
Geosci. Model Dev., 11, 3557–3586, 2018
https://doi.org/10.5194/gmd-11-3557-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

C-Coupler2: a flexible and user-friendly community coupler for
model coupling and nesting
Li Liu1,2, Cheng Zhang1,2, Ruizhe Li1,2, Bin Wang1,2,3, and Guangwen Yang1,2

1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing, China
2Joint Center for Global Change Studies (JCGCS), Beijing, China
3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence: Li Liu (liuli-cess@tsinghua.edu.cn) and Cheng Zhang (zhangc-cess@tsinghua.edu.cn)

Received: 1 February 2018 – Discussion started: 12 February 2018
Revised: 29 July 2018 – Accepted: 3 August 2018 – Published: 31 August 2018

Abstract. The Chinese C-Coupler (Community Coupler)
family aims primarily to develop coupled models for weather
forecasting and climate simulation and prediction. It is tar-
geted to serve various coupled models with flexibility, user-
friendliness, and extensive coupling functions. C-Coupler2,
the latest version, includes a series of new features in ad-
dition to those of C-Coupler1 – including a common, flex-
ible, and user-friendly coupling configuration interface that
combines a set of application programming interfaces and a
set of XML-formatted configuration files; the capability of
coupling within one executable or the same subset of MPI
(message passing interface) processes; flexible and auto-
matic coupling procedure generation for any subset of com-
ponent models; dynamic 3-D coupling that enables conve-
nient coupling of fields on 3-D grids with time-evolving ver-
tical coordinate values; non-blocking data transfer; facilita-
tion for model nesting; facilitation for increment coupling;
adaptive restart capability; and finally a debugging capabil-
ity. C-Coupler2 is ready for use to develop various coupled
or nested models. It has passed a number of test cases in-
volving model coupling and nesting, and with various MPI
process layouts between component models, and has already
been used in several real coupled models.

1 Introduction

Couplers, which can handle data interpolation and data trans-
fer between different models and different grids, have been
widely used to develop coupled models for fields such as
weather forecasting and climate simulation and prediction.
The Community Coupler (C-Coupler) family was initiated
in 2010 in China. It aims to flexibly serve various coupled
models with a user-friendly interface and to provide exten-
sive coupling functions to complement the ever increasing
number of coupled models being developed and used in
China. To this end, the first version (C-Coupler1; Liu et al.,
2014) included features such as flexible coupling configura-
tion based on configuration files and a 3-D coupling capabil-
ity. Two coupled models were built using C-Coupler1. The
first is a coupled climate system model version FGOALS-
gc (Liu et al., 2014) that was built by replacing the origi-
nal coupler CPL6 (Craig et al., 2005) used in the CMIP5
(Coupled Model Intercomparison Project, Phase 5) model
FGOALS-g2 (a grid point version of the Flexible Global
Ocean–Atmosphere–Land System model; Li et al., 2013a) by
C-Coupler1. FGOALS-gc can achieve exactly the same (bit-
wise identical) simulation results as FGOALS-g2, and was
further used in several Chinese research projects. The second
is a regional coupled model FIO-AOW (Zhao et al., 2017)
that consists of an atmosphere model WRF (Weather Re-
search and Forecasting model; Wang et al., 2014), an ocean
model POM (Princeton Ocean Model; Wang et al., 2010),
and a wave model MASNUM (MArine Science and NUmer-
ical Modeling; Yang et al., 2005). FIO-AOW employs both 2-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3558 L. Liu et al.: C-Coupler2

D and 3-D coupling, where the coupling from MASNUM to
POM includes a 3-D field, the wave-induced mixing coeffi-
cient (Qiao et al., 2004). FIO-AOW has been used in research
to improve typhoon forecasting (Zhao et al., 2017). These
coupled models demonstrate that C-Coupler1 can be used for
different coupling configurations. C-Coupler1 demonstrates
the feasibility of the general design of C-Coupler, although
as the first version, it does not fully achieve all our targets and
still has some limitations. A significant limitation is that C-
Coupler1 is not sufficiently user-friendly. To construct a cou-
pled model with C-Coupler1 requires much effort to prepare
the configuration files in ASCII format. For example, there
are about 2500 and 700 lines in the configuration files for
FGOALS-gc and FIO-AOW, respectively. With such a limi-
tation, C-Coupler1 did not achieve wide usage.

The next version, C-Coupler2, includes not only increased
coupling function support but also flexibility and user-
friendliness. It is now ready for use and has passed hundreds
of test cases based on a sample coupled model and several
real coupled models. Compared with C-Coupler1 or even
other existing couplers, C-Coupler2 has the following new
features.

1. A common, flexible, and user-friendly coupling con-
figuration interface that combines a set of application
programming interfaces (APIs) and a set of configu-
ration files in XML format. This interface enables the
user to flexibly and conveniently specify or change cou-
pling configurations including the component models
used in a coupled model, the time step of each com-
ponent model, model grids, parallel decompositions on
model grids, coupling frequencies, coupling lags be-
tween component models (given two component mod-
els that are coupled, they can have different model times
in a coupling exchange), the fields to be coupled, the
data type of coupling fields, coupling connections be-
tween component models, and coupling procedure gen-
erations. Remapping configurations are also modifiable:
the user can either use the remapping weights that are
read from an existing remapping weight file produced
by software tools such as SCRIP (Jones, 1999), ESMF
(Hill et al., 2004), YAC (Hanke et al., 2016), and CoR1
(Liu et al., 2013) or use remapping weights that are au-
tomatically generated by C-Coupler2 in parallel.

2. Coupling within one executable or the same subset of
MPI (message passing interface) processes. The com-
ponent models that are coupled together can be in either
multiple executables or in one, and can fully or partially
share the same subset of MPI processes. Different pro-
cesses in the same component model can also be cou-
pled with C-Coupler2.

3. Flexible and automatic coupling procedure generation.
In a coupling procedure generation, the coupling gener-
ator can automatically detect existing component mod-

els in the coupled model, detect possible coupling con-
nections within a subset of component models, and gen-
erate a coupling procedure for each coupling connec-
tion. A coupling procedure can include a set of op-
erations such as data transfer, data interpolation, data
type transformation, and data averaging when necessary
(please refer to Sect. 4.3 for details). Multiple coupling
procedure generations can be performed for a coupled
model, and a coupling procedure generation can be per-
formed for any subset of component models.

4. Dynamic 3-D coupling capability. This allows for con-
venient coupling of fields between two 3-D grids, ei-
ther of which has variable vertical coordinate values that
change in time integration.

5. Non-blocking data transfer. It is implemented with
two-sided MPI communication (i.e., MPI_Isend and
MPI_Irecv) by default, and with one-sided MPI com-
munication (i.e., MPI_put and MPI_get) as an addi-
tional option to enable flexible setting of coupling lags
and to minimize potential deadlocks.

6. Facilitation for model nesting. C-Coupler2 facilitates a
regional model (either a component model or a coupled
model constructed with a coupler) to be nested (either
one way or two ways) into itself or another model with-
out significant changes to the model codes, and can en-
able different grid domains in a nested system to be in-
tegrated simultaneously for better parallel performance.

7. Facilitation for incremental coupling. An existing cou-
pled model using any coupler can be used as a compo-
nent model by C-Coupler2, which employs the compo-
nent models of the existing coupled model as its child
components. Thus, an existing coupled model can be
coupled with another model (either itself as a single
component model or a coupled model) to make a big-
ger coupled model, where only the new model coupling
through C-Coupler2 is required to be newly developed,
without changes to the original coupling in the existing
coupled model.

8. Adaptive restart capability. It can adaptively achieve ex-
act (bitwise identical) restart for coupling fields no mat-
ter the setting of coupling lags and no matter the im-
plementation of coupling. It also provides support for
model fields and can automatically determine a right
model time for restarting a “continue” run.

9. Debugging capability. A series of implementations in
C-Coupler2 enable it to alert the user, as early as pos-
sible, to the potential risks of constructing or using a
coupled model, and guide the user to fix the errors in
model codes and configuration files.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3559

Figure 1. Original software design of C-Coupler (from Liu et al.,
2014).

The remainder of this paper is organized as follows. We
briefly review C-Coupler and C-Coupler1 in Sect. 2, in-
troduce the motivation for the development of C-Coupler2
in Sect. 3, describe the implementation of C-Coupler2 in
Sect. 4, evaluate C-Coupler2 in Sect. 5, and briefly summa-
rize this paper and discuss the future work in Sect. 6.

2 Brief review of C-Coupler and C-Coupler1

The general goal of C-Coupler includes two key aspects.
First, C-Coupler can serve various coupling configurations
in different coupled models. For example, C-Coupler works
as a library and can be used to develop a centralized cou-
pler component for a coupled model and can also achieve
model coupling between component models without a sep-
arate coupler component. Second, a component model only
tells C-Coupler which fields it can provide and which fields
it wants to obtain from a coupled model, without caring
about where the fields it wants are from (i.e., from specific
data files or from specific component models) and where the
fields it can provide will be transferred to. Thus, a compo-
nent model can have an identical code version in coupled
models with different coupling configurations. This general
goal can be achieved through C-Coupler’s original software
design (Fig. 1), which consists of a coupling configuration
system, a coupling generator, and a runtime software sys-
tem. The runtime software system works a common, flex-
ible, and extendable library that includes various coupling
functions or can even integrate external calculation routines
to serve various coupling configurations. The configuration
system defines common rules for describing various coupling
configurations. Besides the coupling configuration of com-
ponent models and coupled models, the configuration sys-
tem includes a runtime configuration, which describes de-
tailed coupling procedures corresponding to a coupling con-
figuration. This is the input of the runtime software system.
The coupling generator can automatically generate the run-

Figure 2. C-Coupler1 software structure.

time configuration, facilitating the construction of a coupled
model.

The first version, C-Coupler1, was not developed with the
aim of achieving the full software design in Fig. 1, but only
with a focus on the runtime software system and the runtime
configuration (Fig. 2). To describe the runtime configuration,
a set of ASCII configuration files were designed. Besides the
traditional coupling functions of data transfer and data inter-
polation for 2-D coupling, the runtime software system of C-
Coupler1 can integrate external calculation routines and has
a 3-D coupling capability that enables convenient coupling of
fields between different 3-D grids. To achieve simultaneous
2-D and 3-D coupling, remapping software CoR1 was devel-
oped and included in C-Coupler1. CoR1 can effectively man-
age 1-D, 2-D, and 3-D grids, and can interpolate the fields
on such grids, where the 3-D interpolation is performed in
a “2-D+ 1-D” manner (“2-D” corresponds to interpolation
between horizontal sub-grids, and “1-D” corresponds to in-
terpolation between vertical sub-grids).

3 Motivation

We considered the following motivations when designing
and developing C-Coupler2.

3.1 Coupling configuration

The runtime configuration in C-Coupler1 is almost fully
based on configuration files, which can improve flexibility in
specifying or changing the coupling configuration, but their
overuse may significantly lower user-friendliness. For ex-
ample, many changes to configuration files are required for
changing coupling frequencies based on C-Coupler1. More-
over, overuse of configuration files can cause problems. Con-
figuration files can be inconsistent with the configuration
information determined by the model codes. For example,
C-Coupler1 will read in the time step of each component
model from the runtime configuration files, while the user
can change the time step of a component model through the
namelist file or the model codes. C-Coupler1 must read in

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3560 L. Liu et al.: C-Coupler2

each model grid through a grid data file managed by the
runtime configuration, while a model grid of a component
model can be generated by the model code or read from a
grid data file that is not managed by the runtime configura-
tion. To avoid problems resulting from such inconsistencies,
extra effort is required to develop code to detect them, and
the user will have to fix the corresponding configuration files
when an inconsistency is detected.

Therefore, C-Coupler2 should not allow configuration
files to include any configuration information determined by
component models, and it should provide flexible APIs to
enable component models to specify various coupling con-
figuration information flexibly. Considering various kinds of
component models, the configuration system should have
commonality in, for example, supporting various kinds of
component models and model grids. Considering the low
readability of the ASCII format, another format with better
readability should be used to design the configuration files.

3.2 Coupling within one executable or a subset of MPI
processes

Similar to CPL6, C-Coupler1 requires each component
model to have its own executable. However, there are in-
creased requirements for coupling within one executable or a
subset of MPI processes. For example, CESM (Community
Earth System Model; Hurrell et al., 2013) has the component
models and driver containing the coupler CPL7 (Craig et al.,
2012) enclosed in a unique executable, and any two differ-
ent component models can run on non-overlapping, partially
overlapping, or overlapping MPI processes. The rapid expan-
sion of model codes requires modularization to guarantee the
quality of the models’ software, and a coupler can be used to
achieve this when it can support coupling between different
procedures in the same component model.

3.3 Dynamic 3-D coupling

Atmospheric chemistry modeling is becoming increasingly
important for simulating air quality and climate. Such mod-
eling strongly depends on meteorological fields, and can be
included as an internal package in an atmosphere model
where the atmospheric chemistry package generally uses the
same 3-D grid as the model. The rapid development of at-
mospheric chemistry modeling has led to stand-alone atmo-
spheric chemistry models, such as GEOS-Chem (Long et al.,
2015), which read in meteorological fields from data files
that can be produced by various atmosphere models. As in-
creasing numbers of atmosphere models require the time-
variant aerosol concentration, which can be produced by at-
mospheric chemistry modeling, there is increasing demand
for two-way coupling between an atmosphere model and a
stand-alone atmospheric chemistry model. Even if an atmo-
sphere model includes an atmospheric chemistry package,
considering that atmospheric chemistry modeling generally

is very time consuming, it might run with a lower resolution.
Overall, there is increasing demand for 3-D coupling be-
tween atmosphere models and atmospheric chemistry mod-
els (or packages) with different 3-D grids.

Despite its 3-D coupling capability, C-Coupler1 might fail
to handle the 3-D coupling between an atmosphere model
and an atmospheric chemistry model, because it requires the
3-D grids to be constant throughout the whole simulation,
whereas the terrain-following pressure coordinates that are
widely used in atmosphere models and atmospheric chem-
istry models make the vertical coordinate values of 3-D grids
change with the surface pressure in time integration. In this
paper, we call 3-D coupling on constant grids “static 3-D
coupling” and 3-D coupling on the 3-D grids with time-
variant vertical coordinate values “dynamic 3-D coupling”.
A coupler having a dynamic 3-D coupling capability will be
much more capable of achieving coupling between an atmo-
sphere model and an atmospheric chemistry model (or pack-
age).

3.4 Coupling procedure generation

Model coupling is generally achieved through coupling pro-
cedures that consist of operations such as data transfer, data
interpolation, data averaging, data type transformation, etc.
Some existing couplers require the user to explicitly de-
velop all coupling procedures. This is inflexible and not user-
friendly enough, because the user must modify the model
code, perhaps even significantly, when developing a new cou-
pled model or changing coupling configurations. The coupler
OASIS (Redler et al., 2010; Valcke, 2013; Craig et al., 2017)
is more flexible and user-friendly in this regard, because it
can automatically generate coupling procedures.

