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Abstract. Plume-SPH provides the first particle-based sim-
ulation of volcanic plumes. Smoothed particle hydrodynam-
ics (SPH) has several advantages over currently used mesh-
based methods in modeling of multiphase free boundary
flows like volcanic plumes. This tool will provide more accu-
rate eruption source terms to users of volcanic ash transport
and dispersion models (VATDs), greatly improving volcanic
ash forecasts. The accuracy of these terms is crucial for fore-
casts from VATDs, and the 3-D SPH model presented here
will provide better numerical accuracy. As an initial effort
to exploit the feasibility and advantages of SPH in volcanic
plume modeling, we adopt a relatively simple physics model
(3-D dusty-gas dynamic model assuming well-mixed erup-
tion material, dynamic equilibrium and thermodynamic equi-
librium between erupted material and air that entrained into
the plume, and minimal effect of winds) targeted at captur-
ing the salient features of a volcanic plume. The documented
open-source code is easily obtained and extended to incor-
porate other models of physics of interest to the large com-
munity of researchers investigating multiphase free boundary
flows of volcanic or other origins.

The Plume-SPH code (https://doi.org/10.5281/zenodo.
572819) also incorporates several newly developed tech-
niques in SPH needed to address numerical challenges in
simulating multiphase compressible turbulent flow. The code
should thus be also of general interest to the much larger
community of researchers using and developing SPH-based
tools. In particular, the SPH− ε turbulence model is used to
capture mixing at unresolved scales. Heat exchange due to

turbulence is calculated by a Reynolds analogy, and a cor-
rected SPH is used to handle tensile instability and deficiency
of particle distribution near the boundaries. We also devel-
oped methodology to impose velocity inlet and pressure out-
let boundary conditions, both of which are scarce in tradi-
tional implementations of SPH.

The core solver of our model is parallelized with the mes-
sage passing interface (MPI) obtaining good weak and strong
scalability using novel techniques for data management us-
ing space-filling curves (SFCs), object creation time-based
indexing and hash-table-based storage schemes. These tech-
niques are of interest to researchers engaged in developing
particles in cell-type methods. The code is first verified by
1-D shock tube tests, then by comparing velocity and con-
centration distribution along the central axis and on the trans-
verse cross with experimental results of JPUE (jet or plume
that is ejected from a nozzle into a uniform environment).
Profiles of several integrated variables are compared with
those calculated by existing 3-D plume models for an erup-
tion with the same mass eruption rate (MER) estimated for
the Mt. Pinatubo eruption of 15 June 1991. Our results are
consistent with existing 3-D plume models. Analysis of the
plume evolution process demonstrates that this model is able
to reproduce the physics of plume development.
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1 Introduction

1.1 Volcanic ash hazards

Primary hazards associated with explosive volcanic eruptions
include pyroclastic density currents (flows and surges), the
widespread deposition of air fall tephra and the threats to
aviation posed by volcanic ash in the atmosphere. Simula-
tion of all possible hazards with one model is difficult due to
the fact that different length scales dominate different haz-
ards. Our focus here is the hazard that volcanic ash poses to
aircraft.

During volcanic eruptions, volcanic ash transport and dis-
persion models (VATDs) are used to forecast the location
and movement of ash clouds at timescales that range from
hours to days. VATDs use eruption source parameters, such
as plume height, mass eruption rate, duration and the mass
fraction distribution of erupted particles finer than about 48
(or 62.5 µm), which can remain in the cloud for many hours
or days. Observational data for such parameters are usually
unavailable in the first minutes or hours after an eruption
is detected. Moreover, these input parameters are subject to
change during an eruption, requiring rapid reassignment of
new parameters. Usually, plume models are used to provide
these source terms for VATDs and the forecast accuracy is
critically dependent on these models. This paper reports on a
new three-dimensional (3-D) volcanic plume model designed
to exploit the advantages of mesh-free methods for 3-D mod-
eling of such plumes that involve multiphase free boundary
flows.

