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Abstract. General circulation model (GCM) evaluation us-
ing ground-based observations is complicated by inconsis-
tencies in hydrometeor and phase definitions. Here we de-
scribe (GO)2-SIM, a forward simulator designed for ob-
jective hydrometeor-phase evaluation, and assess its perfor-
mance over the North Slope of Alaska using a 1-year GCM
simulation. For uncertainty assessment, 18 empirical rela-
tionships are used to convert model grid-average hydrome-
teor (liquid and ice, cloud, and precipitation) water contents
to zenith polarimetric micropulse lidar and Ka-band Doppler
radar measurements, producing an ensemble of 576 forward-
simulation realizations. Sensor limitations are represented
in forward space to objectively remove from consideration
model grid cells with undetectable hydrometeor mixing ra-
tios, some of which may correspond to numerical noise.

Phase classification in forward space is complicated by the
inability of sensors to measure ice and liquid signals dis-
tinctly. However, signatures exist in lidar–radar space such
that thresholds on observables can be objectively estimated
and related to hydrometeor phase. The proposed phase-
classification technique leads to misclassification in fewer
than 8 % of hydrometeor-containing grid cells. Such mis-
classifications arise because, while the radar is capable of
detecting mixed-phase conditions, it can mistake water- for
ice-dominated layers. However, applying the same classifi-
cation algorithm to forward-simulated and observed fields

should generate hydrometeor-phase statistics with similar
uncertainty. Alternatively, choosing to disregard how sensors
define hydrometeor phase leads to frequency of occurrence
discrepancies of up to 40 %. So, while hydrometeor-phase
maps determined in forward space are very different from
model “reality” they capture the information sensors can pro-
vide and thereby enable objective model evaluation.

1 Introduction

The effect of supercooled water on the Earth’s top-of-
atmosphere energy budget is a subject of increasing inter-
est owing to its wide variability across climate models and
its potential impact on predicted equilibrium climate sen-
sitivity (Tan et al., 2016; McCoy et al., 2016; Frey et al.,
2017). Some general circulation models (GCMs) now prog-
nose number concentrations and mass mixing ratios for both
cloud and precipitation hydrometeors of both the liquid and
ice phase, which enables them to shift towards more realis-
tic microphysical process-based phase prediction (e.g., Get-
telman and Morrison, 2015; Gettelman et al., 2015). While
more complete and physically sound, these models still con-
tain multiple scheme choices and tuning parameters, creating
a need for increasingly thorough evaluation and adjustment
(e.g., Tan and Storelvmo, 2016; English et al., 2014).
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Active remote sensing observations remain an indirect ap-
proach to evaluate models because they measure hydrome-
teor properties different from those produced by microphys-
ical schemes. For each hydrometeor species within a grid
cell models prognose geophysical quantities such as mass
and number concentration, whereas active remote sensors
measure power backscattered from all hydrometeor species
present within their observation volumes. Defining which hy-
drometeors have an impact is a fundamental question that
needs to be addressed by the modeling, as well as observa-
tional, communities. In numerical models it is not uncom-
mon to find very small hydrometeor mixing ratio amounts as
demonstrated below. They may possibly be unphysical, ef-
fectively numerical noise, and the decision of which hydrom-
eteor amounts are physically meaningful is somewhat arbi-
trary. Considering sensor capabilities is one path to objec-
tively assessing hydrometeor populations within models. On
such a path it is possible to evaluate those simulated hydrom-
eteor populations that lead to signals detectable by sensors,
leaving unassessed those not detected. Sensor detection ca-
pabilities are both platform and sensor specific. Space-borne
lidars can adequately detect liquid clouds globally but their
signals cannot penetrate thick liquid layers, limiting their use
to a subset of single-layer systems or upper-level cloud decks
(Hogan et al., 2004). Space-borne radar observations, while
able to penetrate multilayer cloud systems, are of coarser ver-
tical resolution and of limited value near the surface owing
to ground interference and low sensitivity (e.g., Huang et al.,
2012b; Battaglia and Delanoë, 2013; Huang et al., 2012a). A
perspective from the surface can therefore be more appropri-
ate for the study of low-level cloud systems (e.g., de Boer et
al., 2009; Dong and Mace, 2003; Klein et al., 2009; Intrieri
et al., 2002).

Fortunately, both sensor sampling and hydrometeor scat-
tering properties can be emulated through the use of for-
ward simulators. Forward simulators convert model output
to quantities observed by sensors and enable a fairer com-
parison between model output and observations; discrepan-
cies can then be more readily attributed to dynamical and mi-
crophysical differences rather than methodological bias. For
example, the CFMIP (Cloud Feedback Model Intercompari-
son Project) Observation Simulator Package (COSP) is com-
posed of a number of satellite-oriented forward simulators
(Bodas-Salcedo et al., 2011), including a lidar-backscattering
forward simulator that has been used to evaluate the repre-
sentation of upper-level supercooled water layers in GCMs
(e.g., Cesana and Chepfer, 2008; Kay et al., 2016). Also,
Zhang et al. (2018) present a first attempt at a ground-based
radar reflectivity simulator tailored for GCM evaluation.

Here we propose to exploit the complementarity of
ground-based vertically pointing polarimetric lidar and
Doppler radar measurements, which have been shown
uniquely capable of documenting the water phase of shallow
and multilayered clouds that form near the surface and fre-
quently contain supercooled water layers. More specifically,

we present a GCM-oriented ground-observation forward-
simulator ((GO)2-SIM) framework designed for objective
hydrometeor-phase evaluation (Fig. 1). GCM output vari-
ables (Sect. 2) are converted to observables in three steps:
(1) hydrometeor-backscattered power estimation (Sect. 3),
(2) consideration for sensor capabilities (Sect. 4), and (3) es-
timation of specialized observables (Sect. 5). These forward-
simulated fields, similar to observed fields, are used as inputs
to a multi-sensor water-phase classifier (Sect. 6). The perfor-
mance of (GO)2-SIM is evaluated over the North Slope of
Alaska using output from a 1-year simulation of the current
development version of GCM ModelE. Limitations and un-
certainty are discussed in Sects. 6.3 and 7, respectively.

2 GCM outputs required as inputs to the forward
simulator

To demonstrate how atmospheric model variables are con-
verted to observables we performed a 1-year global simu-
lation using the current development version of the ModelE
GCM. Outputs from a column over the North Slope of Alaska
(column centered at latitude 71.00◦ and longitude−156.25◦)
are input to (GO)2-SIM. The most relevant changes from a
recent version of ModelE (Schmidt et al., 2014) are the im-
plementation of the Bretherton and Park (2009) moist turbu-
lence scheme and the Gettelman and Morrison (2015) mi-
crophysics scheme for stratiform cloud. The implementa-
tion of a two-moment microphysics scheme with prognos-
tic precipitation species makes this ModelE version more
suitable for the forward simulations presented here than pre-
vious versions. Here ModelE is configured with a 2.0◦ by
2.5◦ latitude–longitude grid with 62 vertical layers. The ver-
tical grid varies with height from 10 hPa layer thickness over
the bottom 100 hPa of the atmosphere, coarsening to about
50 hPa thickness in the mid-troposphere, and refining again
to about 10 hPa thickness near the tropopause. For the current
study, the model top is at 0.1 hPa, though we limit our analy-
sis to pressures greater than 150 hPa. Dynamics (large-scale
advection) are computed on a 225 s time step and column
physics on a 30 min time step. High-time-resolution outputs
(every column physics time step) are used as input to (GO)2-
SIM. ModelE relies on two separate schemes to prognose the
occurrence of stratiform and convective clouds. The current
study focuses on stratiform clouds because their properties
are more thoroughly diagnosed in this model version; when
performing future model evaluation, the contribution from
convective clouds will also be considered.

