

```
  └── nemo_init initialise model and read namelists
      └── cpl_init read namelists
          └── sbc_init initialise surface boundary conditions → LIM, see Fig. 3
  └── stp_cld time stepping
      └── sbc update boundary conditions
          └── sbc_cpl_rcv coupling, receiving fields
              └── sbc_ice_lim (nn_ice=3:LIM) update ocean surface boundary conditions, → LIM, see Fig. 3
  └── zdf* vertical physics
      └── zdf_tke TKE mixing scheme, with Langmuir parameterisation
      └── zdf_ddm double diffusive mixing
      └── zdf_tmx tidal mixing
  └── dia_wri output dynamics and tracers
  └── tra* advance active tracers T & S
      └── tra_sbc trend due to air-sea flux and associated concentration/dilution effect
      └── tra_qsr penetrative solar radiation
      └── tra_dmp internal damping trends
      └── tra_zdf vertical component of tracer mixing
      └── tra_nxt modified leapfrog time stepping of T & S
  └── dyn* calculate dynamics tendencies (ua: trend; ub: before; un: now)
      └── dyn_dmp internal damping trends
      └── dyn_cor_cld apply Coriolis force
      └── dyn_zdf vertical momentum diffusion
      └── dyn_nxt_cld Euler/leapfrog time stepping of u & v
      └── sbc_cpl_snd coupling, sending: SST,  $\alpha$  (ice and mixed), ice fraction and thickness, sfc current
  └── nemo_closefile
  └── cpl_finalize
```