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Abstract. Can models that are based on deep learning and
trained on atmospheric data compete with weather and cli-
mate models that are based on physical principles and the
basic equations of motion? This question has been asked of-
ten recently due to the boom in deep-learning techniques.
The question is valid given the huge amount of data that
are available, the computational efficiency of deep-learning
techniques and the limitations of today’s weather and climate
models in particular with respect to resolution and complex-
ity.

In this paper, the question will be discussed in the context
of global weather forecasts. A toy model for global weather
predictions will be presented and used to identify challenges
and fundamental design choices for a forecast system based
on neural networks.

1 Introduction

In recent years, artificial intelligence and machine learn-
ing have become very important for hardware development
in high-performance computing (HPC) and have attracted a
large amount of public interest. Neural networks (NNs) are
tools from machine learning that are used successfully within
many applications such as computer vision, speech recog-
nition and data filtering. If a sufficient amount of data are
available, NNs can be trained to describe the evolution of
non-linear processes. Due to the fundamentally application-
unaware character, no complete understanding of the under-
lying process is necessary. Very complex NNs can be trained
that use more than a billion trainable parameters and millions
of datasets for training on HPC architecture; see, for exam-
ple, Le (2013).

On the other hand, numerical weather forecasts are com-
putationally expensive and forecast quality reduces signifi-
cantly already after a couple of days even in the best models
available. Most processes in the Earth system are described
by non-linear differential equations with non-linear interac-
tions between Earth system components. Due to the com-
plexity and size of the Earth system and the limited capacity
of today’s supercomputers, it is necessary to make approxi-
mations when weather prediction models are formulated and
resolution is truncated in space and time. The use of lim-
ited resolution makes it necessary to parameterise processes
that are not resolved explicitly within model simulations. To
optimise parameterisation schemes a large number of param-
eters has to be tuned towards optimal model performance,
and the traceability of physical laws of the underlying pro-
cess as well as the physical interpretation for each parame-
ter is often lost during this exercise. Furthermore, to perform
weather predictions, a huge amount of data need to be pro-
cessed and assimilated to create initial conditions. This is a
process that will again cause significant errors and uncertain-
ties. Only a rather small fraction of all observations can be as-
similated into state-of-the-art weather prediction models due
to the large computational cost and simplified assumptions
required such as vanishing error correlation.

NNs have been used to post-process data from weather
forecast models to optimise predictions; see, for example,
Krasnopolsky and Lin (2012) or Rasp and Lerch (2018). NNs
have also been used for radiation parameterisation in oper-
ational forecasts at ECMWF in the past (Chevallier et al.,
1998, 2000; Krasnopolsky et al., 2005) as well as for the pa-
rameterisation of ocean physics (Krasnopolsky et al., 2002;
Tolman et al., 2005) and convection (Krasnopolsky et al.,
2013). Recently, the representation of atmospheric sub-grid
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processes using techniques from machine learning was inves-
tigated in more detail, with promising results using both NNs
(Brenowitz and Bretherton, 2018; Gentine et al., 2018; Rasp
et al., 2018) and random forest decision trees (O’Gorman
and Dwyer, 2018). For parameterisation, NNs can be trained
on observations or high-resolution model data, for example
from high-resolution simulations of the same model, simu-
lations that use super-parameterisation or large-eddy simula-
tions, with the ambition to provide better results compared
to conventional parameterisation schemes (see, for example,
Schneider et al., 2018). NN parameterisation schemes can
also be trained with input–output pairs of existing parame-
terisation schemes to emulate the behaviour and eventually
replace the parameterisation scheme within forecasts. The
latter is useful since NN parameterisation schemes that are
based on very efficient HPC libraries such as TensorFlow
(TensorFlow, 2018) for which co-designed hardware exists
will in general be much more efficient compared to conven-
tional parameterisation schemes that have a very large code
base that is difficult to optimise. Speed-up factors of up to 105

have been observed; see Krasnopolsky and Fox-Rabinovitz
(2006). It is possible that NNs may become a standard tool
to be used within the complex environment of Earth system
models to speed up specific model components or to improve
the representation of processes that cannot be represented ad-
equately by physical equations. The use of NNs in the devel-
opment of parameterisation schemes may also enable new
approaches for representing model uncertainty in ensemble
predictions.

