig. 4. As shown in Table 4, the CAM.cldfrc_rhminl pa-
rameter had a sharp increase in its background Gaussianity in
the anamorphosed variable, and Fig. 4a describes the trans-
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Figure 3. MARGO data coverage (MARGO Project Members, 2009).

formation of SST in a location in the North Atlantic Ocean.
Specifically, this is the observation with the highest negative
innovation in the experiment, and it seems to represents the
most complicated case in the test. Apart from the high (neg-
ative) innovation, the raw observation falls well in the tail
of the transformation, so its forward and backward trans-
formations are rather sensitive to the dealing of the tails in
the anamorphosis function, as mentioned in Sect. 2.6 and Si-
mon and Bertino (2009, 2012). In addition, there is the effect
of bimodality in SST in this case. As a result, despite both
marginal transformations (control variable and SST) having
a clear increase in their marginal Gaussianity, their joint dis-
tribution is not bivariate Gaussian, as seen in Fig. 4b. This
generic possibility is also very well described by Amezcua
and Leeuwen (2014). Appendix B shows an example of the
more general case, in which the Gaussian anamorphosis does
not show specific issues.

4.5.2 Sensitivities and minimization

Table 5 shows the values of the control variables for the true
simulation, xt, the background (or prior), xb, and the analy-
sis (or posterior) estimates, xa, for the evaluated schemes,
as well as the value of the cost function J for the back-
ground and each estimation. The observational term in the
cost function, Jo, is also shown to give an indication of the
relative contribution from each cost function term. Jo is cal-
culated by reintegration of the updated (or posterior) control
vector in the FDS schemes and reintegration of the mean of
the updated control vector ensemble for the ETKF and the
ETKF-GA. An initial experiment with the perturbation factor
SDfac= 0.001 showed extremely high sensitivities, and the

corresponding FDS-EKS (or first step of the FDS-IKS) had
a very small increment in the control vector variables. The
scale of sensitivities for a perturbation factor SDfac= 0.1
was more in agreement with the ensemble sensitivities of
the ETKF background (and higher increments in a good di-
rection), and we decided to apply this perturbation factor
to both the FDS-MKS and FDS-IKS. Still, according to the
previous experiment, these high perturbation factors should
favour the (more regulated) FDS-MKS. All the following re-
sults refer to SDfac= 0.1. Due to limits in the computational
quota, we did not test alternative perturbation factors in this
experiment. It is very likely that smaller perturbations (e.g.
SDfac∼ 0.01) would have resulted in improved results for
the FDS schemes, mostly for the FDS-IKS. Thus, in a way,
the results here may be interpreted as relatively low perfor-
mance bounds for the FDS schemes under the given experi-
mental assumptions.

All schemes obtained a substantial reduction in the value
of the cost function with respect to the background, which
had a J (θb)= 373.39. Within the evaluated schemes, the
three-step FDS-MKS obtained the lowest cost function value
with J (θa)= 51.85. The cost for the FDS-IKS (stopped
at the third iteration) was slightly higher (J (θa)= 55.20).
However, the observational term Jo(θ

a) was lower for the
FDS-IKS. The m= 60 member ETKF resulted in a higher
cost value (J (θa)= 66.43) and the ETKF-GA in a very sim-
ilar J (θa)= 66.8. As expected, the FDS-EKS (or first itera-
tion of the FDS-IKS) resulted in the highest cost value, with
J (θa)= 93.13, as it is linear (as the ETKF), and also the
FDS-reduced exploration of the sensitivity is noisier than that
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Figure 4. CESM experiment. Example of Gaussian anamorphosis transformation in a control variable (minimum relative humidity for
high stable cloud formation) and the sea surface temperature (SST) for both the model equivalent of the observations and the observation
(transformation details in text) at a location (343.17◦ E, 54.25◦ N; see Fig. 5) in the North Atlantic, where an apparent switch in SST takes
place. (a) The anamorphosis for the SST at the location; the left panel shows the histogram of the original (raw) variable, the middle panel
shows the empirical piecewise linear transformation which maps the raw variable percentiles into those of a normal variable with the two first
moments (mean and standard deviation) preserved as those in the raw variable, and the right panel shows the histogram of the anamorphosed
variable. (b) Scatterplots between the two variables in (a) for the original variables: cases in which only one is transformed and the case with
both variables transformed. Vertical red lines in (a) and horizontal lines in (b) indicate the mean of the model background SST. Blue squares
indicate observations, vertically placed and connected with the mean of the control variable.

of the ETKF withm= 60 members. The cost function for the
thee iterations of the FDS-IKS is shown in Table B1.

