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Abstract. We present an approach which we call PSyKAl
that is designed to achieve portable performance for paral-
lel finite-difference, finite-volume, and finite-element earth-
system models. In PSyKAl the code related to the underlying
science is formally separated from code related to paralleliza-
tion and single-core optimizations. This separation of con-
cerns allows scientists to code their science independently
of the underlying hardware architecture and for optimiza-
tion specialists to be able to tailor the code for a particular
machine, independently of the science code. We have taken
the free-surface part of the NEMO ocean model and cre-
ated a new shallow-water model named NEMOLite2D. In
doing this we have a code which is of a manageable size
and yet which incorporates elements of full ocean models
(input/output, boundary conditions, etc.). We have then man-
ually constructed a PSyKAl version of this code and inves-
tigated the transformations that must be applied to the mid-
dle, PSy, layer in order to achieve good performance, both
serial and parallel. We have produced versions of the PSy
layer parallelized with both OpenMP and OpenACC; in both
cases we were able to leave the natural-science parts of the
code unchanged while achieving good performance on both
multi-core CPUs and GPUs. In quantifying whether or not
the obtained performance is “good” we also consider the lim-
itations of the basic roofline model and improve on it by gen-
erating kernel-specific CPU ceilings.

1 Introduction

The challenge presented to the developers of scientific soft-
ware by the drive towards exascale computing is consider-
able. With power consumption becoming the overriding de-
sign constraint, CPU clock speeds are falling and the com-
plex multi-purpose compute core is being replaced by mul-
tiple simpler cores. This philosophy can be seen at work in
the rise of so-called accelerator-based machines in the Top
500 List of supercomputers (http://www.top500.org/, last ac-
cess: June 2017): six of the top-ten machines in the Novem-
ber 2016 list make use of many-core processors (Intel Xeon
Phi, NVIDIA GPU, or NRCPC SW26010). Two of the re-
maining four machines are IBM Blue Gene/Qs, the CPU of
which has hardware support for running 64 threads.

Achieving good performance on large numbers of light-
weight cores requires exploiting as much parallelism in an
application as possible and this results in increased complex-
ity in the programming models that must be used. This in turn
increases the burden of code maintenance and code develop-
ment, in part because two specialisms are required: that of the
scientific domain which a code is modelling (e.g. oceanogra-
phy) and that of computational science. The situation is cur-
rently complicated still further by the existence of compet-
ing hardware technology; if one was to begin writing a major
scientific application today it is unclear whether one would
target GPU, Xeon Phi, traditional CPU, FPGA, or something
else entirely. This is a problem because, generally speaking,
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these different technologies require different programming
approaches.

In a previous paper (Porter et al., 2016) we introduced
a possible approach to tackling this problem which we
term PSyKAl (discussed below). In that work we consid-
ered the implications for serial performance of the extensive
code restructuring required by the approach when applied
to the “Shallow” shallow-water model (https://puma.nerc.ac.
uk/trac/GOcean, last access: June 2017). We found that al-
though the restructuring did initially incur a sizeable perfor-
mance penalty, it was possible to transform the resulting code
to recover performance (for a variety of CPU/compiler com-
binations) while obeying the PSyKAl separation of concerns.
In this work we move to look at portable parallel perfor-
mance within the PSyKAl approach.

1.1 The PSyKAl approach

The PSyKAl approach attempts to address the problems de-
scribed in the previous section. It separates code into three
layers: the Algorithm layer, the PSy layer, and the Ker-
nel layer. The approach has been developed in the GungHo
project (Ford et al., 2015), which is creating a new dynami-
cal core for the UK Met Office, and its design has been influ-
enced by earlier work on OP2 (Bertolli et al., 2012; Rathge-
ber et al., 2012) – see Sect. 1.2 for more details.

While the PSyKAl approach is general, we are currently
applying it to atmosphere and ocean models written in For-
tran where domain decomposition is typically performed in
the latitude–longitude dimension, leaving columns of ele-
ments on each domain-decomposed partition.

The top layer, in terms of calling hierarchy, is the Algo-
rithm layer. This layer specifies the algorithm that the sci-
entist would like to perform (in terms of calls to kernel and
infrastructure routines) and logically operates on full fields.
We say logically here as the fields may be domain decom-
posed; however, the Algorithm layer is not aware of this. It is
the scientist’s responsibility to write this Algorithm layer.

The bottom layer, in terms of calling hierarchy, is the Ker-
nel layer. The Kernel layer implements the science that the
Algorithm layer calls, as a set of subroutines. These kernels
operate on fields that are local to the process doing the com-
putation. (Depending on the type of kernel, these may be
a set of elements, a single column of elements, or a set of
columns.) Again the scientist is responsible for writing this
layer and there is no parallelism specified here, but, depend-
ing on the complexity of the kernels, there may be input from
an High Performance Computing (HPC) expert and/or some
coding rules to help ensure that the kernels compile into effi-
cient code.

The PSy layer sits in-between the Algorithm and Kernel
layers and its functional role is to link the algorithm calls
to the associated kernel subroutines. As the Algorithm layer
works on logically global fields and the Kernel layer works
on local fields, the PSy layer is responsible for iterating over

columns. It is also responsible for including any distributed-
memory operations resulting from the decomposition of the
simulation domain, such as halo swaps and reductions.

As the PSy layer iterates over columns, the single-core
performance can be optimized by applying transformations
such as manipulation of loop bounds (e.g. padding for sin-
gle instruction multiple data (SIMD) instructions) and ker-
nel in-lining. Additionally, the potential parallelism within
this iteration space can also be exploited and optimized. The
PSy layer can therefore be tailored for a particular hardware
(such as multi-core, many-core, GPUs, or some combination
thereof) and software (such as compiler, operating system,
message passing interface (MPI) library, etc.) configuration
with no change to the Algorithm or Kernel layer code. This
approach therefore offers the potential for portable perfor-
mance. In this work we apply optimizations to the PSy layer
manually. The development of a tool to automate this process
will be the subject of a future paper.

Clearly the separation of code into distinct layers may have
an effect on performance. This overhead – how to get back
to the performance of a parallel, hand-optimized code, and
potentially improve on it – will be discussed in the remainder
of this paper.

1.2 Related approaches

This paper is concerned with the implications of PSyKAl as
a design for code architecture. The implementation of an as-
sociated tool (which we have named “PSyclone”) for gener-
ating the middle, PSy, layer will be the subject of a future pa-
per. However, comparison with other approaches necessarily
involves discussing other tools rather than simply architec-
tures.

As already mentioned, our approach is heavily influenced
by the OP2 system (Bertolli et al., 2012; Rathgeber et al.,
2012). In common with OP2, the PSyKAl approach sepa-
rates out the science code and the performance-related code
into distinct layers. The calls that specify parallelism in both
approaches are similar in terms of where they are placed in
the code and in their semantics. However, the PSyKAl ap-
proach supports the specification of more than one kernel in
a parallel region of code, compared with one for OP2, giv-
ing more scope for optimization. In addition, the metadata
describing a kernel is included with the kernel code in the
PSyKAl approach, whereas it is provided as a part of the ker-
nel call in OP2.

In the PSyKAl approach there is an implicit assump-
tion that the majority of the kernels in an application will
be provided by the application developer. In the GridTools
(Gysi et al., 2015) and Firedrake (Rathgeber et al., 2015;
Logg et al., 2012) approaches, the mathematical operations
(finite-difference stencils and finite element operations, re-
spectively) are specified in a high-level language by the user.
Kernel code is then generated automatically. It is possible
to optimize this generated code (Luporini et al., 2014) and,
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in the case of GridTools, support both CPU and GPU archi-
tectures. This ability to generate kernels specific to a given
computer architecture is a powerful feature. However, with
this power comes the responsibility of providing domain sci-
entists with the necessary functionality to describe all con-
ceivable kernel operations as well as a programming inter-
face with which they are comfortable.