An example of 8 days of this simulation is displayed
in Fig. 2. From a purely numerical modeling standpoint,
the simplest approach to defining hydrometeors is to con-
sider any nonzero hydrometeor mixing ratio as physically
meaningful. Using this approach, we find that 43.5 % of the
981 120 grid cells simulated in the 1-year ModelE run con-
tain hydrometeors, with 2.4 % of them being pure liquid,
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Figure 1. (GO)2-SIM framework. (GO)2-SIM emulates two types of remote sensors: Ka-band Doppler radars (dark gray shading) and 532 nm
polarimetric lidars (light gray shading). It then tunes and applies a common phase-classification algorithm (white boxes) to both observed
(upper section) and forward-simulated (bottom section) fields. Follow-on work will describe how observation can be post-processed and
resampled to reduce the scale gap before model evaluation can be performed.

37.8 % pure ice, and 59.8 % mixed in phase (Table 1a). How-
ever, these statistics are impacted by a number of simulated
small hydrometeor mixing ratio amounts that may or may
not result from numerical noise (e.g., Fig. 2a; blueish green
colors). The forward-simulator framework will be used to
create phase statistics of only those hydrometeors present in
amounts that can create a signal detectable by sensors, hence
removing the need for arbitrary filtering.

(GO)2-SIM forward-simulator inputs are, at model native
resolution, mean grid box temperature and pressure as well
as hydrometeor mixing ratios, area fractions (used to esti-
mate in-cloud mixing ratios), mass-weighted fall speeds, and
effective radii for four hydrometeor species: cloud liquid wa-
ter, cloud ice, precipitating liquid water, and precipitating ice.
In its current setup, (GO)2-SIM can accommodate any model
that produces these output variables

3 Hydrometeor-backscattered power simulator

Reaching a common objective hydrometeor definition be-
tween numerical model output and active sensors starts by
addressing the fact that they are based on different hydrom-
eteor properties (i.e., moments). Backscattering amounts ob-
served by sensors depend on both sensor frequency and on
hydrometeor properties and amounts. Hydrometeor proper-
ties that impact backscattering include size, phase, composi-
tion, geometrical shape, orientation, and bulk density. When
plausible representations for these hydrometeor properties
are available as part of the model formulation, fundamen-
tal radiative transfer calculations would be the most accu-
rate way to transform model hydrometeor properties to ob-
servables. However, in most GCMs such detailed hydrome-
teor information is highly simplified (e.g., fixed particle size
distribution shapes) or not explicitly represented (e.g., ori-
entation and realistic geometrical shape), complicating the
process of performing direct radiative transfer calculations.
Chepfer et al. (2008) proposed an approach by which lidar-
backscattered power can be forward simulated using model
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Table 1. (a) Hydrometeor-phase frequency of occurrence obtained (a) from ModelE mixing ratios outside of the forward-simulator frame-
work and (b–c) from the forward-simulation ensemble created using different backscattered power assumptions. The median and interquartile
range (IQR) capture the statistical behavior of the ensemble. Results using thresholds (b) objectively determined for each forward-ensemble
member and (c) modified from those in Shupe (2007). Percentage values are relative either to the total number of simulated hydrometeor-
containing grid cells (426 603) or those grid cells with detectable hydrometeor amounts (333 927). Note that the total number of simulated
grid cells analyzed is 981 120.

(a) Determined using ModelE output hydrometeor mixing ratios

Simulated hydrometeor-containing grid cells

Containing
only liquid
phase

Containing
mixed phase

Containing
only ice phase

Relative to total
number of simulated
grid cells

Frequency of occurrence (%) 2.4 59.8 37.8 43.5

(b) Determined using flexible objective thresholds estimated using model output mixing ratios

Simulated hydrometeor-containing grid cells containing detectable hydrometeor amounts

Classified as
liquid phase

Classified as
mixed phase

Classified as
ice phase

Relative to simulated
hydrometer-containing
grid cells

Median 1/2 Median 1/2 Median 1/2 Median 1/2
IQR IQR IQR IQR

Frequency of occurrence (%) 11.3 ± 0.6 19.2 ± 1.8 68.8 ± 3.1 78.3 ± 1.8
False positive (%) 0.5 ± 0.0 1.1 ± 0.3 0.0 ± 0.0 1.7 ± 0.3
False negative (%) 0.2 ± 0.0 Approximately

equal to sum of
questionable
row:
(∼ 5.2± 0.9)

1.5 ± 0.2 1.7 ± 0.3

Questionable (%) 1.4 ± 0.0 3.8 ± 0.9 5.2 ± 0.9

Total error (%) 6.9 ± 1.1

(c) Determined using fixed empirical thresholds modified from Shupe (2007)

Simulated hydrometeor-containing grid cells containing detectable hydrometeor amounts

Classified as
liquid phase

Classified as
mixed phase

Classified as
ice phase

Relative to simulated
hydrometer-containing
grid cells

Median 1/2 Median 1/2 Median 1/2 Median 1/2
IQR IQR IQR IQR

Frequency of occurrence (%) 12.5 ± 0.4 13.1 ± 2.4 71.5 ± 3.7 78.2 ± 1.8
False positive (%) 0.5 ± 0.0 0.3 ± 0.0 0.1 ± 0.0 0.9 ± 0.0
False negative (%) 0.1 ± 0.0 Approximately

equal to sum of
questionable
row:
(∼ 6.7± 1.1)

0.7 ± 0.0 0.9 ± 0.0

Questionable (%) 1.4 ± 0.0 5.3 ± 1.1 6.7 ± 1.1

Total error (%) 7.6 ± 1.1

Geosci. Model Dev., 11, 4195–4214, 2018 www.geosci-model-dev.net/11/4195/2018/
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Figure 2. Sample time series of ModelE outputs: (a1–4) mixing ratios, (b1–4) mass-weighted fall speed (positive values indicate downward
motion) and (c1–4) effective radii for cloud droplets (1; blue boxes), cloud ice particles (2; black boxes), precipitating liquid drops (3; green
boxes), and precipitating ice particles (4; red boxes). Also indicated are the locations of the 0 and −40 ◦C isotherms (horizontal black lines).

output hydrometeor effective radius. Their approach, based
on Mie theory, relies on the assumption that cloud particles
(both liquid and ice) are spherical and requires additional as-
sumptions about hydrometeor size distributions and scatter-
ing efficiencies. Similarly, the COSP (Bodas-Salcedo et al.,
2011) and ARM Cloud Radar Simulator for GCMs (Zhang et
al., 2018) packages both use QuickBeam for the estimation
of radar-backscattered power (i.e., radar reflectivity; Haynes
et al., 2007). QuickBeam computes radar reflectivity using
Mie theory, again under the assumption that all hydrometeor
species are spherical and by making additional assumptions
about the shape of hydrometeor size distributions as well as
mass–size and diameter–density relationships. While some
of these assumptions may be consistent with the assump-
tions in model cloud microphysical parameterizations, some
are not adequately realistic (e.g., spherical ice) or complete
for accurate backscattering estimation and it is typically very
difficult to establish the sensitivity of results to all such as-
sumptions.

To avoid having to make ad hoc assumptions about hy-
drometeor shapes, orientations, and compositions, which
are properties that also remain poorly documented in na-
ture, (GO)2-SIM employs empirical relationships to convert
model output to observables. These empirical relationships
are based on observations, direct or retrieved, with their own
sets of underlying assumptions and are expected to capture
at least part of the natural variability in hydrometeor proper-
ties. Additionally, empirical relationships are computation-
ally less expensive to implement than direct radiative scatter-
ing calculations, thus enabling the estimation of an ensem-
ble of backscattering calculations using a range of assump-

tions in an effort to quantify part of the backscattering uncer-
tainty (see Sect. 7). The empirical relationships proposed re-
quire few model inputs, potentially enhancing consistency in
applying (GO)2-SIM to models with differing microphysics
scheme assumptions and complexity. Section 6 will show
that, while the empirical relationships employed in (GO)2-
SIM may not be as exact as direct radiative scattering cal-
culations, they produce backscattering estimates of sufficient
accuracy for hydrometeor-phase classification, which is the
main purpose of (GO)2-SIM at this time.

3.1 Lidar-backscattered power simulator

At a lidar wavelength of 532 nm, backscattered power is pro-
portional to total particle cross section per unit volume. Ow-
ing to their high number concentrations, despite their small
size, cloud particles backscatter radiation of this wavelength
the most.