As seen, regarding the cost function, the Gaussian anamor-
phosis (as implemented here) did not improve the minimiza-
tion with respect to the ETKF, although the transformation
served to obtain a lower value for the observational term
Jo. Out of several transformation possibilities, Amezcua and
Leeuwen (2014) concluded that using the CDF estimated
from the ensemble model equivalent of the observations to
also transform the observations (as done here given the con-
siderations indicated in Sect. 2.6) was the worst option. In

any case, we have also seen here a specific example that
shows that even if marginal Gaussianity is improved in both
transformed control variables and the model equivalent of the
observations, the joint probability is not guaranteed to be bi-
variate Gaussian (Fig. 4). It is also interesting to note that
the slope of the scatterplot examples shown in Fig. 4 is pos-
itive for the two separate branches of an apparent switch oc-
curring in SST (with a sharp negative step in SST around
CAM.clfrc_rhminl=0.88) at this location in the North At-
lantic. Thus, the slope for a linear regression in this relation
would have been clearly negative, as opposed to the slopes in
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Table 5. CESM control vector estimation1.

COMP.name xt xb xa – ETKF60 xa – ETKF60-GA2
θ,y xa – FDS-MKS FDS-EKS xa – FDS-IKS

CAM.cldfrc_rhminh 0.80 0.75 0.76 0.82 0.81 0.76 0.69
CAM.cldfrc_rhminl 0.91 0.88 0.91 0.90 0.90 0.90 0.91
CAM.ch4vmr 791.6 800.0 801.0 798.2 798.7 797.4 800.5
CAM.co2vmr 284.7 300.0 300.0 301.2 298.8 301.4 302.5
CAM.zmconv_c0_lnd 0.0035 0.0202 0.0208 0.0167 0.0287 0.0238 0.0377
CAM.zmconv_c0_ocn 0.0035 0.0202 0.0155 0.0230 0.0290 0.0327 0.0478
CAM.zmconv_ke 1.0e-06 5.0e-06 2.3e-06 4.6e-06 4.1e-06 3.75e-06 3.02e-06
POP2.bckgrnd_vdc1 0.16 0.19 0.18 0.19 0.19 0.19 0.18
POP2.hmix_gm_nml.ah 4.00e+07 4.20e+07 4.17e+07 4.30e+07 4.17e+07 4.30e+07 4.46e+07
POP2.freshwater_gis 0.0075 0.0 0.0038 0.0144 −8.4e-04 6.28e-05 5.5e-04
Jo(θ) 373.39 64.95 61.23 50.24 91.81 48.88
J (θ) 373.39 66.43 66.83 51.85 93.13 55.20

1 Units as described in Table 1. 2 ETKF subindex indicates the ensemble size. Cost function obtained by reintegration of the model with the mean updated parameters.

the individual two branches. This switch in SST here seems
to be associated with a displacement in the North Atlantic
gyre and (possibly coupled) cloud development. This general
negative slope in SST with respect to CAM.cldfrc_rhminl is
clearly shown at the given location in the ensemble sensi-
tivity plot in Fig. 6. The switch also indicates that the back-
ground values and perturbation sizes are key for FDS estima-
tion and indicates why the corresponding SST plot for FDS
in Fig. 6 differs substantially from the ensemble sensitivity
at the given location (note that the sensitivity about the back-
ground is the same for both FDS schemes: the FDS-MKS
and the FDS-IKS). Additional sensitivity plots (not shown)
also indicate a positive mean ensemble sensitivity of both
total cloud cover and large-scale precipitation with respect
to the CAM.clfrc_rhminl at this location, while the sensitiv-
ity of the cloud cover to CAM.clfrc_rhminl becomes nega-
tive for latitudes lower than 50◦ N in the North Atlantic. A
major point here is that the Gaussian anamorphosis cannot
solve the strong non-linear relationship in this case. Also, the
MARGO coverage is far denser in the North Atlantic than in
the rest of the global ocean. Thus, the updates to global pa-
rameters in the control vector are strongly influenced by the
sensitivities in the area. The MARGO coverage in the North
Atlantic can be adequate regarding the analysis of the glacial
climate at the LGM, and here it has been useful to show that
the anamorphosis, as applied here, has not been able to solve
the strong non-linearities found in the North Atlantic area.
Still, in other conditions with available proxy time series,
one could possibly apply alternative transformations for the
observations based on their own statistics, and results could
perhaps improve. Also, a further evaluation of the specific
contribution from each observation to the increments could
serve to design quality controls and improved ensemble ap-
proaches. By only looking at the posterior estimates in Ta-
ble 5, it does not seem possible to derive any general con-
clusions about the benefit of the Gaussian anamorphosis in
ensemble Kalman schemes for multi-decadal climate analy-

sis from the view of this experiment, but further exploration
is needed.

