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Abstract. In this study, we identify the key message pass-
ing interface (MPI) operations required in atmospheric mod-
elling; then, we use a skeleton program and a simulation
framework (based on SST/macro simulation package) to sim-
ulate these MPI operations (transposition, halo exchange,
and allreduce), with the perspective of future exascale ma-
chines in mind. The experimental results show that the choice
of the collective algorithm has a great impact on the per-
formance of communications; in particular, we find that the
generalized ring-k algorithm for the alltoallv operation and
the generalized recursive-k algorithm for the allreduce oper-
ation perform the best. In addition, we observe that the im-
pacts of interconnect topologies and routing algorithms on
the performance and scalability of transpositions, halo ex-
change, and allreduce operations are significant. However,
the routing algorithm has a negligible impact on the perfor-
mance of allreduce operations because of its small message
size. It is impossible to infinitely grow bandwidth and reduce
latency due to hardware limitations. Thus, congestion may
occur and limit the continuous improvement of the perfor-
mance of communications. The experiments show that the
performance of communications can be improved when con-
gestion is mitigated by a proper configuration of the topology
and routing algorithm, which uniformly distribute the con-
gestion over the interconnect network to avoid the hotspots
and bottlenecks caused by congestion. It is generally believed
that the transpositions seriously limit the scalability of the
spectral models. The experiments show that the communi-
cation time of the transposition is larger than those of the
wide halo exchange for the semi-Lagrangian method and the
allreduce in the generalized conjugate residual (GCR) itera-
tive solver for the semi-implicit method below 2× 105 MPI

processes. The transposition whose communication time de-
creases quickly with increasing number of MPI processes
demonstrates strong scalability in the case of very large grids
and moderate latencies. The halo exchange whose commu-
nication time decreases more slowly than that of transpo-
sition with increasing number of MPI processes reveals its
weak scalability. In contrast, the allreduce whose communi-
cation time increases with increasing number of MPI pro-
cesses does not scale well. From this point of view, the scala-
bility of spectral models could still be acceptable. Therefore
it seems to be premature to conclude that the scalability of
the grid-point models is better than that of spectral models at
the exascale, unless innovative methods are exploited to miti-
gate the problem of the scalability presented in the grid-point
models.

1 Introduction

Current high-performance computing (HPC) systems have
thousands of nodes and millions of cores. According to
the 49th TOP500 list (https://www.top500.org, last access:
16 August 2018) published on 20 June 2017, the fastest ma-
chine (Sunway TaihuLight) had over 10 million cores with a
peak performance of approximately 125 PFlops (1 PFlops=
1015 floating-point operations per second), and the second
HPC (Tianhe-2) is made up of 16 000 nodes and has more
than 3 million cores with a peak performance of approx-
imately 55 PFlops. It is estimated that in the near future,
HPC systems will dramatically scale up in size. Next decade,
it is envisaged that exascale HPC system with millions of
nodes and thousands of cores per node, whose peak perfor-
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mance approaches to or is beyond 1 EFlops (1 EFlops= 103

PFlops), will become available (Engelmann, 2014; Lagada-
pati et al., 2016). Exascale HPC poses several challenges in
terms of power consumption, performance, scalability, pro-
grammability, and resilience. The interconnect network of
exascale HPC system becomes larger and more complex, and
its performance which largely determines the overall per-
formance of the HPC system is crucial to the performance
of distributed applications. Designing energy-efficient cost-
scalable interconnect networks and communication-efficient
scalable distributed applications is an important component
of HPC hardware/software co-design to address these chal-
lenges. Thus, evaluating and predicting the communication
behaviour of distributed applications is obligatory; it is only
feasible by modelling the communications and the underly-
ing interconnect network, especially for the future supercom-
puter.

Investigating the performance of distributed applications
in future architectures and the impact of different ar-
chitectures on the performance by simulation is a hard-
ware/software co-design approach to pave the way to ex-
ascale HPCs. Analytical interconnect network simulation
based on an analytical conceptual model is fast and scalable,
but it comes at the cost of accuracy owing to its unrealis-
tic simplification (Hoefler et al., 2010). Discrete event simu-
lation (DES) is often used to simulate the interconnect net-
work, and it provides high fidelity since the communication
is simulated at a more detailed level (e.g., flit, packet, or flow
levels) to take into account congestion (Janssen et al., 2010;
Böhm and Engelmann, 2011; Dechev and Ahn, 2013; Acun
et al., 2015; Jain et al., 2016; Wolfe et al., 2016; Degomme
et al., 2017; Mubarak et al., 2017). Sequential DES lacks
scalability owing to its large memory footprints and long ex-
ecution time (Degomme et al., 2017). Parallel DES (PDES)
is scalable since it can reduce the memory required per node,
but its parallel efficiency is not very good because of fre-
quent global synchronization of conservative PDES (Janssen
et al., 2010) or high rollback overhead of optimistic PDES
(Acun et al., 2015; Jain et al., 2016; Wolfe et al., 2016).
Generally, the simulation of distributed applications can be
divided into two complementary categories: offline and on-
line simulations. Offline simulation replays the communica-
tion traces from the application running on a current HPC
system. It is sufficient to understand the performance and
discover the bottleneck of fully distributed applications on
the available HPC system (Tikir et al., 2009; Noeth et al.,
2009; Núñez et al., 2010; Dechev and Ahn, 2013; Casanova
et al., 2015; Acun et al., 2015; Jain et al., 2016; Lagadap-
ati et al., 2016); however, is not very scalable because of
the huge traces for numerous processes and limited extrap-
olation to future architecture (Hoefler et al., 2010; Núñez
et al., 2010). Online simulation has full scalability to future
systems by running the skeleton program on top of simula-
tors (Zheng et al., 2004; Janssen et al., 2010; Engelmann,
2014; Degomme et al., 2017), but it has the challenge of

developing a skeleton program from a complex distributed
application. Most simulations in the aforementioned liter-
ature have demonstrated the scalability of simulators. The
simulator xSim (Engelmann, 2014) simulated a very sim-
ple message passing interface (MPI) program, which only
calls MPI_Init and MPI_Finalize without any communica-
tion and computation, up to 227 processes. For collective MPI
operations, Hoefler et al. (2010) obtained an MPI_Allreduce
simulation of 8 million processes without consideration of
congestion using LogGOPSim, Engelmann (2014) achieved
an MPI_Reduce simulation of 224 processes, and Degomme
et al. (2017) demonstrated an MPI_Allreduce simulation of
65 536 processes using SimGrid. For simulations at appli-
cation level, Jain et al. (2016) used the TraceR simulator
based on CODES and ROSS to replay 4.6× 104 process
traces of several communication patterns that are used in a
wide range of applications. In addition, Mubarak et al. (2017)
presented a 1.1× 105 process simulation of two multigrid
applications. However, to the best of our knowledge, there
is no exascale simulation of complex communication pat-
terns such as the MPI transposition (Multiple simultaneous
MPI_Alltoallv) for the spectral method and the wide halo
exchange (the width of a halo may be greater than the subdo-
main size of its direct neighbours) for the semi-Lagrangian
method used in atmospheric models.