1.2 Existing plume models

Several one-dimensional (1-D) volcanic plume models have
been developed in the past few decades, ranging from the
most basic 1-D model (Woods, 1988) which only accounts
for mass conservation to more recently developed 1-D mod-
els (Bursik, 2001; Mastin, 2007; Degruyter and Bonadonna,
2012; Woodhouse et al., 2013; Devenish, 2013; de’Michieli
Vitturi et al., 2015; Folch et al., 2016; Pouget et al., 2016)
which tend to account for more comprehensive physics ef-
fects. For example, FPLUME-1.0 (Folch et al., 2016) ac-
counts for wind effect, entrainment of moisture, water phase
change, particle fallout and re-entrainment, and even wet ag-
gregation of ash. However, in these 1-D models, the entrain-
ment of air is evaluated based on two coefficients: entrain-
ment coefficient due to turbulence in the rising buoyant jet
and the crosswind field. Different 1-D models adopt differ-
ent entrainment coefficients based on specific formulation or
calibration against well-documented case studies. The feed-
back from plume to atmosphere is usually ignored in 1-D
models. Even though determination of essential parameters
such as the entrainment is not based on first principles, such
simple models nevertheless allow us to investigate the im-
portance of physical mechanisms in a volcanic plume. In ad-

dition, these simplified models require little computational
resource and can run on standard personal computers or on
websites in a very short time. As a result, 1-D software for
volcanic plume development (such as Bursik, 2010; Mastin,
2011; de’ Michieli Vitturi, 2015), combined with VATDs
(such as Bursik et al., 2013; Draxler and Rolph, 2015) is
widely used in research and practice. While these 1-D models
can generate well-matched results with three-dimensional (3-
D) models for weak plumes, much greater variability is ob-
served for strong plume scenarios, especially for local vari-
ables (Costa et al., 2016). In addition, there is need for greater
skill in hazard forecasts especially where the plume model is
used to generate source conditions for complex 2-D (two-
dimensional) and 3-D VATD models.

The development of 2-D and 3-D time-dependent and mul-
tiphase numerical models for volcanic plumes has provided
new explanations for many features of explosive volcanism.
For example, a recent study based on a 3-D fluid dynamical
model (Costa et al., 2018) shows that simple extrapolations
of integral models for Plinian columns to those of super-
eruption plumes are not valid, and their dynamics diverge
from current ideas of how volcanic plumes operate. One of
the earliest of these is the 3-D model pyroclastic dispersion
analysis code (PDAC) (Neri et al., 2003) which is a non-
equilibrium, multiphase, 3-D compressible flow model. Con-
servation equations for each phase are solved separately with
the finite volume method. A parallel computing version of
PDAC was also developed (Esposti Ongaro et al., 2007). Ad-
vanced numerical techniques, such as a second-order scheme
and semi-explicit time stepping, were also adopted after-
wards to improve the accuracy of PDAC (Carcano et al.,
2013).

Another 3-D model, SK-3D (Suzuki et al., 2005), is a 3-D
time-dependent fluid dynamics model that attempts to repro-
duce the entrainment process of eruption clouds with rela-
tively simple physics but with high-order numerical accuracy
and high spatial resolution. A series of simulations based
on SK-3D was reported, including establishment of the re-
lationship between the observable quantities of the eruption
clouds and the eruption conditions at the vent (Suzuki and
Koyaguchi, 2009), investigation of the effect of the intensity
of turbulence in the umbrella cloud on dispersion and sedi-
mentation of tephra (Koyaguchi et al., 2009), determination
of the entrainment coefficients of eruption columns as a func-
tion of height (Suzuki and Koyaguchi, 2010) and investiga-
tion of the effect of wind field on the entrainment coefficient
(Suzuki and Koyaguchi, 2013).

While SK-3D focuses on accurately capturing the entrain-
ment caused by turbulent mixture with higher resolution and
numerical method of higher order, PDAC takes the dise-
quilibrium between different phases into account and hence
is a true multiphase model. Another 3-D model, the Ac-
tive Tracer High-Resolution Atmospheric Model (ATHAM)
(Oberhuber et al., 1998), focuses more on microphysics
within the plume. As pyroclastic flow is not the initial con-
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cern of ATHAM; dynamic and thermodynamical equilib-
rium is assumed in ATHAM. The dynamic core of ATHAM
solves the compressible Euler equations for momentum,
pressure and temperature of the gas–particle mixture (Ober-
huber et al., 1998). The subgrid-scale turbulence closure
scheme that differentiates between the horizontal and verti-
cal directions (Herzog et al., 2003) is adopted to capture tur-
bulent mixing. The cloud microphysics predicts the mass of
hydrometeors in liquid and ice phases (Herzog et al., 1998).
Additional modules, including gas-phase chemistry (Trent-
mann et al., 2002) and gas scavenging by hydrometeors (Tex-
tor et al., 2003), were added lately. A further extension was
made to include particle aggregation (Textor et al., 2006b, a).
However, the resolution of ATHAM is still coarse compared
with SK-3D and PDAC.