The lower cost function values of the FDS schemes with
respect to the ETKF (with and without GA) suggest a ben-
efit in the more limited (and noisier) but iterated local sen-
sitivity estimation. Also, the computational cost in the FDS
tests was about half of the ETKF (and ETKG-GA). Regard-
ing the estimation of specific control variables, all of the eval-
uated schemes had some variables for which the estimation,
starting from the background, went in the wrong direction
with respect to the true values. For example, the closest esti-
mate to the true value of the relative humidity threshold for
high stable cloud formation (cldfrc_rhminh) was given by
the FDS-MKS, with a slight overshooting (0.81 versus 0.80
for the truth). It may have been that this slight overshoot-
ing has partially compensated for the effect of other control
variables. Thus, the FDS-MKS estimates of the freshwater
flux from the Greenland influx went in the wrong directions,
as did the estimates for the autoconversion coefficients in
the Zhang–McFarlane deep convection scheme. On the other
hand, the FDS-IKS had a total increment in cldfrc_rhminh
in the wrong direction, but had the Greenland influx total in-
crement in the right direction. The ETKF did not show any
overshooting, but had some control variable increments go-
ing in the wrong direction. For the ocean background vertical
diffusivity, the only two schemes for which there was some,
albeit minor, improvement in the estimate were the ETKF
and the FDS-IKS. Still, the improvement is so slight in these
cases that it could be a random effect.

The perturbations in the FDS may have been far from op-
timal for sensitivity estimation regarding their effect on the
model SST at the locations (including depth) of the obser-
vations for the integration times. Table B2 shows the cor-
responding standard deviation for the background and pos-
terior estimates in the ensemble and iterated FDS schemes.
In general, the posterior variance of the control vector was
higher for the ETKF and the ETKF-GA and a bit smaller in
the FDS schemes, but also the relative reduction in variances
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Figure 5. CESM experiment. Absolute bias reduction for SST and SSS as a result of a new integration with the parameters estimated with
the ETKF and the FDS-MKS. The statistics are the absolute bias between the background and the truth minus the absolute bias between the
analysis and the truth. Thus, positive values are a net bias reduction. Isolines at value 0 shown in grey. The two triangles indicate the locations
in the North Atlantic and South Pacific connected with Figs. 4 and B1.

with respect to the background was not systematically lower
or higher for any specific scheme.

In sensitivity studies, the conditional sensitivity explo-
ration of the FDS has also been termed one-at-a-time (OAT)
sensitivity analysis. The difference between the local sensi-
tivities of the FDS and the mean sensitivities of the ensemble
for the ETKF may affect the estimation of the various param-
eters to different degrees. For comparison, with a prescribed
SST, Covey et al. (2013) evaluated the sensitivity of the radi-
ation balance at the top of the atmosphere in the model CAM
to a large number of input parameters with both an OAT ex-
ploration and an alternative Morris one-at-a-time (MOAT)
sampling (somehow closer to the mean ensemble sensitivi-
ties). They found with both methods that the highest sensitiv-
ity of the upward shortwave flux (solar energy reflected back
to space by the atmosphere and surface) was with respect to
cldfrc_rhminl, out of 21 evaluated CAM parameters. As cld-
frc_rhminl is the threshold of the relative humidity value at
which low-level water vapour starts to condense into cloud
droplets, their result is consistent with the role of thick stra-
tus clouds in reflecting sunlight.

This study does not attempt to give an in-depth analysis
of the assimilation results for the corresponding climate field
reconstructions. However, we summarize some results of the
spatial patterns shown in the climate reconstructions and give
examples of sensitivities as estimated by the FDS schemes
and the ETKF. Figure 5 shows, in general, a similar absolute
bias reduction for the FDS-MKS and the ETKF in magni-
tude and spatial patterns for both SST and SSS. For SST,
the most problematic area is where most of the observations
come from the diatom locations in the MARGO database. A
reason for that seems to be that observations for diatom lo-
cations are just the 20-year means for winter in the Northern
Hemisphere, which reduces the impact on the climate anal-
ysis with respect to other observation types. Still, in general
the FDS-MKS has slightly fewer areas where the absolute
bias in the SST could not be reduced. The negative effect of
the assimilation regarding absolute bias reduction on SSS,
which is shown for the ETKF for the North Atlantic, the
Bering Strait, and in some areas of the Arctic Ocean, is also
negligible in the FDS-MKS. While these unobserved areas
(from the point of view of the MARGO database) remain
largely unconstrained, the FDS-MKS seems generally more
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Figure 6. CESM experiment. Sensitivity of SST (◦C) and SSS (PSU) to the minimum relative humidity for low stable cloud formation
(CAM.clrfrc_rhmin) estimated from the ETKF background ensemble and the first iteration of the FDS-MKS. Isolines at value 0 shown in
grey.

able to correct for the biases in areas with more observations
and simultaneously does not have a negative effect in areas
far from the observations.