With the rapid development of increasingly powerful su-
percomputers in recent years, numerical weather predic-
tion (NWP) models have increasingly sophisticated phys-
ical and dynamical processes, and their resolution is get-
ting higher and higher. Nowadays, the horizontal resolution
of a global NWP model is in the order of 10 km. Many
operational global spectral NWP models such as IFS at
ECMWF, ARPEGE at Météo France, and GFS at NCEP are
based on the spherical-harmonics transform method that in-
cludes Fourier transforms in the zonal direction and Leg-
endre transforms in the meridional direction (Ehrendorfer,
2012). Moreover, some regional spectral models such as
AROME at Météo France (Seity et al., 2011) and RSM
at NCEP (Juang et al., 1997) use the bi-Fourier transform
method. The Fourier transforms can be computed efficiently
by fast Fourier transform (FFT) (Temperton, 1983). Even
with the introduction of fast Legendre transform (FLT) to re-
duce the growing computational cost of increasing resolution
of global spectral models (Wedi et al., 2013), it is believed
that the global spectral method is prohibitively expensive for
very high resolution (Wedi, 2014).

A global (regional) spectral model performs FFT and FLT
(FFT) in the zonal direction and the meridional direction,
respectively. Because both transforms require all values in
the corresponding directions, the parallelization of spectral
method in a global (regional) model is usually conducted
to exploit the horizontal domain decomposition only in the
zonal direction and meridional directions for FFT and FLT
(FFT), respectively (Barros et al., 1995; Kanamitsu et al.,
2005). Owing to the horizontal domain decomposition in
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Figure 1. CPU and power requirements as a function of NWP
model resolution, adapted from Bauer et al. (2015). The left and
right y axes are the number of cores and the power (in megavolt
amps), respectively, required for a single 10-day model forecast (the
lower shaded area including its bounds) and a 50-member ensemble
forecast (the upper shaded area including its bounds) as a function
of model resolution based on current model code and compute tech-
nology. The lower and upper bounds of each shaded area indicate
perfect scaling and inefficient scaling, respectively.

a single horizontal direction for the parallelization of spec-
tral transforms, there is a transposition between the spectral
transforms in the zonal direction and meridional directions.
MPI transposition is an all-to-all personalized communica-
tion which can cause significant congestion over an intercon-
nect network when the number of MPI tasks and the amount
of exchanged data are large, and this results in a severe com-
munication delay. Bauer et al. (2015) estimated that a global
NWP model with a 2 km horizontal resolution requires 1 mil-
lion compute cores for a single 10-day forecast (Fig. 1). With
1 million compute cores, the performance and scalability of
the MPI transposition become of paramount importance for a
high-resolution global spectral model. Thus, evaluating and
predicting the performance and scalability of MPI transpo-
sition at the exascale is one of the foremost subjects of this
study.

The semi-Lagrangian (SL) method is a highly efficient
technique for the transport of momentum, heat, and mass in
the NWP model because of its unconditional stability which
permits a long time step (Staniforth and Côté, 1991; Hortal,
2002). However, it is known that the MPI exchange of wide
halo required for the interpolation at the departure point of
high wind-speed particles near the boundary of the subdo-
main causes significant communication overhead as resolu-
tion increases towards the kilometre scale and the HPC sys-
tems move towards the exascale. This communication over-
head could reduce the efficiency of the SL method; thus,

modelling the performance and scalability of wide halo ex-
change at the exascale is essential and is another subject of
this study.

With a consideration of the efficiency of the Legendre
transform and the scalability of MPI transposition that may
arise in the global spectral model on exascale HPC systems,
a couple of global grid-point models have recently been de-
veloped (Lin, 2004; Satoh et al., 2008; Qaddouri and Lee,
2011; Skamarock et al., 2012; Dubos et al., 2015; Zangl
et al., 2015; Smolarkiewicz et al., 2016). Since spherical
harmonics are eigenfunctions of the Helmholtz operator, the
semi-implicit (SI) method is usually adopted in order to im-
plicitly handle the fast waves in the global spectral model
to allow stable integration with a large time step (Robert
et al., 1972; Hoskins and Simmons, 1975). However, for a
grid-point model, the three-dimensional Helmholtz equation
is usually solved using Krylov subspace methods such as
the generalized conjugate residual (GCR) method (Eisenstat
et al., 1983), and a global synchronization for the inner prod-
uct in Krylov subspace methods may become the bottleneck
at the exascale (Li et al., 2013; Sanan et al., 2016). As it is not
clear whether the three-dimensional Helmholtz equation can
be solved efficiently in a scalable manner, most of the afore-
mentioned models use a horizontally explicit, vertically im-
plicit (HEVI) scheme. The HEVI scheme typically requires
some damping for numerical stability (Satoh et al., 2008;
Skamarock et al., 2012; Zangl et al., 2015), and its time step
is smaller than that of the SI method (Sandbach et al., 2015).
Therefore, it is desirable to know whether the SI method is
viable or even advantageous for very high-resolution grid-
point models running on exascale HPC systems. Thus, it is
valuable to explore the performance and scalability of global
synchronization in solving the three-dimensional Helmholtz
equation using Krylov subspace methods; this forms the third
subject of this study.

In this paper, we present the application of SST/macro 7.1,
a coarse-grained parallel discrete event simulator, to investi-
gate the communication performance and scalability of at-
mospheric models for future exascale supercomputers. The
remainder of the paper is organized as follows. Section 2 in-
troduces the simulation environment, the SST/macro simula-
tor, and our optimizations for reducing the memory footprint
and accelerating the simulations. Section 3 reviews three
key MPI operations used in the atmospheric models. Sec-
tion 4 presents and analyses the experimental results of the
modelling communication of the atmospheric model using
SST/macro. Finally, we summarize the conclusions and dis-
cuss future work in Sect. 5.
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2 Simulation environment

2.1 Parallel discrete event simulation

Modelling application performance on exascale HPC sys-
tems with millions of nodes and a complex interconnect net-
work requires that the simulation can be decomposed into
small tasks that efficiently run in parallel to overcome the
problem of a large memory footprint and long simulation
time. PDES is such an approach for exascale simulation.
Each worker in PDES is a logical process (LP) that mod-
els a specific component such as a node, a switch, or an
MPI process of the simulated MPI application. These LPs are
mapped to the physical processing elements (PEs) that actu-
ally run the simulator. An event is an action such as sending
an MPI message or executing a computation between consec-
utive communications. Each event has its start and stop times,
so the events must be processed without violating their time
ordering. To model the performance of an application, PDES
captures time duration and advances the virtual time of the
application by sending timestamped events between LPs.

PDES usually adopts conservative or optimistic paral-
lelized strategies. The conservative approach maintains the
time ordering of events by synchronization to guarantee that
no early events arrive after the current event. Frequent syn-
chronization is time-consuming so the efficiency of the con-
servative approach is highly dependent on the look-ahead
time; a larger look-ahead time (that means less synchro-
nization) allows a much greater parallelism. The optimistic
approach allows LPs to run events at the risk of time-
ordering violations. Events must be rolled back when time-
ordering violations occurs. Rollback not only induces signif-
icant overhead but also requires extra storage for the event
list. Rollback presents special challenges for online simu-
lation, so SST/macro adopts a conservative approach (Wike
and Kenny, 2014).