To make C-Coupler2 flexible and user-friendly, it should
also include a coupling generator capable of automatically
generating coupling procedures. In fact, a coupling generator
has already been considered in the original software design
of C-Coupler.

3.5 Non-blocking data transfer

Data transfer enables a sender to transfer a set of coupling
fields to a receiver. A data send/receive operation is block-
ing when it does not return until the communication is fin-
ished (i.e., the receiver has successfully received the data),
while a non-blocking operation can return immediately be-
fore the communication is finished. In a two-way coupled
model, a component model always executes both data send
and receive operations. As mentioned above, C-Coupler aims
to enable a model to have identical code versions in differ-
ent coupled models, so the order of data send and data re-
ceive operations in a component model can remain the same
in different coupled models. To avoid potential deadlocks,
we recommend to execute data send operations as early as
possible and execute data receive operations as late as possi-

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3561

Figure 3. Example of model coupling between two component
models: deadlocks occur when blocking data send/receive opera-
tions are used.

ble. Specifically, in the initialization stage or at a time step,
data send operations should occur before data receive opera-
tions. Figure 3 shows an example of model coupling between
two component models, in each of which the data send oper-
ation is executed before the data receive operation at each
time step. During blocking data send operations, the data
send operations in both component models cannot return,
because the corresponding data receiving operations subse-
quent to the data send operations will never be executed,
leading to a deadlock. Similarly, blocking data send opera-
tions can also introduce deadlocks to model coupling within
the same component model. Therefore, non-blocking data
transfer is highly desirable for developing C-Coupler2.

3.6 Model nesting

Model nesting generally involves nesting a small grid do-
main with finer resolution into a larger grid domain with
coarser resolution. This approach has been widely used
in weather forecasting and climate simulation to achieve
higher-resolution simulations in key grid domains, without
significantly increasing the computational cost. Generally,
a regional model can be nested into another model so that
different grid domains are simulated by different models,
while some models such as WRF have a self-nesting capabil-
ity, where different grid domains are simulated by the same
model. Although WRF and its self-nesting capability have
been widely used, the corresponding software implementa-
tion has a number of limitations. First, a data structure that
can simultaneously manage the fields on different grid do-
mains and a driver that orders initialization and integration
among different grid domains are implemented in WRF. For
a regional model without a self-nesting capability, significant
code changes in the data structure and driver are required to
achieve the self-nesting capability. Second, all grid domains
must use the same set of MPI processes for integration, so
that grid domains must run one by one, not simultaneously.
Such an implementation can limit parallelism as well as scal-
ability to the grid domains with fewest grid cells, and will
also waste the parallelism between different grid domains.

Model nesting will introduce field exchange between the
same type of component models on different grid domains.

As such field exchange generally includes data transfer and
data interpolation that are the fundamental functions of a
coupler, model nesting can potentially benefit from couplers.
If each domain in model nesting can be treated as a com-
ponent model in model coupling, a regional model can easily
achieve self-nesting with its original data structure only man-
aging the fields on one grid domain, and different domains
can be integrated simultaneously on different sets of MPI
processes for higher parallelism and better parallel efficiency.
To aid in the nesting of a regional coupled model (e.g., a
regional ocean–atmosphere coupled model) to itself or an-
other coupled model, couplers can serve the field exchanges
both between the same type of component models on differ-
ent grid domains and between different types of component
models on the same grid domain.

3.7 Incremental coupling

Building a new coupled model version involves either di-
rectly coupling a set of component models together or up-
dating an existing coupled model through coupling external
component models or replacing some component models.
Such updating of an existing coupled model is here called
“incremental coupling”. Directly coupling many component
models together is difficult and possibly unwise, because it
requires much effort in software implementation, software
testing, scientific testing, etc., while incremental coupling
is always better when a suitable existing coupled model is
available. However, incremental coupling may still face some
technical challenges when the existing coupled model and
the component models to be coupled have different soft-
ware frameworks. For example, He et al. (2013) success-
fully nested WRF into CESM, where both the main driver
of CESM and the driver of WRF were modified to enable
CESM to drive the integration of WRF and so achieve ef-
fective nesting. Successful incremental coupling can give a
new coupled model that may become a new code version
corresponding to the original coupled model. Further devel-
oping the original and the new coupled model in separate
code version branches can lead to conflicts when trying to
merge the two branches. For example, following the work of
He et al. (2013), the main driver of CESM in the original
code version branch (managed and maintained by the Na-
tional Center for Atmospheric Research, NCAR) was signif-
icantly changed without considering WRF nesting, leading to
much further work being required to re-nest the latest version
of WRF into the latest version of CESM.

As C-Coupler aims to enable a model (either a component
model or a coupled model) to have an identical code version
in different coupled models (i.e., a model can have the same
code in different coupled models after incremental coupling),
C-Coupler should be able to facilitate incremental coupling.

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3562 L. Liu et al.: C-Coupler2

Figure 4. C-Coupler2 software structure.

3.8 Restart capability

A component model generally has the capability of exactly
restarting a simulation run from a checkpoint that was pro-
duced in a previous run. To make a coupled model achieve
an exact restart capability, besides each component model,
all coupling procedures should also have an exact restart ca-
pability. A lot of effort will be required for users to directly
develop an exact restart capability of coupling procedures
and new effort will be further required after updating cou-
pling procedures. To improve user-friendliness and to enable
a model to have an identical code version in different coupled
models, C-Coupler2 should be able to automatically achieve
an exact restart capability of coupling procedures, without
requiring users to develop specific code for different coupled
models.

3.9 Debugging capability

Models can behave anomalously where their run exits due to
an error but without giving a report. In such a case, the corre-
sponding simulation setting might be abandoned and another
tried, or much effort might be expended locating and fixing
the model code segment corresponding to the abnormal exit.
Fixing an error is not easy, because it can easily and quickly
propagate throughout a component model and from one com-
ponent model to another through a coupler.

C-Coupler2 aims to facilitate software debugging for
model coupling. Specifically, C-Coupler2 should promptly
report an error after an abnormal exit, and the error report
should effectively help to locate the code segment or configu-
ration file that requires fixing. Moreover, C-Coupler2 should
thoroughly examine its inputs to avoid the propagation of er-
rors.

4 Design and implementation of C-Coupler2

Similar with OASIS3-MCT (Craig et al., 2017), C-Coupler2
also works as a library without a driver layer and is driven by
calls from the models. As the second version of C-Coupler,
C-Coupler2 is guided by the family’s general coupling archi-
tecture (Fig. 1), so it should be applicable to various coupled
models and enable a model to have an identical code version
in different coupled models. These considerations influenced
the design of the software structure of C-Coupler2 (Fig. 4),
which consists of a coupling configuration interface, a cou-
pling generator, and a set of function modules. This soft-
ware structure is similar to the original software design of
C-Coupler (Fig. 1), but has the following differences.

1. The original software design of C-Coupler has the cou-
pling generator as a stand-alone tool that produces the
runtime configuration files that drive the runtime soft-
ware system. However, C-Coupler2 works as a com-
mon and flexible library (which can be viewed as the
runtime software system), and the coupling generator is
an internal program of the library. The coupling gen-
erator does not produce runtime configuration files, but
directly uses the function modules to generate coupling
procedures. Such a design can save redundant code de-
velopment related to runtime configuration files.

2. Coupling procedure generation in the original software
design of C-Coupler fully depends on the offline con-
figuration files that are managed by the configuration
system. In C-Coupler2, coupling procedure generation
depends on the coupling configuration information ob-
tained by the coupling configuration interface via online
API calls and offline configuration files.

3. C-Coupler2 does not include functions to support in-
tegrating external algorithms. This will be further dis-
cussed in Sect. 6.

In detail, the function modules of C-Coupler2 include
managers for non-blocking data transfer, component mod-
els, grids, remapping functions, restart capability, parallel de-
composition, model time, coupling field instances, coupling
interfaces, and debugging capability. The non-blocking data
transfer manager manages a set of runtime data transfer al-
gorithms, each of which is responsible for the non-blocking
transfer of a set of coupling fields within a component model
or between two different component models. The component
model manager handles basic information (e.g., name, type,
MPI processes) about the component models registered to C-
Coupler2. The grid manager manages model grids registered
to C-Coupler2; similar to the grid manager in C-Coupler1,
it also utilizes CoR1 to support various types of grid with
dimensions from 1-D to 4-D. The remapping manager con-
trols a set of runtime remapping algorithms, each of which
interpolates a set of coupling fields from one grid to another.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3563

Similar to the remapping manager in C-Coupler1, it also uti-
lizes CoR1 to achieve data interpolation between any kind of
grid with dimensions from 1-D to 4-D. It has been further
upgraded to support dynamic 3-D interpolation. The restart
manager achieves the adaptive restart capability that enables
each component model as well as the whole coupled model
to conveniently achieve exact restart. The parallel decompo-
sition manager oversees parallel decompositions on model
grids. Similar to C-Coupler1, each parallel decomposition
must be on a 2-D horizontal grid that has been registered
to C-Coupler2, while the parallel decomposition on vertical
grids remains unsupported. The coupling field instance man-
ager supervises a set of coupling field instances registered
by component models or used by C-Coupler2 internally. The
coupling interface manager operates a set of coupling inter-
faces, each of which imports, exports, or remaps a set of cou-
pling fields. The time manager manages the model time of
each component model and manages a set of timers. A timer
can be used to control the time to execute a coupling inter-
face and to control lag in model coupling. The debugging
manager enables C-Coupler2 as well as component models
to flexibly report log information or errors.

We will further introduce here the design and implemen-
tation related to each main feature of C-Coupler2, including
the common, flexible, and user-friendly coupling configura-
tion interface; coupling within one executable or a subset of
MPI processes; flexible and automatic coupling procedure
generation; dynamic 3-D coupling capability; non-blocking
data transfer; facilitation for model nesting; facilitation for
incremental coupling; and a debugging capability. Moreover,
we will list out some default options for using C-Coupler2.

4.1 Common, flexible, and user-friendly coupling
configuration interface

The coupling generator of C-Coupler2 can automatically
generate coupling procedures for model coupling and nest-
ing. As it takes coupling configuration information as its in-
put, the coupling configuration interface should be able to
obtain sufficient information for successful coupling proce-
dure generation. Moreover, the constitution of the coupling
configuration information determines the flexibility of spec-
ifying coupling configurations, and more types of coupling
configuration information generally means greater flexibility
of C-Coupler2. Finally, the coupling configuration informa-
tion of C-Coupler2 includes the following.

1. Basic information about each component model, includ-
ing the model name, model type, the parallel setting
(i.e., the MPI processes that are involved in running the
component model), and the relationship with other com-
ponent models. To facilitate incremental coupling, an
existing coupled model with any coupler can be referred
to C-Coupler2 as a component model, and a component
model of the existing coupled model can be further re-
ferred to C-Coupler2 as a child component model. For

a component model with self-nesting capability within
one executable, one grid domain can be employed as
a component model and a smaller grid domain directly
nested to it can be used as its child component model.
Different component models can share common MPI
processes.

2. Coupling connections. Model coupling by C-Coupler2
can be viewed as a set of data flows, each of which
couples a set of coupling fields provided by a compo-
nent model to a component model that uses these fields
– possibly the same component model, as C-Coupler2
supports coupling within one component model. Here
we call such a data flow a “coupling connection”. The
coupling generator can automatically detect all possible
coupling connections, while the user can also specify
some coupling connections with higher priority.

3. Attributes of coupling fields. Coupling fields are distin-
guished using field names. All component models in C-
Coupler2 share the same name space of the coupling
fields as well as the default attributes corresponding to
each field name.

4. Model grids. A coupling field is either a scalar variable
or is associated with a model grid. A model grid may
be vertical or horizontal, or a 3-D grid consisting of a
horizontal grid and a vertical grid. There might be some
relationship between two grids, e.g., a horizontal or ver-
tical grid can be a sub-grid of a 3-D grid.

5. Decomposition of grid domain for parallelization. To
accelerate modeling on a modern high-performance
computer with many processor cores, a grid domain in a
component model is generally decomposed into a num-
ber of subdomains, each of which is assigned to an MPI
process for parallel integration. We call this “parallel de-
composition”.

6. Coupling field instances. A coupling field generally has
multiple instances in a coupled model. First, different
component models can produce or use the same cou-
pling field. For example, when all grid domains in self-
nesting WRF are registered as component models in C-
Coupler2, they can produce the same coupling fields
(e.g., precipitation), where each component model has
its own coupling field instances. Second, a given com-
ponent model can have different instances of the same
coupling field due to different model grids or different
parallel decompositions on the same model grid. For ex-
ample, a component model can interpolate a coupling
field from a source grid to a target grid, which means
that this coupling field has two separate instances: one
on the source grid and one on the target grid.

7. Conducting coupling field instances. A component
model can export coupling field instances to the coupled

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3564 L. Liu et al.: C-Coupler2

model, import coupling field instances from the coupled
model, or remap its own coupling field instances on a
source grid to the coupling field instances on a target
grid.

8. Coupling frequencies. A component model can specify
the frequency at which it exports, imports, or remaps the
coupling field instances. Different coupling frequencies
might be needed in different simulations, e.g., model
coupling can be more frequent when the resolution in-
creases.

9. Model time. C-Coupler2 manages model time infor-
mation for each component model to control model
coupling in the time integration of the whole coupled
model. It uses a separate and unique time manager for
each active component model. The coupling frequencies
should be consistent with the model time. For example,
a coupling frequency should be a positive integer multi-
ple of the time step of the corresponding model.

10. Remapping configurations. Most existing couplers, in-
cluding C-Coupler1, enables the user to specify how to
remap a set of fields from a source grid to a target grid,
e.g., using the offline remapping weights read from an
input data file produced by a remapping software tool
or using the online remapping weights produced by the
coupler (if supported).

11. Shared input parameters for a model run. C-Coupler
will require shared input parameters for a model run,
such as case information of the model run, the start time
of the model run, how to stop the model run, and the
frequency at which to write restart files.

The above coupling configuration information can be clas-
sified into two categories: private coupling configuration
information of a component model (including information
about the component model, model grids, parallel decom-
positions, coupling field instances, conducting coupling field
instances, coupling frequencies, and model time) and pub-
lic coupling configuration information shared by compo-
nent models (including coupling connections, attributes of
coupling fields, and shared input parameters for a model
run). Considering the motivation for coupling configuration
(Sect. 3.1), we design a set of C-Coupler2 APIs to enable
a component model to flexibly specify its private coupling
configuration information through model codes, and design
a set of configuration files for flexibly specifying the pub-
lic coupling configuration information. Although the remap-
ping configurations can be either private or public (the source
and target grid used in data remapping may belong to the
same or different component models), we only design the
corresponding configuration file to guarantee a unique way
to specify remapping configurations.

We introduce in this section the implementation of the cou-
pling configuration interface for each kind of configuration
information.

4.1.1 C-Coupler2 APIs

This subsection will briefly introduce each kind of C-
Coupler2 API. For examples of using C-Coupler2 APIs to
implement coupled models, please refer to Sect. S1 of the
Supplement.