As an example of estimated sensitivities in the ocean,
Fig. 6 shows the sensitivity of the sea surface temperature
(SST) and sea surface salinity (SSS) to cldfrc_rhminl in
CAM as mean ensemble sensitivities and FDS about the
background value. In the case of SST the general pattern of
both sensitivities is quite similar, except for the much more
negative sensitivity shown at the North Atlantic Ocean above
50◦ of latitude for the ETKF, as detailed above. The second
loop of the FDS-MKS (not shown) shows a similar pattern
to the first loop. However, the sensitivity in the third loop
(not shown) approaches the sensitivity of the ETKF and also
shows a similar negative sensitivity area, in extent and mag-
nitude, in the North Atlantic. Something similar happens to
the sensitivity estimates for the SSS, for which the FDS in
the first and second loops of the FDS-MKS are reasonably
similar to the mean from the ensemble background for the
ETKF, with the major differences being in the Arctic Ocean,
around the Bering Strait, and the North Atlantic. The third
loop of the FDS-MKS (not shown) also shows the more ho-

mogeneous band of sensitivity between the coasts of Canada
and Europe shown for the ETKF.

Vertical diffusion in the ocean determines ocean heat up-
take and in turn the air–sea heat flux and atmospheric heat
transport, but also sea surface temperature, evaporation, and
atmospheric moisture transport. Regions more sensitive to
ocean vertical diffusion would be coastal upwelling sys-
tems (e.g. Namibia), the equatorial oceans, and the Southern
Ocean in the case of upwelling, but also the North Atlantic
Ocean in the case of downwelling (deep water formation),
which is key in sustaining the Atlantic meridional overturn-
ing circulation (AMOC) (e.g. Delworth et al., 1997). Thus,
as a further example in the ocean, we also find it interesting
to show a sensitivity example for deeper ocean layers consid-
ering the short integration time (60 years) of the experiment.
For this integration time the deep ocean is far from reaching
equilibrium, but the maximum value of the AMOC has rea-
sonably converged in the perturbed members for the ETKF
and in the FDS-MKS members for the three iterations. Fig-
ure 7 depicts the sensitivity of the AMOC to the background
vertical diffusivity (κω; POP2 parameter bckgrnd_vdc1) for
the ETKF and the three iterations of the FDS-MKS. It can be
seen that the general pattern has some similarities in all cases,
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but also noticeable differences. The first iteration of the FDS-
MKS (FDS-MKS.f01) is quite close to the mean estimate of
the ETKF, except for the high-sensitivity area around 30◦ N
and at 1.5 km deep, which is mostly missing in the FDS-
MKS.f01. The pattern of sensitivity in the second iteration
(FDS-MKS.f02) is similar to that in the first iteration but with
much higher values. The third loop again has reduced sen-
sitivities and keeps missing the deeper high-sensitivity area
given by the mean sensitivity of the background ensemble
for the ETKF. This warrants further study to analyse with
more detail why, despite sampling different regions of the
parameter space, the conditional parameter sampling of the
FDS-MKS does not show in any case the deeper high-value
area estimated by the mean sensitivity.

As a last related example, Fig. 8 shows the sensitivity of
some atmospheric variables to the same ocean background
vertical diffusion parameter obtained from the ensemble sen-
sitivity (for ETKF) and the first iteration of the FDS schemes
(for FDS-IKS or FDS-MKS). The atmospheric variables
are the 2 m air temperature (T2M), convective precipitation
(PRECC), large-scale precipitation (PRECL), and total cloud
cover (CLDTOT). In general, the four variables show some
similarities between the ensemble sensitivities and the FDS
but also some important differences. The 2 m air tempera-
ture sensitivity patterns are in a rather good agreement, with
the ensemble sensitivity mostly resembling a smoothed ver-
sion of the FDS, although also diverging in some areas such
as northern Europe around Scandinavia and northern Asia.
The relatively amplified sensitivity seen in the FDS plot also
leads to some areas reaching a negative sensitivity in the FDS
estimates, while having a low but still positive sensitivity in
the ensemble plot, as happens to the south of 30◦ S in the
Atlantic and Pacific around South America. Part of the dif-
ferences is certainly due to the more global sensitivity ex-
plored in the ensemble, but it is also pending to see how dif-
ferent perturbation sizes in the FDS would have affected its
sensitivity pattern and amplitude. With different patterns, a
similar comparison can be done between the ensemble sen-
sitivity and the FDS for convective precipitation, which in
both cases shows a higher (in absolute values) sensitivity in
the tropics and a rather reasonable agreement, although it
is very different in the tropical eastern Pacific to the south
of the Equator. The tropical climate may indicate the indi-
rect effects of changes in evaporation, atmospheric convec-
tion, and cloud formation. There are higher differences for
large-scale precipitation, although some similarities are also
present, such as the trough stretching from the tropical east-
ern Pacific, across South America, to the south of Africa or
the high sensitivity in the tropical western Pacific. The total
cloud cover finds a substantial difference between the sensi-
tivity plots above ∼ 30◦ N. However, the delineation (0 iso-
line) between the negative and positive values is substantially
similar in both sensitivities. In general, despite the differ-
ences between the two sensitivity estimates (due to the dif-
ferent exploration of the control vector space), the similari-

ties, along with the reasonable sensitivity patterns shown for
the AMOC for the same ocean parameter κω, point to the
usefulness of the strongly coupled assimilation for the low-
frequency climate analysis, in which observations from one
component of the Earth system are allowed to influence the
state and parameters for a different component.