The PSyKAl, GridTools, and Firedrake approaches are
all based on the concept of (various flavours of) a domain-
specific language (DSL) for finite-difference and finite-
element applications. This is distinct from other, lower-level
abstractions such as Kokkos (Edwards et al., 2014) and
OCCA (Medina et al., 2015) where the aim is to provide a
language that permits a user to implement a kernel just once
and have it compile to performant code on a range of multi-
and many-core devices. One could imagine using such ab-
stractions to implement kernels for the PSyKAl, GridTools,
and Firedrake approaches rather than using, for example,
OpenMP or CUDA directly. A summary of all of these ap-
proaches is presented in Table 1.

1.3 The NEMOLite2D programme

For this work we have used the NEMOLite2D pro-
gramme, developed by ourselves (https://puma.nerc.ac.uk/
trac/GOcean). NEMOLite2D is a vertically averaged ver-
sion of NEMO (Nucleus for European Modelling of the
Ocean; Madec, 2014), retaining only its dynamical part. The
whole model system is represented by one continuity equa-
tion (Eq. 1; for the update of the sea-surface height) and two
vertically integrated momentum equations (Eq. 2; for the two
velocity components).

∂ζ

∂t
+∇ · (Uh)= 0, (1)

∂Uh

∂t
+U ·∇(Uh)=−gh∇ζ − 2h�×u+ νh1U , (2)

where ζ and U represent the sea-surface height and horizon-
tal velocity vectors, respectively; h is the total water depth;
� is the Earth rotation velocity vector; g is the acceleration
due to gravity; and ν is the kinematic viscosity coefficient.

The external forcing includes surface wind stress, bottom
friction, and open-boundary barotropic forcing. A lateral-slip
boundary condition is applied along the coast lines. The open
boundary condition can be set as a clipped or Flather’s radi-
ation condition (Flather, 1976). The bottom friction takes a
semi-implicit form for the sake of model stability. As done
in the original version of NEMO, a constant or Smagorin-
sky horizontal viscosity coefficient is used for the horizontal
viscosity term.

The traditional Arakawa C structured grid is employed
here for the discretization of the computational domain. A

two-dimensional integer array is used to identify the differ-
ent parts of the computational domain; it has the value of
1 for ocean, 0 for land, and −1 for ocean cells outside of the
computational domain. This array enables the identification
of ocean cells, land cells, solid boundaries, and open bound-
aries.

For the sake of simplicity, the explicit Eulerian forward-
time-stepping method is implemented here, except that the
bottom friction takes a semi-implicit form. The Coriolis force
can be set in explicit or implicit form. The advection term is
computed with a first-order upwind scheme.

The sequence of the model computation is as follows:

1. Set the initial conditions (water depth, sea surface
height, velocity);

2. integrate the continuity equation for the new sea surface
height;

3. update the different terms in the right hand side of the
momentum equations; advection, Coriolis forcing (if set
in explicit form), pressure gradient, and horizontal vis-
cosity;

4. update the velocity vectors by summing up the values in
(3), and implicitly with the bottom friction and Coriolis
forcing (if set in implicit form);

5. apply the boundary conditions on the open- and solid-
boundary cells.

Since any real oceanographic computational model must
output results, we ensure that any PSyKAl version of
NEMOLite2D retains the Input/Output capability of the orig-
inal. This aids in limiting the optimizations that can be per-
formed on the PSyKAl version to those that should also be
applicable to full oceanographic models. Note that although
we retain the I/O functionality, all of the results presented
in this work carefully exclude the effects of I/O since it is
compute performance that interests us here.

In the Algorithm layer, fields (and grids) are treated as
logically global objects. Therefore, as part of creating the
PSyKAl version of NEMOLite2D, we represent fields with
derived types instead of arrays in this layer. These types
then hold information about the associated mesh and the ex-
tents of “internal” and “halo” regions as well as the data ar-
rays themselves. This frees the natural scientist from hav-
ing to consider these issues and allows for a certain degree
of flexibility in the actual implementation (e.g. padding for
alignment or increasing array extent to allow for other opti-
mizations). The support for this is implemented as a library
(which we term the GOcean Infrastructure) and is common
to the PSyKAl versions of both NEMOLite2D and Shallow.

In restructuring NEMOLite2D to conform to the PSyKAl
separation of concerns we must break up the computation
into multiple kernels. The more of these there are, the greater
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Table 1. An overview of the functionality of similar approaches. Static compilation here means that all code is compiled before programme
execution is begun.

Approach DSL MPI Threading Data layout Kernels Language Compilation

PSyKAl Yes Yes Yes Fixed User-supplied Fortran Static
GridTools Yes No Yes Flexible Generated C++ Static
Firedrake Yes Yes No Fixed Generated C with Python interface Runtime
Kokkos No No Yes Flexible User-supplied C++ Static
OCCA No No Yes Fixed User-supplied C (Python & Fortran interfaces) Runtime

Figure 1. A schematic of the top-level of the PSyKAl version of the
NEMOLite2D code. The kernels listed as arguments to the invoke
call specify the operations to be performed.

the potential for optimization of the PSy layer. This restruc-
turing gave eight distinct kernels, each of which updates a
single field at a single point (since we have chosen to use
point-wise kernels). With a little bit of tidying and restruc-
turing, we found it was possible to express the contents of
the main time-stepping loop as a single invoke (a call to the
PSy layer) and a call to the I/O system (Fig. 1). The sin-
gle invoke gives us a single PSy-layer routine which consists
of applying each of the kernels to all of the points requir-
ing an update on the model mesh. In its basic unoptimized
(“vanilla”) form, this PSy-layer routine then contains a dou-
bly nested loop (over the two dimensions of the model grid)
around each kernel call.

As with any full oceanographic model, boundary condi-
tions must be applied at the edges of the model domain.
Since NEMOLite2D applies external boundary conditions
(e.g. barotropic forcing), this is done via user-supplied ker-
nels.

2 Methodology

Our aim in this work is to achieve portable performance, es-
pecially between multi-core CPU and many-core GPU sys-
tems. Consequently, we have performed tests on both an Intel
Ivy Bridge CPU (E5-2697 at 2.7 GHz) and on an NVIDIA
Tesla K40 GPU. On the Intel-based system we have used
the Gnu, Intel, and Cray Fortran compilers (versions 4.9.1,
15.0.0.090, and 8.3.3, respectively). The code that made use
of the GPU was compiled using version 15.10 of the PGI
compiler.

We first describe the code transformations performed for
the serial version of NEMOLite2D. We then move on to the

Table 2. The compiler flags used in this work.

Compiler Flags

Gnu -Ofast -mtune=native -finline-limit=50000
Intel -O3 -fast -fno-inline-factor -xHost
Cray -O3 -O ipa5 -h wp
PGI -acc -ta=tesla,cc35,nordc

-Mcuda=maxregcount:80,loadcache:L1

construction of parallel versions of the code using OpenMP
and OpenACC. Again, we describe the key steps we have
taken in this process in order to maximize the performance
of the code. In both cases our aim is to identify those trans-
formations which must be supported by a tool which seeks to
auto-generate a performant PSy layer.

2.1 Transformations of serial NEMOLite2D

In Table 2 we give the optimization flags used with each com-
piler. For the Gnu and Intel compilers, we include flags to
encourage in-lining of kernel bodies. The Intel flag “-xHost”
enables the highest level of SIMD vectorization supported by
the host CPU (AVX in this case). The Intel flag “-fast” and
Cray flags “-O ipa5” and “-h wp” enable inter-procedural op-
timization.