Today many scientific groups around the world are trying
to answer the more general question that is controversial: can
forecast models that are based on deep learning and trained
on atmospheric data compete with or even beat weather and
climate models that are based on physical knowledge and the
basic equations of motion? Given the increasing number of
meteorological observations that are available to train NNs,
in particular since the beginning of the satellite era, the use
of NNs may not be limited to parameterisation schemes and
specific model components in the future. NNs may also come
to compete with existing weather forecast models as a whole
to perform actual weather predictions if observations of the
past are used for training while observations of the present
are used as input to generate forecasts. Global weather fore-
cast models that solve three-dimensional, non-linear equa-
tions may become obsolete. It can be assumed that more ob-
servations can be used for predictions in a weather forecast
system based on NNs in comparison to predictions with dy-
namical models since data preprocessing and selection could
be done by the networks and since higher resolution can be
used for predictions since NNs can be expected to be much
cheaper and easier to optimise for HPC in comparison to con-
ventional models.

NNs have been used to generate local weather predictions
(see, for example, Hall et al., 1999), and it has been shown
that NNs can be used to improve El Niño predictions of au-

toregressive integrated moving average techniques (Noote-
boom et al., 2018). However, it has yet to be shown that fore-
casts based on deep learning can compete with global oper-
ational weather forecast models, in particular in the medium
range. Answering this question is difficult since it requires
scaling up the training process of NNs to the level of com-
plexity of a large supercomputing application to allow a fair
comparison between the two approaches. In this paper we
will make the first step and discuss the potential of NNs
for global weather predictions. We base this discussion on
tests with NNs that are used to represent the equation of the
Lorenz’95 model – which is a low-complexity model to test
new approaches to atmospheric modelling – as well as a NN
toy model for global weather predictions that is trained on at-
mospheric reanalysis data. In both cases, no dynamical equa-
tions are used to update the model state. Results will be used
to identify challenges and fundamental design choices for a
forecast system based on NNs. Tests with Lorenz’95 serve
as an example for a system for which the basic equations
are known while the exact equations are unknown for the toy
model for global weather predictions.

Our tests with Lorenz’95 and the toy model for global
weather forecasts are presented in Sect. 2. Based on the re-
sults, Sect. 3 discusses challenges and fundamental design
choices for the development of forecast systems based on
NNs. Section 4 presents the conclusions.

2 Results with neural networks

Section 2.1 will present results for initial tests with the
Lorenz’95 low-complexity model that serves as a test bed for
atmospheric dynamics. We will then develop a toy model for
the global atmosphere that is used to calculate global weather
forecasts in Sect. 2.2.

NNs consist of neurons that resemble properties of neu-
rons in the brain in terms of functionality and connectivity.
In NNs, neurons are connected with each other and organised
in layers. All networks that are used in the following are se-
quential NNs that use a linear stock of layers of neurons for
which each neuron is connected to each neuron of the pre-
vious and subsequent layer, a so-called multilayer percep-
tron (MLP). Information travels from the inputs in the first
layer to subsequent layers. The outputs will leave the NN
in the output layer. The layers between the input and output
layers are called hidden layers. Each neuron is a weighted
sum over all inputs (all neurons of the previous layer) plus a
bias term (

∑N
i=1wini+b; wi are weights, b is the bias term).

An activation function is applied to the accumulated value to
represent non-linearity. During the training phase of the NN,
the weights and biases within the network are optimised by
reducing a loss function (mean absolute error for results in
this paper). We use the Keras Python library (Chollet et al.,
2015) to train and apply NNs for all results that are presented
in the following. We have tested several activation functions
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and optimisers and obtained the best results using hyperbolic
tangents as a activation function and a stochastic gradient de-
scent optimiser. Overall, 20 % of the training data is used for
validation during training. All input and output data are nor-
malised. All NNs that are used were trained for at least 200
training iterations that go through the entire dataset during
optimisation, called epochs.

2.1 Initial tests with a toy model for atmospheric
dynamics

We study the three-level Lorenz’95 model that was presented
in Thornes et al. (2017). The model extends the original two-
scaled Lorenz’95 model (Lorenz, 2006) by one more level
such that it provides flexibility regarding tests at different
resolutions in a toy model for atmospheric dynamics. The
model consists of three levels of model variables that can
be assumed to be large-scale “X”, medium-scale “Y ” and
small-scale “Z”. At each level, all degrees of freedom form a
one-dimensional ring, and the number of degrees of freedom
increases by a factor of 8 from one level to the next (8 for
X, 64 for Y , 512 for Z). Eight degrees of freedom on a finer
model level are coupled to 1 degree of freedom on the coarser
level respectively. The degrees of freedom are described by
the following differential equations:

dXk

dt
=Xk−1 (Xk+1−Xk−2)−Xk +F −

hc

b

J∑
j=1

Yj,k,

(1)
dYj,k

dt
=−cbYj+1,k

(
Yj+2,k −Yj−1,k

)
− cYj,k +

hc

b
Xk

−
he

d

I∑
i=1

Zi,j,k, (2)

dZi,j,k

dt
= edZi−1,j,k

(
Zi+1,j,k −Zi−2,j,k

)
− gZeZi,j,k

+
he

d
Yj,k. (3)