2.2 SST/macro simulator

Considering that the offline trace-driven simulation does not
provide an easy way for extrapolating to future architec-
tures, the online simulator SST/macro is selected here to
model the communications of the atmospheric models for fu-
ture exascale HPC systems. SST/macro is a coarse-grained
parallel discrete event simulator which provides the best
cost/accuracy trade-off simulation for large-scale distributed
applications (Janssen et al., 2010). SST/macro is driven by
either a trace file or a skeleton application. A skeleton appli-
cation can be constructed from scratch or from an existing
application manually or automatically by source-to-source
translation tools. SST/macro intercepts the communications
issued from the skeleton program to estimate their time rather
than actually execute it by linking the skeleton application to
the SST/macro library instead of the real MPI library. Since
the purpose of this study is to investigate the performance

and scalability of communications in an atmospheric model,
we construct the communication-only skeleton program from
scratch by identifying the key MPI operations taking place in
the atmospheric models.

Congestion is a significant factor that affects the perfor-
mance and scalability of MPI applications running on exas-
cale HPC systems. SST/macro has three network models: the
analytical model transfers the whole message over the net-
work from point-to-point without packetizing and estimates
the time delay 1t predominantly based on the logP approxi-
mation

1t = α+βN, (1)

where α is the communication latency, β is the inverse band-
width in second per byte, and N is the message size in
bytes; the packet-level model PISCES (Packet-flow Intercon-
nect Simulation for Congestion at Extreme Scale) divides
the message into packets and transfers the packets individ-
ually; the flow-level model will be deprecated in the future.
Compared to the SimGrid simulator, the packet-level model
of SST/macro produces almost identical results (figure not
shown). Acun et al. (2015) also found that the SST/macro
online simulation is very similar to the TraceR simula-
tion. Thus, we adopt the PISCES model with a cut-through
mechanism (SNL, 2017) to better account for the conges-
tion. SST/macro provides three abstract machine models for
nodes: the AMM1 model is the simplest one which grants ex-
clusive access to the memory; the AMM2 model allows mul-
tiple CPUs or NICs (network interface controllers) to share
the memory bandwidth by defining the maximum memory
bandwidth allocated for each component; the AMM3 model
goes one further step to distinguish between the network
link bandwidth and the switch bandwidth. In this paper, the
AMM1 model with one single-core CPU per node is adopted
since simulation of communications is the primary goal.

SST/macro provides several topologies of the interconnect
network. In this study, three types of topologies (Fig. 2) com-
monly used in current supercomputers, and their configura-
tions are investigated. Torus topology has been used in many
supercomputers (Ajima et al., 2009). In the torus network,
messages hop along each dimension using the shortest path
routing from the source to the destination (Fig. 2a), and its
bisection bandwidth typically increases with increasing di-
mension size of the torus topology. The practical implemen-
tation of the fattree topology is an upside-down tree that typ-
ically employs all uniform commodity switches to provide
high bandwidth at higher levels by grouping corresponding
switches of the same colour (Fig. 2c). Fattree topology is
widely adopted by many supercomputers for its scalability
and high path diversity (Leiserson, 1985); it usually uses a
D-mod-k routing algorithm (Zahavi et al., 2010) for desir-
able performance. A dragonfly network is a multi-level dense
structure of which the high-radix routers are connected in a
dense even all-to-all manner at each level (Kim et al., 2008).
As shown in Fig. 2b, a typical dragonfly network consists
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Figure 2. Topology illustration: (a), (b), and (c) are the torus, dragonfly, and fattree topologies, respectively. Adapted from SNL (2017).

of two levels: the routers at the first level are divided into
groups and routers in each group form a two-dimension mesh
of which each dimension is an all-to-all connected network;
at the second level, the groups as virtual routers are con-
nected in an all-to-all manner (Alverson et al., 2015). There
are three available routing algorithms for dragonfly topology
in SST/macro:

minimal transfers messages by the shortest path from the
source to the destination. For example, messages travel
from the blue router in group 0 to the red router in group
2 via the bottom-right corner in group 0 and the bottom-
left corner in group 2 (Fig. 2b).

valiant randomly picks an intermediate router and then uses
a minimal routing algorithm to transfer messages from
the source to the intermediate router and from the in-
termediate router to the destination. For example, the
arrow path from the blue router in group 0 to the red

router in group 2 goes via the intermediate yellow node
in group 1 in Fig. 2b.

ugal checks the congestion and either switches to the valiant
routing algorithm if congestion is too heavy or other-
wise uses the minimal routing algorithm.

Table 1 summaries the network topology configurations
used in this paper. The torus-M (torus-L) configuration is a 3-
D torus of 25×25×25 (75×25×25) size. Fattree-M (fattree-
L) configuration has four layers: the last layer consists of
nodes while the other layers consist of switches with 25 (33)
descendant ports per switch. We tested four configurations
of dragonfly topology. The dragonfly-MM configuration has
a medium group of a 25×25 mesh with 25 nodes per switch
and a medium number (= 25) of groups. The dragonfly-SL
configuration has a small group of a 25× 25 mesh with five
nodes per switch and a large number (= 125) of groups. The
dragonfly-LS configuration has a large group of a 125× 125
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Table 1. Summary of the network topologies: the geometry of a torus topology specifies the size of each dimension; the first and second
number in the geometry of a fattree topology are the number of layers and descendant ports per switch, respectively; the first two numbers
and the last number in the geometry of a dragonfly topology indicate the group mesh size and the number of groups, respectively.

Name Geometry Switches Nodes per switch Nodes

Torus-M 25,25,25 15 625 25 390 625
Fattree-M 4,25 46 875 25 390 625
Dragonfly-MM 25,25,25 15 625 25 390 625
Dragonfly-SL 25,25,125 78 125 5 390 625
Dragonfly-LS 125,125,5 78 125 5 390 625
Torus-L 75,25,25 46 875 25 1 171 875
Fattree-L 4,33 107 811 33 1 185 921
Dragonfly-ML 25,25,75 46 875 25 1 171 875

mesh with five nodes per switch and a small number (= 5)
of groups. The dragonfly-ML configuration has a medium
group of a 25×25 mesh with 25 nodes per switch and a large
number (= 75) of groups. The fattree configuration has a sig-
nificantly larger number of switches than other topologies for
the same number of nodes and the same nodes per switch,
which indicates that fattree is not cost- or energy-efficient.
All the configurations with 390 625 nodes are used for simu-
lating transposition for the spectral transform method. Torus-
L, fattree-L, and dragonfly-ML with more than 1 million
nodes are used for the cases of halo exchange and allre-
duce communication since we cannot finish the simulation of
transposition for the spectral transform method (multiple si-
multaneous all-to-all personalized communications) on such
a large configuration within 24 h (see Sect. 3 for three key
MPI communications in the atmospheric model).