We adopt the Hu et al. (2007b) representation of liq-
uid cloud extinction derived from CALIPSO and CERES–
MODIS observations and retrievals of liquid water content
and effective radius (Table 2, Eq. 1). For cloud ice water con-
tent, a number of empirical relationships with lidar extinction
have been proposed for various geophysical locations and ice
cloud types using a variety of assumptions. Four of these em-
pirical relationships are implemented in (GO)2-SIM (Table 2,
Eqs. 2–5, and references therein) and used to generate an en-
semble of forward simulations. Using these empirical rela-
tionships, a given water content can be mapped to a range
of lidar extinction values (Fig. 3a). This spread depends both
on the choice of empirical relationships and on the variabil-
ity of the atmospheric conditions that affect them (i.e., atmo-
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Figure 3. Relationship between water content in the form of cloud liquid (blue), precipitating liquid (green), cloud ice (black) and precipitat-
ing ice (red) and (a) lidar extinction, and (b) radar copolar reflectivity. Spread emerges from using multiple differing empirical relationships
(listed in Table 2) and from variability in the 1-year ModelE output (including the effects of varying temperature and effective radii).

spheric temperature and hydrometeor effective radius vari-
ability). Figure 3a also illustrates the fundamental idea that
lidar extinction increases with increasing water content and
that for a given water content cloud droplets generally lead
to higher lidar extinction than cloud ice particles.

Lidar copolar-backscattered power (βcopol,species;
m−1 sr−1) generated by each hydrometeor species is
related to lidar extinction (σcopol,species; m−1) through the
lidar ratio (Sspecies; sr):

βcopol,cl = (1
/
Scl)σcopol,cl, (6)

βcopol,ci = (1
/
Sci)σcopol,ci. (7)

While constant values are used for the lidar ratios of liq-
uid and ice clouds in this version of the forward simulator,
we acknowledge that in reality they depend on particle size.
O’Connor et al. (2004) suggest that a liquid cloud lidar ratio
(Scl) of 18.6 sr is valid for cloud liquid droplets smaller than
25 µm, which encompasses the median diameter expected in
the stratiform clouds simulated here. Kuehn et al. (2016) ob-
served layer-averaged lidar ratios in ice clouds (Sci) ranging
from 15.1 to 36.3 sr. Sensitivity tests indicate that adjusting
the ice cloud lidar ratio to either of these extreme values in
the forward simulator increases the number of detectable hy-
drometeors by no more than 0.6 %, changes the hydrometeor-
phase frequency of occurrence statistics by less than 0.4 %,
and causes less than a 0.1 % change in water-phase classifi-
cation errors (not shown). Given these results, the ice cloud
lidar ratio is set to the constant value of 25.7 sr, which corre-
sponds to the mean value observed by Kuehn et al. (2016).

It is important to consider the fact that lidars do not mea-
sure cloud droplet backscattering independently of cloud ice
particle backscattering. Rather, they measure total copolar-
backscattered power (βcopol,total), which is the sum of the
contribution from both cloud phases.

3.2 Radar-backscattered power simulator

At the cloud-radar wavelength of 8.56 mm (Ka band),
backscattered power is approximately related to the sixth

power of the particle diameter and inversely proportional
to the forth power of the wavelength. Hereafter radar-
backscattered power will be referred to as “radar reflectivity”
as commonly done in the literature.

(GO)2-SIM relies on water-content-based empirical rela-
tionships to estimate cloud liquid water (cl), cloud ice (ci),
precipitating liquid water (pl), and precipitating ice (pi) radar
reflectivity. Different relationships are used for each species
to account for the fact that hydrometeor mass and size both
affect radar reflectivity. A number of empirical relationships
link hydrometeor water content to copolar radar reflectiv-
ity; 13 of these empirical relationships are implemented in
(GO)2-SIM (Table 2, Eqs. 8–20, and references therein) and
used to generate an ensemble of forward simulations. Fig-
ure 3b illustrates the fact that for all these empirical relation-
ships increasing water content leads to increasing radar re-
flectivity. As already mentioned, radar reflectivity is approx-
imately related to the sixth power of the particle size, which
explains why, for the same water content, precipitating hy-
drometeors are associated with greater reflectivity than cloud
hydrometeors.

In reality, radars cannot isolate energy backscattered by
individual hydrometeor species. Rather, they measure total
copolar reflectivity (Zcopol,total; mm6 m−3), which is the sum
of the contributions from all of the hydrometeor species.

4 Sensor capability simulator

In the previous section, total backscattered power resulting
from all modeled hydrometeor species (without any filtering)
is estimated. In order to objectively assess model hydrome-
teor properties, they must be converted to quantities that are
comparable to observations. This necessitates the incorpora-
tion of sensor detection limitations, including attenuation and
finite sensitivity. Fortunately, lidar and radar sensors are often
relatively well characterized so that sensor detection capabil-
ities can be quantified and replicated in forward simulators
for an objective model-to-observation comparison.

Geosci. Model Dev., 11, 4195–4214, 2018 www.geosci-model-dev.net/11/4195/2018/
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Table 2. Empirical relationships used to convert hydrometeor in-cloud hydrometeor water content (WC; g m−3) to lidar extinction (σ ; m−1)
and radar reflectivity (Z; mm6 m−3).

Type Eq. no. Relationships for lidar extinction References

Cloud liq. (cl) (1) σcopol,cl =
WCcl(3/ 2)
Re ρliq

with ρliq = 1 Hu et al. (2007b)

Cloud ice (ci) (2) σcopol,ci =
(

WCci
119

)1/1.22
Heymsfield et al. (2005)

(3) σcopol,ci =
(

WCci
a3

)1/b3
with a3 = 89+ 0.6204T and b3 = 1.02− 0.0281T Heymsfield et al. (2005)

(4) σcopol,ci =
(

WCci
527

)1/1.32
Heymsfield et al. (2014)

(5) σcopol,ci =
(

WCci
a2

)1/b2
with a2 = 0.00532(T + 90)2.55 and b2 = 1.31e(0.0047T ) Heymsfield et al. (2014)

Type Eq. no. Relationships for radar reflectivity References

Cloud liq. (cl) (8) Zcopol,cl = 0.048 WCcl
2.00 Atlas (1954)

(9) Zcopol,cl = 0.03WCcl
1.31 Sauvageot and Omar (1987)

(10) Zcopol,cl = 0.031 WCcl
1.56 Fox and Illingworth (1997)

Cloud ice (ci) (11a) Zcopol,ci = 10

(
log10(WCci )+1.70+0.0233 T

0.072

/
10
)

Hogan et al. (2006)

(12) Zcopol,ci =
(

WCci
0.064

) 1
0.58 Atlas et al. (1995)

(13) Zcopol,ci =
(
WCci
0.097

) 1
0.59 Liu and Illingworth (2000)

(14) Zcopol,ci =
(

WCci
0.037

) 1
0.696 Sassen (1987)

Precip. liq (pl) (15) Zcopol,pl =
( WCpl

0.0034

) 7
4 Hagen and Yuter (2003)

(16) Zcopol,pl =
( WCpl

0.0039

) 1
0.55 Battan (1973)

(17) Zcopol,pl =
( WCpl

0.00098

) 1
0.7 Sekhon and Srivastava (1971)

Precip. ice (pi) (11b) Zcopol,pi = 10

(
log10

(
WCpi

)
+1.70+0.0233 T

0.072

/
10

)
Hogan et al. (2006)

(18) Zcopol,pi =
( WCpi

0.0218

) 1
0.79 Liao and Sassen (1994)

(19) Zcopol,pi =
( WCpi

0.04915

) 1
0.90 Sato et al. (1981)

(20) Zcopol,pi =
( WCpi

0.05751

) 1
0.736 Kikuchi et al. (1982)

4.1 Lidar detection capability

Following the work of Chepfer et al. (2008), the (GO)2-SIM
lidar forward simulator takes into consideration the fact that
lidar power is attenuated by clouds. Attenuation is related to
cloud optical depth (τ ), which is a function of total cloud
extinction (σcopol,total; m−1) that includes the effect of cloud
liquid water and cloud ice via

τ(h)=
∑h

i=0
σcopol,total(i)1i, (21)

Lidar attenuation is exponential and two-way as it affects the
lidar power on its way out and back:

βcopol,total,att = βcopol,total e
−2ητ . (22)

Note that in some instances multiple scattering occurs be-
fore the lidar signal returns to the sensor, thus amplifying the

returned signal. In theory, the multiple scattering coefficient
(η) varies from 0 to 1. Sensors with large fields of view, such
as satellite-based lidars, are more likely to be impacted by
multiple scattering than others (Winker, 2003). In the cur-
rent study, for which a ground-based lidar is simulated, a
multiple scattering coefficient of unity is used. A sensitiv-
ity test in which this coefficient was varied from 0.7, such
as that implemented in the CALIPSO satellite lidar simula-
tor of Chepfer et al. (2008), to 0.3, representing an extreme
case, indicated that multiple scattering had a negligible im-
pact (less than 1 %) on the number of hydrometeors detected,
the hydrometeor-phase frequency of occurrence statistics,
and hydrometeor-phase classification error (not shown).