APIs for component model management

To couple component models running on non-overlapping,
partially overlapping, or overlapping subsets of MPI pro-
cesses, C-Coupler2 allows a component model to run on any
subset of MPI processes. Therefore, the coupler can support
almost any kind of MPI process layout among the compo-
nent models. Figure 5 shows an example of a complex MPI
process layout: comp1, comp2, and comp3 do not share any
MPI process; comp4 runs on a proper subset of the MPI
processes of comp1; comp8 runs on all MPI processes of
comp2; and comp4 and comp5 partially share some MPI pro-
cesses. Moreover, there are relationships between the com-
ponent models in Fig. 5: comp1 is the parent of comp4 and
comp5; comp5 is the parent of comp6 and comp7; and comp2
is the parent of comp8. In C-Coupler2, a component model
must cover all MPI processes of its children (e.g., comp1 in
Fig. 5 includes all processes of comp4 and comp5). A compo-
nent model without a parent is a root component model (e.g.,
comp1, comp2, and comp3 in Fig. 5 are root component mod-
els). Each MPI process must belong to a unique root compo-
nent model (e.g., each process in Fig. 5 only belongs to one
of comp1, comp2, or comp3), i.e., all root component mod-
els cover all MPI processes without sharing any MPI process
with each other. This constraint seems contradictory to the
target of supporting shared MPI processes among compo-
nent models, and may make C-Coupler2 unable to support
some MPI process layouts. For example, given that a com-
ponent model consists of two component models that run on
partially overlapping subsets of MPI processes, both compo-
nent models cannot be root component models. To support
this kind of MPI process layout, a coupled model can be reg-
istered as a root component model of C-Coupler2, and its
component models can be further registered as children of
the root component model.

Coupler2 provides 10 APIs for component model man-
agement, including CCPL_register_component, CCPL_end_
coupling_configuration, etc. CPL_register_component is re-
sponsible for registering a component model to C-Coupler2.
C-Coupler2 only serves component models registered to it.
(Almost any model can be registered to C-Coupler2, while
it is unnecessary to register a model whose model coupling
is fully served by other couplers to C-Coupler2.) The ar-
guments of this API include the ID of the parent compo-

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3565

Figure 5. Sample process layout of component models (comp1–comp8).

nent model, model name, model type, and MPI communica-
tor. Any component model except a root component model
must have a parent. C-Coupler2 will allocate an ID and gen-
erate a unique full name for each component model that
is formatted as “parent_full_name@model_name”, where
“model_name” means the name of the current component
model and “parent_full_name” is the full name of the
parent component model. (For a root component model,
“parent_full_name” corresponds to an empty string.) A
component model is either “active” or “pseudo” (inac-
tive), as specified by the model type. A pseudo compo-
nent model can be the parent of some component mod-
els, while its name will not be included in the full name
of any component model. Moreover, coupling configu-
rations cannot be further specified to a pseudo compo-
nent model. Table 1 lists the model types currently sup-
ported by C-Coupler2. Note that “active_coupled_system”
and “pseudo_coupled_system” indicate that an existing cou-
pled model can be registered as a component model of C-
Coupler2. This API can create the MPI communicator of
the component model when required. It will start the stage
of coupling configuration of the component model, while
the API CCPL_end_coupling_configuration will finalize the
stage of coupling configuration. A component model can
successfully call CCPL_end_coupling_configuration only
when all its children component models have already called
this API.

For more details of the APIs for component
model management, please refer to the user guide
(https://gitlab.com/c-coupler-group/c-coupler-doc/raw/
master/C-Coupler2UserGuide.pdf, last access: 24 August
2018).

APIs for time management

C-Coupler2 provides 26 APIs for time man-
agement, including CCPL_set_normal_time_step,
CCPL_check_current_time, CCPL_define_single_timer,

etc. These APIs enable C-Coupler2 to manage the model
time information for each active component model. De-
tailed time information of a component model can also
be accessed through C-Coupler2, and thus a component
model can employ C-Coupler2 for its model time man-
agement. A component model with its own model time
management must keep its model time constantly consistent
with C-Coupler2. The API CCPL_check_current_time can
be used to check such consistency. An active component
model can have a unique time manager that is not activated
until a unique time step has been set through the API
CCPL_set_normal_time_step. After a time manager is
activated, the user can access detailed information on the
model time, define timers, advance the model time, and use
timers to control model coupling.

C-Coupler2 currently only provides the API
CCPL_define_single_timer to define a periodic timer
that is an alarm for specifying coupling period. The ar-
guments of this API include the ID of the corresponding
component model, a period unit, a period count, a local
lag count, and an optional remote lag count. The period
unit and period count specify the period of the timer. The
local lag count corresponds to the period unit, which is
used to specify a local lag (it can be viewed as a time
offset from the start time) that influences when the timer is
on. For example, a timer set with <period_unit= “steps”,
period_count= “5”, local_lag_count= “2”> will be on at
the 2nd, 7th, 12th, etc. (i.e., 5i+2, where i is a non-negative
integer) time steps of the corresponding component model.
The remote lag count also corresponds to the period unit.
It can be used to specify a lag on a coupling connection
between two component models or within one component
model. Its default value is 0 (i.e., no lag). Note that the lag
for a coupling connection is determined by the timer from
the receiver component model. The lag corresponding to
a coupling connection can be viewed as the model time
difference from the receiver component model to the sender
component model, which can control the time sequence

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018

https://gitlab.com/c-coupler-group/c-coupler-doc/raw/master/C-Coupler2 User Guide.pdf
https://gitlab.com/c-coupler-group/c-coupler-doc/raw/master/C-Coupler2 User Guide.pdf


3566 L. Liu et al.: C-Coupler2

Table 1. Model types currently supported by C-Coupler2.

Model type Description Remark

cpl Coupler Active component model
atm Atmosphere model Active component model
glc Glacier model Active component model
atm_chem Atmospheric chemistry model Active component model
ocn Ocean model Active component model
lnd Land surface model Active component model
sea_ice Sea ice model Active component model

wave Wave model Active component model

roff Runoff model Active component model

active_coupled_system Coupled model that consists of a set of component models Active component model

pseudo_coupled_system Coupled model that consists of a set of component models Pseudo component model

between the two component models. For example, given a
lag of 1/− 1 h, the coupling fields produced by the sender
component model at the sender’s 0th / 1st hour will be
obtained by the receiver component model at the receiver’s
1st / 0th hour. Thus, the user can flexibly achieve concurrent
runs or sequential runs between component models. Incor-
rectly setting “remote_lag_count” may introduce deadlocks
between component models.

For more details about the APIs for time management,
please refer to the user guide.

APIs for grid management

Each grid managed by C-Coupler2 belongs to a unique ac-
tive component model. A grid shared by multiple component
models should be registered to each component model sepa-
rately. The keyword for a grid can be expressed as <ID of the
component model, grid name>. Therefore, different grids in
the same component model cannot have the same grid name,
while grids in different component models can have the same
grid name.

C-Coupler2 provides 15 APIs for grid management. A hor-
izontal grid can be registered via global grid data (through
the API CCPL_register_H2D_grid_via_global_data),
local grid data (through the API
CCPL_register_H2D_grid_via_local_data), or a grid data
file (through the API CCPL_register_H2D_grid_via_file).
Considering that a horizontal grid in a component model
may be determined by another component model (e.g.,
the horizontal grid of a land surface model will be de-
termined by an atmosphere model when both models
require the same horizontal grid), we designed the API
CCPL_register_H2D_grid_from_another_component.
A vertical grid can be registered via global grid
data. The coordinate of a vertical grid can be
registered as a Z coordinate (through the API
CCPL_register_V1D_Z_grid_via_model_data),

a sigma coordinate (through the API
CCPL_register_V1D_sigma_grid_via_model_data),
or a hybrid coordinate (through the API
CCPL_register_V1D_hybrid_grid_via_model_data).
A 3-D grid can be registered by combining a hor-
izontal grid and a vertical grid (through the API
CCPL_register_MD_grid_via_multi_grids). Thus, C-
Coupler2 can know the relationship between a 3-D grid and
its sub-grids. A 3-D grid can be either an interface-level
grid or a middle-point grid. A middle-point grid can be
generated from an interface-level grid through the API
CCPL_register_mid_point_grid. Thus, C-Coupler2 can
know the relationship between an interface-level 3-D grid
and a middle-point 3-D grid.

For a 3-D grid that consists of a horizontal grid and a
vertical grid with sigma or hybrid coordinate, C-Coupler2
can set its unique surface field on the horizontal grid in order
to calculate the vertical coordinates at each horizontal grid
point. The surface field of a 3-D grid can be static (through
the API CCPL_set_3D_grid_constant_surface_field),
dynamic (through the API
CCPL_set_3D_grid_variable_surface_field), or ex-
ternal (through the API CCPL_set_3D_grid_ exter-
nal_surface_field). A static surface field has constant values
with time integration, so the vertical coordinate values in
the corresponding 3-D grid are constant. A dynamic surface
field has changing values with time integration, so that the
vertical coordinate values in the corresponding 3-D grid
vary. An external surface field has values determined by the
surface field of another 3-D grid.

For more details about the APIs for grid management,
please refer to the user guide.

API for parallel decomposition management

To accelerate modeling by taking advantage of a high-
performance computer with many processor cores, the model

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3567

needs to be parallelized with MPI, whereby the domains of
the model grids are decomposed into separate subdomains
for parallel integration. To accommodate the parallel inte-
gration of component models and to allow model coupling
to be handled in parallel, C-Coupler2 both manages parallel
decompositions and provides APIs to enable active compo-
nent models to register their parallel decompositions to the
coupler. C-Coupler2 currently supports parallel decomposi-
tions only on horizontal grids, and further parallel decompo-
sition on vertical grids is not supported yet. Therefore, par-
allel decomposition is associated with a horizontal grid, and
thus with the component model corresponding to the hori-
zontal grid. The keyword for parallel decomposition is ex-
pressed as <ID of component model, parallel decomposition
name>. Therefore, different parallel decompositions in the
same component model cannot have the same name, while
parallel decompositions in different component models can
have the same name. Multiple parallel decompositions on the
same horizontal grid are allowed.

Parallel decomposition on a horizontal grid is described
through enumerating global grid cell indexes of the local
grid cells assigned to each MPI process of the correspond-
ing component model. A valid global grid cell index should
be between 1 and the size of the horizontal grid. For any local
grid cells that need not be considered in model coupling (e.g.,
land-only grid cells in an ocean model), the corresponding
values of the global grid cell index can be set to a C-Coupler2
pre-defined variable CCPL_NULL_INT, to save some over-
heads in model coupling.

Currently, C-Coupler2 provides only one API
for parallel decomposition management, i.e.,
CCPL_register_normal_parallel_decomp. Please refer
to the user guide for more details.

API for coupling field instance management

A coupling field instance includes a set of meta-information
and a memory buffer that keeps the data values of an in-
stance of a coupling field. A coupling field instance is as-
sociated with a unique component model, a unique grid, and
a unique parallel decomposition. An attribute of “buf_mark”,
which is a non-negative integer mark given by users, is em-
ployed in each coupling field instance to separate multiple
coupling field instances in the same component model, on
the same grid, and on the same parallel decomposition. For
example, as the land surface, oceans, and sea ice lie under
the atmosphere, an atmosphere model may receive multiple
coupling field instances of surface temperature from land sur-
face, ocean, or sea ice models. Therefore, the keyword for a
coupling field instance is expressed as <field name, ID of
component model, ID of grid, ID of parallel decomposition,
buf_mark>. For a scalar coupling field instance that is not on
a grid, the corresponding grid ID and parallel decomposition
ID should be set to −1.

Currently, C-Coupler2 provides only one API for field
instance management, i.e., CCPL_register_field_instance.
This API allows a component model to register a cou-
pling field instance to the coupler to provide, obtain, and
remap coupling field instances in model coupling. An inter-
nal model field instance that will not be used in model cou-
pling can also be registered to C-Coupler2 for exact restart
capability. For more details of this API, please refer to the
user guide for more details.

APIs for coupling interface management

In C-Coupler2, an active component model can handle cou-
pling field instances through coupling interfaces. The key-
word of a coupling interface is expressed as <ID of the com-
ponent model, interface name>. Therefore, different cou-
pling interfaces in the same component model cannot have
the same interface name, while coupling interfaces in differ-
ent component models can have the same interface name.

Coupling interfaces are classified into three categories: im-
port, export, and remap. An import interface enables a com-
ponent model to obtain coupling field instances from itself
(for example, C-Coupler2 can achieve coupling between the
physical package and the dynamic core in the same com-
ponent model) or other component models. Specifically, it
can be specified to obtain instantaneous or averaged cou-
pling field instances. An export interface enables a compo-
nent model to provide a number of coupling field instances
to the coupled model. A remap interface enables a compo-
nent model to remap its coupling fields from a source grid to
a target grid. There are two detailed kinds of remap interface:
normal and fraction-based. A normal remap interface directly
interpolates coupling field instances from the source grid to
the target grid, while a fraction-based remap interface addi-
tionally takes a source fraction (for example, the area frac-
tion of atmosphere, ocean, land surface, or sea ice in each
cell of the source grid) as input, will first adjust the values
of coupling field instances on the source grid based on the
source fraction before remapping, and will finally adjust the
values of coupling field instances on the target grid based on
the target fraction after remapping (the source fraction is also
remapped from the source grid to the target grid to produce
the target fraction at the same time). Fraction-based remap
interfaces are generally necessary to guarantee conservation
in model coupling between different horizontal grids.

There are three steps taken to utilize a coupling interface.
The coupling interface is first registered, whereby a timer
is required to be specified to control the timing of coupling
interface execution. Coupling procedures are next generated
for the coupling interface, which is then executed in the third
step. Although the API to execute a coupling interface can
be called at each time step, a coupling interface will be truly
executed only when its timer is bypassed or its timer is on. C-
Coupler2 allows the timer to be bypassed when executing a
coupling interface, in order to achieve flexible coupling at the

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3568 L. Liu et al.: C-Coupler2

initialization stage of the coupled model. Note that the timer
of a coupling interface cannot be bypassed again if this cou-
pling interface has already been executed with the timer on,
and when the timer of a coupling interface is not bypassed,
the coupling interface will be truly executed at most once
each time step, which means that any additional API calls
for executing the coupling interface at a time step will be ig-
nored.

For a remap interface that does not refer to coupling be-
tween different coupling interfaces or different component
models, its coupling procedures are generated implicitly by
the coupling generator when registering it. Coupling proce-
dures of an export/import interface are also generated auto-
matically by the coupling generator, but will not be generated
when registering the interface, because an export/import in-
terface refers to coupling between different coupling inter-
faces in the same or different component models. To gener-
ate coupling procedures for export or import interfaces, the
coupling generator will analyze possible connections from
export interfaces to import interfaces based on the field name
of each coupling field instance. A coupling connection from
an export interface to an import interface can be generated
only when these two coupling interfaces have common field
names. Regarding a field name, C-Coupler2 allows an ex-
port interface to be connected to any number of import inter-
faces, while forcing an import interface to be connected from
a unique export interface. In other words, each coupling field
instance in an import interface must have only one provider.
If there are multiple providers for a coupling field instance
in an import interface, the user must select only one provider
through the corresponding configuration file (see subsection
of Sect. 4.1.2). Different coupling field instances in an import
interface can have different providers. The coupling proce-
dures for import and export interfaces are generated through
explicitly calling the APIs for coupling procedure generation.