Before applying any code transformations, we first bench-
mark the original serial version of the code. We also bench-
mark the unoptimized vanilla version after it has been re-
structured following the PSyKAl approach. In addition to
this benchmarking, we profile these versions of the code at
the algorithm level (using a high-level timing API). The re-
sulting profiles are given in Table 3. The Momentum section
dominates the profile of both versions of the code, account-
ing for around 70 %–80 % of the wall-clock time spent doing
time stepping. It is also the key section when we consider
the performance loss when moving from the original to the
PSyKAl version of the code; it slows down by a factor of 2.
Although less significant in terms of absolute time, the Con-
tinuity section is also dramatically slower in the PSyKAl ver-
sion, this time by a factor of 3. In contrast, the performance
of the Time-update and Boundary Condition regions are not
significantly affected by the move to the PSyKAl version.
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Table 3. The performance profile of the original and PSyKAl ver-
sions of NEMOLite2D on the Intel Ivy Bridge CPU (for 2000 time
steps of the 1282 domain and the Intel compiler).

Section Original Vanilla PSyKAl Final PSyKAl

Time (s) % Time (s) % Time (s) %

Momentum 1.98 72.6 4.05 79.5 2.09 75.3
Time-update 0.40 14.6 0.41 8.1 0.29 10.6
BCs 0.25 9.1 0.29 5.7 0.27 9.9
Continuity 0.10 3.7 0.33 6.6 0.11 4.1

Beginning with the vanilla PSyKAl version, we then apply
a series of code transformations while obeying the PSyKAl
separation of concerns, i.e. optimization is restricted to the
middle, PSy, layer and leaves the kernel and algorithm layers
unchanged. The aim of these optimizations is to recover, as
much as is possible, the performance of the original version
of the code. The transformations we have performed and the
reasons for them are described in the following sections.

2.1.1 Constant loop bounds

In the vanilla PSy layer, the lower and upper bounds for each
loop over grid points are obtained from the relevant com-
ponents of the derived type representing the field being up-
dated by the kernel being called from within the loop. In our
previous work (Porter et al., 2016) we found that the Cray
compiler in particular produced more performant code if we
changed the PSy layer such that the array extents are looked
up once at the beginning of the PSy routine and then used
to specify the loop bounds. We have therefore applied that
transformation to the PSy layer of NEMOLite2D.

2.1.2 Addition of safe_address directives

Many of the optimizations we have performed have been in-
formed by the diagnostic output produced by either the Cray
or Intel compilers. Many of the NEMOLite2D kernels con-
tain conditional statements. These statements are there to
check whether, for example, the current grid point is wet or
neighbours a boundary point. A compiler is better able to op-
timize such a loop if it can be sure that all array accesses
within the body of the loop are safe for every trip, irrespec-
tive of the conditional statements. In its diagnostic output the
Cray compiler notes this with messages of the form:

A loop starting at line 448 would
benefit from "!dir$ safe_address".

Originally, all fields were only allocated the bare mini-
mum of storage and the conditional statements within ker-
nels prevented out-of-bounds accesses, e.g. at the edge of
the simulation domain. We subsequently altered the GOcean
infrastructure to allocate all field-data arrays with extents
greater than strictly required. This enabled us to safely add
the safe_address before all of the loops where the Cray

compiler indicated it might be useful (the Momentum loops
and some of the boundary condition (BC) loops).

2.1.3 In-line Momentum kernel bodies into middle
layer

The profiling data in Table 3 shows that it is the Momentum
section that accounts for the bulk of the model runtime. We
therefore chose to attempt to optimize this section first. In-
keeping with the PSyKAl approach, we are only permitted to
optimize the middle (PSy) layer, which for this section com-
prises calls to two kernels, one for each of the x and y compo-
nents of momentum. These kernels are relatively large; each
comprises roughly 85 lines of Fortran executable statements.

From our previous work (Porter et al., 2016) on a simi-
lar code, we know that kernel in-lining is critical to obtain-
ing performance with both the Gnu and Intel compilers. For
the Gnu compiler, this is because it cannot perform in-lining
when routines are in separate source files. In our previous
work we obtained an order-of-magnitude speedup simply by
moving subroutines into the module containing the middle
layer (from which the kernels are called). A further perfor-
mance improvement of roughly 30 % was obtained when the
kernel code was manually inserted at the site of the subrou-
tine call.

Although the Intel compiler can perform in-lining when
routines are in separate source files, we have found (both here
and in our previous work; Porter et al., 2016) that the extent
of the optimizations it performs is reduced if it first has to
in-line a routine. For the Intel-compiled Shallow code, man-
ually inserting kernel code at the site of the subroutine call
increased performance by about 25 %.

In fact, in-lining can have a significant effect on the Intel
compiler’s ability to vectorize a loop. Taking the loop that
calls the kernel for the u component of momentum as an ex-
ample, before in-lining the compiler reports

LOOP BEGIN at time_step_mod.f90(85,7)
inlined into nemolite2d.f90(86,11)

remark #15335: loop was not vectorized:
vectorization possible but seems
inefficient.

--- begin vector loop cost summary ---
scalar loop cost: 1307
vector loop cost: 2391.000
estimated potential speedup: 0.540
...
--- end vector loop cost summary ---

LOOP END

After we have manually in-lined the kernel body, the com-
piler reports

LOOP BEGIN at time_step_mod.f90(97,7)
inlined into nemolite2d.f90(86,11)

LOOP WAS VECTORIZED
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--- begin vector loop cost summary ---
scalar loop cost: 1253
vector loop cost: 521.750
estimated potential speedup: 2.350
...
--- end vector loop cost summary ---

LOOP END

Looking at the “estimated potential speedup” in the com-
piler output above, it is clear that the way in which the com-
piler vectorizes the two versions must be very different. This
conclusion is borne out by the fact that if one persuades the
compiler to vectorize the first version (through the use of a di-
rective), then the performance of the resulting binary is worse
than that when the loop is left unvectorized. In principle this
could be investigated further by looking at the assembler that
the Intel compiler generates but that is outside the scope of
this work.

For the best possible performance, we have therefore cho-
sen to do full, manual inlining for the two kernels making up
the Momentum section.

2.1.4 Force SIMD vectorization of the Momentum
kernels using directives

It turns out that the Cray-compiled binaries of both the orig-
inal and PSyKAl versions of NEMOLite2D perform consid-
erably less well than their Intel-compiled counterparts. Com-
parison of the diagnostic output from each of the compilers
revealed that while the Intel compiler was happy to vectorize
the Momentum loops, the Cray compiler was choosing not
to.

99. do ji = 2, M-1, 1
A loop starting at line 99 was blocked
with block size 256.

A loop starting at line 99 was not
vectorized because it contains
conditional code which is more
efficient if executed in scalar mode.

Inserting the Cray vector always directive persuaded
the compiler to vectorize the loop:

99. !dir$ vector always
100. do ji = 2, M-1, 1
A loop starting at line 100 was blocked
with block size 256.

A loop starting at line 100 requires an
estimated 17 vector registers at
line 151; 1 of these have been
preemptively forced to memory.

A loop starting at line 100
was vectorized.

This gave a significant performance improvement. This
behaviour is in contrast to that obtained with the Intel com-
piler: its predictions about whether vectorizing a loop would
be beneficial were generally found to be reliable.

2.1.5 Work around limitations related to derived types

Having optimized the Momentum section as much as per-
mitted by the PSyKAl approach, we turn our attention to the
three remaining sections of the code. The profile data in Ta-
ble 3 shows that these regions are all comparable in terms of
cost. What is striking, however, is that the cost of the Conti-
nuity section increases by more than a factor of 3 in moving
to the PSyKAl version of the code.