The indices i, j and k range from 1 up to I = 8, J = 8
and K = 8 for the Z, Y and X tiers. F is a large-scale forc-
ing term which determines the chaoticity of the model and
is set to 20 in the simulations of this paper, which results
in fully chaotic model dynamics. The remaining parameters
allow tuning of the frequency and amplitude of oscillation
as well as the coupling between tiers and are set to h= 1,
c = b = e = d = 10 and gZ = 1 to obtain slow oscillations
with a large amplitude in the X tier while the other two tiers
oscillate more quickly at a lower amplitude. A fourth-order
Runge–Kutta method is used to integrate the model in time
using a time step of 0.005 model time units (MTUs).

We consider a model simulation that uses all of the scales
as a “truth”. Similar to a weather prediction model that trun-
cates spatial resolution, we can mimic limited resolution in

the Lorenz’95 model by truncating the medium- and small-
scale degrees of freedom.

We have trained several NNs to predict the tendency of
the model (1Xn

k =Xn+1
k −Xn

k ) to update the state vector in
one time step. The NNs are used iteratively to make predic-
tions for more than one time step (Xm+1

k =Xm
k +1Xm

k ). To
reduce the error due to time discretisation, the calculation
of the right-hand-side tendency via the NN is coupled to a
third-order Adams–Bashforth explicit time-stepping scheme.
We use a first- and second-order scheme for the first two
time steps. The medium- and small-scale variables (Yj,k and
Zi,j,k) are not represented in the NN, neither as inputs nor as
outputs.

We use two different architectures to set up forecast mod-
els. A “global” approach uses all eight Xk variables as input
to predict the tendencies. On the other hand, a “local” ap-
proach uses Xk−2, Xk−1, Xk and Xk+1 as input to predict
a tendency for a single variable Xk . For the local approach,
the same NN is called eight times to update the entire state
vector. The pairs of training sets are separated by one model
time unit in the truth run to generate data points that are suf-
ficiently uncorrelated. We use 2 000 000 pairs of Xm+1

k and
Xm

k to train the NNs. For local NNs the information for each
variable Xk of a training set with a full state vector is used as
an independent training set.

We have performed tests with many different NN config-
urations with different layer width and number of layers. We
achieved the best results using four hidden layers between
the input and output layer with 100 neurons per layer for the
global setup and two hidden layers with 20 neurons each for
the local setup. These configurations were used in the follow-
ing.

Figure 1 shows results for the two NNs. The trajectories
that are calculated with the NNs show the typical dynamic of
a Lorenz’95 model, and it is indeed possible to generate rea-
sonable forecasts with the two models based on NNs. The er-
ror of the local NN configuration is significantly lower com-
pared to the global configuration. For comparison, we mimic
a standard forecast with limited resolution using a dynamic
model that is based on Eq. (1) (see Fig. 1b). The medium- and
small-scale variables (Yj,k and Zi,j,k) are not represented. No
sophisticated parameterisation scheme is used and the cou-
pling terms for the degrees of freedom that are not resolved
are removed with no replacement (the last terms in Eq. 1).
The standard model produces a lower forecast error com-
pared to the global NN forecast systems and a lower forecast
error for the local NN forecast system at the beginning of the
forecast. However, the error for the local NN forecast system
is lower towards the end of the forecast.

2.2 A toy model for global weather forecasts

We have developed a toy model to simulate the dynamics of
the global atmosphere that can be used for global weather
forecasts. We have focussed on the representation of geopo-
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Figure 1. (a) Example trajectory for the global and local NN as well as the truth. (b) L1 error for forecasts with the global and local NN as
well as the truncated dynamical forecast model.

tential height at 500 hPa (Z500), which is a standard field for
analysing the quality of weather forecasts. Z500 was picked
since the dependency on local conditions such as topogra-
phy is limited (in contrast to fields such as surface pressure),
since Z500 is not spotty with very strong local gradients (in
contrast to fields such as humidity or precipitation) and since
most of the important global flow pattern – such as midlat-
itude jets and a gradient between poles and Equator – are
visible.