An export interface or a remap interface can always be ex-
ecuted successfully without error, while the execution of im-
port interfaces can fail and lead to an error report, if the cou-
pling procedures of some necessary coupling field instances
have not been generated (i.e., if the providers of some nec-
essary coupling field instances have not been found). When
registering an import interface, each import coupling field in-
stance can be specified as necessary or optional. No error will
be reported if the providers of some optional coupling field
instances have not been found.

C-Coupler2 provides 8 APIs for coupling interface
management, including CCPL_register_port_interface,
CCPL_register_import_interface,
CCPL_register_normal_remap_interface,
CCPL_execute_interface_using_id, etc. Please refer to
the user guide for more details.

APIs for coupling procedure generation

The development of a coupling procedure generation capa-
bility in C-Coupler2 has experienced two designs, and the
second design can be viewed as an upgrade of the first de-
sign and is currently implemented in C-Coupler2. The first
design enforces only one global coupling procedure genera-
tion for the whole coupled model: it is performed when fi-
nalizing the coupling configuration stages of the whole cou-
pled model (when all root component models are calling
the API CCPL_end_coupling_configuration), and involves
all component models that have already been registered to
C-Coupler2. Along with the development of C-Coupler2, the
first design shows the following limitations:

1. It assumes that the whole coupled model as well as each
component model is organized as a unique three-stage
flowchart consisting of a coupling configuration stage,
coupling procedure generation, and a model coupling
run. However, the main drivers of many existing mod-
els, such as the CESM driver, consist of not just a unique
but multiple three-stage flowcharts, indicating that mul-
tiple coupling procedure generations are necessary for
wide usage in real cases.

2. As a global coupling procedure generation will involve
the participation of all component models, and will re-
quire global synchronization of all the MPI processes
in the whole coupled model, it will be costly, inconve-
nient, and unnecessary to conduct multiple global cou-
pling procedure generations. For example, an increment
coupling case that seeks to nest a regional atmosphere
model into an existing climate system model through C-
Coupler2 requires only partial coupling procedure gen-
eration between the regional atmosphere model and the
global atmosphere model.

3. Besides the global coupling procedure generation, the
second design achieves partial coupling procedure gen-
eration for any subset of component models through the
APIs for coupling procedure generation. The coupling
procedure generation related to a component model
is classified as either individual or family. Individual
mode considers only the given component model in
coupling procedure generation, while family mode con-
siders the given component model and its descendant
component models in the same coupling procedure gen-
eration. When registering a component model through
the API CCPL_register_component, it can be speci-
fied to enable or disable the given component model
in the family coupling procedure generation of its par-
ent or any ancestor. The API CCPL_do_external_ cou-
pling_generation can do coupling procedure generation
regarding any subset of component models, where ei-
ther individual or family coupling procedure genera-
tion can be specified for each given component model.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3569

The API CCPL_get_configurable_comps_full_names
allows flexible specification of a subset of component
models in an XML configuration file; it can cooperate
with the API CCPL_do_external_ coupling_generation
to further improve the flexibility of coupling procedure
generation. Besides partial coupling procedure genera-
tions, a global coupling procedure generation will still
be performed when root component models are call-
ing the API CCPL_end_ coupling_configuration, while
a root component model that has been disabled in the
family coupling procedure generation will not be in-
volved in the global coupling procedure generation.

4. Coupling procedure generation requires the synchro-
nization of all MPI processes of the involved component
models. Please refer to the user guide for more details
of the APIs for coupling procedure generation.

Other APIs

Like most component models, C-Coupler2 can restart
model simulation from a checkpoint. It does so
through 6 APIs, including CCPL_do_restart_write_IO,
CCPL_start_restart_read_IO, etc. More details of these
APIs can be found in the user guide. The restart management
not only serves the variables or data involved in the model
coupling handled by C-Coupler2 but can also serve the inter-
nal field instances of any component model that have been
registered to C-Coupler2. To achieve the restart capability
of a model coupled using C-Coupler2, all active component
models should separately call the corresponding APIs.
Besides the “initial” run, C-Coupler2 supports three types of
model run: “continue”, “branch”, and “hybrid”, which are
related to the restart capability. Detailed implementation of
the restart capability will be further introduced in Sect. 4.8.

C-Coupler2 enables each MPI process in each
component model to have a separate log file, thus
improving the parallel debugging capability. Sev-
eral APIs (CCPL_report_log, CCPL_report_progress,
CCPL_report_error, CCPL_get_comp_log_file_name, and
CCPL_get_comp_log_file_device) allow component models
to benefit from such a capability. For more details of these
APIs, please refer to the user guide.

4.1.2 C-Coupler2 configuration files

As mentioned above, the C-Coupler2 configuration files al-
low flexible specification of public coupling configuration in-
formation including shared input parameters for a model run,
attributes of coupling fields, remapping configurations, and
coupling connections. In order to achieve good readability,
all configuration files are in XML format. This subsection
briefly introduces the four kinds of configuration files, i.e.,
input parameter configuration file, field attribute configura-
tion file, remapping configuration file, and coupling connec-

tion configuration file. Additional details can be found in the
user guide.

Input parameter configuration file

The input parameter configuration file specifies a set of
global input parameters shared by all component models.
The input parameters include simulation times (e.g., start and
stop times), the type of simulation run (i.e., initial, continue,
branch, or hybrid), whether leap years are considered, and the
frequency of writing restart data files. Note that C-Coupler2
requires all component models to use the same start and stop
times, and the user should guarantee that the input parameter
configuration file is consistent with the corresponding mod-
eling settings.

Field attribute configuration file

When registering a coupling field instance to C-Coupler2, the
field name should be specified as an input parameter. A field
name is only legal when there is a corresponding entry in the
field attribute configuration file that is shared by all compo-
nent models in a coupled model. When the coupling genera-
tor automatically tries to generate coupling procedures, field
names are used to detect possible coupling connections be-
tween coupling interfaces: an import interface and an export
interface can have a coupling connection only when their
coupling field instances have common field names. The at-
tributes of each coupling field include “long_name”, “de-
fault_unit”, “dimensions”, and “type”. The attribute “dimen-
sions” means a label of grid dimensions. It can be set to “0D”,
“H2D”, “V1D”, or “V3D”, denoting that a field is a scalar
variable that is not on any grid, is on a horizontal grid, is on
a vertical grid, or is on a 3-D grid that consists of a horizon-
tal grid and a vertical grid, respectively. The attribute “type”
gives the type of coupling field, either “state” or “flux”.

Remapping configuration file

Remapping configuration files can flexibly and conveniently
specify the remapping of coupling fields between grids, as
follows.

1. For remapping from a source horizontal grid to a target
horizontal grid, the user can either employ the remap-
ping weights that are automatically generated by C-
Coupler2 in parallel or read from an existing remap-
ping weight file produced by external software such as
SCRIP, ESMF, YAC, or CoR1. Unstructured horizon-
tal grids such as cube-sphere grid or non-quadrilateral
grids are supported in the online remapping weight gen-
eration.

2. Like C-Coupler1, C-Coupler2 uses the “2-D+ 1-D”
approach to achieve 3-D remapping. Regarding 3-D
remapping, the remapping configuration for the 2-
D (horizontal) remapping and for the 1-D (vertical)

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3570 L. Liu et al.: C-Coupler2

remapping can be specified separately; the 2-D remap-
ping can also use the remapping weights loaded from a
remapping weight file.

3. Different coupling fields in the same component model
can have different remapping configurations, and the
same coupling field in different component models can
have different remapping configurations.

4. Given a coupling field, a component model can either
use its own remapping configuration or use that inher-
ited from its parent (if its own remapping configuration
is not specified); a root component model (i.e., one with-
out a parent) without a specified remapping configura-
tion can use the specified overall remapping configura-
tion or use the default remapping configuration set by
C-Coupler2 (if the overall remapping configuration is
not specified). In the default remapping configuration,
the bilinear remapping algorithm is used to remap the
“state” fields between horizontal grids, the conservative
remapping algorithm is used to remap the “flux” fields
between horizontal grids, and the linear remapping al-
gorithm is used to remap the vertical and time dimen-
sions. Note that all remapping weights in the default
remapping configuration are generated automatically by
C-Coupler2.

5. A remapping configuration file consists of a set of
remapping settings, each of which can specify the
remapping configuration for all coupling fields, cou-
pling fields of the same type (“flux” or “state”), or a
specific set of coupling fields (possibly even only one
field). A prioritization strategy is designed accordingly:
a remapping setting corresponding to all coupling fields
is at the lowest priority, a remapping setting correspond-
ing to a type of coupling field is at medium priority, and
a remapping setting corresponding to specific coupling
field is at the highest priority.

A procedure with data remapping for a given coupling
field on a coupling connection between two different com-
ponent models will be generated when the component mod-
els use different corresponding grids. It is possible that the
remapping configuration of this coupling field is not the same
in the two component models. In such a case, C-Coupler2
will only use the remapping configuration in the source com-
ponent model (the component model that exports the cou-
pling field). In general, given a coupling field on a coupling
connection, C-Coupler2 uses only the remapping configura-
tion in the source component model for coupling procedure
generation. Therefore, it is meaningless to specify remapping
configurations for the imported coupling fields of a compo-
nent model.

Figure 6 shows an example of a remapping configuration
file that consists of three active remapping settings (corre-
sponding to the XML node of “remapping_setting” with the

attribute “status” of value “on”). The first remapping set-
ting (from L1 to L15 in Fig. 8) corresponds to all coupling
fields, the second remapping setting (from L16 to L27 in
Fig. 8) corresponds to the “flux” coupling fields, and the third
(from L28 to L39 in Fig. 8) corresponds to two specific cou-
pling fields “t_atm_3D” and “ghs_atm_3D” that should be
3-D “state” fields. Specific to the remapping configuration
of these two fields, the vertical remapping configuration is
determined by the third remapping setting and the horizontal
remapping configuration is determined by the first remapping
setting. Both the first and second remapping settings spec-
ify an online horizontal remapping algorithm (corresponding
to the XML node of “H2D_algorithm”) and offline horizon-
tal remapping weight files (corresponding to the XML node
of “H2D_weights”). Note that offline remapping weight files
have higher priority than the online remapping algorithm.
To generate the coupling procedures for data remapping, a
remapping weight file in the corresponding remapping con-
figuration (if present) will be used if it matches both the
source grid and the target grid of this data remapping.

Coupling connection configuration files

A coupling connection configuration file can be used to
specify coupling connections for a component model. The
connections are classified into three types: (1) for im-
port interfaces, (2) for model grids (corresponding to the
API CCPL_register_H2D_grid_from_another_component),
and (3) sets of component model full names used for
external coupling procedure generation (corresponding to
the API CCPL_do_external_coupling_generation). The cou-
pling connections for an import interface specify the
providers (a provider is a component model as well as its
export interface) of imported coupling fields, while a dis-
tinct subset of imported coupling fields can have a distinct
provider. When the coupling generator tries to generate cou-
pling procedures for an imported field of an import interface,
it will first check the corresponding coupling connection con-
figuration file. If the configuration file contains a coupling
connection for the imported field, the coupling generator will
only use the corresponding provider in coupling procedure
generation; otherwise, it will try to detect a provider and will
report an error if no provider or multiple providers are de-
tected.

4.2 Coupling within one executable or a subset of MPI
processes

As mentioned in Sect. 4.1, C-Coupler2 allows coupling be-
tween two component models that run on non-overlapping,
partially overlapping, or overlapping MPI processes, and can
also automatically generate coupling connections between
the export and import interfaces of the same component
model. Each component model registered to C-Coupler2 can
have its own model coupling resources, including time step,

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3571

 

 

Figure 6  Sample of a remapping configuration file 

 

    <root> 

L1:    <remapping_setting  status="on"> 

L2:        <remapping_algorithms status="on"> 

L3:            <H2D_algorithm status="on"  name="bilinear"> 

L4:                <parameter name="enable_extrapolate" value="true" /> 

L5:            </H2D_algorithm> 

L6:            <V1D_algorithm status="on" name="linear"> 

L7:                <parameter name="enable_extrapolate" value="true" /> 

L8:            </V1D_algorithm> 

L9:            <H2D_weights  status="on"> 

L10:               <file name="map_to_global_grid1_default.nc" /> 

L11:               <file name="map_to_regional_grid1_default.nc" /> 

L12:           </H2D_weights> 

L13:       </remapping_algorithms> 

L14:       <fields  status="on" specification="default" /> 

L15:   </remapping_setting> 

 

L16:   <remapping_setting  status="on"> 

L17:       <remapping_algorithms status="on"> 

L18:           <H2D_algorithm  status="on"  name="conserv_2D" /> 

L19:           <H2D_weights  status="on"> 

L20:               <file name="map_to_global_grid1_conserv.nc" /> 

L21:               <file name="map_to_regional_grid1_conserv.nc" /> 

L22:           </H2D_weights> 

L23:       </remapping_algorithms> 

L24:       <fields  status="on" specification="type"> 

L25:          <entry value="flux" /> 

L26:       </fields> 

L27:   </remapping_setting> 

L28:   <remapping_setting  status="on"> 

L29:       <remapping_algorithms status="on"> 

L30:           <V1D_algorithm status="on" name="linear"> 

L31:               <parameter name="enable_extrapolate" value="true" /> 

L32:               <parameter name="use_logarithmic_coordinate" value="true" /> 

L33:           </V1D_algorithm> 

L34:       </remapping_algorithms> 

L35:       <fields  status="on" specification="name"> 

L36:          <entry value="t_atm_3D" /> 

L37:          <entry value="ghs_atm_3D" /> 

L38:       </fields> 

L39:   </remapping_setting> 

    </root> 

Figure 6. Sample of a remapping configuration file.

timers, model grids, parallel decompositions, coupling field
instances, and coupling interfaces. In other words, a model
coupling resource must be associated with a unique compo-
nent model. Most model coupling resources, including the
time step, model grids, parallel decompositions, coupling
field instances, and coupling interfaces, are public to a com-
ponent model and shared by all its MPI processes. When
registering a public model coupling resource of a compo-
nent model, all MPI processes of the component model are
required to call the corresponding API simultaneously, with
consistent parameters. To manage different component mod-
els and model coupling resources effectively, each compo-
nent model, as well as each model coupling resource, has a
unique ID.