2.3 Reduce the memory footprint and accelerate the
simulation

Although SST/macro is a parallel discrete event simulator
that can reduce the memory footprint per node, its paral-
lel efficiency degrades if more cores are used. Even with
an MPI transposition of 105 processes, this all-to-all per-
sonalized communication has almost 1010 discrete events,
which consumes a considerable amount of memory and takes
a very long time for simulation. Furthermore, almost every
MPI program has a set-up step to allocate memory for stor-
ing the set-up information such as the parameters and the
domain decomposition of all processes, which each process
must know in order to properly communicate with other pro-
cesses. Therefore, it needs to broadcast the parameters to
and synchronize with all processes before actual communi-
cations and computation. Even if the set-up information for
a single process needs only 102 bytes of memory, a sim-
ulation of 105 processes MPI transposition will need 1 TB
(102
×105

×105
= 1012 bytes) of memory, which is not eas-

ily available on current computers if the simulator runs on
a single node. In addition, the MPI operations in the set-up
step are not only time-consuming but also affect subsequent

communications. A common way to eliminate this effect is
to iterate many times to obtain a robust estimation of com-
munication time; however, one iteration is already very time-
consuming for simulation. To circumvent the issue of set-up
steps, we use an external auxiliary program to create a shared
memory segment on each node running SST/macro and ini-
tialize this memory with the set-up information of all the sim-
ulated MPI processes. Then, we modified SST/macro to cre-
ate a global variable and attach the shared memory to this
global variable; this method not only reduces the memory
footprint and eliminates the side effect of communications in
the set-up step, but it also avoids the problem of filling up the
memory address space if each simulated process attaches to
the shared memory.

A large-scale application needs a large amount of memory
for computation; and in some cases, such as a spectral model,
the whole memory for computation is exchanged between all
the processes. Even when computation is not considered, a
large amount of memory for the message buffers is usually
required for MPI communications. Fortunately, the simula-
tor only needs message size, the source/destination, and the
message tag to model the communication; thus, it is not nec-
essary to allocate actual memory. Since SST/macro can op-
erate with null buffers, the message buffer is set to null in the
skeleton application, which significantly reduces the size of
memory required by the simulation of communication of the
high-resolution atmospheric model.

3 Key MPI operations in atmospheric models

3.1 Transposition for the spectral transform method

A global spectral model generally uses a spherical-harmonics
transform on the horizontal with triangular truncation. The
backward spherical-harmonics transform is

f (θ,λ)=

M∑
m=−M

(
eimλ

M∑
n=|m|

fmn P
m
n (cosθ)

)
, (2)
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where θ and λ are the colatitude and longitude, fmn is the
spectral coefficients of the field f , and Pmn is the associated
Legendre polynomials of degree m and order n. Moreover,
the forward spherical-harmonics transform is

fmn =
1
2

1∫
−1

Pmn (cosθ)
1

2π

2π∫
0

f (θ,λ)e−imλdλ

d cosθ. (3)

In Eq. (2), the backward Legendre transform of each m can
be computed independently; then, the same applies to the
backward Fourier transform of each θ . Similar in Eq. (3),
the forward Fourier transform of each θ can be computed in-
dependently; then, the same applies to the forward Legendre
transform of each m. This leads to a natural way to paral-
lelize the spectral transforms. If we start with the grid-point
space (Fig. 3a), which is decomposed by cx/cy cores in the
x/y direction, cy-simultaneous xz slab MPI transpositions
lead to the partition (Fig. 3b) with cy/cx cores in the y/z di-
rection, and a spectral transform such as a forward FFT can
be performed in parallel since data with regard to λ are local
to each core. Then, cx-simultaneous xy slab MPI transpo-
sitions lead to the partition (Fig. 3c) with cy/cx cores in the
x/z direction, and a spectral transform such as a forward FLT
can be computed in parallel because data with regard to θ are
now local to each core. Finally, cy-simultaneous yz slab MPI
transpositions lead to the spectral space (Fig. 3d) with cy/cx
cores in the x/y direction, where the semi-implicit scheme
can be easily computed because spectral coefficients belong-
ing to the same column are now local to the same core. The
backward transform is similar. It is of paramount importance
that the partition of the four stages described in Fig. 3 must
be consistent so that multiple slab MPI transpositions can
be conducted simultaneously, which significantly reduces the
communication time of MPI transpositions from one stage to
another. It is worth noting that the number of grid points in
one direction is not always a multiple of the number of cores
in the corresponding direction; thus, the partition shown in
Fig. 3 can use as many as possible compute cores without any
limit on cx or cy provided cx×cy = ncpu and cx or cy is not
greater than the number of grid points in the corresponding
direction. It is generally believed that the MPI transpositions
from one stage to another pose a great challenge to the scala-
bility of spectral models because each slab MPI transposition
is an all-to-all personalized communication which is the most
complex and time-consuming all-to-all communication.

There are different algorithms for all-to-all personalized
communication. Table 2 lists the three algorithms for all-
to-all personalized communication, whose performance and
scalability are investigated in this study. Algorithm ring k is
our proposal algorithm for all-to-all personalized communi-
cation which is a generalized ring alltoallv algorithm. In al-
gorithm ring k, each process communicates with 2× k pro-
cesses to reduce the stages of communications and make ef-
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Figure 3. Parallel scheme of regional spectral model: (a) 2-D de-
composition of 3-D grid field with cx/cy cores in the x/y direction,
(b) 2-D decomposition of 3-D grid field with cy/cx cores in the y/z
direction, (c) 2-D decomposition of 3-D grid field with cy/cx cores
in the x/z direction, and (d) 2-D decomposition of 3-D grid field
with cy/cx cores in the x/y direction. Transposition between (a)
and (b) can be conducted by cy-independent xz slab MPI trans-
positions, transposition between (b) and (c) can be conducted by
cx-independent xy slab MPI transpositions, and transposition be-
tween (c) and (d) can be conducted by cy-independent yz slab MPI
transpositions.

ficient use of the available bandwidth and thus reduces the
total communication time.

3.2 Halo exchange for semi-Lagrangian method

The SL method solves the following transport equation:

Dφ
Dt
=
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+w

∂φ

∂z
= 0, (4)

where the scalar field φ is advected by the 3-D wind V=
(u,v,w). In the SL method, the grid-point value of the scalar
field φ at next time step t +1t can be found by integrating
Eq. (4) along the trajectory of the fluid parcel (Staniforth and
Côté, 1991; Hortal, 2002):

t+1t∫
t

Dφ
Dt
dt = 0→ φt+1t = φtd , (5)

where φt+1t is the value of the fluid parcel φ arriving at any
grid point at t+1t and φtd is the value of the same fluid par-
cel at its departure point d and departure time t . This means
that the value of the scalar field φ at any grid point at t +1t
is equal to its value at the departure point d and the depar-
ture time t . The departure point d usually does not coincide
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Table 2. Three algorithms for all-to-all personalized communication.

Name Description Stages

Burst Each process communicates with all other processes simultaneously by posting all non-block send and
receive operations simultaneously. The burst messages cause significant congestion in the network. This
algorithm is equivalent to the algorithm ring k when k = n− 1.