2.2.1 General model setup

We use Z500 data of the ERA5 reanalysis dataset (ERA,
2018) for training. Reanalysis data are the state of an atmo-
spheric model with a continuous assimilation of observations
to generate the best possible picture of the global atmosphere
at a given time. The advantage of the use of a reanalysis
dataset instead of observations for training is that data are
available for each grid point at each time step and that the
data are consistent over the entire data window. However,
the use of analysis data restricts the use of the NN model to
the forecast only. A conventional data-assimilation system is
still necessary to generate initial conditions.

We use hourly data of Z500 from ERA5 for training and
map the data to a longitude–latitude grid with 6◦ resolution.
We therefore consider global snapshots of Z500 with 60×
31= 1860 grid points. Overall, 67 200 of these snapshots are
available in total in the period between 1 January 2010 and
31 August 2017.

We have tested many different NN architectures and train-
ing configurations. Some changes to the setup had a sig-
nificant influence on the quality of the toy model. We will
only present the most successful approaches in the following.
We have played around with normalised fields that would
use the anomaly field and remove the annual mean from
the data. However, we found that the use of absolute field
values achieved the best results. Similar to the NNs for the
Lorenz model, all NNs are trained with Z500 data at the full

hour (n) to predict the tendency as the difference in Z500
(1Z500= Z500n+1

−Z500n) 1 h later (n+1). This tendency
is equivalent to the right-hand side of a differential equation
in time if the time step is 1 h. The NNs are used iteratively
with a third-order Adams–Bashforth explicit time-stepping
scheme to make predictions for more than 1 h into the future.

Time was used as additional input variable for all NNs.
There is one coordinate that represents the daily cycle (grow-
ing linearly from midnight to midnight of the following day)
and one coordinate to represent the annual cycle growing lin-
early from the beginning to the end of the year with a correct
representation of leap years.

In a second set of tests, we have included 2 m temperature
(2mT) as an additional prognostic field in the NN forecast
system. ERA5 data for 2mT were retrieved and processed in
the same way as for Z500 and added as additional input and
output parameters.

2.2.2 Global and local networks

As for the Lorenz case, we present results for a global and
a local model configuration. Global networks are using all
60× 31 grid points plus the two time coordinates as input to
calculate the 60× 31 tendencies for each grid point that are
used to update the entire state vector 1 h into the future. This
process is iterated to make predictions for longer lead times.
Local networks are using a stencil of N ×N points to calcu-
late the tendency for a single grid point in the centre of the
stencil, with N being an odd integer number. This is simi-
lar to finite-difference schemes in conventional models. We
have trained NNs for different stencil sizes for the input fields
(3×3, 5×5, 7×7, 9×9). For each stencil size, the same NN
is used to update grid points in the entire domain. However,
to enable the NN to learn and represent local dynamics, we
have added the horizontal coordinates longitude and latitude
as additional input variables. The approach of a local stencil
is easy to realise, but it generates a standard problem for all
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forecast models that are based on longitude–latitude grids:
the pole requires special treatment.

To represent polar areas in local networks we have trained
a special NN to update the north and south pole of the grid.
The poles are represented by the first and last latitude band
of the grid (60 grid points for each pole but all of the points
have the same value). The special pole NN was trained with
the value of the pole plus the 60 variables of the next latitude
band as input to output the tendency to update the pole. If
we use a stencil of 5× 5 grid point inputs to update the bulk
of the grid points, we use the special pole NN to update the
poles, a 3× 3 stencil NN to update the latitude bands that
are closest to the poles and the 5× 5 stencil NN for all other
points. To use a 9× 9 stencil NN would require the use of a
7× 7, a 5× 5 and a 3× 3 stencil NN as well as the special
polar NN towards the two poles.

We have tested many different configurations of the NNs
to identify the setups that produced the best results. For the
results of the following section, we used four hidden layers
of neurons that have the same width as the input layer (1862
neurons for the global and N ×N + 4 neurons for local con-
figurations). For the NNs that use both Z500 and 2mT as in-
put, the same configuration for neurons in hidden layers was
used for the local configurations while the width of the hid-
den layers was increased to the size of the new input vector
for the global configuration and the number of hidden layers
was reduced to two.