Comparison of the diagnostic output from the Cray and
Intel compilers revealed that the Cray compiler was vector-
izing the Continuity section while the Intel compiler reported
that it was unable to do so due to dependencies. After some
experimentation we found that this was due to limitations in
the compiler’s analysis of the way components of Fortran de-
rived types were being used. Each GOcean field object, in ad-
dition to the array holding the local section of the field, con-
tains a pointer to a GOcean grid object. If a kernel requires
grid-related quantities (e.g. the grid spacing) then these are
obtained by passing it a reference to the appropriate array
within the grid object. Although these grid-related quantities
are read-only within a compute kernel, if they were refer-
enced from the same field object as that containing an ar-
ray to which the kernel writes then the Intel compiler iden-
tified a dependency preventing vectorization. This limitation
was simply removed by ensuring that all read-only quantities
were accessed via field objects that were themselves read-
only for the kernel at hand. For instance, the call to the con-
tinuity kernel, which confused the Intel compiler, originally
looked like this:

call continuity_code(ji, jj, &
ssha%data, &
sshn_t%data, &
..., &
ssha%grid%area_t)

where ssha is the only field that is written to by the kernel.
We remove any potential confusion by instead obtaining the
grid-related (read-only) quantities from a field (sshn_t in this
case) that is only read by the kernel:

call continuity_code(ji, jj, &
ssha%data, &
sshn_t%data, &
..., &
sshn_t%grid%area_t)

2.1.6 In-line the Continuity kernel

As with the Momentum kernel, we know that obtaining op-
timal performance from both the Gnu and Intel compilers
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requires that a kernel be manually in-lined at its call site. We
do this for the Continuity kernel in this optimization step.

2.1.7 In-line remaining kernels (BCs and Time-update)

Having optimized the Continuity section we finally turn our
attention to the Boundary Condition and Time-update sec-
tions. The kernels in these sections are small and dominated
by conditional statements. We therefore limited our opti-
mization of them to manually in-lining each of the kernels
into the PSy layer.

2.1.8 In-line field-copy operations

The Time-update section includes several array copies where
fields for the current time step become the fields at the pre-
vious time step. Initially we implemented these copies as
“built-in” kernels (in the GOcean infrastructure) as they are
specified in the Algorithm layer. However, we obtained bet-
ter performance (for the Gnu and Intel compilers) by simply
manually in-lining these array copies into the PSy layer. As
discussed in Sect. 2.1.3, it is unclear why in-lining should im-
prove performance, particularly for the Intel compiler. How-
ever, a detailed investigation of this issue is outside the scope
of this paper.

We shall see that the transformations we have just de-
scribed do not always result in improved performance.
Whether or not they do so depends both on the compiler
used and the problem size. We also emphasize that the aim
of these optimizations is to make the PSy layer as compiler-
friendly as possible, following the lessons learned from our
previous work with the Shallow code (Porter et al., 2016).
It may well be that transforming the code into some other
structure would result in better performance on a particular
architecture. However, exploring this optimization space is
beyond the scope of the present work.

We explore the extent to which performance depends upon
the problem size by using square domains of dimension 64,
128, 256, 512, and 1024 for the traditional cache-based CPU
systems. This range allows us to investigate what happens
when cache is exhausted as well as giving us some insight
into the decisions that different compilers make when opti-
mizing the code.

2.2 Construction of OpenMP-parallel NEMOLite2D

For this part of the work we began with the optimized
PSyKAl version of the code, as obtained after applying the
various transformations described in the previous section. As
with the transformations of the serial code, our purpose here
is to determine the functionality required of a tool that seeks
to generate the PSy layer.

2.2.1 Separate PARALLEL DOs

The simplest possible OpenMP-parallel implementation con-
sists of parallelizing each loop nest in the PSy layer. This was
done by inserting an OpenMP PARALLEL DO directive be-
fore each loop nest so that the iterations of the outermost or
j loop (over the latitude dimension of the model domain)
are shared out amongst the OpenMP threads. This leaves the
innermost (i) loop available for SIMD vectorization by the
compiler.

The loop nest dealing with the application of the Flather
boundary condition to the y component of velocity (v) has a
loop-carried dependency in j which appears to prevent its be-
ing executed in parallel.1 This was therefore left unchanged
and executed on thread 0 only.

2.2.2 Single PARALLEL region

Although very simple to implement, the use of separate PAR-
ALLEL DO directives results in a lot of thread synchroniza-
tion and can also cause the team of OpenMP threads to be
repeatedly created and destroyed. This may be avoided by
keeping the thread team in existence for as long as possi-
ble using an OpenMP PARALLEL region. We therefore en-
closed the whole of the PSy layer (in this code, a single sub-
routine) within a single PARALLEL region. The directive
preceding each loop nest to be parallelized was then changed
to an OpenMP DO. We ensured that the v-Flather loop nest
was executed in serial (by the first thread to encounter it) by
enclosing it within an OpenMP SINGLE section.

2.2.3 First-touch policy

When executing an OpenMP-parallel programme on a non-
uniform memory access (NUMA) compute node it becomes
important to ensure that the memory locations accessed by
each thread are local to the hardware core upon which it
is executing. One way of doing this is to implement a so-
called “first-touch policy” whereby memory addresses that
will generally be accessed by a given thread during pro-
gramme execution are first initialized by that thread. This is
simply achieved by using an OpenMP-parallel loop to initial-
ize newly allocated arrays to some value, e.g. zero.

Since data arrays are managed within the GOcean infras-
tructure, this optimization can again be implemented without
changing the natural-science code (i.e. the Application and
Kernel layers).

2.2.4 Minimize thread synchronization

By default, the OpenMP END DO directive includes an im-
plicit barrier, thus causing all threads to wait until the slowest

1Only once this work was complete did we establish that bound-
ary conditions are enforced such that it can safely be executed in
parallel.
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has completed the preceding loop. Such synchronization lim-
its performance at larger thread counts and, for the NEMO-
Lite2D code, is frequently unnecessary. For example, if a ker-
nel does not make use of the results of a preceding kernel call,
then there is clearly no need for threads to wait between the
two kernels.

We analysed the interdependencies of each of the code sec-
tions within the PSy layer and removed all unnecessary barri-
ers by adding the NOWAIT qualifier to the relevant OpenMP
END DO or END SINGLE directives. This reduced the num-
ber of barriers from 11 down to 4.

2.2.5 Amortize serial region

As previously mentioned, the v-Flather section was executed
in serial because of a loop-carried dependence in j . (In prin-
ciple we could choose to parallelize the inner i loop but
that would inhibit its SIMD vectorization.) This introduces
a load-imbalance between the threads. We attempt to miti-
gate this by moving this serial section to before the (parallel)
u-Flather section. Since these two sections are independent,
the aim is that the thread that performs the serial v-Flather
computation then performs a smaller share of the following
u-Flather loop. In practice, this requires that some form of
dynamic thread scheduling is used.

2.2.6 Thread scheduling

In order to investigate how thread scheduling affects per-
formance we used the “runtime” argument to the OpenMP
SCHEDULE qualifier for all of our OpenMP parallel loops.
The actual schedule to use can then be set at runtime us-
ing the OMP_SCHEDULE environment variable. We exper-
imented with using the standard static, dynamic, and guided
(with varying chunk size) OpenMP schedules.

2.3 Construction of OpenACC-parallel NEMOLite2D

The advantage of the PSyKAl restructuring becomes appar-
ent if we wish to run NEMOLite2D on different hardware,
e.g. a GPU. This is because the necessary code modifications
are, by design, limited to the middle PSy layer. In order to
demonstrate this and to check for any limitations imposed by
the PSyKAl restructuring, we had an expert from NVIDIA
port the Fortran NEMOLite2D to GPU. OpenACC directives
were used as that approach is similar to the use of OpenMP
directives and works well within the PSyKAl approach. In
order to quantify any performance penalty incurred by tak-
ing the PSyKAl/OpenACC approach, we experimented with
using CUDA directly within the original form of NEMO-
Lite2D.