An important last consideration is that the assimilation
will just attempt to minimize (or get the first moments of)
the cost function. So the assumed background statistics in the
cost function are instrumental in controlling the control vec-
tor increments in the assimilation and the resulting climate
field reconstruction (CFR). In this synthetic experiment the
source of errors is known, and we assume a perfect-model
framework except for the assumed uncertainties in the cho-
sen control vector. However, in a real applied situation the
real model errors are unknown. As described in the Intro-
duction, the control vector increments will compensate for
non-accounted errors. Although the minimization can highly
reduce the value of a cost function and improve the corre-
sponding CFR, it does not necessarily imply that updated pa-
rameters for the model physics (or their moments), as part of
the control vector, actually correspond to improved (extrap-
olable) model physics. For example, the use of the posterior
model parameters can potentially lead to improved climate
simulations for other prospective climatic conditions, but not
necessarily. Thus, it is important to distinguish between the
use of the assimilation methods for CFR including model pa-
rameters as control variables and the trust one can have in the
estimated model parameters for future climate projections
under very different climatic conditions. A fair caveat was
recently given by Dommenget and Rezny (2017) regarding
the use of flux corrections as an alternative to parameter esti-
mation in CGCMs. As they indicated, the compensating error
risk when using parameter estimates for one specific obser-
vation dataset for future projections can be eliminated by us-
ing flux corrections instead to estimate the CFR. However, as
flux corrections (with specific shapes) serve as a parametric
way of expressing a model error, but also try to account for
errors in boundary conditions (e.g. melting in a non-modelled
ice sheet) which are specific for a climatic condition, the
estimated flux corrections do not serve to improve the cli-
mate projections. All in all, our experiment with CESM is
an example of a joint estimation of flux correction, model
parameters, and forcing errors. The goal is to analyse the
low-frequency past climate; at the very least, the divergence
between the parameters for the model physics estimated for
multi-decadal and longer past climate conditions and the val-
ues estimated for present conditions should serve to evaluate
the reasons for the divergences, which points back to our in-
troductory opening reference (Kageyama et al., 2018).
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Figure 7. CESM experiment. Sensitivity of the Atlantic meridional overturning circulation (AMOC) to the ocean background vertical diffu-
sion parameter (κω; POP2.bckgrnd_vdc1) in the ocean model estimated as ensemble sensitivity (from the ETKF background ensemble) and
local FDS along the iterations of the three-step FDS-MKS.

5 Conclusions

This study focuses on low-frequency climate field recon-
struction (multi-decadal and longer timescales) with compre-
hensive deterministic Earth system models (ESMs). Given
the enormous computational requirements for this class of
models, we evaluate two iterative schemes based on reduced-
order control vectors and the Kalman filter as assimilation
approaches for climate field reconstruction. The schemes use
an explicit representation of the background-error covariance
matrix, and the Kalman gain is based on finite-difference sen-
sitivity (FDS) experiments. As such, the schemes are com-
putationally limited to the estimation of a low-dimensional
control vector. The underlying assumption is so that a low-
dimensional control vector and its background uncertainty,
containing the most sensitive variables for a given climate,

can encapsulate most of the modelled internal and external
climate variability. The control vector can contain parameter-
ized errors in initial conditions and parameters for the small-
scale physics, as well as parameters for forcing and boundary
condition errors (e.g. a bias in a time-varying radiative con-
stituent). In general, it is expected that errors in initial con-
ditions are a low sensitive input for the low-frequency model
climate response. Thus, these would be generally excluded
from the control vector, which makes it relatively easier to
keep its low dimensionality.

The evaluated schemes are an FDS implementation of
the iterative Kalman smoother (FDS-IKS, a Gauss–Newton
scheme) and a so-called FDS-multistep Kalman smoother
(FDS-MKS, based on repeated assimilation of the obser-
vations). We have conducted two assimilation experiments:
(a) a simple 1-D energy balance model (Ebm1D; which has
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Figure 8. CESM experiment. Sensitivity of several atmospheric variables to the ocean background vertical diffusion parameter (κω;
POP2.bckgrnd_vdc1) in the ocean model estimated as ensemble sensitivity (from the ETKF background ensemble) and the local FDS
for the first iteration of both the FDS-MKS and the FDS-IKS. The atmospheric variables are 2 m air temperature (T2M), total convective
precipitation rate (PRECC), large-scale (stable) precipitation rate (PRECL), and vertically integrated total cloud cover (CLDTOT). Isolines
at value 0 shown in grey.
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an adjoint code) with present-day surface air temperature
from the NCEP/NCAR reanalysis data as a target and (b) a
multi-decadal synthetic case with the Community Earth Sys-
tem Model (CESM v1.2, with no adjoint). The methodologi-
cal description and the first experiment serve to show that,
under a strong-constraint minimization and perfect-model
framework, the FDS-IKS should converge to the same min-
imum as incremental 4D-Var. Actually, in this experiment,
the FDS-IKS converges substantially faster than 4D-Var and
to the same minimum. The FDS-MKS does not theoretically
converge to the same minimum (except for linear cases), but
it is more stable than the FDS-IKS for poorly regularized cost
functions.