1

Bruck This algorithm is better for small message and a large latency since it has only dlog2(n)e stages of com-
munications (Thakur et al., 2005). For the kth stage, each process sends the messages whose destination
process ID has one at the kth bit (begin at least significant bit) to process i+ 2k .

dlog2(n)e

Ring k In the first stage, process i sends to i+ 1, · · ·, i+ k and receives from i− 1, · · ·, i− k in a ring way
(black arrows in Fig. 4a); in the second stage, process i sends to i+ 1+ k, · · ·, i+ 2k and receives from
i− 1− k, · · ·, i− 2k in a ring way (blue arrows in Fig. 4a); this continues until all partners have been
communicated with. This algorithm is a generalization of the ring algorithm and efficiently uses the
available bandwidth by proper selection of radix k.

d
n−1
k
e

with any grid point, so the value of φtd is obtained by inter-
polation using the surrounding grid-point values φt at time t .
The departure point d is determined by iteratively solving the
trajectory equation (Staniforth and Côté, 1991; Hortal, 2002)

Dr

Dt
= V(r, t)→ r t+1− r td =

t+1t∫
t

V(r, t)dt, (6)

where r t+1t and r td are the position of the arrival and the
departure point, respectively. From Eq. (6), it is obvious that
the departure point is far from its arrival point if the wind
speed is large. Thus, the departure point of one fluid parcel
at the boundary of the subdomain of an MPI task is far from
its boundary if the wind speed is large and the wind blows
from the outside. To facilitate the calculation of the depar-
ture point and its interpolation, MPI parallelization adopts
a “maximum wind” halo approach so that the halo is suffi-
ciently large for each MPI task to perform its SL calculations
in parallel after exchanging the halo. This “maximum wind”
halo is named “wide halo” since its width is significantly
larger than that of the thin halo of finite difference methods
whose stencils have compact support. With numerous MPI
tasks, the width of a wide halo may be larger than the sub-
domain size of its direct neighbour, which implies that the
process needs to exchange the halo with its neighbours and
its neighbours’ neighbours, which may result in a significant
communication overhead which counteracts the efficiency of
the favourite SL method and poses a great challenge to the
scalability of the SL method.

Figure 4b demonstrates the halo exchange algorithm
adopted in this paper. First, the algorithm posts the MPI non-
block send and receive operations 1–4 simultaneously for the
x-direction sweep. After the x-direction sweep, a y-direction
sweep is performed in a similar way but the length of halo is
extended to include the left and right halo in the x direction
so that the four corners are exchanged properly. This algo-
rithm needs two stages of communications but is simple to

implement, especially for the wide halo exchange, owing to
its fixed regular communication pattern (Fig. 9d). In Fig. 9d,
the pixels (purplish colour) tightly attached to the diagonal
are due to the exchange in the x direction; the pixels of the
same colour but off-diagonal are because of the periodicity in
x direction; the pixels (reddish orange colour) off-diagonal
are due to the exchange in the y direction; and the pixels of
the same colour but far off the diagonal are because of the
periodicity in the y direction. This algorithm also applies to
the thin halo exchange for finite difference methods, which is
extensively used in the grid-point models. The study empha-
sizes the wide halo exchange, but the thin halo exchange is
also investigated for comparison (see the red line in Fig. 9a).

3.3 Allreduce in Krylov subspace methods for the
semi-implicit method

The three-dimensional SI method leads to a large linear sys-
tem which can be solved by Krylov subspace methods:

Ax = b, (7)

where A is a non-symmetric sparse matrix. Krylov sub-
space methods find the approximation x iteratively in a k-
dimensional Krylov subspace:

K = span(r,Ar,A2r, · · ·,Ak−1r), (8)

where r = b−Ax. To accelerate the convergence, precondi-
tioning is generally used:

M−1Ax =M−1b, (9)

where M approximates A well so that M−1A be conditioned
better than A and M−1 can be computed cheaply. The GCR
method is a Krylov subspace method of easy implementa-
tion and can be used with variable preconditioners. Algo-
rithm 1 of GCR shows that there are two allreduce opera-
tions using the sum operation for the inner product in each
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iteration; thus, it has 2N allreduce operations if the GCR it-
erative solver reaches convergence inN iterations. Allreduce
is an all-to-all communication and becomes expensive when
the number of iterations becomes larger in GCR solver with
numerous MPI processes.

Figure 4c demonstrates the recursive-k algorithm for the
allreduce operation, which is a generalization of the recursive
doubling algorithm. The radix k is the number of processes in
a group for the recursive-k algorithm. Let p = blogk(ncpu)c.
This algorithm has p stages of communications if the num-
ber of processes is a power of radix k; otherwise it has
two extra stages of communications in the beginning and
ending of the algorithm. The following description of the
recursive-k algorithm applies to any number of processes;
that is, the first and last stage are not necessary when the
number of processes is a power of radix k. In the first stage
with stage ID j = 0 (the first row in Fig. 4c), each remain-
ing process whose ID i 6∈ [0,kp − 1] sends its data to pro-
cess i− (ncpu− kp) for the reduce operation. For the stage
of stage ID j ∈ [1,p] (rows between the first row and second
last row in Fig. 4c), all the processes with the same value of
mod(i,kj−1) form a list of processes in ascending order of
i, where i ∈ [0,kp − 1] is the process ID and mod(i,kj−1)

is the remainder of i divided by kj−1. Then, every k pro-
cesses in this ordered list form a group of processes; i.e.,
the first k processes form the first group, the second k pro-
cesses form the second group, etc. Each group of processes
performs its allreduce operation independently. In the final
stage with stage ID j = 1+p (the second last row in Fig. 4c),
each process whose ID i 6∈ [0,kp−1] receives its final result
from process i−(ncpu−kp). The recursive-k algorithm uses
large radix k to reduce the stages of communications and the
overall communication time.

4 Experimental results

4.1 Experiment design

In the next decade, it is estimated that the resolution of global
NWP models will approach the kilometre scale and the HPC
will move towards the exascale. What would the performance
of a global NWP model with a very high resolution on ex-
ascale HPC be? In this paper, we are especially interested
in the strong scaling of an atmospheric model, that is, how
does the atmospheric model with fixed resolution (such as the
one presented in Table 3) behave as the number of processes
increases? In this study, these strong scalings of the three
key MPI operations in the atmospheric model are assessed
for 102,2×102, · · ·,9×102,103,2×103, · · ·,9×103,104,2×
104, · · ·,9×104,105,2×105, · · ·,9×105,106 MPI tasks; but
the maximum number of processes is 2× 105 for the MPI
transposition owing to the hard time limitation in our cluster.
Table 3 presents a summary of the three-dimensional grid
for assessing the communication of the kilometre-scale at-

Table 3. A three-dimensional grid for assessing the communication
of the atmospheric model. 1x and 1y are given as if this grid is a
uniform global longitude–latitude grid. In fact, this grid resembles
the grid of a regional spectral atmospheric model or the uniform
longitude–latitude grid used by some global models.

nx ny nz 1x 1y Grid points

28 800 14 400 256 0.0125◦ 0.0125◦ > 100 billion

Memory size Max. processes

> 800 GB per double field 3 686 400 for a 2-D partition

mospheric model. The number of grid points of this grid is
beyond 100 billion, and one field of double-precision vari-
ables for this grid requires more than 800 gigabytes of mem-
ory. Only with such a large grid is it possible to perform a 2-D
domain decomposition for a spectral model with more than
1 million processes so that modelling the communication of
the atmospheric model at exascale HPC becomes possible.