In the current simulator we assume that only cloud seg-
ments with an optical depth smaller than 3 can be pene-
trated, and other clouds are opaque (Cesana and Chepfer,
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2013) such that total copolar-backscattered power detected
(βcopol,total,detect) is

βcopol,total,detect = βcopol,total,att whereτ ≤ 3;
βcopol,total,detect = undetected whereτ > 3. (23)

For the sample ModelE output shown in Fig. 2, Fig. 4a
illustrates results from the lidar forward simulator for
one forward-ensemble member (i.e., using a single set of
lidar-backscattered power empirical relationships, specifi-
cally Eqs. 1 and 4). Figure 4a1 shows lidar total copolar-
backscattered power without consideration of sensor limita-
tions, such as attenuation, which are included in Fig. 4a2.
Lidar attenuation prevents the tops of deep systems contain-
ing supercooled water layers from being observed (e.g., ma-
genta boxes on 10 and 13 August). For the 1-year sample the
forward-simulated lidar system detects only 35.5 % of sim-
ulated hydrometeor-containing grid cells. In Sect. 6 we will
determine which hydrometeors (liquid water or ice) are re-
sponsible for the detected signals.

4.2 Radar detection capability

Millimeter-wavelength radars are also affected by signal at-
tenuation. Radar signal attenuation depends on both the
transmitted wavelength and on the mass and phase of the hy-
drometeors. Liquid-phase hydrometeors attenuate radar sig-
nals at all millimeter radar wavelengths, even leading to total
signal loss in heavy rain conditions. In contrast, water vapor
attenuation is less important at relatively longer wavelengths
(e.g., 8.56 mm; the wavelength simulated here) but can be
important near wavelengths of 3.19 mm (the CloudSat oper-
ating wavelength; Bodas-Salcedo et al., 2011).

At 8.56 mm (Ka band), total copolar attenuated reflectivity
(Zcopol,total,att; dBZ) is given by

Zcopol,total,att(h)= Zcopol,total(h)

− 2
∑h

i=0

[
a
(
WCpl(i)+WCcl(i)

)]
1i, (24)

where attenuation is controlled by the wavelength-dependent
attenuation coefficient a (dB km−1 (g m−3)−1), which we
take to be 0.6 at Ka band (Ellis and Vivekanandan, 2011),
by the water contents of cloud liquid (WCcl; g m−3) and pre-
cipitating liquid (WCcl; g m−3), and by the thickness of the
liquid layer.

In addition to attenuation, radars suffer from having a fi-
nite sensitivity that decreases with distance. Given this, the
total copolar reflectivity detectable (Zcopol,total,detect; dBZ) is

Zcopol,total,detect = Zcopol,total,att where Zcopol,total,att ≥ Zmin

Zcopol,total,detect = Undetected where Zcopol,total,att < Zmin, (25a)

where the radar minimum detectable signal (Zmin; dBZ) is a
function of height (h; km) and can be expressed as

Zmin(h)= Zsensitivity at 1 km + 20log10(h) . (25b)

A value of Zsensitivity at 1 km =−41 dBZ is selected to reflect
the sensitivity of the Ka-band ARM Zenith Radar (KAZR)
currently installed at the Atmospheric Radiation Measure-
ment (ARM) North Slope of Alaska observatory. This value
has been determined by monitoring 2 years of observations
and it reflects the minimum signal observed at a height of
1 km. The minimum detectable signal used in the simulator
should reflect the sensitivity of the sensor used to produce
the observational benchmark to be compared to the forward-
simulator output.

For the sample ModelE output shown in Fig. 2, Fig. 4b
illustrates results from the radar forward simulator for one
forward-ensemble member (i.e., using a single set of radar
reflectivity empirical relationships, specifically Eqs. 9, 11a,
b, and 15). Figure 4b1 shows radar total copolar reflectivity
without consideration of sensor limitations, while Fig. 4b2
includes the effects of attenuation and the range-dependent
minimum detectable signal. Sensor limitations make it such
that heavy-rain-producing systems cannot be penetrated
(e.g., magenta box on 8 and 10 August) and the tops of deep
systems cannot be observed (e.g., red box on 15 August). For
the 1-year sample the forward-simulated radar system could
detect only 69.9 % of the simulated hydrometeor-containing
grid cells. In Sect. 6 we will determine the phase of the hy-
drometeors responsible for the detected signals.

4.3 Lidar–radar complementarity

Figure 4a2 and b2 highlight the complementarity of lidar and
radar sensors. Despite sensor limitations, 532 nm lidar mea-
surements can be used to characterize hydrometeors near the
surface and infer the location of a lowermost liquid layer if
one exists. In contrast, 8.56 mm radars have the ability to
penetrate cloud layers and light precipitation, allowing them
to determine cloud boundary locations (e.g., Kollias et al.,
2016). For the 1-year sample ModelE output the combina-
tion of both sensors enables the detection of 73.0 % of the
hydrometeor-containing grid cells. Real observations can be
used to objectively evaluate these detectable hydrometeor
populations, while nothing can be said about those that are
not detectable. Note that a number of undetectable grid cells
only contain trace amounts of hydrometeors, which could
be the result of numerical noise. As such the approach of
considering sensor detection limitations helps objectively re-
move numerical noise from consideration and allows model
and observations to converge towards a common hydrome-
teor definition for a fair comparison.
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Figure 4. Example outputs from the (GO)2-SIM backscattered power modules (1), sensor capability modules (2), and specialized-observables
modules (3–4) for (a) lidars and (b) radars obtained using one set of empirical backscattered power relationships. This figure highlights sensor
limitations ranging from attenuation (magenta boxes) to sensitivity loss with range (red boxes). Also indicated are the locations of the 0 and
−40 ◦C isotherms (black lines). Note that positive velocities indicate downward motion.

5 Forward simulation of specialized observables

In the previous section total copolar-backscattered powers
are used to determine which simulated hydrometeors are
present in sufficient amounts to be detectable by sensors,
hence removing numerical noise from consideration. How-
ever, determining the phase of the detectable hydrometeor

populations can be achieved with much greater accuracy by
using additional observables.

Backscattered power alone provides a sense of hydrome-
teor number concentration (from lidar) and hydrometeor size
(from radar), but it does not contain information about hy-
drometeor shape nor does it provide any hint on the number
of coexisting hydrometeor species, both of which are rele-
vant for phase determination. However, such information is
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available from lidar depolarization ratios and radar Doppler
spectral widths.

5.1 Lidar depolarization ratio simulator

So far we have described how hydrometeors of all types and
phases affect copolar radiation. It is important to note that
radiation also has a cross-polar component, which is only af-
fected by nonspherical particles. Ice particles, which tend to
be nonspherical, are expected to affect this component, while
we assume that cloud droplets, which tend to be spherical, do
not. Taking the ratio of cross-polar to copolar backscattering
thus provides information about the dominance of ice parti-
cles in a hydrometeor population. This ratio is referred to as
the linear depolarization ratio (δdetect) and it can be estimated
where hydrometeors are detected by the lidar.