2.3.1 Data movement

Although the advent of technologies such as NVLink are
alleviating the bottleneck presented by the connection of

the GPU to the CPU, it remains critical to minimize data
movement between the memory spaces of the two process-
ing units. In NEMOLite2D this is achieved by performing
all computation on the GPU. The whole time-stepping loop
can then be enclosed inside a single OpenACC data region
and it is only necessary to bring data back to the CPU for the
purposes of I/O.

2.3.2 Kernel acceleration

Moving the kernels to execute on the GPU was achieved by
using the OpenACC kernels directive in each Fortran rou-
tine containing loops over grid points. (In the PSyKAl ver-
sion this is just the single PSy layer subroutine). This direc-
tive instructs the OpenACC compiler to automatically create
a GPU kernel for each loop nest it encounters.

2.3.3 Force parallelization of Flather kernels

The PGI compiler was unable to determine whether the loops
applying the Flather boundary condition in the x and y direc-
tions were safe to parallelize. This information therefore had
to be supplied by inserting a loop independent Ope-
nACC directive before each of the two loops.

2.3.4 Loop collapse

When using the OpenACC kernels directive the compiler
creates GPU kernels by parallelizing only the outer loop of
each loop nest. For the majority of loop nests in NEMO-
Lite2D, all of the iterations are independent and the loop
bodies consist of just a handful of executable statements.
For small kernels the loop start-up cost can be significant
and therefore it is beneficial to generate as many threads as
will fit on the GPU and then reuse them as required (i.e.
if the data size is greater than the number of threads). For
this approach to be efficient we must expose the maximum
amount of parallelism to the GPU and we do this by in-
structing the compiler to parallelize both levels (i.e. i and j)
of a loop nest. This is achieved using the OpenACC loop
collapse(2) directive for all of the smaller kernels in
NEMOLite2D.

2.3.5 Shortloop

In contrast to all of the other NEMOLite2D kernels, the Mo-
mentum kernels (u and v) are relatively large in terms of the
number of executable statements they contain. In turn, this
means that the corresponding kernels will require more state
and thus more registers on the GPU. Therefore, rather than
generating as many threads as will fit on the GPU, it is more
efficient to only generate as many as required by the problem
so as to minimize register pressure. Once slots become free
on the GPU, new threads will launch with the associated cost
amortized by the longer execution time of the larger kernel.
The compiler can be persuaded to adopt the above strategy
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through the use of the (PGI-specific) loop shortloop
directive which tells it that there is not likely to be much
thread reuse in the following loop. This directive was applied
to both the i and j loops in both of the Momentum kernels.

2.3.6 Kernel fusion

Both of the Momentum kernels read from 16 double-
precision arrays and thus require considerable memory band-
width. However, the majority of these arrays are used by both
the u and v kernels. It is therefore possible to reduce the
memory-bandwidth requirements by fusing the two kernels
together. In practice, this means fusing the two doubly nested
loops so that we have a single loop nest containing both the
u and v kernel bodies or calls.

2.3.7 CUDA

We also experimented with using CUDA directly within the
original form of NEMOLite2D in order to quantify any per-
formance penalty incurred by taking the PSyKAl/OpenACC
approach. To do this we used PGI’s support for CUDA For-
tran to create a CUDA kernel for the (fused) Momentum ker-
nel. The only significant code change with this approach is
the explicit set-up of the grid- and block-sizes and the way in
which the kernel is launched (i.e. use of the call kernel
<<<gridDim1, blockDim1 >>>(args) syntax).

3 Results

We first consider the performance of the code in serial
and examine the effects of the transformations described in
Sect. 2. Once we have arrived at an optimized form for the
serial version of NEMOLite2D we then investigate its paral-
lel performance on both CPU- and GPU-based systems.

3.1 Serial performance

In Fig. 2 we plot the serial performance of the original ver-
sion of the NEMOLite2D code for the range of compil-
ers considered here. Unlike the Shallow code (Porter et al.,
2016), the original version of NEMOLite2D has not been op-
timized. Although it is still a single source file it is, in com-
mon with NEMO itself, logically structured with separate
subroutines performing different parts of the physics within
each time step. This structuring and the heavy use of con-
ditional statements favour the Intel compiler which signifi-
cantly out-performs both the Gnu and Cray compilers. Only
when the problem size spills out of cache does the perfor-
mance gap begin to narrow. The reason for the performance
deficit of the Cray-compiled binary comes down to (a lack
of) SIMD vectorization, an issue that we explore below.

Moving now to the PSyKAl version of NEMOLite2D,
Fig. 3 plots the performance of the fastest PSyKAl version
for each of the compiler and problem-size combinations.
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Figure 2. Summary of the performance of the original version of
the NEMOLite2D code on an Intel Ivy Bridge CPU for the range of
compilers under consideration.
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Figure 3. Summary of the best performance achieved by any
PSyKAl version of NEMOLite2D for each of the compilers under
consideration.

While the Intel compiler still produces the best-performing
binary, the Cray-compiled binary is now a very close second.
In fact, the performance of both the Gnu- and Cray-compiled
PSyKAl versions is generally significantly greater than that
of their respective original versions. We also note that best
absolute performance (in terms of grid points processed per
second) with any compiler is obtained with the 2562 domain.
The performance of the Gnu-compiled binary is consistently
a factor of 2 slower than those of the other compilers. This is
due to the fact that it only SIMD vectorizes the loop perform-
ing the Continuity calculation and, unlike Cray and Intel, it
does not have an intrinsic to make vectorization of a loop
mandatory. (When using OpenMP 4.0, the SIMD directive
could be used but even then that is only taken as a hint.)

Figure 4 plots the percentage difference between the per-
formance of the original and the best PSyKAl versions of
NEMOLite2D for each compiler/problem-size combination.
This shows that it is only the Intel-compiled binary running
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Figure 4. Comparison of the performance of the best PSyKAl ver-
sion with that of the original version of the code. A negative value
indicates that the PSyKAl version is slower than the original.

the 642 domain that is slower with the PSyKAl version of the
code (and then only by some 3 %). For all other points in the
space, the optimized PSyKAl version of the code performs
better. The results for the Cray compiler, however, are some-
what skewed by the fact that it did not SIMD vectorize key
parts of the original version (see below).

Having shown that we can recover, and often improve
upon, the performance of the original version of NEMO-
Lite2D, the next logical step is to examine the necessary code
transformations in detail. We do this for the 2562 case since
this fits within (L3) cache on the Ivy Bridge CPUs we are us-
ing here. Table 4 shows detailed performance figures for this
case after each transformation has been applied to the code.
The same data are visualized in Fig. 5.

Looking at the results for the Gnu compiler (and the Ivy
Bridge CPU) first, all of the steps up in performance corre-
spond to kernel in-lining. None of the other transformations
had any effect on the performance of the compiled code. In
fact, simply in-lining the two kernels associated with the Mo-
mentum section was sufficient to exceed the performance of
the original code.

With the Intel compiler, the single largest performance in-
crease is again due to kernel in-lining (of the Momentum ker-
nels). This is because the compiler does a much better job of
SIMD vectorizing the loops involved than it does when it first
has to in-line the kernel itself (as evidenced by its own diag-
nostic output – see Sect. 2.1.3). However, although this gives
a significant performance increase it is not sufficient to match
the performance of the original version. This is only achieved
by in-lining every kernel and making the lack of data depen-
dencies between arrays accessed from different field objects
more explicit.

The Cray compiler is distinct from the other two in that
kernel in-lining does not give any performance benefit and in

Table 4. Performance (millions of points updated per second) on an
Intel Ivy Bridge CPU for the 2562 case after each code transforma-
tion. Where an optimization uses compiler-specific directives then
performance figures for the other compilers are omitted.