Besides the topology and its configuration, the routing al-
gorithm, and the collective MPI algorithm; the bandwidth
and the latency of the interconnect network of an HPC sys-
tem have a great impact on the performance of communi-
cations. First, we simulate the transposition for the spectral
transform method in the simulator for three topologies (torus-
M, fattree-M, and dragonfly-MM in Table 1), three config-
urations of dragonfly topology (dragonfly-MM, dragonfly-
SL, and dragonfly-LS in Table 1), three routing algorithms
(minimal, valiant, and ugal), and three alltoallv algorithms
(Table 2). In addition, we compare the simulations of the
transposition for the spectral transform method between four
interconnect bandwidths (100, 101, 102, and 103 GB s−1)
and between four interconnect latencies (101, 102, 103, and
104 ns). After a thorough investigation of the transposition
for the spectral transform method, we test the halo exchange
for the SL method with different halo widths (3, 10, 20,
and 30 grid points), three topologies (torus-L, fattree-L, and
dragonfly-ML in Table 1), and three routing algorithms (min-
imal, valiant, and ugal). Finally, the allreduce operation in
Krylov subspace methods for the SI method is evaluated on
different topologies (torus-L, fattree-M, and dragonfly-ML in
Table 1), and the statistics of the optimal radix of recursive-k
algorithms for allreduce operations are presented.

4.2 Transposition for the spectral transform method

Figure 5a shows that the communication times for the burst,
bruck, ring-1, and ring-4 algorithms decrease as the number
of MPI processes increases. The ring-1 and ring-4 algorithms
are almost identical for fewer than 5×104 MPI processes, but
ring 4 performs better than ring 1 for more than 105 MPI
processes. The burst and bruck algorithms perform worse
than the ring-k algorithm. The SST/macro simulator cannot
simulate the burst algorithm for more than 2× 104 MPI pro-
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Algorithm 1 Preconditioned GCR returns the solution xi when convergence occurs where x0

is the first guess solution and k is the number of iterations for restart.

1: procedure GCR(A,M,b,x0, k)
2: r0 ← b−Ax0

3: u0 ←M−1r0

4: p0 ← u0

5: s0 ← Ap0

6: γ0 ←< u0, s0 >, η0 ←< s0, s0 > . Allreduce(sum) of two doubles
7: α0 ← γ0

η0
8: for i = 1, · · · ,until convergence do
9: xi ← xi−1 + αi−1pi−1

10: ri ← ri−1 − αi−1si−1

11: ui ←M−1ri
12: for j = max (0, i− k), · · · , i− 1 do
13: βi,j ← −1

ηj
< Aui, sj > . Allreduce(sum) of min(i,k) doubles

14: pi ← ui +
∑i−1

j=max(0,i−k) βi,jpj
15: si = Api
16: γi ←< ui, si >, ηi ←< si, si > . Allreduce(sum) of two doubles
17: αi ← γi

ηi

18: return xi

cesses because the burst messages result in huge events and
a large memory footprint. The communication time of the
bruck algorithm is significantly larger than that of the ring-k
algorithm for fewer than 105 MPI processes; however, for a
greater number of processes, it is better than the ring-1 al-
gorithm since the bruck algorithm is targeted for small mes-
sages, and the more processes, the smaller the message for a
fixed-size problem. The performance of these alltoallv algo-
rithms is confirmed by actually running the skeleton program
of transposition for the spectral transform method with 104

MPI processes on the research cluster (Beaufix) of Météo
France, which shows that the ring-4 algorithm is even better
than the INTEL native MPI_Alltoallv function (Fig. 6).

The differences in the communication times of the trans-
positions between the topology torus-M, fattree-M, and
dragonfly-MM can be an order of magnitude (Fig. 5b). Mes-
sages have to travel a long distance in the topology torus-
M which is a 3-D torus, so its communication time is the
largest. The best performance of the topology fattree-M can
be attributed to its non-blocking D-mod-k routing algorithm,
but its communication time gradually increases as the num-
ber of MPI processes increases beyond 104. The performance
of topology dragonfly-MM is between that of torus-M and
fattree-M (Fig. 5b); it can achieve a better performance by
tuning the configuration of the dragonfly topology (Fig. 5c).
By comparing Fig. 5b and c, we can see that the topolo-
gies of dragonfly-SL and dragonfly-LS are still not as good
as the fattree-M, but their performance is very close to that
of fattree-M and they lose less scalability than fattree-M for
more than 5× 104 MPI processes.

The differences in communication time of the transposi-
tions between the routing algorithms of minimal, valiant, and
ugal are also an order of magnitude (Fig. 5d), which indi-
cates that the impact of routing algorithm on communica-
tion is significant. The valiant routing algorithm performs the
best, but the communication time begins to increase when
the number of MPI processes is larger than 3× 104. The
ugal routing algorithm performs the worst, and the perfor-
mance of the minimal routing algorithm is in between that
of the valiant and ugal routing algorithms. The valiant rout-
ing algorithm has the longest path for messages from the
source to the destination with a randomly chosen intermedi-
ate node; thus, theoretically, its communication time is larger.
By contrast, the minimal routing algorithm that moves the
messages using the shortest path from the source to the des-
tination has the smallest communication time. The conges-
tion between processes in Fig. 7 shows that the valiant rout-
ing algorithm for the dragonfly-MM topology (Fig. 7b) and
the minimal routing algorithm for the dragonfly-SL topol-
ogy (Fig. 7d) are less congested and have a more uniform
congestion, the minimal routing algorithm for the dragonfly-
MM topology is moderately congested, but its congestion is
not uniform (Fig. 7a), and the congestion of the ugal routing
algorithm for the dragonfly-MM topology is large and highly
non-uniform (Fig. 7c). These congestions in Fig. 7 are con-
sistent with the communication times in Fig. 5c and d, that
is, the more uniform the congestion, the lower the commu-
nication time because the latter is determined by the longest
delay event and uniform congestion can avoid the hotspots
of the congestion with the longest delay event. Figure 8 con-
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Figure 4. Algorithms for three key MPI operations: (a) is the ring-k algorithm with k radix for all-to-all personalized communication
generalized from ring alltoallv algorithm, (b) is the halo exchange algorithm, and (c) is the recursive-k algorithm with k radix generalized
from the recursive doubling algorithm.

firms this that a high percentage of delay events has a delay
time of fewer than 30 µs using the valiant routing algorithm
for the dragonfly-MM topology and the minimal routing al-
gorithm for the dragonfly-SL topology; however, the mini-
mal routing algorithm for the dragonfly-MM topology has
a significant percentage of events that delays by more than
50 µs, especially there are a large number of events delayed
by more than 100 µs using the ugal routing algorithm for the
dragonfly-MM topology. Thus, the configuration of the in-
terconnect network and the design of its routing algorithm
should make the congestion as uniform as possible if con-
gestion is inevitable.