4.3 Flexible and automatic coupling procedure
generation

4.3.1 Creation of MPI communicators

As mentioned in Sect. 4.1.1, C-Coupler2 can achieve a par-
tial coupling procedure generation for any subset of compo-
nent models. A partial coupling procedure generation should
only involve the MPI processes of the corresponding subset
of component models but not all MPI processes of the whole
coupled model. Therefore, the first step in C-Coupler2 is to
create a unified MPI communicator that only includes the
MPI communicator of each component model involved in the
same coupling procedure generation. To create a unified MPI
communicator based on a set of sub MPI communicators,

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3572 L. Liu et al.: C-Coupler2

the root process in a sub MPI communicator should know
the root process (for example, the ID of the process in the
global communicator MPI_COMM_WORLD) of each other
MPI communicator. In other words, the component models
involved in the same coupling procedure generation should
know the MPI processes of each other. As the registration of
root component models generally involves all MPI processes
of the whole coupled model, each root component model
can easily know the MPI processes of any other root compo-
nent model through global synchronization. However, as the
registration of a non-root component model only involves a
subset of MPI processes (the MPI processes of itself in gen-
eral and the MPI processes of its parent component model at
most), it is possible that a component model does not know
the MPI processes of a non-root component model. For an
example based on Fig. 5, when registering the component
model comp4 that is a child of the root component model
comp1, the root component model comp2 and its child comp8
will not be notified by this event, so that comp2 and comp8
do not know which MPI processes belong to comp4. Simi-
larly, comp1 and its children comp4 and comp5 do not know
which MPI processes belong to comp8. Given that comp4
and comp8 are involved in the same coupling procedure gen-
eration, they should be synchronized for creating a unified
communicator, but they do not know the MPI processes of
each other.

To overcome the above challenge, a new solution should
be implemented to enable one component model to know the
MPI processes of any other component model. One possi-
ble solution is that the root process of comp4 broadcasts a
message to all processes of the whole coupled model and
then the processes of comp8 reply. However, that will intro-
duce global synchronization. To avoid global synchroniza-
tion, we implemented a file-based solution in C-Coupler2 as
follows. C-Coupler2 will write information about the MPI
processes of each component model into an internal XML
file. Thus, in a coupling procedure generation, a component
model can know the MPI processes of any other compo-
nent model through reading the corresponding XML file. The
XML files of all component models are put under the same
directory and this directory will be automatically emptied
when initializing C-Coupler2 in a new coupled model run.
The XML file corresponding to a component model will be
produced as early as when registering the component model.
When a component model wants to read an XML file that
does not exist currently, it will keep waiting until the cor-
responding component model has been registered. Only one
MPI process of a component model will write or read the
XML file, to minimize the overhead of this solution.

4.3.2 Timers matching and lags

The coupling generator will generate a coupling procedure
for each coupling connection from an export interface to an
import interface. As introduced in a subsection of Sect. 4.1.1,

the API for registering an import/export interface takes as an
input parameter a timer, which specifies when a component
model must import/export coupling fields. The second chal-
lenge during the coupling procedure generation is achieving
effective coupling with the timers of the import and export
interfaces, which can be set independently, are different, or
even do not “match” in periods. For example, how to achieve
effective coupling when the periods of the import and export
timers are 900 and 200 s, respectively (assuming that no lags
are specified in the two timers)? At the model time of 0 s,
both timers are activated, and the import interface will ob-
tain the coupling fields from the export interface. Before the
second activation of the import timer (at 900 s), the export
timer will have been on four times (i.e., at 200, 400, 600,
and 800 s). The import interface at 900 s can obtain either
the average values of the coupling fields from the four times
at which the export timer was on, or the instantaneous cou-
pling fields at its last activation (i.e., at 800 s). The choice
regarding average values or instantaneous values is made by
the user when registering the import interface. Similarly, be-
fore the third activation of the import timer (at 1800 s), the
export timer will have been on a further five times, at model
times of 1000, 1200, 1400, 1600, and 1800 s. Thus, the im-
port interface (at 1800 s) will obtain from the export interface
either the average values of the coupling fields at its five in-
tervening occasions or the instantaneous coupling fields at its
last activation (at 1800 s) based on the user’s choice. As an
additional example, suppose that periods of the import and
export timers are now 200 and 900 s, respectively, still with
no lags specified in the timers. As before, the import inter-
face will obtain the coupling fields from the export interface
at the model time of 0 s when both timers are on. Although
the import timer will be further activated at model times of
200, 400, 600 and 800 s, the import interface will not obtain
new coupling fields from the export interface, but will use
those previously obtained at 0 s, because the export interface
will not export coupling fields again until a model time of
900 s. In summary, regardless of the difference in periods be-
tween the import and export timers, C-Coupler2 can adapt to
conduct model coupling in a suitable manner.

As introduced in the subsections of Sect. 4.1.1, a cou-
pling lag can be specified through the input parameter of the
timer when registering an import interface. Given a lag of
m seconds (m 6= 0), the coupling fields obtained by a receiver
component model at its model time of N+m seconds are ex-
ported by a sender component model at its model time of
N seconds. To support coupling lags, existing coupled mod-
els such as CCSM3 (Collins et al., 2006) or FGOALS-g2
essentially extend the simulation stop time of some compo-
nent models, so that component models have different simu-
lation periods. However, C-Coupler2 only supports a uniform
stop time among all component models. To support coupling
lags in C-Coupler2 effectively, an import interface will be
bypassed if it would request coupling fields produced after
the simulation stop time, and an export interface will be by-

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3573

passed if its coupling fields would be used after the simu-
lation stop time. Such an implementation may introduce er-
rors into the model states at the last steps of simulation run.
We therefore propose to extend the simulation period prop-
erly to guarantee correct simulation of the model states in
the concerned simulation period. For example, given a cou-
pled model consisting of an atmosphere model and an ocean
model and that the coupling lag from the atmosphere model
to the ocean model is −600 s (i.e., the ocean model at its
model time of 0 s will receive the coupling fields of the at-
mosphere model at its model time of 600 s), when the stop
time of a simulation run is 86 400 s, the ocean model af-
ter the model time of 85 800 s will not obtain the coupling
fields from the atmosphere model because the corresponding
model time of the atmosphere model will be later than the
stop time. Therefore, incorrect states of the ocean model may
be obtained after its model time of 85 800 s. If users want to
guarantee correct states of the ocean model before the model
time of 86 400 s, the stop time should be extended to 87 000 s
or later.

4.3.3 Steps for coupling procedure generation

The coupling procedure generation for a subset of component
models follows the steps outlined below.

1. No matter which API is used to start the coupling proce-
dure generation (subsection in Sect. 4.1.1), the coupling
generator first confirms the subset of component mod-
els participating in the coupling procedure generation
and confirms their MPI processes.

2. Determine all coupling connections. An export inter-
face and an import interface will be connected for model
coupling only when they have common coupling fields
(with the same field names). As a component model
manages its own coupling interfaces as well as coupling
fields, an MPI communicator that includes all MPI pro-
cesses in the subset of component models will be gen-
erated for aggregating the information of all coupling
interfaces among different component models. As the
user can also specify coupling connections through con-
figuration files, file reading is required for analyzing
possible coupling connections. To minimize the cost of
reading, only one MPI process analyzes possible cou-
pling connections, while other MPI processes await its
results. An error will be reported if a coupling field in an
import interface has multiple providers in this coupling
procedure generation.

3. Generate a coupling procedure for each coupling con-
nection. A coupling connection aims to couple a set
of fields from an export interface to an import inter-
face. When these interfaces belong to different com-
ponent models, their models will exchange informa-
tion about the corresponding timers, model grids, par-
allel decompositions, remapping configurations, data

types, etc. If a coupling field has different data types
in the two coupling interfaces, an operation of data type
transformation will be generated. The coupling gener-
ator adaptively selects a component model to execute
the data type transformation for improved model cou-
pling. For example, given that the data type in the ex-
port/import interface is double/float, the sender compo-
nent model will transform the data type from double
(8 bytes) to float (4 bytes), so that float values but not
double values will be transferred from the export in-
terface to the import interface. If a coupling field has
different grids in the two coupling interfaces, a runtime
algorithm for parallel data interpolation will be gener-
ated following the corresponding remapping configu-
ration, where existing remapping weights will be used
or new remapping weights will be read from an exter-
nal data file or calculated by C-Coupler2 online and in
parallel. Currently, only the receiver component model
executes the parallel data interpolation. In the future,
the coupling generator will adaptively select a com-
ponent model to process data interpolation calculation
for better coupling performance. When the import in-
terface has been specified to import time-averaged cou-
pling fields through the corresponding input parameter
of the API CCPL_register_import_interface (please re-
fer to the user guide for more details), operations for
data averaging will be generated. To transfer the cou-
pling fields from the export interface to the import in-
terface, a runtime algorithm of non-block data transfer
will be generated. In summary, a coupling procedure
can include as necessary a runtime algorithm for data
transfer, a runtime algorithm for data interpolation, op-
erations for data type transformation, and operations for
data averaging.

As a coupling procedure generation can be performed for
any subset of component models, a component model can
participate in multiple coupling procedure generations. In
other words, the coupling procedures of a component model
or even an import/export interface can be incrementally gen-
erated through multiple coupling procedure generations. For
an import interface in a coupling procedure generation, only
the import fields whose coupling procedures have not been
generated will be considered in the coupling procedure gen-
eration, while the import fields whose coupling procedures
have already been generated will be neglected.

4.4 Dynamic 3-D coupling capability

Given a 3-D grid that consists of a horizontal grid and a
vertical grid with sigma or hybrid coordinates, the vertical
coordinate values at each horizontal grid point are deter-
mined by a unique surface field on the horizontal grid. For
example, the 3-D grid of an atmosphere model with sigma
or hybrid coordinates will have constant vertical coordinate
values when the surface field is terrain height, but the

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3574 L. Liu et al.: C-Coupler2

values will be variable and change in time integration when
the surface field is surface pressure, because the terrain
height generally remains constant while the surface pressure
changes in time integration. C-Coupler2 therefore provides
two APIs, CCPL_set_3D_grid_constant_surface_field
and CCPL_set_3D_grid_variable_surface_field (sub-
section in Sect. 4.1.1), for specifying constant and
variable surface fields, respectively. Given a 3-D
grid of an atmospheric chemistry model, the API
CCPL_set_3D_grid_variable_surface_field can be used
to specify the surface pressure as the surface field. As an
atmospheric chemistry model generally does not produce
the surface pressure, additional implementation will be
required to enable an atmospheric chemistry model to
obtain external surface pressure (e.g., from an atmosphere
model in online model coupling). To facilitate coupling
implementation for such a case, C-Coupler2 provides the
API CCPL_set_3D_grid_external_surface_field, which,
rather than specifying a surface field, states that the surface
field of a 3-D grid is externally determined by the surface
field of another 3-D grid. Moreover, the external surface field
of a 3-D grid will be obtained automatically and implicitly
by C-Coupler2 in model coupling.

As mentioned above, the 3-D interpolation involved in 3-
D coupling is still performed in the “2-D+ 1-D” manner in
C-Coupler2, where 2-D interpolation between the horizon-
tal sub-grids is performed first, followed by 1-D interpola-
tion between the vertical sub-grids. Given a 3-D interpola-
tion from a source 3-D grid (expressed as H2Ds+V1Ds) to
a target grid (H2Dt+V1Dt), the 2-D interpolation between
the horizontal sub-grids H2Ds and H2Dt eventually interpo-
lates coupling fields from the source 3-D grid to an interme-
diate 3-D grid consisting of H2Dt and V1Ds, and thus the
1-D interpolation between the vertical sub-grids V1Ds and
V1Dt eventually interpolates coupling fields from the inter-
mediate 3-D grid to the target 3-D grid. Specifically, the 2-D
interpolation will be performed a number of times, each of
which corresponds to a horizontal level of the source and
intermediate 3-D grids, and the 1-D interpolation will also
be performed for a number of times, each corresponding to
a column in the intermediate and target 3-D grids. For dy-
namic 3-D coupling, 2-D interpolation can use pre-calculated
remapping weights, because the horizontal sub-grids do not
change throughout a simulation, while 1-D interpolation can-
not use pre-calculated remapping weights, and instead must
dynamically calculate the remapping weights according to
the changes in vertical coordinate values in the source or tar-
get 3-D grid in time integration. To complement dynamic
3-D interpolation based on the implementation of static 3-
D interpolation in C-Coupler1, dynamic calculation for 1-D
remapping weights is implemented with the following steps
in C-Coupler2.

1. If the source 3-D grid has a variable surface field, the
import interface first receives the source surface field

transferred from the export interface, and next uses the
pre-calculated horizontal remapping weights to interpo-
late the source surface field from the source horizontal
grid (the horizontal sub-grid of the source 3-D grid) to
the target horizontal grid (data interpolation will be by-
passed if the two horizontal grids are the same). The
source surface field on the target horizontal grid will be
used as the surface field of the intermediate 3-D grid,
and will be further used as the target surface field when
the target 3-D grid has an external surface field.

2. If the source 3-D grid has an external surface field, the
import interface uses the target surface field as the sur-
face field of the intermediate 3-D grid (the target 3-D
grid must have a non-external surface field in this case).

3. The import interface calculates the vertical coordinate
values of the intermediate/target 3-D grid when the 3-D
grid has a surface field (the import interface can obtain
all constant information of the source 3-D grid in cou-
pling procedure generation before the first execution of
the corresponding export and import interfaces).

4. For each column in the intermediate or target 3-D
grid, the import interface calculates the 1-D remapping
weights.

As dynamic 3-D interpolation cannot fully utilize pre-
calculated remapping weights and must update 1-D remap-
ping weights at almost all coupling steps, it has a higher com-
putational cost than static 3-D interpolation. To minimize the
impact of the increased computation cost, all of the above
steps, including data transfer for the source surface field, 2-D
interpolation for the source surface field, calculation of ver-
tical coordinates of the intermediate/target 3-D grid, and cal-
culation of 1-D remapping weights, are parallelized based on
the MPI processes and parallel decompositions in the cor-
responding component models. Moreover, the implementa-
tions of static 3-D interpolation and dynamic 3-D interpo-
lation are unified. In detail, static 3-D interpolation will be
treated as dynamic 3-D interpolation at the first step of cou-
pling; the 1-D remapping weights will thus be calculated on-
line during the first step of coupling; and they will be treated
as static 3-D interpolation and use the existing remapping
weights in the subsequent coupling steps.

4.5 Non-blocking data transfer

Non-blocking data transfer is a necessary function for
achieving coupling within one executable or a subset of MPI
processes. Two-sided MPI communication (e.g., MPI_Send,
MPI_Recv, and their non-blocking modes MPI_Isend,
MPI_Irecv) has been widely used in existing couplers for
data transfer. It is still used in C-Coupler2 as a default option
of data transfer. To achieve non-blocking data transfer based
on two-sided MPI communication, the import interfaces of
C-Coupler2 are blocking while the export interfaces use the

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3575

non-blocking mode; a mechanism that afterwards checks and
waits for the completion of the last execution of export inter-
faces. Similar non-blocking data transfer has already been
implemented in OASIS3-MCT.

Unpredictable “deadlocks” in non-blocking two-sided
MPI-communication-based data transfer can occur when an
excessive number of messages sent to a single MPI pro-
cess exhaust the message passing buffer space allocated by
the MPI library (Dennis et al., 2012). We therefore imple-
mented an additional option of non-blocking data transfer
based on one-sided MPI communication (i.e., MPI_Put and
MPI_Get), which enables C-Coupler2 to manage the mes-
sage passing buffer space, so as to ensure a “safe” imple-
mentation of non-blocking data transfer. If unpredictable
“deadlocks” happen when using the default two-sided MPI-
communication-based data transfer, users will be advised
to try the one-sided MPI-communication-based implemen-
tation. In fact, we have encountered such a case when using
our sample coupled model for software testing (Sect. 5).