2.2.3 Results

Figure 2 shows the global forecast error compared against the
analysis that is used for operational forecasts at ECMWF for
the local NN configuration and different stencil sizes. The
forecast error was calculated as the average of 10 forecasts
distributed equally between March 2017 and February 2018.
Some of the dates that have been used to calculate the fore-
cast error are also used when training the networks. However,
this overlap is not a problem since a different analysis dataset
has been used for initialisation. The forecast error is not very
different for different stencil sizes at the beginning of the
forecast. However, for the local networks that use the special
treatment of the area around the pole, as discussed in the pre-
vious section, the forecast error diverges for the 7×7 and the
9×9 configuration. When looking into the actual fields, it be-
came visible that this divergence is caused by chequerboard
patterns developing close to the poles. We therefore started
a second set of simulations that used the original stencil size
but kept all grid points that could not be calculated with the
largest stencil fixed throughout the forecast. These simula-
tions remained stable for much longer lead times of up to
around 2 weeks, and it is visible that the lines do not diverge
in the same way towards the end of the forecast. The dif-
ference in forecast error between the two approaches is very
small at the beginning of the forecasts.

It is likely that the instabilities that were found near the
poles could be removed using a polar filter or a relaxation of
the model fields against a reference solution. These methods
have been used to stabilise conventional grid point models
near the poles in the past. It is also possible that the pole prob-
lem can be solved via a change in the network architecture of
the NNs that are used in the vicinity of the poles. However,
a more detailed investigation of this problem is beyond the
scope of this paper.

Figure 3a shows the same global forecast error as Fig. 2
when using different methods to generate the forecasts. We
show results for forecasts with the Integrated Forecast Sys-
tem (IFS) at very coarse resolution (TL21 with 60 vertical
levels) as well as operational forecasts. The TL21 resolution
forecast uses a coarser horizontal resolution, and model data
were mapped to the 6◦ longitude–latitude grid to calculate
the forecast error. Therefore, the initial error is not zero for
the TL21 forecast. We also show the persistence forecast er-
ror when assuming that the Z500 field will not change dur-
ing the forecast window. The forecasts with local NNs beat
TL21 forecasts at the beginning of the forecast as well as the
persistence forecasts during the full 5-day period. The global
network shows little benefit compared to the persistence fore-
cast.

Figure 3b shows the global forecast error for Z500 when
2mT was added as prognostic field in the forecast system.
The quality of forecasts for Z500 did not improve in compar-
ison to the forecast system based on Z500 only.

Figure 4 shows the Z500 fields for a 1-day forecast with
a single field as well as the change in Z500 during the first
day of the forecast with the local and global NN configu-
ration. The analysis that is used for operational forecasts at
ECMWF is also presented. The Z500 fields that are gener-
ated with the NNs look healthy and reasonable after 1 day
with no obvious problems in the solution. Generated videos
that visualise the development of the field in time (attached
as a Supplement) also look very realistic for the first cou-
ple of days. The difference between the observed tendencies
and the local network is small during the first forecast day.
The global network seems to underestimate the magnitude
of changes.

3 Challenges and fundamental design choices for
forecast systems based on NNs

The results of the previous section show that it may indeed
be possible to generate global weather predictions based on
NNs for short-range prediction and at this rather course spa-
tial resolution. Whether a NN prediction system will ever be
competitive with state-of-the-art weather prediction models
remains an open question. It would certainly require a seri-
ous level of complexity with as many (or more) degrees of
freedom as conventional models. To develop such a system,
a couple of important decisions need to be made regarding
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Figure 2. Globally integrated absolute forecast error plotted against time for local NNs with different stencil size. (a) NNs that use local
networks with smaller stencil size as well as the special pole network towards the poles. (b) NNs that fix the fields close to the poles to
stabilise simulations.
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Figure 3. (a) Globally integrated absolute forecast error for the best local network (9× 9 stencil), the global network, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWF. The persistence forecast shows a 12-hourly fluctuation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.

the structure of the networks and the shape of the training
data. We can only guess how the optimal configuration of
a NN prediction system may look. This section will iden-
tify and discuss some of the important challenges and design
choices.

3.1 Local or global networks and time-stepping
schemes

Should forecasts with NNs be iterative or should they be
trained for specific lead times? Should global forecasts be
performed by a single NN that takes as many data inputs as
possible or would it be better to use many NNs that are cou-
pled together?

State-of-the-art weather forecast models use up to a billion
variables to represent the state of the Earth system. Atmo-
sphere and ocean show chaotic behaviour with scale interac-
tions that result in exponential error growth. Global weather
forecast models have skill for several forecast days into the

future and can be used for seasonal predictions. This requires
models to be able to represent complex interactions between
weather features, such as convection in the tropics that gen-
erates gravity waves to influence jet position in the midlati-
tudes. To enable forecast systems based on NNs to be com-
petitive in global weather predictions several days into the
future would require them to (1) represent all relevant scales
and features all over the globe, (2) allow scale interactions
and (3) be able to represent chains of complex interactions
between weather features.