Compiler: Gnu Intel Cray

Original 3.87 12.2 6.83
Vanilla PSyKAl 2.59 6.27 6.35
Constant loop bounds 3.07 6.55 6.73
Safe-address – – 6.95
In-line Momentum 4.31 10.7 6.93
SIMD Momentum – – 11.8
Grid data from 4.31 11.3 11.8
read-only objects
In-line Continuity 4.83 11.8 11.6
In-line remaining kernels 5.89 12.0 11.5
In-line field copies 5.92 12.5 11.4
%-speedup of best 34.6 2.39 42.2
c.f. original

fact, for the smaller kernels, it can actually hurt performance.
Thus the key transformation is to encourage the compiler
to SIMD vectorize the Momentum section via a compiler-
specific directive (without this it concludes that such vec-
torization would be inefficient). Of the other transforma-
tions, only the change to constant loop bounds and the addi-
tion of the compiler-specific safe_address directive (see
Sect. 2.1.2) were found to (slightly) improve performance.

3.2 Parallel performance

We now turn to transformations related to parallelization of
the NEMOLite2D code; the introduction of OpenMP and
OpenACC directives. In keeping with the PSyKAl approach,
we do not modify either the Algorithm- or Kernel-layer code.
Any code changes are restricted to either the PSy (middle)
layer or the underlying library that manages, for example,
the construction of field objects.

3.2.1 OpenMP

As with the serial optimizations, we consider the effect of
each of the OpenMP optimization steps described in Sect. 2.2
for the 2562 domain. For this we principally use a single Intel
Ivy Bridge socket which has 12 hardware cores and support
for up to 24 threads with hyperthreading (i.e. two threads per
core). Figures 7, 8, and 9 show the performance of each of
the versions of the code on this system for the Gnu, Intel,
and Cray compilers, respectively.

In order to quantify the scaling behaviour of the differ-
ent versions of NEMOLite2D with the different compilers or
runtime environments, we also plot the parallel efficiency in
Figs. 7, 8, and 9 (dashed lines and open symbols). We define
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Figure 5. Serial performance of the PSyKAl version of NEMOLite2D for the 2562 domain at each stage of optimization. The first (black)
bar of each cluster gives the performance of the original version of NEMOLite2D for that compiler/CPU combination.

parallel efficiency (%), E(n), on n threads, as

E(n)= 100
P(n)

nP (1)
, (3)

where P(n) is the performance of the code on n threads, e.g.
grid-points updated per second. For a perfect linearly scaling
code, E(n) will be 100 %.

Since the space to explore consists of three different com-
pilers, six different domain sizes, five stages of optimization
and six different thread counts, we can only consider a slice
through it in what follows. In order to inform our choice
of domain size, Fig. 6 shows the scaling behaviour of the
most performant Intel-compiled version of NEMOLite2D.
Although it is common for production runs of NEMO to use
MPI sub-domains of 20× 20, it is clear from Fig. 6 that the
limited quantity of parallelism in the 32×32 domain inhibits
scaling. (Recall that we are only parallelizing the outer loop
– Sect. 2.2.1.) Therefore, to fully test the performance of our
OpenMP implementations we have chosen to examine results
for the 256× 256 domain and these are shown in Figs. 7, 8,
and 9.

The simplest OpenMP implementation (black lines, circle
symbols) fails to scale well for any of the compilers. For the
Intel and Gnu versions, parallel efficiency is already less than
50 % on just four threads. The Cray version, however, does
better and is about 45 % efficient on eight threads (right axis,
Fig. 9).

With the move to a single PARALLEL region, the situation
is greatly improved with all three executables now scaling
out to at least 12 threads with ∼ 70 % efficiency (red lines,
square symbols).

In restricting ourselves to a single socket, we are keep-
ing all threads within a single NUMA region. It is therefore
surprising that implementing a “first-touch” policy has any
effect and yet, for the Gnu- and Intel-compiled binaries, it
appears to improve performance when hyperthreading is em-
ployed to run on 24 threads (green lines and diamond sym-
bols in Figs. 7 and 8).

The final optimization step that we found to have any sig-
nificant effect is to minimize the amount of thread synchro-
nization by introducing the NOWAIT qualifier wherever pos-
sible (blue lines and upward-triangle symbols). For the Gnu
compiler, this improves the performance of the executable
on eight or more threads, while, for the Intel compiler, it
only gives an improvement for the 24-thread case. Moving
the SINGLE region before a parallel loop is marginally ben-
eficial for the Gnu- and Cray-compiled binaries and yet re-
duces the performance of the Intel binary (purple lines and
right-pointing triangles).

We have used different scales for the y axes in each of the
plots in Figs. 7, 8, and 9 in order to highlight the performance
differences between the code versions with a given com-
piler. However, the best performance obtained on 12 threads
(i.e. without hyperthreading) is 52.1, 55.6, and 46.3 (million
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Figure 6. The scaling behaviour of the most performant OpenMP-parallel version of PSyKAl NEMOLite2D for the full range of domain
sizes considered on the CPU. Results are for the Intel compiler on a single Intel Ivy Bridge socket. The corresponding parallel efficiencies
are shown using open symbols and dashed lines. The 24-thread runs employed hyperthreading.

4 8 12 16 20 24
Number of OpenMP threads

0

10

20

30

40

50

60

Pe
rf

or
m

an
ce

 (m
ill

io
ns

 o
f p

oi
nt

s s
   

)

Separate PARALLEL DOs (static)
Single PARALLEL region (static)
First touch (dynamic)
NOWAIT (guided, 2)
Early SINGLE (guided, 2)

0

20

40

60

80

100

Pa
ra

lle
l e

ff
ic

ie
nc

y 
(%

)

-1

Figure 7. Performance of the OpenMP-parallel version of PSyKAl NEMOLite2D for the 2562 domain with the Gnu compiler on a single
Intel Ivy Bridge socket. The corresponding parallel efficiencies are shown using open symbols and dashed lines. The 24-thread runs employed
hyperthreading and the optimal OpenMP schedule is given in parentheses.

points per second) for the Gnu, Intel, and Cray compilers,
respectively. This serves to emphasize the democratization
that the introduction of OpenMP has had; for the serial case
the Cray- and Intel-compiled executables were a factor of 2
faster than the Gnu-compiled binary (Fig. 5). In the OpenMP
version, the Gnu-compiled binary is only 6 % slower than

that produced by the Intel compiler and is 13 % faster than
that of the Cray compiler. In part, this situation comes about
because of the effect that adding the OpenMP compiler flag
has on the optimizations performed by the compiler. In par-
ticular, the Cray compiler no longer vectorizes the key Mo-
mentum section, despite the directive added during the se-
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Figure 8. Performance of the OpenMP-parallel version of PSyKAl NEMOLite2D for the Intel compiler on a single Intel Ivy Bridge socket.
The corresponding parallel efficiencies are shown using open symbols and dashed lines. The 24-thread runs employed hyperthreading and
the optimal OpenMP schedule is given in parentheses.
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Figure 9. Performance of the OpenMP-parallel version of PSyKAl NEMOLite2D for the Cray compiler on a single Intel Ivy Bridge socket.
The corresponding parallel efficiencies are shown using open symbols and dashed lines. The 24-thread runs employed hyperthreading and
the optimal OpenMP schedule is given in parentheses.

rial optimization work. This deficiency has been reported to
Cray.

Since NEMO and similar finite-difference codes tend to be
memory-bandwidth bound, we checked the sensitivity of our
performance results to this quantity by benchmarking using
two sockets of Intel Ivy Bridge (i.e. using a complete node of

ARCHER, a Cray XC30). For this configuration, we ensured
that threads were evenly shared over the two sockets. The
performance obtained for the 2562 case with the “early SIN-
GLE” version of the code is compared with the single-socket
performance in Fig. 10. Surprisingly, doubling the available
memory bandwidth in this way has little effect on perfor-
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Figure 10. Performance of the OpenMP-parallel version of PSyKAl NEMOLite2D on one and two sockets of Intel Ivy Bridge. The 24-thread
runs on a single socket used hyperthreading and the two-socket runs had the threads shared equally between the sockets.

mance – the two-socket performance figures track those from
a single socket very closely. The only significant difference in
performance is at 24 threads, where, in addition to the differ-
ence in available memory bandwidth, the single-socket con-
figuration is using hyperthreading while the two-socket case
is not. The discrepancy in the performance of the Cray- and
Intel-compiled binaries at this thread count is under investi-
gation by Cray.