δdetect =
βcrosspol,ci,detect+βcrosspol,cl,detect

βcopol,total,detect
(26a)

According to an analysis of CALIPSO observations by
Cesana and Chepfer (2013), cloud ice particle cross-
polar backscattering (βcrosspol,ci,detect; m−1 sr−1) and cloud
liquid droplet cross-polar backscattering (βcrosspol,cl,detect;
m−1 sr−1) can be approximated using the following relation-
ships:

βcrosspol,ci,detect = 0.29 (βcopol,ci,detect +βcrosspol,ci,detect), (26b)
βcrosspol,cl,detect = 1.39(βcopol,cl,detect+βcrosspol,cl,detect)

2

+ 1.7610−2(βcopol,cl,detect+βcrosspol,cl,detect) ≈ 0. (26c)

For reasons mentioned in Sect. 4.1, multiple scattering is
considered negligible in the current study such that cloud-
liquid droplet cross-polar backscattering is assumed to be
zero under all conditions.

5.2 Radar Doppler moment simulator

Specialty Doppler radars have the capability to provide in-
formation about the movement of hydrometeors in the radar
observation volume. This information comes in the form of
the radar Doppler spectrum, which describes how backscat-
tered power is distributed as a function of hydrometeor veloc-
ity (Kollias et al., 2011). The zeroth moment of the Doppler
spectral distribution (the spectral integral) is radar reflectiv-
ity, the first moment (the spectral mean) is mean Doppler ve-
locity (VD), and the second moment (the spectral spread) is
Doppler spectral width (SW). Rich information is provided
by the velocity spread (i.e., SW) of the hydrometeor pop-
ulation, including information regarding the number of co-
existing species, turbulence intensity, and spread of the hy-
drometeor particle size distributions. Typically, the effects of
turbulence and hydrometeor size variations on the velocity
spread for a single species are much smaller than the effect
of mixed-phase conditions. As such, Doppler spectral width
is a useful parameter for hydrometeor-phase identification.

Forward simulations of Doppler quantities have been
performed for cloud models using bin microphysics (e.g.,
Tatarevic and Kollias, 2015) but not, to our knowledge, for
GCMs using two-moment microphysics schemes.

Copolar mean Doppler velocity and copolar Doppler spec-
tral width are subject to the same detection limitations as
radar reflectivity. In fact, just like radar reflectivity, these
observables are strongly influenced by large hydromete-
ors; that is, they are reflectivity-weighted velocity aver-
ages. Our approach begins by quantifying the contribution
of each species present (Pspecies), which is determined by
the species detected copolar reflectivity (Zcopol,species,detect;
mm6 m−3) relative to the total detected copolar reflectivity
(Zcopol,total,detect; mm6 m−3):

Pspecies =
Zcopol,species,detect

Zcopol,total,detect
, (27a)

together with

Zcopol,species,detect(h)= Zcopol,species(h)

− 2
∑h

i=0

[
a
(
WCpl(i)+WCcl(i)

)]
1i

where Zcopol,total,att(h)≥ Zmin(h). (27b)

In Eqs. (27a)–(27b) the subscript “species” represents cl,
ci, pl, or pi. The attenuation coefficient (a), minimum de-
tectable signal (Zmin), and water contents (WCs) are as in
Eqs. (24) and (25b). Total mean Doppler velocity detected
(VDcopol,detect; m s−1) is the reflectivity-weighted sum of
the mass-weighted fall velocity of each hydrometeor species
(Vspecies; m s−1):

VDcopol,detect =
∑

species=cl,pl,ci,pi
PspeciesVspecies, (28)

where the mass-weighted fall velocity of each hydrometeor
species (Vspecies; m s−1) is a model output. Total Doppler
spectral width (SWcopol,detect; m s−1) is more complex and
can be estimated following a statistical method similar to that
described by Everitt and Hand (1981). It takes into consider-
ation the properties of each individual hydrometeor species
through their respective fall speed (Vspecies; m s−1) and spec-
tral width (SWspecies; m s−1) in relation to the properties
of the hydrometeor population as a whole through the total
mean Doppler velocity detected (VDcopol,detect) estimated in
Eq. (28):

SWcopol,detect = (29)√ ∑
species=cl,pl,ci,pi

Pspecies

(
SWspecies

2+
(
Vspecies−VDcopol,detect

)2),
where the spectral widths of individual species (SWspecies)
are assigned climatological values. These climatological
values are SWcl = 0.10 m s−1 SWci = 0.05 m s−1, SWpi =

0.15 m s−1, and SWpl = 2.00 m s−1 (Kalesse et al., 2016).
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For the sample ModelE output shown in Fig. 2, Fig. 4b3
and b4 respectively show examples of forward-simulated
mean Doppler velocity and Doppler spectral width estimate
using one set of empirical radar reflectivity relationship.

6 Water-phase classifier algorithm

From a purely numerical modeling perspective the simplest
approach to defining the phase of a hydrometeor population
contained in grid cells is to consider any nonzero hydrome-
teor mixing ratio species as contributing to the phase of the
population. Using this approach, in the 1-year sample, we
find that the detectable hydrometeor-containing grid cells are
2.4 % pure liquid, 19.4 % pure ice, and 78.2 % mixed phase
(note how these water-phase statistics differ by up to 18.4 %
from Sect. 2 in which all grid cells potentially including nu-
merical noise were considered). But determining hydrome-
teor phase in observational space is not as straightforward. It
is complicated by the fact that sensors do not record ice- and
liquid-hydrometeor returns separately but rather record total
backscattering from all hydrometeors. Retrieval algorithms
are typically applied to the observed total backscattering to
determine the phase of hydrometeor populations. However,
phase-classification algorithms have limitations that require
each hydrometeor species to be present not only in nonzero
amounts but in amounts sufficient to produce a phase signal.
Thus, hydrometeor-phase statistics obtained from a numeri-
cal model in the absence of a forward simulator are not nec-
essarily comparable with equivalent statistics retrieved from
observables, especially in instances in which one hydrom-
eteor species dominates the grid cell and other species are
present in trace amounts. A common hydrometeor-phase def-
inition must be established to objectively evaluate the phase
of simulated hydrometeor populations using observations,
which requires the development of a phase-classification al-
gorithm that can be applied to observables both forward sim-
ulated and real.

The scientific literature contains a number of phase-
classification algorithms with different levels of complexity.
Hogan et al. (2003) used regions of high lidar-backscattered
power as an indicator for the presence of liquid droplets.
Lidar-backscattered power combined with the lidar lin-
ear depolarization ratio has been used to avoid some of
the misclassifications encountered when using backscattered
power alone (e.g., Yoshida et al., 2010; Hu et al., 2007a,
2009, 2010; Sassen, 1991) Hogan and O’Connor (2004)
proposed using lidar-backscattered power in combination
with radar reflectivity. While the combination of radar- and
lidar-backscattered powers is useful for the identification of
mixed-phase conditions, their combined extent remains lim-
ited to single-layer clouds or to lower cloud decks because
of lidar signal attenuation. Shupe (2007) proposed a tech-
nique in which radar Doppler velocity information is used as
an alternative to lidar backscattering information (for ranges

beyond that of lidar total attenuation) to infer the presence of
supercooled water in multilayer systems. Figure 5 displays
cartoons of Doppler spectra that have the same total copo-
lar radar reflectivity but different total mean Doppler veloci-
ties (VDs) and Doppler spectral widths (SWs) resulting from
different hydrometeor species and combinations, thus high-
lighting the added value of Doppler information. The contri-
bution of each species to the total copolar reflectivity is indi-
cated as a percentage in the top right of each subpanel. These
scenarios show that VD tends to be relatively small for pure
liquid cloud (Fig. 5a6), pure ice cloud (Fig. 5a2), and even
mixed-phase non-precipitating cloud (Fig. 5a3, a5, b3) and
only tends to increase when precipitation is present in cloud
(Fig. 5a4, b3, b4, b5) or below cloud (Fig. 5a1, b2), making
VD a seemingly robust indicator for precipitation occurrence
but not for phase identification. These scenarios also show
that SW tends to be relatively small in single-phase clouds
without precipitation (Fig. 5a2, a6), pure precipitating ice
(Fig. 5a1), and multispecies clouds with a dominant hydrom-
eteor species (Fig. 5a3, a5). On the other hand, SW tends to
be large when liquid precipitation is present (Fig. 5b1, b2,
b5) and in mixed-phase clouds without a dominant species
(Fig. 5b3, b4, b5). These scenarios suggest that large spectral
widths are useful indicators for the presence of supercooled
rain and mixed-phase conditions. Scenarios in which this in-
terpretation of spectrum width is incorrect will be discussed
in Sect. 6.3.