Similar to the use of explicit or implicit time-stepping
methods for conventional models, there seem to be two ap-
proaches to achieve (1)–(3) with NNs. Either all information
is connected, such as in implicit methods, to allow large time
steps, or the connectivity of networks is local and time steps
are short, such as in explicit time-stepping schemes. The
sheer size of the Earth will make it difficult to connect all in-
formation in global networks, and if global all-to-all commu-
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Figure 4. Top: Z500 from analysis on 1 March 2017 that is used as initial conditions for forecasts. Middle: Z500 for the analysis on 2 March
for reference (left) as well as the local network and the global network configurations 1 day into the forecast (middle and right). Bottom:
difference between Z500 for the analysis on 1 and 2 March (left) as well as the difference between initialisation and after 24 h for the local
and the global network configuration (middle and right). The local network uses a 9× 9 stencil and fixed polar regions.

nication across many compute nodes of an HPC system were
required, NNs would loose much of their performance bene-
fit in comparison to conventional models on modern HPC fa-
cilities. High-resolution global networks could certainly not
be dense, meaning that all neurons between different lay-
ers are connected as in MLPs. The global networks at very
coarse resolution that were used in the paper already use a
very large number of tunable parameters in comparison to
NNs used in other disciplines due to their dense character.
To reduce the amount of trainable parameters with no loss in
scale interactions will be important.

On the other hand, local networks would need to be ap-
plied in iterative ways to allow interactions between scales
and features in predictions for longer lead times. It can be ar-
gued that the lead time needs to be adjusted to the size of the
local stencil of inputs. If local networks are used, there is an-
other decision to be made: should the same network be used
for all grid points or should different networks be used for
different locations around the globe. In this paper, we use the
same NN for all grid points. However, an approach that used
a different network for different locations could be realised

using convolutional networks that combine stencil informa-
tion locally within one of the layers but do not propagate in-
formation throughout the entire grid. This would allow us to
update a large part of the domain with a single network and to
exploit standard network configurations for image process-
ing, at least if structured grids are used. However, it would
require significant work to make sure that boundary condi-
tions are represented correctly. This approach was therefore
not tested in this paper.

Can we assume that NNs can use time steps that are as long
or longer than time steps of implicit time-stepping schemes
in conventional models? This should be possible in principle
since a complex network with global internode communica-
tion could, in an extreme case, resemble an implicit time step
of a conventional model one-to-one. However, the amount of
training data and network complexity that is necessary will
quickly become prohibitive if interactions between more and
more features and longer chains of causality are to be repre-
sented.

Results with our toy model suggest the following:
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– It is fundamentally possible to generate global weather
forecasts when connecting iterative time-stepping
schemes with NNs. This conclusion is entirely based on
very coarse resolution data and derived from assessing
the predictive skill for a variable that varies much more
slowly in space and time than, for example, precipita-
tion. However, none of the network configurations that
we tested allowed stable simulations for integrations of
more than 2 weeks into the future, and forecast skill
quickly deteriorates after a couple of days. If networks
are applied iteratively, it will be important to satisfy fun-
damental conservation properties and to stabilise simu-
lations. This is non-trivial and will require attention, in
particular if it is the aim to generate climate predictions.
It is also likely that model biases – that are difficult to
distinguish from forecast variance – will perturb predic-
tions of a NN forecast system.

– It will be difficult to train networks to make predic-
tions with long lead time with a single time step.
When we tried to train NNs to make prediction with
longer time steps than 1 h, results were degraded sig-
nificantly. A linear reduction in the time step will most
likely be required if resolution is increased, similar
to Courant–Friedrichs–Lewy (CFL) condition require-
ments for conventional models.

– Results are much better for the local approach when
compared to the global approach for both the Lorenz’95
model and the toy model for global predictions. We de-
cided to use the same network to update grid points all
over the domain instead of using special networks for
each grid point. This approach appears more promis-
ing since the resulting network is more likely to be con-
sistent with physical laws since it is trained for many
different physical situations. Local information can be
represented even if the network is used in the entire do-
main when adding spatial coordinates to the inputs. If a
customised network is used for each grid point or if a
convolutional network is used to connect local stencils,
the amount of data that are available for training is re-
duced by the number of grid points, and the representa-
tion of extreme events within the training data will often
be questionable, in particular in a changing climate.