A further complication is the choice of scheduling of
the OpenMP threads. We have investigated the perfor-
mance of each of the executables (and thus the associated
OpenMP runtime library) with the standard OpenMP static,
dynamic and guided scheduling policies. For the Intel com-
piler/runtime, static loop scheduling was found to be best
for all versions apart from that where we have attempted
to amortize the cost of the SINGLE section. This is to be
expected since that strategy requires some form of dynamic
loop scheduling in order to reduce the load imbalance intro-
duced by the SINGLE section.

In contrast, some form of dynamic scheduling gave a per-
formance improvement with the Gnu compiler/runtime even
for the “first-touch” version of the code. This is despite the
fact that this version contains (implicit) thread synchroniza-
tion after every parallel loop. For the Cray compiler/runtime,
some form of dynamic scheduling became optimal once
inter-thread synchronization was reduced using the NOWAIT
qualifiers.

3.2.2 OpenACC

In contrast to the CPU, we only had access to the PGI com-
piler when looking at OpenACC performance. We therefore
investigate the effect of the various optimizations described
in Sect. 2.3 for the full range of problem sizes. All of the
reported performance figures were obtained on an NVIDIA
Tesla K40m GPU running in “boost” mode (enabled with the
command nvidia-smi -ac 3004,875).

The performance of the various versions of the code is
plotted in Fig. 11. We do not show the performance of the
OpenACC version of the original code as it was identical to
that of the vanilla PSyKAl version.

The smallest domain (642) does not contain sufficient par-
allelism to fully utilize the GPU and only the paralleliza-
tion of the Flather kernels has much effect on performance.
In fact, this is a significant optimization for all except the
largest domain size where only changes to the Momentum
kernel yield sizeable gains. Collapsing the 2-D loop nests has
a small but beneficial effect for the majority of problem sizes.
The gains here are small for two reasons: first, the automatic
CUDA kernel generation performed by the compiler (as in-
structed by the kernels directive) is working well for this
code; and second, this optimization was only beneficial for
the non-Momentum kernels and these account for just 30 %
of the runtime.

Given the significance of the two Momentum kernels in
the execution profile, it is no surprise that their optimization
yields the most significant gains. Using the shortloop di-
rective gives roughly a 25 % increase in performance for do-
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Figure 11. Performance of the PSyKAl (OpenACC) and CUDA
GPU implementations of NEMOLite2D. Optimizations are added
to the code in an incremental fashion. The performance for the Ope-
nACC version of the original code is not shown since it is identical
to that of the vanilla PSyKAl version.

mains of 5122 and greater. Fusing the two momentum kernels
gives a further boost of around 5 %.

Note that all of the previous optimizations are restricted
to the PSy layer and in most cases are simply a case of
adding directives or clauses to directives. However, the ques-
tion then arises as to the cost of restricting optimizations to
the PSy layer. In particular, how does the performance of the
OpenACC version of NEMOLite2D compare with a version
where those restrictions are lifted? Figure 11 also shows the
performance of the version of the code where the (fused) Mo-
mentum kernel has been replaced by a CUDA kernel. For
domains up to 2562 the difference in the performance of the
two versions is less than 5 %, and for the larger domains it is
at most 12 %.

In order to check the efficiency of the CUDA implemen-
tation, we profiled the code on the GPU. For large prob-
lem sizes this showed that the non-Momentum kernels are
memory-bandwidth bound and account for about 40 % of the
runtime. However, the Momentum kernels were latency lim-
ited, getting ∼ 103 GB s−1 of memory bandwidth. Although
fusing these kernels reduced the required memory bandwidth
(and produced a performance improvement), doing so re-
sulted in a fairly large kernel requiring a large number of
registers. This in turn reduces the occupancy of the device
which exposes memory latencies.

All of this demonstrates that the performance cost of
the PSyKAl approach in utilizing a GPU for NEMOLite2D
is minimal. The discrepancy in performance between the
CUDA and OpenACC versions has been fed back to the PGI
compiler team.

In Fig. 12 we compare the absolute performance of the
OpenMP and OpenACC implementations of NEMOLite2D
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Figure 12. Performance of the best OpenMP-parallel version of
PSyKAl NEMOLite2D (on a single Intel Ivy Bridge socket) com-
pared with the PSyKAl GPU implementation (using OpenACC).

across the range of problem sizes considered. The OpenMP
figures are the maximum performance obtained from a whole
Intel Ivy Bridge socket by any version of the code on any
number of threads for a given compiler or runtime. For the
smallest domain size (642), the OpenMP version signifi-
cantly outperforms the GPU because there is insufficient par-
allelism to fully utilize the GPU and one time step takes only
80 µs. The execution of a single time step is then dominated
by the time taken to launch the kernels on the GPU rather
than the execution of the kernels themselves.

Once the problem size is increased to 1282, a single
time step takes roughly 200 µs and only the Intel-compiled
OpenMP version is comparable in performance to the Ope-
nACC version. For all of the larger problem sizes plotted in
Fig. 12, the GPU version is considerably faster than the CPU.
For problem sizes of 10242 and greater, the 30 MB cache of
the Ivy Bridge CPU is exhausted and performance becomes
limited by the bandwidth to main memory. At this stage the
OpenACC version of the code on the GPU is some 3.4 times
faster than the best OpenMP version on the CPU.

3.3 Performance analysis with the Roofline model

Although we have investigated how the performance of the
PSyKAl version of NEMOLite2D compares with that of the
original, we have not addressed how efficient the original ac-
tually is. Without this information we have no way of know-
ing whether further optimizations might yield worthwhile
performance improvements. Therefore, we consider the per-
formance of the original serial NEMOLite2D code on the
Intel Ivy Bridge CPU and use the Roofline model (Williams
et al., 2009), which provides a relatively simple way of char-
acterizing the performance of a code in terms of whether it
is memory-bandwidth bound or compute bound. To do so we
follow the approach suggested in Andreolli et al. (2015) and
construct a roofline model using the STREAM (McCalpin,
1995) and LINPACK (Dongarra, 1987) benchmarks in or-
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Figure 13. Comparison of the performance achieved by kernels
from NEMOLite2D and Shallow on a roofline plot for the E5-1620
CPU. Results for the former are for the 2562 domain since that gave
the best performance. See the text for a discussion of the different
CPU ceilings (coloured, horizontal lines).

der to obtain appropriate upper bounds on the memory band-
width and floating-point operations per second (FLOPS), re-
spectively. Since we are using an Intel Ivy Bridge CPU, we
used the Intel Math Kernel Library implementation of LIN-
PACK.

A key component of the Roofline model is the operational
or arithmetic intensity (AI) of the code being executed:

AI=
No. of floating-point operations

Bytes fetched from memory
.

We calculated this quantity manually by examining the
source code and counting the number of memory references
and arithmetic operations that it contained. In doing this
counting we assume that any references to adjacent array el-
ements (e.g. u(i,j) and u(i+ 1,j)) are fetched in a single
cache line and thus only count once.

In Fig. 13 we show the performance of kernels from both
Shallow and NEMOLite2D on the Roofline model for an In-
tel E5-1620 CPU. This demonstrates that the Shallow ker-
nel is achieving a performance roughly consistent with satu-
rating the available memory bandwidth. In contrast, the ker-
nel taken from NEMOLite2D is struggling to reach a per-
formance consistent with saturating the bandwidth to main
memory. We experimented with reducing the problem size
(so as to ensure it fitted within cache), but that did not sig-
nificantly improve the performance of the kernel. This then
points to more fundamental issues with the way that the ker-
nel is implemented, which are not captured in the simple
Roofline model.