Although the communication time with a bandwidth of
100 GB s−1 is apparently separated from those with band-
widths of 101, 102, and 103 GB s−1, the curves describing
the communication times with bandwidths of 101, 102, and
103 GB s−1 overlap (Fig. 5e). The communication times with
latencies of 101 and 102 ns are almost identical; that with a

latency of 103 (104) ns is slightly (apparently) different from
those with latencies of 101 and 102 ns (Fig. 5f). Equation (1)
indicates that the communication time stops decreasing only
when α (β) approaches zero and β (α) is constant given a
fixed message size. Neither α in Fig. 5e nor β in Fig. 5f ap-
proaches zero, but the communication time stops decreas-
ing. The inability of the analytical model (1) to explain this
suggests that other dominant factors such as congestion con-
tribute to the communication time. Latency is the amount
of time required to travel the path from one location to an-
other. Bandwidth determines how much data per second can
be moved in parallel along that path and limits the maximum
number of packets travelling in parallel. Because both α and
β are greater than zero, congestion occurs when data arrive
at a network interface at a rate faster than the media can ser-
vice; when this occurs, packets must be placed in a queue
to wait until earlier packets have been serviced. The longer
the wait, the longer the delay and communication time. Fig-
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(d) routing algorithms for the dragonfly topology, (e) bandwidth, and (f) latency. The circle markers indicate the numbers of processes of the
corresponding simulations.

ure 8b and c show the distributions of the delay caused by
congestion for different bandwidths and different latencies,
respectively. In Fig. 8b, the distributions of the delay for
bandwidths of 101, 102, and 103 GB s−1 are almost identi-
cal, which explains their overlapped communication times in
Fig. 5e; and the distribution of the delay for a bandwidth of
100 GB s−1 is distinct from the rest since near 20 % of events
are delayed by fewer than 10 µs but a significant percentage
of events are delayed more than 100 µs, which accounts for
its largest communication time in Fig. 5e. In Fig. 8c, the dis-
tributions of the delay for latencies of 101 and 102 ns are the
same; the distributions of the delay for a latency of 103 ns
is slightly different from the formers; but the distributions of
the delay for a latency of 104 ns has a large percentage of
events in the right tail, which resulted in the longest commu-
nication time; these are consistent with their communication
times in Fig. 5f.

In summary, the alltoallv algorithm, the topology and its
configuration, the routing algorithm, the bandwidth, and the
latency have great impacts on the communication time of
transpositions. In addition, the communication time of trans-
positions decreases as the number of MPI processes increases
in most cases; however, this strong scalability is not appli-
cable for the fattree-M topology (the red line in Fig. 5b),
the dragonfly-SL and dragonfly-LS topologies (red and black
lines in Fig. 5c), and the valiant routing algorithm (the red
line in Fig. 5d) when the number of MPI processes is large.
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Figure 6. Actual communication time of transposition for the spec-
tral transform method with 104 MPI processes run on the Beaufix
cluster in Météo France.

Thus, the topology of the interconnect network and its rout-
ing algorithm have a great impact on the scalability of trans-
positions for the spectral transform method. Since the trans-
position for the spectral transform method is a multiple si-
multaneous all-to-all personalized communication, conges-
tion has a great impact on its performance.
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4.3 Halo exchange for the semi-Lagrangian method

The most common application of the wide halo exchange is
the SL method. For the resolution of 0.0125◦ in Table 3 and
a time step of 30 s, the departure is approximately five grid
points away from its arrival if the maximum wind speed is
200 m s−1; therefore, the width of the halo is at least seven
grid points using the ECMWF quasi-cubic scheme (Ritchie,
1995); there are more grid points if a higher-order scheme
such as the SLICE-3D (Semi-Lagrangian Inherently Con-
serving and Efficient (SLICE) in three dimensions) (Zer-
roukat and Allen, 2012) is used. In Fig. 9a, the communica-
tion time of the halo exchange decreases more slowly with an
increasing number of processes than that of transposition for
the spectral transform method. This is because the message
size decreases more slowly than that of transposition owing
to the fixed width of the halo (figure not shown). If the com-
munication time of the transposition (halo exchange) contin-
ues its decreasing (increasing) trend in Fig. 9a, they meet at
certain number of MPI processes; then, the communication
time of the halo exchange is larger than that of the transpo-
sition. In addition, it can be seen that the wider the halo, the
longer the communication time. The halo exchange of a thin
halo of three grid points, such as for the sixth-order central
difference F ′i =

−Fi−3+9Fi−2−45Fi−1+45Fi+1−9Fi+2+Fi+3
601 (the

red line in Fig. 9a), is significantly faster than that of wide
halo for the SL method (green and blue lines in Fig. 9a).
Thus, the efficiency of the SL method is counteracted by
the overhead of the wide halo exchange where the width of
the halo is determined by the maximum wind speed. Wide
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Figure 8. Distribution of delayed events of transposition for the
spectral transform method with 104 MPI processes using (a) dif-
ferent routing algorithms and topology configurations, (b) different
bandwidths, and (c) different latencies, simulated by SST/macro.

halo exchange for the SL method is expensive at the exas-
cale, especially for the atmospheric chemistry models where
a large number of tracers need to be transported. On-demand
exchange is a way to reduce the communication of halo ex-
change for the SL method and will be investigated in a future
study.

Significant differences in the communication times of the
wide halo exchange of 20 grid points for topology torus-L,
fattree-L, and dragonfly-ML are shown in Fig. 9b. It can be
seen that topology torus-L performs the worst, fattree-L is
the best, and the performance of dragonfly-ML is between
that of torus-L and fattree-L. The communication time of the
wide halo exchange of 20 grid points for the topology tour-L
abruptly increases at approximately 103 MPI processes and
then gradually decreases when the number of MPI tasks be-
comes larger than 3× 103 MPI processes. The impact of the
routing algorithm on the communication time of the wide
halo exchange of 20 grid points (Fig. 9c) is the same as on
that of transposition (Fig. 5d): the routing algorithm valiant
performs the best, the routing algorithm ugal performs the
worst, and the routing algorithm minimal is between valiant
and ugal.

4.4 Allreduce in Krylov subspace methods for the
semi-implicit method

If, on average, the GCR with a restart number k = 3 is
convergent with N = 25 iterations, the number of allre-
duce calls is 2×N = 50. The black and blue lines are
the communication times of 50 allreduce operations using
MPI_Allreduce and the recursive-k algorithm, respectively,
that is, the estimated communication time of one single GCR
call (Fig. 10a). Contrary to that of transposition, the com-
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Figure 9. Panel (a) is the communication times of the halo exchange with a halo of 3 (red line), 10 (green line), and 20 (blue line) grid
points, and the communication time of transposition for the spectral transform method is shown for comparison (black line). Panel (b) is the
communication times of the halo exchange with a halo of 20 grid points for the topology of torus-L (black line), fattree-L (red line), and
dragonfly-ML (blue line). Panel (c) is the communication times of the halo exchange with a halo of 20 grid points for the routing algorithm
of minimal (black line), valiant (red line), and ugal (blue line). Panel (d) illustrates the communication pattern of the halo exchange with a
wide halo. The circle markers in (a)–(c) indicate the numbers of processes of the corresponding simulations.

munication time of GCR increases as the number of MPI
processes increases. Following the trend, the communication
of a single GCR call may be similar to or even larger than
that of a single transposition when the number of MPI pro-
cesses approaches to or is beyond 1 million. Although it is
believed that the spectral method does not scale well ow-
ing to its time-consuming transposition, it does not suffer
from this expensive allreduce operation for the SI method be-
cause of its mathematical advantage that spherical harmonics
are the eigenfunctions of Helmholtz operators. In this sense,
a grid-point model with the SI method in which the three-
dimensional Helmholtz equation is solved by Krylov sub-
space methods may also not scale well at the exascale unless
the overhead of allreduce communication can be mitigated
by overlapping it with computation (Sanan et al., 2016).