Regardless of which observation they are based on, the
aforementioned phase-classification schemes all rely on the
assumption that hydrometeor phases when projected on ob-
servational space (e.g., lidar-backscattered power against the
lidar depolarization ratio) create well-defined patterns that
can be separated using thresholds.

6.1 Observational thresholds for hydrometeor-phase
identification

While the thresholds used for the radar reflectivity, lidar-
backscattered power, and lidar depolarization ratio are gen-
erally accepted by the remote sensing community, the same
cannot be said about the radar Doppler velocity and Doppler
spectral width thresholds suggested by Shupe (2007). Be-
cause simulated mixing ratios of liquid and ice hydrome-
teors are known in the (GO)2-SIM framework, the use and
choice of all such thresholds for phase classification can be
evaluated using joint frequency of occurrence histograms of
hydrometeor mixing ratios for a single species and forward-
simulated observable values (resulting from all hydrometeor
types; Fig. 6). This exercise is repeated for each forward sim-
ulation of the ensemble in order to provide a measure of un-
certainty and ensure that the choice of empirical relationship
does not affect our conclusions.

As one example, the joint frequency of occurrence
histogram of lidar total copolar-backscattered power
(βcopol,total,detect) and cloud liquid mixing ratio is plotted
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Figure 5. Cartoon examples of radar Doppler spectra from different hydrometeor combinations: precipitating ice (red), cloud ice (black),
precipitating water (green), and cloud water (blue). The contribution of each hydrometeor species to the total copolar reflectivity is indicated
in the top right of each subpanel. Each radar Doppler spectrum has been normalized to have the same total copolar radar reflectivity, which
highlights the fact that different hydrometeor combinations generate unique mean Doppler velocity (VD) and Doppler spectral width (SW)
signatures. As discussed in Sect. 6, low spectral width signatures are assumed to be associated with ice conditions (column a), while high
spectral width signatures are assumed to be associated with liquid–mixed-phase conditions (column b). Hydrometeor combinations that
respect these assumptions are marked with

√
marks. Exceptions to these rules (X marks) are responsible for (GO)2-SIM phase misclassifi-

cations above the level of lidar extinction. This list is not exhaustive.

with the objective of isolating cloud ice particles from cloud
water droplets (Fig. 6a1, black contour lines). Two distinct
clusters are evident in the joint histogram in Fig. 6a1:
(1) βcopol,total,detect between 10−6.7 and 10−5.1 m−1 sr−1

for cloud liquid water mixing ratios between 10−10.6 and
10−8.8 kg kg−1, which we conclude result primarily from
cloud ice particle contributions, and (2) βcopol,total,detect
between 10−4.6 and 10−3.8 m−1 sr−1 for cloud liquid water
mixing ratios between 10−6.4 and 10−4.3 kg kg−1, which
we conclude result primarily from cloud liquid droplet
contributions. Therefore, a threshold for best distinguishing
these two distinct populations should lie somewhere between
10−5.1 and 10−4.6 m−1 sr−1.

To objectively determine an appropriate threshold to sep-
arate different hydrometeor populations, we start by normal-
izing the joint histogram of mixing ratio values for fixed
ranges of observable values of interest. This normalization
is done by assigning a value of 1 to the frequency of occur-
rence of the most frequently occurring mixing ratio value per
observable range. It is then possible to evaluate the change
in this most frequently occurring mixing ratio as a function
of observable value. The observable value that intersects the
largest change in most frequently occurring mixing ratio is
then set as the threshold value.

In the example presented in Fig. 6a1, the darkest gray
shading is indicative of the most frequently occurring cloud
liquid mixing ratio for each lidar-backscattered power range.
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Figure 6. Example of joint frequency of occurrence histograms (contours) and normalized subsets from the joint histograms (gray shading)
for one (GO)2-SIM forward realization: (a1) βcopol,total,detect, (a2) δdetect, (b1) SWcopol,detect, and (b2) Zcopol,total,detect. These are used
for the determination of objective water-phase classifier thresholds (vertical colored dashed lines) that are set at the observational value with
the largest change (see curved arrows) in most frequently occurring mixing ratio. These thresholds are not fixed but rather reestimated for
each forward-ensemble member. The widths of the color-shaded vertical columns represent the interquartile range spreads generated from
576 different forward realizations.

The dotted black line in Fig. 6a1 connects these most fre-
quently occurring mixing ratio values. A curved arrow points
to the largest change in most frequently occurring mixing
ratio as a function of βcopol,total,detect. A red dashed line at
10−4.9 m−1 sr−1 indicates the lidar backscatter value that in-

tersects this largest change in mixing ratio and represents
an objective threshold value for this example forward sim-
ulation. As mentioned earlier, this threshold is expected to
change with the choice of empirical relationships used in
the forward simulator. For the 576 forward-simulator real-
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Figure 7. Collective illustration of hydrometeor-phase classification thresholds and phase-classification sequence. Fixed empirical thresholds
modified from Shupe (2007) are displayed as gray lines. The objectively determined flexible thresholds are displayed using dashed colored
lines and colored shading as in Fig. 6. Note that positive velocities indicate downward motion.

izations of this version of ModelE outputs, the interquartile
range of βcopol,total,detect threshold values ranged from 10−5

to 10−4.85 m−1 sr−1 (red shaded vertical column).
The different panels in Fig. 6 show that similar observa-

tional patterns occur in the water mixing ratio versus lidar
or radar observable histograms such that objective thresh-
olds for hydrometeor-phase classification can be determined
for all of them. The second threshold determined is for the
detected lidar linear depolarization (δdetect), once again with
the goal of separating returns dominated by cloud droplets
versus cloud ice particles (Fig. 6a2). If we first identify the
model grid cells with backscattered power above the lidar
detectability threshold of 10−6 m−1 sr−1, the threshold to
distinguish between ice particles and liquid droplets is 0.36
(cyan dashed line). In the 576 forward realizations from this
version of ModelE this threshold is stable at 0.36. Note that
this threshold is not allowed to fall below 0.05 m s−1.

The third threshold determined is the radar detected copo-
lar spectral width (SWcopol,detect) value that separates ice-
dominated from liquid- or mixed-phase-dominated returns
(Fig. 6b1). We isolate the model grid cells with subzero tem-
peratures and look for the most appropriate SWcopol,detect
threshold between 0.2 and 0.5 m s−1 to isolate the ice popula-

tion. For the example forward simulation we find a threshold
of 0.31 m s−1 (green dashed line), and over all forward real-
izations this threshold ranges from 0.24 to 0.31 m s−1 (green
shaded vertical column).

The last threshold determined is the radar total copolar
reflectivity detected (Zcopol,total,detect) value that separates
liquid- from mixed-phase-dominated returns (Fig. 6b2). If we
isolate the model grid cells with subzero temperatures, spec-
tral widths within the liquid- to mixed-phase range, and with
mean Doppler velocities smaller than 1 m s−1, the threshold
to distinguish between the liquid and mixed phase is objec-
tively set to −23 dBZ (orange dashed line). This threshold
ranges from −23.5 to −21.0 dBZ over the 576 forward re-
alizations obtained from this version of ModelE outputs (or-
ange shaded vertical column).

The objectively determined thresholds, based on model
output mixing ratios, optimize the performance of the
hydrometeor-phase classification algorithm and are ex-
pected to generate the best (by minimizing false detection)
hydrometeor-phase classifications. Results using these objec-
tive flexible thresholds are compared in Sect. 6.4 to results
using the fixed empirical thresholds of Shupe (2007).
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6.2 Hydrometeor-phase map generation

Hydrometeor-phase maps are produced for each forward
realization by applying the objectively determined flexi-
ble thresholds or fixed empirical thresholds modified from
Shupe (2007) as illustrated in Fig. 7.