The wait for two-sided MPI communication is easily
achieved through the MPI function MPI_Wait. However,
there is no corresponding MPI function available for one-
sided MPI communication, and thus extra effort is required
to implement such a mechanism. In detail, non-blocking data
transfer based on one-sided MPI communication is imple-
mented as follows in C-Coupler2.

1. The export interface calls MPI_Put to send coupling
field values to the message passing buffer managed by
the import interface. Before sending coupling field val-
ues, the export interface examines whether the message
passing buffer of the import interface is available. The
message passing buffer remains unavailable until the
import interface has received coupling field values from
the last data transfer.

2. Before the import interface copies out coupling field
values from its message passing buffer, it first checks
whether new coupling field values have been received.
Besides coupling field values, the export interface will
send a model time tag to the import interface at the
same time. If coupling field values are only associated
with tags later than the tag of the last receive, it means
that new coupling field values have been received. Af-
ter copying out coupling field values, the message pass-
ing buffer is set as available. Another model time tag is
used for identifying the status of the message passing
buffer (i.e., available or unavailable). The export inter-
face uses MPI_Get/MPI_Put to query/update the status
of the message passing buffer.

3. The data receive command issued by the C-Coupler2
API calls is blocking. Beyond the API calls, C-Coupler2
issues additional non-blocking data receives for import
interfaces, in order to make the data receive finish and
the data send execute as early as possible. In a non-

blocking data receive, if new coupling field values have
been received, C-Coupler2 will copy coupling field val-
ues and set the message passing buffer as available; oth-
erwise, C-Coupler2 will do nothing.

As noted above, C-Coupler2 provides flexibility in setting
a lag on a coupling connection via the “remote_lag_count”
in the timer of the import interface. One challenge associated
with this function is that a deadlock can occur if the lag is
greater than the corresponding coupling period. For example,
Fig. 7 includes two component models (comp1 and comp2)
coupled with two connections. The first coupling connec-
tion is from the export interface exp1 of comp1 to the im-
port interface imp2 of comp2, while the second is from the
export interface exp2 of comp2 to the import interface imp1
of comp1. Both connections have equal coupling periods of
600 s. At each coupling step of each model, the export inter-
face is executed before the import interface. In Fig. 7a, there
is no lag on each coupling connection, and thus comp1 and
comp2 can run concurrently. In Fig. 7b, there is no lag on the
second coupling connection, while the first coupling connec-
tion has a lag of 600 s, which means that imp2 at the current
coupling step will receive the coupling fields from exp1 at
the previous coupling step. At the first coupling step, exp1_1
(meaning exp1 executed at the first coupling step) tries to
send coupling fields to imp2_2. As no-blocking data transfer
is used, exp1_1 can successfully put the coupling fields into
the message passing buffer of imp2, and thus comp1 can fin-
ish imp1_1, and so finish the first coupling step. At the same
time, comp2 can finish the first coupling step (imp2_1 will
not be executed, because it corresponds to exp1 executed at
the model time of −600 s that is earlier than the start time
of the model run; the coupling field values imported by imp2
can be initialized via data files or coupling in the initializa-
tion stage of the coupled model). At the second coupling step,
exp1_2 will first await the message passing buffer of imp2
that still keeps the coupling fields from exp1_1. After comp2
finishes exp2_2, imp2_2 is executed, and the message pass-
ing buffer of imp2 will be set as available. Next, exp1_2 can
successfully put the coupling fields into the message passing
buffer of imp2. Although the lag of 600 s on the second cou-
pling connection does not introduce a deadlock, a problem
in the sequencing of comp1 and comp2 is introduced: exp1
in comp1 must await the completion of imp2 in comp2 at the
same coupling step. In Fig. 7c, there is no lag on the sec-
ond coupling connection, while the first has a lag of 1200 s.
Similarly to Fig. 7b, both comp1 and comp2 can finish the
first coupling step. At the second coupling step, exp1_2 first
awaits the message passing buffer of imp2 that will not be set
as available before comp2 finishes imp2_3 at the third cou-
pling step, while exp2_2 can successfully put the coupling
fields into the message passing buffer of imp1, which has
been set as available by imp1_1 at the first coupling step. At
the third coupling step of comp2 (exp1_2 in comp1 is still
waiting at the second coupling step), exp2_3 first awaits the

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3576 L. Liu et al.: C-Coupler2

Figure 7. Sample two-way couplings with different lag settings. A coupling interface with light grey words means that it will not be executed,
because it corresponds to the coupling interface executed at the model time earlier than the start time (0 s) of the model run.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3577

message passing buffer of imp1 that will not be set as avail-
able before comp1 finishes imp1_2. As a result, both comp1
and comp2 wait for each other, causing a deadlock.

The sequencing problem in Fig. 7b and the deadlock in
Fig. 7c result from the unavailability of message passing
buffers. They are almost unsolvable regarding to two-sided
MPI communication, because the message passing buffer
space is allocated by the MPI library. However, they are not
unbreakable when regarding one-sided MPI communication,
and can be avoided by increasing the corresponding mes-
sage passing buffers. In C-Coupler2, the message passing
buffers for one-sided MPI-communication-based data trans-
fer can be increased adaptively. At each time step of a com-
ponent model, C-Coupler2 checks each import interface and
will adaptively increase the message passing buffers when
required. As a result, a positive lag on a coupling connec-
tion will never result in a sequencing problem or a dead-
lock between component models, when the one-sided MPI-
communication-based non-blocking data transfer is used.
The extra memory usage due to the increased message pass-
ing buffers would be affordable in most cases, because gen-
erally only a small proportion of model fields are involved in
model coupling.

A negative lag can also be specified for a coupling connec-
tion, but can result in sequencing problems between compo-
nent models or even an unbreakable deadlock. For example,
Fig. 7d shows no lag on the second coupling connection and
a lag of−600 s on the first, which means that imp2 at the cur-
rent coupling step will receive the coupling fields from exp1
at the next coupling step. This lag setting will not introduce a
deadlock, but will introduce a sequencing problem between
comp1 and comp2: imp1 is coupled with exp2 at the same
step, while imp2 at the current coupling step waits for exp1
at the next coupling step. In Fig. 7e, there is no lag on the sec-
ond coupling connection, while the first has a lag of−1200 s,
which introduces an unsolvable deadlock (corresponding to
the red arrows in the figure) even with one-sided MPI com-
munication, where import interfaces are awaiting the export
interfaces that cannot be executed until the import interfaces
return.

4.6 Facilitation for model nesting

C-Coupler2 can help achieve self-nesting in a regional model
that does not originally support this possibility, as follows:

1. The code of the regional model can still only man-
age a unique grid domain, but multiple grid domains
for self-nesting can be achieved through running mul-
tiple copies of the executable of the regional model on
non-overlapping MPI processes, while each copy can
have separate input parameters and input data files for
a unique grid domain and can be registered as a sep-
arate component model of C-Coupler2. The different
grid domains should have different component model

names, but they can use the same names for the model
grids, parallel decompositions, coupling fields, coupling
interfaces, etc. Therefore, C-Coupler2 only requires the
regional model to obtain a few additional input parame-
ters. In other words, slight modification of the namelist
file and the corresponding model code of the regional
model can enable C-Coupler2 to recognize multiple grid
domains.

2. Given that a small grid domain is nested in a larger grid
domain, C-Coupler2 can recognize the relationship be-
tween the two grid domains through the coupling con-
nection configuration files. As all grid domains can cor-
respond to identical code in the regional model, the cou-
pling connection configuration files of different grid do-
mains can be similar, differing only in terms of the full
names of component models in the file contents. Thus,
the coupling connection configuration files of all grid
domains can be generated easily or even automatically
by a script.

3. The self-nesting capability requires the exchange of
model fields that are generally 3-D between grid do-
mains. Implementation of this exchanging can benefit
from the 3-D coupling capability, especially the dy-
namic 3-D coupling capability of C-Coupler2. More-
over, given that a small grid domain is nested in a larger
grid domain, the coupling procedures for exchanging
model fields between them can be automatically gen-
erated in their partial coupling procedure generation.

C-Coupler2 does not provide any lateral boundary condi-
tion scheme. This is not a problem, because a regional model
generally includes lateral boundary condition schemes that
can also be used in self-nesting. To achieve two-way self-
nesting, schemes for using the feedback from smaller grid
domains should be added to the regional model.

As each grid domain corresponds to a separate copy of the
executable, each grid domain can easily use a distinct sub-
set of MPI processes, which allows for simultaneous inte-
gration of grid domains for better parallel performance. Sci-
entists may want to integrate a grid domain earlier than its
nested grid domains. For example, after a grid domain fin-
ishes integration from 0 to 90 s, its nested grid domains can
start the integration from 0 s. This can be achieved by adjust-
ing coupling lags among grid domains based on the timers of
the corresponding import interfaces. In one-way nesting, the
coupling lags generally do not affect the parallelism among
grid domains. In other words, different grid domains can al-
ways be integrated simultaneously in one-way nesting, re-
gardless of the coupling lags. In two-way nesting, even when
a specific setting of coupling lags forces sequential running
between a grid domain and its nested grid domains, multiple
nested grid domains of the same grid domain can also run
simultaneously, so that C-Coupler can also help improve the
parallel performance of self-nesting. One challenge resulting

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3578 L. Liu et al.: C-Coupler2

from sequential running is that the corresponding processors
will be essentially idle, and therefore wasted, when a grid
domain is waiting for another grid domain. In the future, we
will investigate technical solutions to overcome this ineffi-
ciency. Moreover, it may be an interesting topic to investigate
the scientific impact of different settings of coupling lags in
model nesting.

Similarly, C-Coupler2 can be used to nest a regional model
into a different model. For a model that already has self-
nesting capability (such as WRF), all grid domains and the
field instances on each grid domain are allocated and man-
aged by the regional model itself, while each grid domain
as well as the field instances on it can be registered to C-
Coupler2 as a component model. Therefore, a grid domain in
a self-nesting model can be further coupled with another kind
of grid domain or component model through C-Coupler2.

4.7 Facilitation for incremental coupling

Incremental coupling can be viewed as coupling exter-
nal component models with an existing coupled model. A
straightforward implementation is to treat the external com-
ponent models as internal component models of the existing
coupled model, and use the coupler of the existing coupled
model to handle the corresponding incremental coupling. For
example, regarding the work of nesting WRF into CESM
done by He et al. (2013) that has been introduced in Sec-
tion 3.7, WRF is treated as an internal component model of
CESM, and the incremental coupling for its nesting is han-
dled by CPL7, the coupler of CESM. A major challenge in
this kind of implementation is that the independence might
need to be broken between external component models and
the existing coupled model that may have been developed in-
dependently by different groups for a number of years. This
introduces significant code changes to the models (even in-
cluding the coupler), and results in inconsistent code versions
of the same model among different model groups. For exam-
ple, all component models of CESM share the same driver
and are compiled into a unique executable, while WRF has
its own driver, different from the others. When treating WRF
as an internal component model of CESM, WRF will have to
use the driver of CESM, and will also be compiled into the
unique executable. Thus, WRF’s original driver and compil-
ing scripts as well as CESM need to be modified. Moreover,
as the original driver and coupler of CESM do not consider
the existence of a regional atmosphere model, the driver and
coupler codes of CESM also need to be modified.

Incremental coupling faces the fundamental problem of
guaranteeing independence between external component
models and the existing coupled model, so as to minimize
code changes to the models or the coupler. To help in this re-
gard, C-Coupler2 should minimize the constraints on using
external component models and existing coupled models that
are already coupled with other couples; it should also work as
an additional coupler specifically for incremental coupling as

part of coupling in a new coupled model, thus letting devel-
opers focus only on the coupling between external compo-
nent models and the corresponding component models in the
existing coupled model. In response to these requirements,
C-Coupler2 includes the following implementations for in-
cremental coupling.

1. An existing coupled model can be registered to C-
Coupler2 as a component model, and its component
models involved in incremental coupling can be further
registered as its children, while other component mod-
els that are irrelevant to incremental coupling can be ne-
glected. Generally, several API calls are enough for the
model registration, which only introduces slight code
changes to the existing coupled model. As C-Coupler2
can support almost any MPI process layout among com-
ponent models, a component model in any existing cou-
pled model can be easily registered to C-Coupler2. Sim-
ilarly, an external component model can be easily regis-
tered to C-Coupler2.

2. As C-Coupler2 allows coupling procedure generation
to be performed for any subset of component mod-
els, partial coupling procedure generations for only
the component models relevant to incremental coupling
can be performed flexibly. Similarly, several API calls
are enough for partial coupling procedure generations,
which only introduces a slight code change to the exter-
nal component models and the existing coupled model.

4.8 Adaptive restart capability

In a coupled model, all component models generally share
a unique restart timer that notifies all component models to
prepare restart data corresponding to the same model time
(called restart write model time hereafter). It does not mean
that the restart data files should only include the data values at
the restart write model time. Examples 1–3 in Sect. S2 indi-
cate that the restart data files corresponding to a restart write
model time may need to include the coupling field instance
values at different model time corresponding to a positive lag
on a coupling connection or an order between writing restart
data files and advancing model time, and that it may need
to bypass the data export of some export interfaces at some
model time after restarting the coupled model run.

To conveniently achieve exact restart for coupling fields
under any setting of coupling lags and any order between
writing restart data files and advancing model time, the
restart manager of C-Coupler2 provides an adaptive restart
capability implemented as follows (For further illustration of
the implementation, please refer to example 4 in Sect. S2).

– The restart manager conducts restart writing as follows:

1. The restart data corresponding to a component
model are classified into two categories: manage-
ment information that will be written into a binary

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3579

formatted data file at once, and field instance val-
ues that will be written into a NetCDF formatted
data file incrementally.

2. Each active component model that has been
registered to C-Coupler2 should call the API
CCPL_do_restart_write_IO at each time when the
restart timer is on (Generally, this API will be by-
passed when the restart timer is not on).

3. CCPL_do_restart_write_IO will set the restart
writing model time as the current model time, op-
tionally write the current values of all restart-related
field instances into the NetCDF restart data file
based on the user’s configuration, and prepare the
restart management information that will be writ-
ten into the binary restart data file later.

4. When a receiver component model is importing the
values of a coupling field instance from a sender
component model, if the model time at the sender
or receiver component model is not later than the
restart writing model time, the values obtained by
the receiver component model will be written into
the corresponding NetCDF restart data file auto-
matically and incrementally.

5. Restart management information will be written
into a binary restart data file only when the corre-
sponding component model is advancing its model
time and has already received all values with the
sender’s model time earlier than the restart writing
model time.

– The restart manager conducts restart reading as fol-
lows:

6. When users want to restart a coupled model run,
each active component model should firstly call the
API CCPL_start_restart_read_IO (can be called at
most once and will be bypassed in an “initial” run)
which will read in the restart management infor-
mation from the corresponding binary restart data
file, and the model time corresponding to the restart
management information is marked as restarted
model time.