In order to aid our understanding of kernel performance,
we have developed a tool, “Habakkuk” (https://github.com/
arporter/habakkuk, last access: 1 August 2018), capable
of parsing Fortran code and generating a directed acyclic

graph (DAG) of the data flow. Habakkuk eases the labori-
ous and error-prone process of counting memory accesses
and FLOPs as well as providing information on those oper-
ations that are rate-limiting or on the critical path. Using the
details of the Intel Ivy Bridge microarchitecture published by
Fog (2016b, a), we have constructed performance estimates
of the NEMOLite2D kernel. By ignoring all instruction-level
parallelism (ILP), i.e. assuming that all nodes in the DAG
are executed in serial, we get a lower-bound performance
estimate of 0.6391×CLOCK_SPEED FLOPS, which gives
2.46 GFLOPS (gigaflops) at a clock speed of 3.85 GHz.

Alternatively, we may construct an upper bound by assum-
ing the out-of-order execution engine of the Ivy Bridge core
is able to perfectly schedule and pipeline all operations such
that those that go to different execution ports are always run
in parallel. In the Ivy Bridge core, floating-point multiplica-
tion and division operations go to port 0 while addition and
subtraction go to port 1 (Fog, 2016a). Therefore, we sum the
cost of all multiplication and division operations in the DAG
and compare that with the sum of all addition and subtraction
operations. The greater of these two quantities is then taken
to be the cost of executing the kernel; all of the operations on
the other port are assumed to be done in parallel. This gives
a performance estimate of 1.029×CLOCK_SPEED FLOPS
or 3.96 GFLOPS at 3.85 GHz.

These performance estimates are plotted as CPU ceil-
ings (coloured, horizontal lines) in Fig. 13. The perfor-
mance of the Momentum kernel is seen to fall between these
two bounds which demonstrates that its performance is not
memory-bandwidth limited, as might have been assumed by
its low AI. Therefore, although the performance of this kernel
is well below the peak performance of the CPU, this is due to
the balance of floating-point operations that it contains and in
particular, the number of division operations. (Division costs
at least 8 times as much as a multiplication in the Ivy Bridge
core; Fog, 2016a.) For instance, a fragment of the most costly
part of the momentum kernel is shown below:

...
! -pressure gradient
hpg = -g * (hu(ji,jj) + sshn_u(ji,jj))

* e2u(ji,jj) * &
(sshn(ji+1,jj) - sshn(ji,jj))

! -linear bottom friction
! (implemented implicitly.)
ua(ji,jj) = (un(ji,jj) * (hu(ji,jj)

+ sshn_u(ji,jj)) + rdt * &
(adv + vis + cor + hpg)
/ e12u(ji,jj)) / &
(hu(ji,jj) + ssha_u(ji,jj))
/ (1.0_wp + cbfr * rdt)

The liberal use of the division operation is clearly some-
thing that can be improved upon. However, this is outside
the scope of the current work since here we are focused on
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the PSyKAl separation of concerns and the introduction of
parallelism in the PSy layer.

Enabling SIMD vectorization for this kernel does not sig-
nificantly improve its performance (Fig. 13); and in fact,
limiting it to SSE instructions (vector width of two double-
precision floating-point numbers) rather than AVX (vector
width of four) was found to produce a slightly more perfor-
mant version. We attribute this performance deficit to the low
efficiency of the vectorized code combined with the higher
trip-counts of the peel- and remainder loops required for
the greater vector width of AVX. The poor efficiency of the
SIMD version is highlighted by the fact that the correspond-
ing kernel performance no longer falls within the bounds of
the performance estimates produced by Habakkuk. This is
because we have incorporated the effect of SSE into that es-
timate by simply assuming perfect vectorization which gives
a performance increase of a factor of 2. Further investigation
of this issue revealed that, as mentioned above, several of the
NEMOLite2D kernels make frequent use of floating-point
division. Although SSE and AVX versions of the division
operation are available, on Ivy Bridge they do not provide
any performance benefit (Fog, 2016a). A straightforward op-
timization then would be to alter the kernels in order to re-
duce the number of division operations. However, again, ker-
nel optimization is outside the scope of this paper since it
breaks the PSyKAl separation of concerns.

4 Conclusions

We have investigated the application of the PSyKAl separa-
tion of concerns approach to the domain of shared-memory,
parallel, finite-difference shallow-water models. This ap-
proach enables the computational-science-related aspects
(performance) of a computer model to be kept separate from
the natural-science aspects (oceanographic).

We have used a new and unoptimized two-dimensional
model extracted from the NEMO ocean model for this work.
As a consequence of this, the introduction of the PSyKAl
separation of concerns followed by suitable transformations
of the PSy layer is actually found to improve performance.
This is in contrast to our previous experience (Porter et al.,
2016) with tackling the Shallow code which has been opti-
mized over many years. In that case we were able to recover
(to within a few percent) the performance of the original and
in some cases exceed it, in spite of limiting ourselves to trans-
formations which replicated the structure of the original, op-
timized code.

Investigation of the absolute serial performance of the
NEMOLite2D code using the Roofline model revealed that
it was still significantly below any of the traditional roofline
ceilings. We have developed Habakkuk, a code-analysis
tool that is capable of providing more realistic ceilings by
analysing the nature of the floating-point computations per-
formed by a kernel. The bounds produced by Habakkuk are

in good agreement with the measured performance of the
principal (Momentum) kernel in NEMOLite2D. In future
work we aim to extend this tool to account for SIMD op-
erations and make it applicable to code parallelized using
OpenMP.

The application of code transformations to the middle,
PSy, layer is key to the performance of the PSyKAl version of
a code. For both NEMOLite2D and Shallow we have found
that for serial performance, the most important transforma-
tion is that of in-lining the kernel source at the call site, i.e.
within the PSy layer. (Although we have done this in-lining
manually for this work, our aim is that, in future, such trans-
formations will be performed automatically at compile-time
and therefore do not affect the code that a scientist writes.)
For the more complex NEMOLite2D code, the Cray com-
piler also had to be coerced into performing SIMD vector-
ization through the use of source-code directives.

In this work we have also demonstrated the introduction of
parallelism into the PSy layer with both OpenMP and Ope-
nACC directives. In both cases we were able to leave the
natural-science parts of the code unchanged. For OpenMP
we achieved a parallel efficiency of ∼ 70% on 12 threads by
enclosing the body of the (single) PSy layer routine within
a single PARALLEL region. Removal of unnecessary syn-
chronization points through the use of the NOWAIT clause
boosted 12-thread performance by approximately 10 % with
the Gnu and Cray compilers. The PSyKAl restructuring of
this (admittedly small) code was not found to pose any prob-
lems for the introduction of performant OpenMP. Similarly,
we have also demonstrated good GPU performance using
OpenACC in a PSyKAl version of the code.

This paper demonstrates that the PSyKAl separation of
concerns may be applied to 2-D finite-difference codes with-
out loss of performance. We have also shown that the result-
ing code is amenable to efficient parallelization on both GPU
and shared-memory CPU systems. This then means that it is
possible to achieve performance portability while maintain-
ing single-source science code.

Our next steps will be, first, to consider the automatic gen-
eration of the PSy layer and, second, to look at extending the
approach to the full NEMO model (i.e. three dimensions). In
future work we will analyse the performance of a domain-
specific compiler that performs the automatic generation of
the PSy layer. This compiler (which we have named “PSy-
clone”, see https://github.com/stfc/psyclone, last access: Au-
gust 2018) is currently under development.

Code availability. The NEMOLite2D Benchmark
Suite 1.0 is available from the eData repository at:
https://doi.org/10.5286/edata/707 (Ford et al., 2017). Habakkuk is
available from https://github.com/arporter/habakkuk.
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