Thresholds are applied in sequence. Where the lidar signal
is detected it is used for the initial classification of liquid-
dominated grid cells (Fig. 7.1, red box) and the final clas-
sification of ice-dominated grid cells (Fig. 7.1, cyan box).
Grid cells initially classified as containing liquid drops by
the lidar are subsequently reclassified as either liquid domi-
nated (Fig. 7.2, orange box) or mixed phase (Fig. 7.2, out-
side of orange box) by the radar, which is more sensitive
to the larger ice particles. Because studies suggest that su-
percooled water layers extend to the tops of shallow clouds,
if liquid-containing grid cells were identified within 750 m
of the cloud top, the radar is used to determine if there are
other liquid- or mixed-phase hydrometeor populations from
the range of lidar attenuation to the cloud top (Fig. 7.2; and
just as in Shupe, 2007). Hydrometeor-containing grid cells
either not detected by the lidar or whose initial phase clas-
sification is inconclusive (Fig. 7.1, inconclusive region) are
subsequently classified using their radar moments. If radar
spectral width is above the threshold grid cells are finally
classified as liquid (Fig. 7.3, orange box) or mixed phase
(Fig. 7.3, outside the orange box) depending on their other
radar moments. If radar spectral width is below the threshold
grid cells are finally classified as ice phase (Fig. 7.4). As a
final step detected hydrometeors in grid cells at temperatures
above 0 ◦C are reclassified to the liquid phase, while those at
temperatures below −40 ◦C are reclassified to the ice phase.

Figure 8 shows an example of (GO)2-SIM water-phase
classification for one forward-ensemble member using ob-
jectively determined thresholds. During the first day of this
example simulation, ModelE produced what appears to be a
thick cirrus. The simulator classified this cirrus as mostly ice
phase (blue). The following day of 9 August, ModelE gen-
erated enough hydrometeors to attenuate both the forward-
simulated lidar and radar signals. The algorithm identified
these hydrometeors as liquid phase (yellow). For the follow-
ing few days (11–14 August) deep hydrometeor systems ex-
tending from the surface to about 8 km were produced. Ac-
cording to (GO)2-SIM they were mostly made up of ice-
phase particles (blue) with two to three shallow mixed-phase
layers at 2, 4, and 7 km. Finally, on 14 August hydrome-
teor systems appear to become shallower (2 km altitudes) and
liquid topped (yellow). For the entire 1-year simulation, of
the 333 927 detectable hydrometeor-containing grid cells, the
phase classifier applied to our example forward-simulation
ensemble member identified 12.2 % pure liquid, 68.7 % pure
ice, and 19.1 % mixed-phase conditions. Hydrometeor-phase
statistics estimated using this objective definition of hydrom-
eteor phase differ by up to 60 % from those discussed at
the beginning of this section that were simply based on

model output nonzero mixing ratios. This indicates that a
large number of grid cells containing detectable hydrome-
teor populations were dominated by one species and that the
amounts of the other species were too small to create a phase-
classification signal. This highlights the need to create a
framework that both objectively identifies grid cells contain-
ing detectable hydrometeor populations and determines the
phase of the hydrometeors dominating them using a phase-
classification technique consistent with observations.

6.3 Phase-classification algorithm limitations

Hydrometeor-phase classification evaluation is facilitated in
the context of forward simulators because inputs (i.e., model-
defined hydrometeor phase) are known. Model mixing ratios
are used to check for incorrect hydrometeor-phase classifica-
tions over the entire forward-realization ensemble (Table 1b).

Without any ambiguity, it is possible to identify false-
positive phase classifications (Table 1b). A false-positive
phase classification occurs when a grid cell containing
0 kg kg−1 of ice particles (liquid drops) is wrongly classi-
fied as ice or mixed phase (liquid or mixed phase). In this
study a negligible number (0.5 %) of hydrometeor-containing
model grid cells are wrongly classified as containing liquid.
Similarly, a negligible number (∼ 0.0 %) of hydrometeor-
containing model grid cells are wrongly classified as con-
taining ice particles, whereas 1.1 % of pure liquid- or ice-
containing model grid cells are wrongly classified as mixed
phase. Using model mixing ratios, it is possible to determine
the appropriate phase of these false-positive classifications
(“False negative” row in Table 1b). An additional 1.5 % of
all hydrometeor-containing model grid cells should be classi-
fied as ice phase, while a negligible number (0.2 %) of liquid
water is missed.

Quantifying the number of mixed-phase false negatives
(i.e., the number of grid cells that should have been, but
were not, classified as mixed phase) is not as straightforward
because it requires us to define mixed-phase conditions in
model space. For a rough estimate of mixed-phase false neg-
atives we check if model grid cells classified as containing
a single phase contained large amounts of hydrometeors of
other phase types, with a large amount being defined here as
a mixing ratio greater than 10−5 kg kg−1. This mixing ratio
amount was chosen because it is associated with noticeable
changes in observables, as seen in Fig. 6. Using this mixed-
phase definition, we find that 1.4 % of liquid-only classified
grid cells contained large amounts of ice particles and 3.8 %
of ice-only classified grid cells contained large amounts of
liquid (“Questionable” row in Table 1b). Everything con-
sidered, only 6.9 % of model grid cells with detectable hy-
drometeor populations were misclassified according to their
phase.

For completeness we examined the circumstances associ-
ated with the most frequent phase-classification errors. Most
of these errors occurred above the altitude at which the li-
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Figure 8. Example output from (GO)2-SIM phase-classification algorithms (using objectively determined thresholds and one set of empirical
relationships in the forward simulator). The locations of ice-phase hydrometeors (blue), liquid-phase hydrometeors (yellow), and mixed-
phase hydrometeors (green) are illustrated. After evaluation against the original ModelE output mixing ratios, we found that some mixed-
phase hydrometeors were misclassified as ice phase (red) and some ice-phase hydrometeors were misclassified as mixed phase (magenta).
Also indicated are the locations of the 0 and −40 ◦C isotherms (black lines).

dar beam was completely attenuated, with only radar spectral
widths used to separate liquid- or mixed-phase hydrometeors
from ice-phase hydrometeors.

The first set of phase-classifier errors was a scarcity of
pure ice particles (1.5 % false-negative ice phase). In the cur-
rent (GO)2-SIM implementation, ice particle populations are
sometimes incorrectly classified as liquid–mixed-phase pop-
ulations when cloud ice and precipitating ice hydrometeors
coexist. This happens because mixtures of cloud and precip-
itating ice particles sometimes generate large Doppler spec-
tral widths similar to those of mixed-phase clouds (Fig. 5b6).
In this example simulation ModelE produced such mixtures
close to the−40 ◦C isotherm near the tops of deep cloud sys-
tems (e.g., Fig. 8, 15 August around 8 km; magenta).

In contrast, mixed-phase conditions were sometimes mis-
classified as pure ice (3.8 %; “Questionable” row in Ta-
ble 1b). This occurred when large amounts of liquid drops
coexisted with small amounts of ice particles that generated
small spectral widths incorrectly associated with pure ice
particles (Fig. 5a5). In this example simulation, ModelE pro-
duced such conditions just above the altitude of lidar beam
extinction in cloud layers with ice falling into supercooled
water layers (e.g., Fig. 8, 13 August around 3 km; red).

Other possible misclassification scenarios associated with
spectral width retrievals are presented in Fig. 5 and identified
with the redXmarks. These other misclassification scenarios
are not responsible for large misclassification errors here but
could be in other simulations. As such, (GO)2-SIM errors
should be quantified every time it is applied to a new region
or numerical model.