7. A component model can call the
API CCPL_restart_read_fields_all or
CCPL_restart_read_fields_interface (both APIs
can be called multiple times and redundant restart
read of the same values will be avoided in multiple
calls; they will be bypassed in an “initial” run)
to read in the values of some field instances at
the restarted model time from the corresponding
NetCDF restart data file, if required.

8. In a “continue” run or a “hybrid” run, when a
sender component model tries to export a coupling
field instance to a receiver component model, if the

corresponding model time at the sender or receiver
component model is not later than the restarted
model time, the sender will bypass the field instance
export; when a receiver component model tries to
import a coupling field instance from a sender com-
ponent model, if the corresponding model time at
the sender or receiver component model is not later
than the restarted model time, the values of the im-
port field instance will be automatically read from
the corresponding NetCDF restart data file but not
imported from the sender component model (an er-
ror will be reported if the corresponding restart data
file does not contain the import field instance val-
ues).

– The restart manager provides the following supports
for the “continue” run that will automatically and ex-
actly restart the model run from a previous restart write
model time:

9. C-Coupler2 automatically records the latest restart
write model time of each component model in an
implicit file called “rpointer” file that will be up-
dated only when the corresponding binary restart
data file has been produced.

10. Besides the latest restart write model time, C-
Coupler2 will also automatically and implicitly
record the previous restart write model time before
the latest restart write model time for each compo-
nent model.

11. When starting a “continue” run, C-Coupler2 will
adaptively determine the right restarted model time
(i.e., the latest restart write model time or the pre-
vious restart write model time) and then restart the
model run.

12. A component model can also get the right restarted
model time determined by C-Coupler2 through the
API CCPL_get_restart_setting (please refer to the
user guide for details).

A coupling lag can be adaptively achieved through setting
the remote lag count in the timer of an import interface when
the import interface is executed without bypassing its timer.
However, even when constantly bypassing the timer of an
import interface, a coupling lag can also be achieved through
adjusting the execution of the import interface and the corre-
sponding export interfaces. Please note that, C-Coupler2 cur-
rently does not guarantee exact restart capability under such
kind of coupling lag specification. We therefore highly rec-
ommend users to enable the timer when executing a coupling
interface as soon as possible, especially in the main loop of
the time integration.

For a summary, when the timer of each coupling inter-
face is enabled in the main loop of the time integration,
C-Coupler2 will guarantee exact restart for coupling field

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3580 L. Liu et al.: C-Coupler2

values no matter the setting of coupling lags and no mat-
ter the implementation of coupling. In a “continue” run, C-
Coupler2 will adaptively determine the right model time to
exactly restart the simulation. In a “branch” run or “hybrid”
run, C-Coupler2 will stop the model simulation with an er-
ror report if the restarted model time specified by users is
wrong (e.g., some corresponding restart data files are missing
or do not contain necessary coupling field instance values).
Besides coupling fields, C-Coupler2 also provides the sup-
port of exact restart capability for the model fields irrelevant
to coupling.

4.9 Debugging capability

The following aspects enhance the debugging capability of
C-Coupler2.

1. C-Coupler2 performs a series of checks for almost all
API calls. For example, when registering a component
model, model grid, parallel decomposition, coupling
field, or coupling interface, when setting the time step
of a component model, and when executing a coupling
interface, C-Coupler2 can check whether all MPI pro-
cesses of the component model call the API at the same
time and with consistent parameters. For example, when
registering a horizontal grid with global grid data or reg-
istering a vertical grid, C-Coupler2 can check whether
the grid data are the same among MPI processes, and
when registering a coupling interface, C-Coupler2 can
check whether the timer, coupling field instances, and
other parameters are consistent among MPI processes.
When an API call includes an array as a parameter, C-
Coupler2 can check the size of the array. For example,
when registering a coupling field instance, C-Coupler2
can check whether the array size of the memory buffer
of the coupling field instance matches that required.
When an API call includes the ID of a coupling resource
as a parameter, C-Coupler2 can check whether the ID is
legal. When an API call reads information in configu-
ration files, C-Coupler2 can check whether the files are
in the correct XML format and check the correctness
of the required information. Given the additional over-
heads in computation and communication introduced
by performing such checks, most of them can be dis-
abled in a model run. We strongly recommend that the
user enables the checks fully when developing a cou-
pled model.

2. When an error or a warning is detected, it will be re-
ported, including a suggestion for fixing the relevant
model codes or configuration files. Almost all APIs in-
clude an optional input parameter “annotation”, which
is a string giving a hint for locating the model code of
the API call corresponding to an error or warning. There
are around 1000 error reports throughout the code of C-
Coupler2.

3. C-Coupler2 can report many kinds of log informa-
tion about coupling configurations, progress in han-
dling coupling configurations, coupling procedure gen-
erations, coupling runs, and the values of coupling field
instances. Each process in a coupled model can have a
separate log file for reporting log information, errors,
and warnings, which can facilitate parallel debugging.
Moreover, C-Coupler2 also enables the internal code of
a component model to report log information through
the C-Coupler2 log files. The user can enable or disable
the reporting of log information.

5 Evaluation

This section evaluates C-Coupler2 in several aspects, includ-
ing software testing, scaling of initialization, data transfer,
memory use, and dynamic 3-D coupling.

5.1 Software testing

To improve the reliability of C-Coupler2 in various areas of
application, we first designed a sample coupled model that
includes coupling between several sample component mod-
els and self-nesting component models. Next, we developed
hundreds of use cases based on the sample coupled model,
to evaluate whether C-Coupler2 properly detects and reports
errors in various cases of incorrect use, properly generates
coupling procedures and handles model coupling and nest-
ing in correct cases.

Besides the sample coupled model, existing real coupled
models were used to test C-Coupler2, including FIO-AOW,
BCC_CSM (Beijing Climate Center Climate System Model;
Xin et al., 2013), and CESM. For each coupled model, C-
Coupler2 was used to replace some coupling functions from
other couplers, while trying to keep exactly the same (bit-
wise identical) simulation results. Specifically, C-Coupler2
was used to replace C-Coupler1 employed in FIO-AOW,
MCT-based data transfer (Larson et al., 2005) and interpo-
lation functions of the CPL5 coupler (the version immedi-
ately prior to CPL6) employed in BCC_CSM, and MCT-
based data transfer and interpolation functions of the CPL7
coupler employed in CESM. Various MPI process numbers
of component models and various run types (i.e., “initial”,
“continue”, “branch”, and “hybrid” run) of each real cou-
pled model were used for testing using nearly 2000 proces-
sor cores. As CESM enables the user to flexibly set MPI pro-
cess layouts among component models, the tests considered
non-overlapping, partially overlapping, and overlapping MPI
processes among component models of CESM.

We further coupled an atmosphere model GAMIL2 (Grid-
point Atmospheric Model of IAP LASG version 2; Li et al.,
2013b) and the CESM version with C-Coupler2 (the orig-
inal atmosphere model was disabled) via incremental cou-
pling, which generates the executables of both GAMIL2 and

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/



L. Liu et al.: C-Coupler2 3581

 

 

12.022 13.599
16.958

24.43

36.7295

48.453

85.505

0

10

20

30

40

50

60

70

80

90

15 30 60 120 240 480 960

T
im

e 
in

 s
ec

o
n

d
s

Number of cores per component model

Figure 8. Initialization cost for coupling two trial models with C-
Coupler2 on a supercomputer with Intel Xeon CPUs and an Infini-
Band network.

CESM, while GAMIL2 keeps its original driver unchanged.
C-Coupler2 thus successfully demonstrated incremental cou-
pling. The dynamic 3-D coupling capability of C-Coupler2
was evaluated when coupling GAMIL2 and GEOS-Chem. A
coupled model with the atmosphere model in MPAS (Model
for Prediction Across Scales) (https://mpas-dev.github.io/,
last access: 24 August 2018) and a wave model WaveWatch
(polar.ncep.noaa.gov/waves/wavewatch/, last access: 24 Au-
gust 2018) has been newly developed, which also contributes
to software testing of C-Coupler2.

Moreover, various processors (i.e., Intel X86, IBM Power,
and the SW26010 processors employed in the Sunway Tai-
huLight system), various operating systems (i.e., Linux and
IBM AIX), various compilers (i.e., Intel compilers, GNU
compilers, and IBM compilers), and various MPI libraries
(Intel MPI, MPICH, Open MPI, and IBM MPI) were in-
volved in testing C-Coupler2.

5.2 Initialization cost

The evaluation of initialization cost considered coupling 10
2-D fields between two trial component models that de-
fine horizontal grids but do not have real model initializa-
tion. The component models’ horizontal grids were a regu-
lar longitude–latitude grid with 1440×720 grid points and a
tripolar grid with 1440× 1021 grid points. Therefore, model
coupling required data remapping, and we used the corre-
sponding remapping weights file generated by CoR1. The
two component models ran concurrently on a supercomputer,
with the same number of processor cores (MPI processes).
Each computing node on the supercomputer included two In-
tel Xeon CPUs, with 20 processor cores in total, and all com-
puting nodes were connected with an InfiniBand network.
The codes were compiled by an Intel Fortran and C++ com-
piler at the optimization level O2, using an Intel MPI library.

Figure 8 shows the initialization cost of C-Coupler2 when
scaling the number of processor cores of each component

 

0

0.5

1

1.5

2

2.5

3

3.5

15 30 60 120 240 480 960

Ti
m

e 
in

 se
co

nd
s

Number of cores per component model

One-sided communication Two-sided communication

Figure 9. Comparison of data transfer times (for 100 ping-pong
couplings) between a one-sided and a two-sided implementation,
with the same configuration as Fig. 8.

model from 15 to 960. It increases with increasing core num-
ber. C-Coupler2 initialization consists of several steps, in-
cluding registering component models, setting time steps,
registering model grids, registering parallel decompositions,
registering coupling field instances, registering coupling in-
terfaces, generating coupling procedures, reading and then
distributing the remapping weights from a file, and comput-
ing routing information for data transfer between component
models. Most of these steps include non-scalable operations,
i.e., MPI collective communications or I/O. Increasing the
core number increases the overhead of the non-scalable op-
erations, and thus increases initialization cost. The results in
Fig. 8 indicate that the initialization cost of C-Coupler2 may
not be negligible, but it would be affordable in most cases,
especially for long-term climate simulations.

5.3 Data transfer

As introduced above, C-Coupler2 can employ one-sided MPI
communication in data transfer, while other existing cou-
plers only use two-sided MPI communication in data trans-
fer. We evaluated the performance of our one-sided commu-
nication in comparison to a two-sided implementation, based
on a ping-pong coupling for the same configuration used in
Sect. 5.2. Figure 9 shows the cost of the two implementa-
tions when scaling the number of processor cores of each
component model from 15 to 960. The times are per 100
ping-pong couplings. Overall, the one-sided communication
achieves similar performance to the two-sided communica-
tion. In other words, the option of one-sided MPI communi-
cation does not obviously degrade the performance of data
transfer.

5.4 Memory usage

Figure 10 shows the memory use per core for the coupled
model configuration used in Sect. 5.2, as measured using

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018

https://mpas-dev.github.io/
polar.ncep.noaa.gov/waves/wavewatch/


3582 L. Liu et al.: C-Coupler2

 

373
367 367 366 365

370

377

300

310

320

330

340

350

360

370

380

390

400

15 30 60 120 240 480 960

M
B

 o
f 

m
em

o
ry

Number of cores per component model

Figure 10. Memory use of C-Coupler2 for the trial coupled model
considered in Sect. 5.2.

the gptl (https://github.com/jmrosinski/GPTL, last access: 24
August 2018) interface (similar to Craig et al., 2017). The
memory usage remains around 360–380 MB regardless of
the core number from 15 to 960. Lacking computing re-
sources, we were unable to evaluate the memory usage at a
much higher number of processor cores. When more proces-
sor cores are used, the memory use per core for the whole
coupled model configuration will get higher owing to the
MPI memory footprint (Balaji et al., 2009). However, the
memory use per core due to C-Coupler2 itself would not get
higher because the number of local grid cells per core will
get lower.

5.5 Dynamic 3-D coupling

The capability of dynamic 3-D coupling was tested based
on the coupled model consisting of GAMIL2 and GEOS-
Chem that has been mentioned before. In this coupled model,
the 3-D grids of GAMIL2 and GEOS-Chem are different
in both horizontal direction and vertical direction. Specif-
ically, GAMIL2 includes a 2.8◦ horizontal grid with the
uniform grid in the low and middle latitudes region and a
weighted even-area grid in the high latitudes and polar re-
gion, and 26-sigma vertical levels (pressure normalized by
surface pressure) with the model top at 2.194 hPa, while
GEOS-Chem uses a 4◦× 5◦ uniform horizontal grid and
72-hybrid vertical levels with the model top at 0.01 hPa.
As GEOS-Chem does not calculate the atmospheric pres-
sure, the surface pressure corresponding to its 3-D grid
is declared as an external surface field through the API
CCPL_set_3D_grid_external_surface_field and will be de-
termined by the surface field of the 3-D grid of GAMIL in
dynamic 3-D coupling. For the first step of the evaluation,
we examined the vertical coordination values of the two 3-
D grids and the corresponding vertical remapping weights
that change in time integration. Next, we examined each cou-
pling field from one component model to the other. For ex-
ample, Figs. 11 and 12 show the values of the coupling fields

Figure 11. The temperature, T (a), and zonal wind speed, U (b),
from GAMIL2 to GEOS-Chem (GC) at the 500 hPa level at two
different model times.

of atmospheric temperature (T ) and the zonal wind speed
(U ) from GAMIL2 and GEOS-Chem, which reveal that C-
Coupler2 achieves consistent results between the source grid
and the target grid in dynamic 3-D coupling.

To evaluate the parallel scalability of dynamic 3-D cou-
pling, we derived a new configuration from the configuration
used in Sect. 5.2, where the 2-D grid corresponding to the
2-D coupling fields in each component model is extended to
be a 3-D grid with a 50-level vertical sub-grid of sigma co-
ordinate. The sigma coordinate values are different between
the two component models, and the surface field correspond-
ing to the 3-D grid of one component model changes at every
time step, while the surface field corresponding to the other
component model has been set to be external. Therefore,
the vertical coordinate values of all 3-D grids and the cor-
responding vertical remapping weights are updated in each
time of 3-D coupling. Figure 13 shows the parallel speedup
of dynamic 3-D coupling when scaling the number of proces-
sor cores of each component model from 15 to 960, measured

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/

https://github.com/jmrosinski/GPTL


L. Liu et al.: C-Coupler2 3583

Figure 12. The global vertical profile of the temperature T (a), and
zonal wind speed U (b), from GAMIL2 to GEOS-Chem (GC) at the
500 hPa level at two different model times.

 

 

0

5

10

15

20

25

30

35

40

45

15 30 60 120 240 480 960

S
p

ee
d

u
p

Number of cores per component model

Figure 13. The parallel speedup of dynamic 3-D coupling (for 100
ping-pong couplings) between the two component models, with a
new configuration derived from the configuration used in Fig. 8.
The speedup is normalized to the time at 15 cores per component
model (1583 s).

from 100 ping-pong couplings. The results in Fig. 13 reveal
that C-Coupler2 can achieve acceptable parallel scalability in
dynamic 3-D coupling.