In a second experiment with CESM, given the lack of
an adjoint code, we included an ETKF (with m= 60 en-
semble members) and an ETKF with Gaussian anamorpho-
sis (ETKF-GA), as a non-linear estimation approach alter-
native to 4D-Var, as benchmarking schemes. As far as the
authors know, this is also the first time that the ETKF-
GA is evaluated with a comprehensive ESM for past cli-
mate multi-decadal analysis. Regarding the cost function as
a performance criterion, the ETKF-GA was not clearly bet-
ter or worse than a standard ETKF. We have shown that
the GA does not solve the strong non-linearities which sen-
sitivities may find at some observations. A clear example
is the North Atlantic SST. The results cannot be extrapo-
lated, for example, to shorter-term climate analyses. Also,
alternative anamorphosis strategies for low-frequency anal-
ysis could show an improvement in the assimilation due to
the transformations. With relatively high perturbations, both
FDS schemes resulted (with about half the computing cost)
in lower cost function values than the ETKF and the ETKF-
GA. We would expect more optimal (likely smaller) pertur-
bations adapted to individual control variables to result in
further improvement in the FDS schemes, mostly the FDS-
IKS (which, according to the first experiment, should be less
resilient to the perturbation size). Given the computational
requirements of comprehensive ESMs and current HPCs, the
experiments here indicate that the FDS iterated schemes can
be a relatively efficient strategy for dealing with the non-
linear relation between model inputs and paleoclimate proxy
observations. This non-linearity is introduced by both the
ESM and the forward operators (proxy system models in
general). From these experiments, the general impression is
that one would choose the FDS-IKS over FDS-MKS as it
should converge to the same minimum as incremental 4D-
Var under the given assumptions. However, the experiments
indicate that initially damped increments, such as those with
FDS-MKS, should improve the convergence. So, FDS-MKS
iterations (one or two) could be used initially to update the
control vector estimate and then be followed by FDS-IKS
iterations (with the background covariance). Note that, alter-
natively, a linear search along the same direction provided by
the FDS-IKS could also be possible. An evaluation of further
possibilities is needed.

This study is a first attempt to use the described iter-
ated schemes for assimilation with comprehensive ESMs
and multi-decadal or longer timescales. It has provided the
context of the problem, described the schemes, and con-
ducted preliminary experiments. The study is limited by
the same computational constraint that motivates it. Further
study is clearly needed before this type of scheme can be
applied soundly for low-frequency past climate analyses in
real cases. This would at least include sensitivity analyses
for control vector design, error compensation analyses, and
model error (e.g. Sakov and Bocquet, 2018; Sakov et al.,
2018). In addition, other paleo-assimilation issues summa-
rized in the paper regarding model–data comparison and ob-
servational error characteristics, whose discussion goes be-
yond the scope of this study, need to be considered.

Code availability. In this paper we used Ebm1D-ad v1.0.0, a
version of the Ebm1D model including the adjoint code available
at https://github.com/andre-paul/ebm1d-ad/tree/v1.0.0 (last access:
16 November 2018; https://doi.org/10.5281/zenodo.1489952;
Paul, 2018). We used the public release of CESM v1.2.2,
available through http://www.cesm.ucar.edu/models/cesm1.2
(last access: 1 June 2016). For the ensemble assimila-
tion (ETKF and FDS Kalman smoothers), we used rDAF
v1.0.0 as a core data assimilation framework within
the R environment (R Core Team, 2018), available at
https://github.com/garciapintado/rDAF/tree/v1.0.0 (last access:
15 November 2018; https://doi.org/10.5281/zenodo.1489131;
García-Pintado, 2018a). For the specific interface for
the models we used rdafEbm1D v1.0.0, available at
https://github.com/garciapintado/rdafEbm1D/tree/v1.0.0 (last ac-
cess: 15 November 2018; https://doi.org/10.5281/zenodo.1489133;
García-Pintado, 2018b), and rdafCESM v1.0.0, available at
https://github.com/garciapintado/rdafCESM/tree/v1.0.0 (last ac-
cess: 15 November 2018; https://doi.org/10.5281/zenodo.1489135;
García-Pintado, 2018c).
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Appendix A: Experiment 1: convergence analysis for
finite-difference schemes

Here we give tabulated details and a summary of the
convergence tests for the finite-difference schemes in the
experiment with the model Ebm1D. Table A1 shows
the convergence results. The tests have the naming code
SCN_FFFFxIT_mNN_sdfacSSSS, with the following terms.