Figure 10b shows the communication times of allreduce
operations using the recursive-k algorithm on the topologies
of torus-L, fattree-L, and dragonfly-ML. The impact of topol-
ogy on the communication performance of allreduce opera-
tions is obvious. The topology of torus-L has the best perfor-
mance but is similar to that of dragonfly-ML for more than
5× 105 MPI processes; fattree-L has the worst performance.
However, the three routing algorithms (minima, valiant, and

ugal) for the dragonfly-ML topology have a negligible im-
pact on the communication performance of allreduce oper-
ations (figure not shown); this may be because of the tiny
messages (only three doubles for the restart number k = 3)
communicated by the allreduce operation.

One advantage of the recursive-k algorithm of the allre-
duce operation is that the radix k can be selected to reduce
the stages of communication by making full use of the band-
width of the underlying interconnect network. We repeat the
experiment, whose configuration is as that of the blue line
in Fig. 10a, for the proper radix k ∈ [2,32], and the opti-
mal radix is that with the lowest communication time for a
given number of MPI processes. For each number of MPI
processes, there is an optimal radix. The statistics of all the
optimal radices are shown in Fig. 10c. It can be seen that
the minimum and maximum optimal radices are 5 and 32,
respectively. Thus, the recursive doubling algorithm that is
equivalent to the recursive-k algorithm with radix k = 2 is
not efficient since the optimal radix is at least 5. The me-
dian number of optimal radices is approximately 21, and the
mean number is less than but very close to the median num-
ber. We cannot derive an analytic formula for the optimal
radix since modelling the congestion is difficult in an analytic
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model. However, for a given resolution of NWP model and
a given HPC system, fortunately, the number of processes,
bandwidth, and latency are fixed; thus, it is easy to perform
experiments to obtain the optimal radix.

5 Conclusion and discussion

This work shows that it is possible to make simulations of
the MPI patterns commonly used in NWP models using very
large numbers of MPI tasks. This opens up the possibility
of examining and comparing the impact of different factors
such as latency, bandwidth, routing, and network topology on
response time. We have provided an assessment of the per-
formance and scalability of three key MPI operations in an
atmospheric model at the exascale by simulating their skele-
ton programs on an SST/macro simulator. After optimization
of the memory and efficiency of the SST/macro simulator
and construction of the skeleton programs, a series of ex-
periments was carried out to investigate the impacts of the
collective algorithm, the topology and its configuration, the
routing algorithm, the bandwidth, and the latency on the per-
formance and scalability of transposition, halo exchange, and
allreduce operations. The experimental results show the fol-
lowing:

1. The collective algorithm is extremely important for the
performance and scalability of key MPI operations in
the atmospheric model at the exascale because a good
algorithm can make full use of the bandwidth and re-
duce the stages of communication. The generalized
ring-k algorithm for the alltoallv operation and the gen-
eralized recursive-k algorithm for the allreduce opera-
tion proposed herein perform the best.

2. Topology, its configuration, and the routing algorithm
have a considerable impact on the performance and
scalability of communications. The fattree topology
usually performs the best, but its scalability becomes
weak with a large number of MPI processes. The drag-
onfly topology balances the performance and scalability
well, and can maintain almost the same scalability with
a large number of MPI processes. The configurations of
the dragonfly topology indicate that a proper configu-
ration can be used to avoid the hotspots of congestion
and lead to good performance. The minimal routing al-
gorithm is intuitive and performs well. However, the
valiant routing algorithm (which randomly chooses an
intermediate node to uniformly disperse the communi-
cation over the network to avoid the hotspots of conges-
tion) performs much better for heavy congestion.

3. Although they have an important impact on commu-
nication, bandwidth and latency cannot be infinitely
grown and reduced owing to the limitation of hardware.
Thus, it is important to design innovative algorithms to

make full use of the bandwidth and to reduce the effect
of latency.

4. It is generally believed that the transposition for the
spectral transform method, which is a multiple simul-
taneous all-to-all personalized communication, poses a
great challenge to the scalability of the spectral model.
This work shows that the scalability of the spectral
model is still acceptable in terms of MPI transposi-
tion. However, the wide halo exchange for the semi-
Lagrangian method and the allreduce operation in the
GCR iterative solver for the semi-implicit method, both
of which are often adopted by the grid-point model, also
face the stringent challenge of scalability at the exas-
cale.

In summary, both software (algorithms) and hardware
(characteristics and configuration) are of great importance
to the performance and scalability of the atmospheric model
at the exascale. The software and hardware must be co-
designed to address the challenge of the atmospheric model
for exascale computing.

As shown previously, the communications of the wide halo
exchange for the semi-Lagrangian method and the allreduce
operation in the GCR iterative solver for the semi-implicit
method are expensive at the exascale. The on-demand halo
exchange for the semi-Lagrangian and the pipeline technique
to overlap with the communication with the computation for
the GCR iterative solver are not researched in this study
and should be investigated. All the compute nodes in this
work only contain one single-core CPU, which is good for
assessing the communication of the interconnect network;
however, the architectures of current and future supercom-
puters are multi-core and multi-socket nodes, even in non-
CPU architectures. These more complex hierarchies seem to
complicate the inter-process communications. However, an
MPI rank can be bound to any core for multi-core and multi-
socket nodes. For example, an MPI rank can be bound to any
processor/co-processor for MIC (many-integrated core) ar-
chitectures such as Xeon Phi using the INTEL MPI library,
and an MPI rank can be bound to a CPU core but can com-
municate with GPUs (graphics processing units) for GPU ar-
chitectures using a CUDA-aware (compute unified device ar-
chitecture) MPI. Because a multi-core node behaves more or
less like a more powerful single-core node when OpenMP
(open multi-processing) is used for the intra-node paralleliza-
tion, the conclusions in this study could be generalized to
the complex hierarchical system. Multiple MPI processes per
node may be good for the local pattern communication such
as thin halo exchange since the shared memory communica-
tion mechanism is used but may result in congestion in the
network interface controller for inter-node communication.
The congestion can be mitigated or even eliminated if each
node has more network interface controllers (NICs) or a net-
work interface controller with multi-ports (as a mini-switch).
From this point of view, the conclusions should still be valid
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Figure 10. Panel (a) is the communication times of the allreduce operation using the MPI_Allreduce (black line) and the recursive-k algo-
rithm (blue line), and the communication time of transposition for the spectral transform method is shown for comparison (red line). Panel
(b) is the communication times of the allreduce operation using the recursive-k algorithm for the topology torus-L (black line), fattree-L
(blue line), and dragonfly-ML (red line). Panel (c) is the statistics of the optimal radices for the recursive-k algorithm. The circle markers in
(a)–(b) indicate the numbers of processes of the corresponding simulations.

for the complex hierarchical architectures, but the scalability
might be affected. The more MPI processes, the less compu-
tation per node if there is only one single-core CPU per node;
thus, computation is not considered in this paper. Because
multi-core or many-core processors share a memory bus, it
is possible for a memory-intensive application (such as an
atmospheric model) to saturate the memory bus and result in
degraded performances of all the computations running on
that processor. The assessment of computations is currently
underway and a detailed paper will be presented separately;
the purpose of this subsequent study is to model the time re-
sponse of a time step of a model such as the regional model
(AROME) used by Météo France.
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