6 Summary and future work

As a new version of C-Coupler, C-Coupler2 follows the fam-
ily’s targets and the main design, but is significantly different
from C-Coupler1 with advancements in many aspects, e.g.,
coupling configuration, 3-D coupling capability, coupling
procedure generation, support for incremental coupling, cou-
pling lags, etc. (please refer to Table 2 for the differences
between C-Coupler1 and C-Coupler2 in all aspects):

1. The coupling configuration of C-Coupler2 properly
combines nearly 80 APIs and several kinds of XML-
formatted configuration files, while the coupling con-
figuration of C-Coupler1 strongly depends on ASCII
formatted configuration files. Therefore, the coupling
configuration of C-Coupler2 is much more flexible and
user-friendly.

2. C-Coupler2 supports dynamic 3-D coupling that en-
ables vertical coordinate values of 3-D grids to change
in time integration, while C-Coupler1 only supports
static 3-D coupling where coordinate values of 3-D
grids must remain constant throughout time integration.

3. C-Coupler2 has a coupling procedure generation capa-
bility that achieves automatic and incremental coupling
procedure generation for any subset of component mod-
els, while C-Coupler1 does not achieve such a capabil-
ity.

4. C-Coupler2 can facilitate the implementation of incre-
mental coupling because an existing coupled model as
well as its component models coupled with any coupler
can be used as component models of C-Coupler2, while
C-Coupler1 does not support coupled component mod-
els using other couplers.

5. The APIs non-blocking data transfer and adaptive
restart capability of C-Coupler2 enable users to flexi-
bly set coupling lags that can be greater than the cor-
responding coupling periods, while a coupling lag in
C-Coupler1 cannot exceed the corresponding coupling
period.

As shown in Table 2, C-Coupler1 has the capability of in-
tegrating external calculation routines, which means that a
private subroutine of a component model or a common algo-
rithm such as a flux calculation algorithm can be registered
as an external calculation routine. An external calculation
routine cannot have any explicit argument while its inputs
and outputs are implicitly specified through the correspond-
ing configuration files. The integration of a Fortran external
calculation routine generally requires an additional C inter-
face. An external calculation routine can be further used as
a runtime algorithm in a coupling procedure by specifying
it in the corresponding configuration files. C-Coupler2 does
not inherit this capability from C-Coupler1, because config-
uration files for implicitly specifying the inputs and outputs

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018



3584 L. Liu et al.: C-Coupler2

Table 2. Differences between C-Coupler1 and C-Coupler2.

No. Technical aspects C-Coupler1 C-Coupler2

1 Coupling
configuration

Strongly depends on ASCII formatted configu-
ration files

Properly combines APIs and XML-formatted configu-
ration files

2 MPI process layout
of coupling

Only root component models are supported;
cannot handle model coupling within a subset
of MPI processes or the same component model

Can support almost any kind of MPI process layout
among component models (including existing coupled
models); can handle model coupling within a subset of
MPI processes or the same component model

3 3-D coupling
capability

Static 3-D coupling only Both static and dynamic 3-D coupling

4 Coupling proce-
dure generation

No coupling procedure generation function Automatic and incremental coupling procedure genera-
tion for any subset of component models

5 Data transfer Blocking data transfer based on two-sided MPI
communication

Non-blocking data transfer is implemented with two-
sided MPI communication by default, and with one-
sided MPI communication as an additional option

6 Support for model
nesting

No specific support Can facilitate nesting a regional model into itself or into
another model

7 Support for incre-
mental coupling

No specific support Can facilitate coupling external component models with
an existing coupled model

8 Debugging capabil-
ity

Not prioritized; little support Implemented, with support provided

9 Coupling lags Supported, but lag cannot be greater than the
corresponding coupling period

Supported, with lag able to be greater than the corre-
sponding coupling period

10 Coupling proce-
dures

Runtime algorithms in a coupling procedure are
explicitly specified in a configuration file

Runtime algorithms in a coupling procedure are implic-
itly generated by the coupling generator

11 Restart capability Can achieve exact restart for model field in-
stances and coupling field instances, without
supporting the case with a coupling lag greater
than the corresponding coupling period.

Can achieve exact restart for model field instances and
coupling field instances, no matter the setting of cou-
pling lag. Can automatically determine a right model
time for restarting a “continue” run

12 Online remapping
weight generation

Sequential online remapping weight generation Parallelized online remapping weight generation

13 Integration of exter-
nal calculation rou-
tines

Can integrate an external calculation routine as
a runtime algorithm and then further use it in a
coupling procedure

Cannot integrate an external calculation routine

of an external calculation routine and for specifying the run-
time algorithms in a coupling procedure do not exist in C-
Coupler2. We intend to recover this capability in future ver-
sions of C-Coupler.

As C-Coupler1’s coupling configuration interface has been
significantly changed in C-Coupler2, C-Coupler2 does not
achieve backwards compatibility. However, keeping back-
wards compatibility will be a primary goal for future C-
Coupler versions. Therefore, we will try to make C-Coupler
versions support all existing C-Coupler2 APIs, so that the
coupled models using C-Coupler2 can be conveniently up-
graded with future C-Coupler versions without code changes.

Although the results in Sect. 5 indicate that the initializa-
tion cost and memory use of C-Coupler2 may be affordable

in most cases, a problem might arise when the model reso-
lution or the number of processor cores is extremely high.
When developing future C-Coupler versions, we will inves-
tigate ways to decrease initialization cost and memory use.

Code availability. C-Coupler2 is an open-source coupler that is
always free for non-commercial activities. The latest version
and future updates of the source code, user guide, and exam-
ples can be downloaded from https://github.com/C-Coupler-Group/
c-coupler-lib (last access: 24 August 2018). We highly recommend
users to watch this project, so as to be notified of the future updates
and bug fixes. Anyone who detects a new bug of C-Coupler2 and
contributes to the corresponding test cases will be awarded a bonus.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/

https://github.com/C-Coupler-Group/c-coupler-lib
https://github.com/C-Coupler-Group/c-coupler-lib


L. Liu et al.: C-Coupler2 3585

We also applied a DOI for a specific code version of C-Coupler2,
that can be accessed via https://doi.org/10.5281/zenodo.1283512.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-11-3557-2018-
supplement.

Author contributions. LL was responsible for most aspects of C-
Coupler2, including the design, code development, software test-
ing, user manual, and this paper. CZ designed and developed the
non-blocking data transfer functionality, conducted software test-
ing based on several real coupled models, and co-led a training. RL
conducted software testing based on several real coupled models,
co-led a training, and manages the code release. BW contributed
to the design of the main target functions. GY contributed to the
evaluation of the dynamic 3-D coupling capability. All authors con-
tributed to paper writing.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was jointly supported in part by
the National Grand Fundamental Research 973 Program of China
(grant no. 2014CB441302) and the National Key Research Project
of China (grant nos. 2017YFC1501903 and 2016YFA0602200).

Edited by: Sophie Valcke
Reviewed by: two anonymous referees

References

Balaji, P., Buntinas, D., Goodell, D., Gropp, W. D., Kumar, S.,
Lusk, E. L., Thakur, R., and Traff, J. L.: MPI on a Million Pro-
cessors. Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, Lect. Notes Comp. Sci., 5759, 20–30,
https://doi.org/10.1007/978-3-642-03770-2_9, 2009.

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B.,
Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J.
J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S.,
Santer, B. D., and Smith, R. D.: The Community Climate System
Model Version 3 (CCSM3), J. Climate, 19, 2122–2143, 2006.

Craig, A. P., Jacob, R. L., Kauffman, B., Bettge, T., Larson, J. W.,
Ong, E. T., Ding, C. H. Q., and He, Y.: CPL6: The New Ex-
tensible, High Performance Parallel Coupler for the Community
Climate System Model, Int. J. High Perform. C., 19, 309–327,
2005.

Craig, A. P., Vertenstein, M., and Jacob, R.: A New Flex-
ible Coupler for Earth System Modeling developed for
CCSM4 and CESM1, Int. J. High Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Dennis, J. M., Edwards, J., Loy, R., Jacob, R., Mirin, A. A., Craig,
A. P., and Vertenstein, M.: An application-level parallel I/O li-
brary for Earth system models, Int. J. High Perform. C., 26, 43–
53, 2012.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

He, J., Zhang, M., Lin, W., Colle B., Liu, P., and Vogelmann, A. M.:
The WRF nested within the CESM: Simulations of a midlatitude
cyclone over the southern great plains, J. Adv. Model Earth Sy.,
5, 611–622, 2013.

Hill, C., DeLuca, C., Balaji, C. V., Suarez, M., and Silva, A. D.:
Architecture of the Earth System Modeling Framework, Comput.
Sci. Eng., 6, 18–28, 2004.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E.,
Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D.,
Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N.,
Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M.,
Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.:
The Community Earth System Model: A Framework for Collab-
orative Research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.

Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit:
A New Fortran90 Toolkit for Building Multiphysics Parallel
Coupled Models, Int. J. High Perf. Comp. App., 19, 277–292,
https://doi.org/10.1177/1094342005056116, 2005.

Li, L. J., Lin, P. F., Yu, Y. Q., Wang, B., Zhou, T. J., Liu, L., Liu,
J. P., Bao, Q., Xu, S. M., Huang, W. Y., Xia, K., Pu, Y., Dong,
L., Shen, S., Liu, Y. M., Hu, N., Liu, M. M., Sun, W. Q., Shi, X.
J., Zheng, W. P., Wu, B., Song, M.-R., Liu, H. L., Zhang, X. H.,
Wu, G. X., Xue, W., Huang, X. M., Yang, G. W., Song, Z. Y.,
and Qiao, F. L.: The Flexible Global Ocean-Atmosphere-Land
System Model: Grid-point Version 2: FGOALS-g2, Adv. Atmos.
Sci., 30, 543–560, 2013a.

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N.,
Sun, W., Wang, Y., Huang, W., Shi, X., Pu, Y., and Yang,
G.: Evaluation of Grid-point Atmospheric Model of IAP
LASG version 2 (GAMIL2), Adv. Atmos. Sci., 30, 855–867,
https://doi.org/10.1007/s00376013-2157-5, 2013b.

Liu, L., Yang, G., and Wang, B.: CoR: a multi-dimensional com-
mon remapping software for Earth System Models, in: The Sec-
ondWorkshop on Coupling Technologies for Earth System Mod-
els (CW2013), available at: https://wiki.cc.gatech.edu/CW2013/
index.php/Program (last access: 8 May 2014), 2013.

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji,
Y., and Wang, L.: C-Coupler1: a Chinese community coupler
for Earth system modeling, Geosci. Model Dev., 7, 2281–2302,
https://doi.org/10.5194/gmd-7-2281-2014, 2014.

Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da
Silva, A., Sulprizio, M. P., Pawson, S., and Jacob, D. J.:
Development of a grid-independent GEOS-Chem chemical
transport model (v9-02) as an atmospheric chemistry module
for Earth system models, Geosci. Model Dev., 8, 595–602,
https://doi.org/10.5194/gmd-8-595-2015, 2015.

Jones, P.: Conservative remapping: First- and second-
order conservative remapping, Mon. Weather Rev.,
127, 2204–2210, https://doi.org/10.1175/1520-
0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.

www.geosci-model-dev.net/11/3557/2018/ Geosci. Model Dev., 11, 3557–3586, 2018

https://doi.org/10.5281/zenodo.1283512
https://doi.org/10.5194/gmd-11-3557-2018-supplement
https://doi.org/10.5194/gmd-11-3557-2018-supplement
https://doi.org/10.1007/978-3-642-03770-2_9
https://doi.org/10.1177/1094342011428141
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.1177/1094342005056116
https://doi.org/10.1007/s00376013-2157-5
https://wiki.cc.gatech.edu/CW2013/index.php/Program
https://wiki.cc.gatech.edu/CW2013/index.php/Program
https://doi.org/10.5194/gmd-7-2281-2014
https://doi.org/10.5194/gmd-8-595-2015
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2


3586 L. Liu et al.: C-Coupler2

Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., and Ma, J.: Wave-
induced mixing in the upper ocean: Distribution and application
in a global ocean circulation model, Geophys. Res. Lett., 31,
L11303, https://doi.org/10.1029/2004GL019824, 2004.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, https://doi.org/10.5194/gmd-3-87-2010, 2010.

Valcke, S.: The OASIS3 coupler: a European climate mod-
elling community software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013.

Wang, G., Qiao, F., and Xia, C.: Parallelization of a coupled wave-
circulation model and its application, Ocean Dynam., 60, 331–
339, 2010.

Wang, W., Barker, D., Bray, J., Bruyère, C., Duda, M., Dudhia,
J., Gill, D., and Michalakes, J.: WRF Version 3 Modeling Sys-
tem User’s Guide, available at: http://www2.mmm.ucar.edu/wrf/
users/docs/user_guide_V3/contents.html (last access: 24 August
2018), 2014.

Xin, X.-G., Wu, T.-W., and Zhang, J.: Introduction of CMIP5
experiments carried out with the climate system models of
Beijing Climate Center, Adv. Clim. Change Res., 4, 41–49,
https://doi.org/10.3724/SP.J.1248.2013.041, 2013.

Yang, Y., Qiao, F., Zhao, W., Teng, Y., and Yuan, Y.: MASNUM
ocean wave numerical model in spherical coordinates and its ap-
plication, Acta Oceanol. Sin., 27, 1–7, 2005.

Zhao, B., Qiao, F., Cavaleri, L., Wang, G., Bertotti, L., and
Liu, L.: Sensitivity of typhoon modeling to surface waves
and rainfall, J. Geophys. Res.-Oceans, 122, 1702–1723,
https://doi.org/10.1002/2016JC012262, 2017.

Geosci. Model Dev., 11, 3557–3586, 2018 www.geosci-model-dev.net/11/3557/2018/

https://doi.org/10.1029/2004GL019824
https://doi.org/10.5194/gmd-3-87-2010
https://doi.org/10.5194/gmd-6-373-2013
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
https://doi.org/10.3724/SP.J.1248.2013.041
https://doi.org/10.1002/2016JC012262

	Abstract
	Introduction
	Brief review of C-Coupler and C-Coupler1
	Motivation
	Coupling configuration
	Coupling within one executable or a subset of MPI processes
	Dynamic 3-D coupling
	Coupling procedure generation
	Non-blocking data transfer
	Model nesting
	Incremental coupling
	Restart capability
	Debugging capability

	Design and implementation of C-Coupler2
	Common, flexible, and user-friendly coupling configuration interface
	C-Coupler2 APIs
	C-Coupler2 configuration files

	Coupling within one executable or a subset of MPI processes
	Flexible and automatic coupling procedure generation
	Creation of MPI communicators
	Timers matching and lags
	Steps for coupling procedure generation

	Dynamic 3-D coupling capability
	Non-blocking data transfer
	Facilitation for model nesting
	Facilitation for incremental coupling
	Adaptive restart capability
	Debugging capability

	Evaluation
	Software testing
	Initialization cost
	Data transfer
	Memory usage
	Dynamic 3-D coupling

	Summary and future work
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	References