3.2 Understanding the physical system

How far can we go using a “black box”? NNs allow us
to solve non-linear systems as a black box with no knowl-
edge of the actual physical system. There is no reason why
weather forecasts could not be generated with such a black
box. However, the work on the toy model clearly indicated
that a physical understanding is still important to improve the
NN architecture and training to perform weather predictions.

One example is the time-stepping scheme that was used.
In a first approach, we have tried to generate daily or 6-

hourly forecasts with a single step with only very limited
success. When thinking about possible problems, we remem-
bered that an explicit time-stepping scheme would require
much shorter steps at the given level of model resolution.
Due to our knowledge of the level of numerical complexity
that is required to allow weather and climate models to run at
longer time steps, we concluded that it would be much eas-
ier for the NN to learn the correct dynamics for shorter time
steps and switched the dataset from ERA Interim (Dee et al.,
2011) to ERA5 to allow training with hourly data. Results
improved significantly.

A second example relates to the preprocessing of input
and output data. Meteorological data come in very differ-
ent shapes. For example, while specific humidity seems to
be an easy quantity since it is confined to between 0 and 1,
very small values can still be very important and values can
change by orders of magnitude between the stratosphere and
the troposphere within a single vertical level; precipitation
can have very significant outliers in extreme events; fields
such as geopotential height or temperature show global gra-
dients and local features which makes it difficult to judge
whether gradients or absolute fields are important; fields such
as surface pressure depend heavily on local features such as
topography. If these fields are used as input or output for NNs
to predict weather, physical knowledge of the properties of
the fields and their connectivity will be essential to design
the optimal data preprocessing and the optimal network ar-
chitecture. It may be possible to heal shortcomings of data
preprocessing and network configurations with a brute-force
increase in data volume and training time as long as limits
in numerical precision do not remove information from data.
However, success will be limited, in particular since many
trial and error tests at large computational cost will be nec-
essary to find the optimal network configuration for complex
configurations that have the ambition to compete with con-
ventional weather forecast models.

At the given state of software and science it is very diffi-
cult for domain experts to evaluate and understand connec-
tivity of data in NNs to be in a good position to improve pre-
dictions. Networks are treated as a black box. The case of the
Lorenz’95 model is a good example. If sub-grid-scale param-
eters are ignored for the moment, the differential equations
and correct connectivity between the prognostic variables are
known. It should be possible to design and train NNs that
resemble the exact behaviour of the equation and compete
with the dynamic model. Since parameters are adjusted to
the data, networks should also be able to automatically in-
corporate parameterisation schemes for sub-grid-scale vari-
ables and to beat dynamic models that do not have parame-
terisation schemes. However, it was unclear how to project
our knowledge onto the design of the NN and the training
procedure. As a consequence, we did not manage to obtain
results that were close to optimal. However, we do not claim
that we have tested all possible options. While it is likely
that even small changes in the network setup may have im-
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proved results significantly, the parameter space that needs
to be explored to find the optimal configuration has many
dimensions (activation function, #layers, #neurons, #epochs,
#datasets, data normalisation, connectivity between neurons,
. . . ). This makes the search for the optimal configuration
cumbersome. Tests with 2mT as an additional field in the
global toy model also showed that it is difficult to relate dif-
ferent model fields to each other and that it is not sufficient
to just add input information to improve predictions. A phys-
ical understanding of connectivity and signal propagation is
much easier in conventional models that allow us to assign
a physical meaning to all parameters. To develop tools and
approaches for domain scientists to understand and improve
connectivity within complex NNs will be essential.

3.3 Data

What data should be used for training and how should they
be preprocessed? How can observational data be assimilated
to generate initial conditions for forecasts?

A vast amount of meteorological data are available that
could be used for training of forecast models. The data han-
dling system of ECMWF provides access to over 210 PB
of primary data, and the data archive of ECMWF grows by
about 233 TB per day (ECM, 2018). However, it is question-
able how much of this data can actually be used for training,
and the numbers shrink substantially depending on choices
regarding network architecture and the selection of training
data.

If unfiltered observational data are used as input for net-
works, biases between different observation systems need to
be addressed and networks need to be robust against miss-
ing or faulty input data. In a first step, it would probably be
necessary to use data from a small number of sources that
provide a continuous spatial coverage rather than a moving
data window. Even if, for example, all satellite data could
be used for training, such data would only be available for a
couple of decades.