– SCN: weight scenario for the cost term Jo in Eq. (35),
with the following alternatives:

– PD1: present-day scenario,
∑p

i=1wi = 1

– PD2: present-day scenario,
∑p

i=1wi = 3

– PD3: present-day scenario,
∑p

i=1wi = 5

– FFFF: assimilation scheme, with the following options:

– pIKS: FDS-IKS

– pMKS: FDS-MKS

– IT: Number of iterations. Fixed for FDS-MKS. Maxi-
mum for FDS-IKS.

– NN: number of perturbations mθ for each control vari-
able. Including the estimate at each loop, the total en-
semble size ism=mθ×q+1, where q is the dimension
of the control vector.

– SSSS: 1000×SDfac. For example, SSSS code “0010”
indicates SDfac= 0.010. For mθ = 1 (forward finite
differences), the perturbation of each control variable
for sensitivity estimation is SDfac×σθi , where σθi is the
standard deviation of the control variable. For mθ > 1,
perturbations for each control variable are drawn from
N (0, (SDfac× σθi )

2).

The tests are considered to evaluate the resilience of the
Gauss–Newton scheme (FDS-IKS) to high perturbations and
decreasing regularization and how this affects the relative
performance of the Gauss–Newton scheme versus the mul-
tistep scheme (FDS-MKS). Specific cost function values are
to be compared quantitatively only within a specific weight
scenario (PD1, PD2, or PD3). For higher weights (being PD3
the highest), the effect of regularization by the background
term decreases, which increases the chances of the FDS-IKS
not converging (STOPPED tests due to unstable model inte-
grations). Further tests (not shown) with even higher obser-
vational weight than PD3 are more and more difficult for the
FDS-IKS to converge.

Scheduling of computing resources is more uncertain with
the FDS-IKS than with the FDS-MKS. However, regarding
this experiment and model, when the FDS-IKS converges,
the values of the cost function are lower than those of the
corresponding FDS-MKS test. This happens for FDS-MKS
with either two or three iterations. Thus, with adequate reg-
ularization, the FDS-IKS is favoured. With decreasing ob-
servation uncertainty (decreasing regularization), the FDS-
MKS stays more stable (see PD2 and PD3 tests). Still, for
low regularization (PD3) the FDS-MKS cost function values
(∼ 46 for the two-step FDS-MKS and∼ 43 for the three-step
FDS-MKS) are higher than those by the FDS-IKS when it
converges ( ∼ 39). The three-step FDS-MKS always obtains
lower values that the corresponding two-step FDS-MKS, but
(generally) the differences are not very high. Interestingly, in
some instances, the second step of the three-step FDS-MKS
already has lower cost function values than the final estima-
tion of the two-step FDS-MKS. This effect increases with
decreased regularization. When the FDS-IKS starts to have
convergence problems (see PD3 tests), increasing the ensem-
ble size by conducting two perturbations per parameter (akin
to central finite differences) makes the FDS-IKS more sta-
ble. A higher number of perturbations (not shown) makes
the scheme more stable, but this would not be practical for
long-term analyses with comprehensive ESMs.
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Table A1. 1-D energy balance model experiment. Cost function values for the tests with the FDS schemes∗.