6.4 Sensitivity on the choice of threshold

The performance of the objectively determined flexible
phase-classification thresholds (illustrated using colored

dashed lines and shading in Fig. 7) is examined against those
empirically derived by Shupe (2007) with one exception (il-
lustrated using gray lines in Fig. 7). The modification to
Shupe (2007) is that radar reflectivity larger than 5 dBZ is
not associated with the snow category since introducing this
assumption was found to increase hydrometeor-phase mis-
classification (not shown). From Fig. 7 it is apparent that
both sets of thresholds are very similar. We estimate that
the hydrometeor-phase frequency of occurrence produced by
both threshold sets is within 6.1 % of the other and that the
fixed empirical thresholds modified from Shupe (2007) only
produce phase misclassification in an additional 0.7 % of
hydrometeor-containing grid cells (compare Table 1b to c).
These results suggest that the use of lidar–radar threshold-
based techniques for hydrometeor-phase classification de-
pends little on the choice of thresholds.

7 An ensemble approach for uncertainty assessment

Owing to the limited information content in models with re-
gard to detailed particle property information, all forward
simulators must rely on a set of assumptions to estimate
hydrometeor-backscattered power. (GO)2-SIM performs an
uncertainty assessment by performing an ensemble of 576
forward simulations based on 18 different empirical relation-
ships (relationships are listed in Table 2). While the relation-
ships used do not cover the entire range of possible backscat-
tering assumptions, they represent an attempt at uncertainty
assessment and illustrate a framework for doing so. We ex-
press the spread generated by the different empirical rela-
tionship combinations using median values and interquartile
ranges (IQR; Table 1b, c). The fact that the largest interquar-
tile range is 3.7 % suggests that the number of grid cells
containing detectable hydrometeors as well as hydrometeor-
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phase statistics estimated using the proposed lidar–radar al-
gorithm are rather independent of backscattered power as-
sumptions in the forward simulator. Nevertheless, we suggest
using the full range of frequency of occurrences presented
in Table 1b and c for future model evaluation using obser-
vations and acknowledge that additional uncertainty is most
likely present.

8 Summary and conclusions

Ground-based active remote sensors offer a favorable per-
spective for the study of shallow and multilayer mixed-phase
clouds because ground-based sensors are able to collect high-
resolution observations close to the surface where super-
cooled water layers are expected to be found. In addition,
ground-based sensors have the unique capability to collect
Doppler velocity information that has the potential to help
identify mixed-phase conditions even in multilayer cloud
systems.

Because of differences in hydrometeor and phase defini-
tions, among other things, observations remain incomplete
benchmarks for general circulation model (GCM) evaluation.
Here, a GCM-oriented ground-based observation forward-
simulator ((GO)2-SIM) framework for hydrometeor-phase
evaluation is presented. This framework bridges the gap be-
tween observations and GCMs by mimicking observations
and their limitations and producing hydrometeor-phase maps
with comparable hydrometeor definitions and uncertainties.

Here, results over the North Slope of Alaska extracted
from a 1-year global ModelE (current development version)
simulation are used as an example. (GO)2-SIM uses as in-
put native-resolution GCM grid-average hydrometeor (cloud
and precipitation, liquid, and ice) area fractions, mixing ra-
tios, mass-weighted fall speeds, and effective radii. These
variables offer a balance between those most essential for
forward simulation of observed hydrometeor backscattering
and those likely to be available from a range of GCMs, mak-
ing (GO)2-SIM a portable tool for model evaluation. (GO)2-
SIM outputs statistics from 576 forward-simulation ensem-
ble members all based on a different combination of 18 em-
pirical relationships that relate simulated in-cloud water con-
tent to hydrometeor-backscattered power as would be ob-
served by vertically pointing micropulse lidar and Ka-band
radar; the interquartile range of these statistics is used as an
uncertainty measure.

(GO)2-SIM objectively determines which hydrometeor-
containing model grid cells can be assessed based on sen-
sor capabilities, bypassing the need to arbitrarily filter trace
amounts of simulated hydrometeor mixing ratios that may
be unphysical or just numerical noise. Limitations that af-
fect sensor capabilities represented in (GO)2-SIM include at-
tenuation and range-dependent sensitivity. In this approach
78.3 % of simulated grid cells containing nonzero hydrome-
teor mixing ratios were detectable and can be evaluated using

real observations, with the rest falling below the detection
capability of the forward-simulated lidar and radar, leaving
them unevaluated. This shows that comparing all hydrom-
eteors produced by models with those detected by sensors
would lead to inconsistencies in the evaluation of quantities
as simple as cloud and precipitation locations and fraction.

While information can be gained from comparing the
forward-simulated and observed fields, hydrometeor-phase
evaluation remains challenging owing to inconsistencies in
hydrometeor-phase definitions. Models evolve ice and liquid
water species separately such that their frequency of occur-
rence can easily be estimated. However, sensors record in-
formation from all hydrometeor species within a grid cell
without distinction between signals originating from ice par-
ticles or liquid drops. The additional observables of lidar lin-
ear depolarization ratio and radar mean Doppler velocity and
spectral width are forward simulated to retrieve hydrome-
teor phase. The results presented here strengthen the idea that
hydrometeor-phase characteristics lead to distinct signatures
in lidar and radar observables, including the radar Doppler
moments that have not been evaluated previously. Our anal-
ysis confirms that distinct patterns in observational space are
related to hydrometeor phase and an objective technique to
isolate liquid, mixed-phase, and ice conditions using simu-
lated hydrometeor mixing ratios was presented. The thresh-
olds produced by this technique are close to those previously
estimated using real observations, further highlighting the ro-
bustness of thresholds for hydrometeor-phase classification.

The algorithm led to hydrometeor-phase misclassification
in no more than 6.9 % of the hydrometeor-containing grid
cells. Its main limitations were confined above the altitude
of lidar total attenuation where it sometimes failed to iden-
tify additional mixed-phase layers dominated by liquid wa-
ter drops and containing few ice particles. Using the same
hydrometeor-phase definition for forward-simulated observ-
ables and real observations should produce hydrometeor-
phase statistics with comparable uncertainties. Alternatively,
disregarding how hydrometeor phase is observationally re-
trieved would lead to discrepancies in hydrometeor-phase
frequency of occurrence of up to 40 %, a difference at-
tributable to methodological bias and not to model error. So,
while not equivalent to model “reality” a forward-simulator
framework offers the opportunity to compare simulated and
observed hydrometeor-phase maps with similar limitations
and uncertainties for a fair model evaluation.

The next steps in GCM evaluation using ground-based
observations include the creation of an artifact-free ob-
servational benchmark and addressing model and observa-
tion scale differences. While the (GO)2-SIM modules pre-
sented here capture sensor limitations related to backscat-
tered power attenuations, they do not account for sensitiv-
ity inconsistencies, clutter, and insect contamination, which
affect the observations collected by the real sensors. Only a
thorough evaluation of observational datasets and the appli-
cation of masking algorithms to them can remediate these

www.geosci-model-dev.net/11/4195/2018/ Geosci. Model Dev., 11, 4195–4214, 2018



4212 K. Lamer et al.: (GO)2-SIM

issues. Several approaches, from the subsampling of GCMs
to the creation of reflectivity contoured frequency by al-
titude diagrams (CFADs), have been proposed to address
the scale difference. A follow-up study will describe an ap-
proach by which vertical and temporal resampling of obser-
vations can help reduce the scale gap. Furthermore, it will be
shown that, using simplified model evaluation targets based
on three atmospheric regions separated by constant pres-
sure levels, ground-based observations can be used for GCM
hydrometeor-phase evaluation.

(GO)2-SIM is a step towards creating a fair hydrometeor-
phase comparison between GCM output and ground-based
observations. Owing to its simplicity and robustness, (GO)2-
SIM is expected to help assist in model evaluation and devel-
opment for models such as ModelE, specifically with respect
to hydrometeor phase in shallow cloud systems.

Code availability. The results here are based on ModelE
tag modelE3_2017-06-14, which is not a publicly released version
of ModelE but is available on the ModelE developer (password-
protected) repository at https://simplex.giss.nasa.gov/cgi-bin/
gitweb.cgi?p=modelE.git;a=tag;h=refs/tags/modelE3_2017-06-14
(last access: 21 June 2018). The (GO)2-SIM modules described in
the current paper can be fully reproduced using the information
provided. Interested parties are encouraged to contact the corre-
sponding author for additional information on how to interface
their numerical model with (GO)2-SIM.
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