It is also questionable how much data can actually be used
given that the climate of the Earth is constantly changing and
in particular given the rapid changes due to anthropogenic
climate change. This will also decrease the time frame for
which data can be used for training since we cannot expect
a model that is trained as a black box to provide reliable
predictions if the underlying climate state has changed and
if events that have never happened in the training data start
to happen in the real world, such as an ice-free Arctic dur-
ing summer. Conventional models show significant biases in
long-term simulations. These biases will also be a problem
for models based on NNs and may change the local “climate”
within a couple of days of simulations and push the network
to weather regimes that were not covered by the training data.

For a model that is based on physical principles, it can be
assumed that changes in the general circulation or the fre-
quency and shape of extreme events due to climate change

can be represented correctly, at least within limits. Local net-
works that are trained to represent the dynamics at all grid
points, as in the toy model, will be better suited for simu-
lations in a changing climate compared to networks that are
trained for local conditions at each grid point since they have
been trained in the context of a different local climate.

Existing weather and climate models could be used to gen-
erate a shear unlimited amount of training data to train a
forecast system based on NNs also for a changing climate.
Reanalysis data that were used for the toy model could be
used as well. However, the quality of the existing models and
the assimilation system would limit the quality of predictions
with the NN forecast system, reducing the advantage of the
deep-learning approach. Tests with the toy model clearly in-
dicate that it will require data with very high temporal reso-
lution to develop a NN forecast system that can run at high
resolution, similar to the length of time steps in conventional
models, which will not be available in standard reanalysis
datasets or for standard long-term model integrations and re-
quire a very large data system.

The results with the toy model suggest that it is difficult
enough to develop forecast models if consistent data with full
spatial coverage are used for training. This suggests starting
investigations towards a NN forecast system with reanalysis
or model data which is less noisy and more consistent when
compared to real-world observations. If it is possible to repli-
cate the dynamics of the model in sufficient detail, more dif-
ficult tasks such as the use of real observations as input can
be addressed.

4 Conclusions

We have developed a toy model based on NNs to gener-
ate global weather forecasts. The toy model does not use
any dynamical equation of motion. The model is based on
a 6◦ longitude–latitude grid and represents Z500 as the only
model field. We show that it is indeed possible to make pre-
dictions into the future that are better than a simple per-
sistence forecast and are competitive with forecasts of very
coarse-resolution (TL21) atmosphere models of similar com-
plexity at least for short lead times. We did not intend to build
a model that can be competitive with operational weather
forecast models. However, we use the toy model to identify
challenges and to indicate fundamental design choices that
may lead to optimal results for forecast systems based on
NNs.

While the use of deep-learning techniques is often dis-
cussed as being a silver bullet to represent non-linear sys-
tems, it has yet to be shown whether weather forecast sys-
tems based on NNs can be competitive compared to con-
ventional models in particular for global forecasts, for longer
time ranges than 1 day and across the wide range of physical
parameters that are provided by numerical models with phys-
ical consistency. The experience with the toy model suggests
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that there will be no free lunch. While NNs can, in principle,
be used as a black box, the development of a weather forecast
system will require domain knowledge about the Earth sys-
tem. Close collaborations between computer scientists and
meteorologists will be essential even if petabytes of training
data and exascale supercomputers are available. A deep un-
derstanding of how to use physical knowledge of the Earth
system and the connectivity between degrees of freedom to
improve the development of network architectures and net-
work training and how to preserve conservation properties
will be required.

The development of a NN forecast model that is based on
a model grid as discussed in this paper will face similar chal-
lenges when compared to the development of conventional
models such as the complexity of the Earth system with non-
linear interactions between model components, scale interac-
tions, exponential growth of errors in initial conditions, nu-
merical instabilities and the discrete representation of model
fields on the sphere (leading to the pole problem in our toy
model), the treatment of conservation properties, model bi-
ases in long-term simulations, errors in observations, and in-
sufficient data coverage of observations. On the one hand,
it is likely that NN models could make better use of future
computing hardware and use more observations and higher
resolution. On the other hand, it is also likely that it will
be difficult to stabilise long-term integrations (in particular
in a changing climate) and to represent complex interactions
between model features in long simulations since it will be
hard to improve physical consistency within networks. For
NN forecast systems that try to describe the evolution of the
atmosphere based on grid points after learning the right-hand
side of the equations of motion from data, it therefore seems
obvious to focus on short-term forecasts and potentially also
regional predictions in a first approach. It will be difficult
for these models to compete with conventional models in
medium- and long-range weather forecasts and climate pre-
dictions. However, the same statement may not be true for
other applications of NNs that do not propagate the full at-
mosphere to make long-term forecasts but rather focus on
predictions of large-scale flow patterns such as El Niño and
weather regimes (see, for example, Nooteboom et al., 2018).
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