1 2 3 4 5 6 7

1 PD1_pIKSx10_m01_sdfac0001 14.21 11.56 9.52 9.48 9.47 9.47 9.47
2 PD1_pIKSx10_m01_sdfac0010 14.21 11.57 9.50 9.47 9.47 9.47 9.47
3 PD1_pIKSx10_m01_sdfac0100 14.21 13.25 9.49 9.48 9.48 9.48 9.48
4 PD1_pMKSx02_m01_sdfac0001 14.21 10.56 9.61
5 PD1_pMKSx02_m01_sdfac0010 14.21 10.56 9.61
6 PD1_pMKSx02_m01_sdfac0100 14.21 10.86 9.57
7 PD1_pMKSx03_m01_sdfac0001 14.21 10.44 9.75 9.55
8 PD1_pMKSx03_m01_sdfac0010 14.21 10.45 9.75 9.55
9 PD1_pMKSx03_m01_sdfac0100 14.21 10.56 9.76 9.53
10 PD2_pIKSx10_m01_sdfac0001 42.63 46.90 27.45 25.45 25.33 25.32 25.32
11 PD2_pIKSx10_m01_sdfac0010 42.63 47.52 26.74 25.39 25.33 25.32 25.32
12 PD2_pIKSx10_m01_sdfac0100 42.63 186.80 25.71 25.41 25.34 25.33 25.33
13 PD2_pMKSx02_m01_sdfac0001 42.63 33.72 27.58
14 PD2_pMKSx02_m01_sdfac0010 42.63 33.74 27.62
15 PD2_pMKSx02_m01_sdfac0100 42.63 38.93 27.36
16 PD2_pMKSx03_m01_sdfac0001 42.63 32.05 27.55 26.79
17 PD2_pMKSx03_m01_sdfac0010 42.63 32.06 27.52 26.78
18 PD2_pMKSx03_m01_sdfac0100 42.63 34.13 27.41 26.61
19 PD3_pIKSx10_m01_sdfac0001 71.05 STOPPED
20 PD3_pIKSx10_m01_sdfac0010 71.05 141.33 44.54 39.63 39.26 39.26 39.26
21 PD3_pIKSx10_m01_sdfac0100 71.05 STOPPED
22 PD3_pMKSx02_m01_sdfac0001 71.05 60.35 46.24
23 PD3_pMKSx02_m01_sdfac0010 71.05 60.49 46.29
24 PD3_pMKSx02_m01_sdfac0100 71.05 83.14 48.33
24 PD3_pMKSx03_m01_sdfac0001 71.05 55.35 44.86 43.32
26 PD3_pMKSx03_m01_sdfac0010 71.05 55.38 44.80 43.25
27 PD3_pMKSx03_m01_sdfac0100 71.05 62.89 44.44 43.02
28 PD3_pIKSx10_m02_sdfac0001 71.05 STOPPED
29 PD3_pIKSx10_m02_sdfac0010 71.05 122.35 42.79 39.41 39.37 39.26 39.26
30 PD3_pIKSx10_m02_sdfac0100 71.05 120.35 40.01 39.54 39.77 39.34 39.76

∗ Background cost function value in first column, followed by values along iterations. STOPPED indicates non-convergence (unstable model
integration).

Appendix B: Experiment 2

B1 Example of well-behaved Gaussian anamorphosis

As an example, Fig. B1 shows scatterplots between the pa-
rameter CAM.cldfrc_rhminl and SST for a location in the
South Pacific in the limits of the Antarctic circumpolar cur-
rent. The location is shown in Fig. 5. Scatterplots are shown
for the original variables and those with a Gaussian anamor-
phosis transformation. As opposed to Fig. 4, in this case
Gaussianity is improved in the anamorphosed SST, and also
the scatterplots show that an implicit pseudolinearization ap-
pears between the two anamorphosed variables, mostly as a
result of the SST transformation.

B2 Convergence of the FDS-IKS and posterior
standard deviations

Table B1 shows the convergence of the cost function for the
FDS-IKS in the CESM experiment. Table B2 shows the pos-
terior standard deviations of the control vector for the iterated
FDS schemes, as well as for the ETKF and the ETKF-GA.
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Table B1. CESM parameter estimation: convergence of FDS-IKS cost function.

COMP.name xb xa – FDS-IKS1 xa – FDS-IKS2 xa – FDS-IKS3

Jo(θ) 373.39 91.81 63.50 48.88
J (θ) 373.39 93.13 69.21 55.20

1 Units as described in Table 1. 2 Subindices in FDS-IKS refer to loop number. First iteration, FDS-IKS1, is also
the FDS-EKS.

Table B2. CESM posterior standard deviation in control variables1.

COMP.name σ(xb) σ (xa) – ETKF60 σ(xa) – ETKF60-GA σ(xa) – FDS-MKS σ(xa) – FDS-IKS

CAM.cldfrc_rhminh 5.00e-02 2.91e-02 2.38e-02 8.93e-03 1.19e-02
CAM.cldfrc_rhminl 5.00e-02 6.99e-03 6.97e-02 2.13e-04 1.48e-03
CAM.ch4vmr 4.00 3.37 0.97 1.12 0.85
CAM.co2vmr 3.00 2.67 1.54 1.69 0.42
CAM.zmconv_c0_lnd 1.20e-02 1.03e-02 0.79e-02 3.68e-03 1.44e-03
CAM.zmconv_c0_ocn 1.20e-02 9.34e-03 3.51e-03 3.79e-03 8.28e-04
CAM.zmconv_ke 2.20e-06 1.28e-06 1.01e-06 3.68e-07 4.59e-07
POP2.bckgrnd_vdc1 2.00e-02 1.76e-02 1.12e-02 3.31e-03 3.88e-03
POP2.hmix_gm_nml.ah 2.00e+06 1.54e+06 1.71e+05 6.95e+05 3.89e+05
POP2.freshwater_gis 5.00e-03 3.17e-03 1.66e-03 1.56e-03 1.16e-03

1 Units as described in Table 1. 2 ETKF subindex indicates the ensemble size.

Figure B1. CESM experiment. Example of Gaussian anamorphosis transformation in a control variable (minimum relative humidity for
high stable cloud formation) and the sea surface temperature (SST) for both the model equivalent of the observations and the observation
(transformation details in text) at a location (245.3◦E, 54.91◦S) in the South Pacific (location shown in 5). Further description of symbols is
as in Fig. 4.
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