Besides adding to their special strengths (ATHAM has
been adding more and more microphysics; PDAC was ex-
tended to consider more phases), these models are also
adding core strengths. PDAC development has begun to
include the effect of microphysics into the model, while
ATHAM development has extended its ability to modeling
pyroclastic flow. Both are using finer and finer resolution.

Recently, a first-order, non-equilibrium compressible 3-D
model, ASHEE (Cerminara et al., 2016a), was introduced
based on three-dimensional N-phase Eulerian transportation
equations, which are a full set of mass, momentum and en-
ergy transport equations for a mixture of gas and dispersed
particles. ASHEE is valid for low concentration and low
Stokes number regions and much faster than the N-phase
Eulerian model. The model is based on the open-source nu-
merical solver OpenFOAM (Weller et al., 1998), adapting its
unstructured finite volume solver.

To summarize, each 3-D model has its own focus based
on the problem of interest and modeling/numerical choices
made. Accuracy of simulation (depending on comprehen-
siveness of the model, resolution of discretization, numerical
error and order of accuracy) and the simulation time (depend-
ing on number of governing equations, resolution, numerical
methods and parallel techniques) are always conflicting con-
siderations in 3-D plume simulations.

1.3 Features of SPH

To the best of our knowledge, all of the existing 3-D plume
models use mesh-based Eulerian methods, and there are no
3-D plume models based on mesh-free Lagrangian meth-
ods. Lagrangian methods have several features that are suit-
able for volcanic plume simulation that we outline be-
low. Among such Lagrangian methods, smoothed particle-
hydrodynamics-based simulations (Gingold and Monaghan,
1977; Lucy, 1977) have shown good agreement with exper-
iments for many applications in fluid dynamics. Currently,
they are, by far, the most widely used mesh-free schemes.
Our implementations of SPH in volcanology follow earlier
efforts (Bursik et al., 2003; Hérault et al., 2010; Haddad et al.,

2016). Specifically, we choose SPH as the numerical method
for volcanic plume simulation to enable

– better investigation of mixing phenomena;

– accurate modeling of the development of the zone of
flow establishment (ZFE), zone of established flow
(ZEF) investigation and relation to column collapse and
the questions relating to the development of entrain-
ment; and

– easy inclusion of particles of different sizes (phases)
and investigation of detailed mechanics of sedimenta-
tion and drag force interaction in lower plume.

These are enabled by the following features of SPH:

– The advection term in the Navier–Stokes equations does
not appear explicitly in discretized formula of SPH (as
illustrated in Eqs. 12–15).

– It is easy to include various physics effects (like self
gravity, radiative cooling and chemical reaction) in the
model. It does not require a major overhaul and re-
tooling every time new physics is introduced (Mon-
aghan and Kocharyan, 1995). This implies that account-
ing for more physics is easier for the SPH model.

– With more than one phase, each described by its own set
of particles, interface problems between phases are of-
ten trivial for SPH but difficult for mesh-based schemes.
Thus, multiphase flow can be easily handled by SPH.
Adding new phases to the model also does not require a
major overhaul and re-tooling. As will be shown in later
paragraphs, adding new phases only leads to adding sev-
eral lines into the source code for new phases and ad-
ditional interaction terms between existing phases and
newly added phases.

– Interface tracking is explicit in SPH through capturing
of the locations of the particles. Less numerical effort is
required for interface construction when we attempt to
include the effects of mixing by resolving the detailed
interface structure and dynamics of turbulence.

As discussed in the previous paragraph, existing 3-D
plume models focus on one or several specific aspects of the
plume and have been extended to be more comprehensive
by accounting for more physics or more phases. Easy exten-
sibility and capability of handling multiple phase flow with
less additional numerical effort greatly facilitate future exten-
sion of SPH models. As volcanic plumes are in nature mul-
tiphase and without predefined boundary in the atmosphere,
SPH is a suitable numerical method for plume modeling. The
core physics, such as entrainment of air and thermal expan-
sion, are essential for all plume modeling, while some other
physics, such as water condensation and aggregation, are im-
portant in specific scenarios. As an initial effort towards ex-
ploiting advantages of SPH in volcanic plume modeling, we
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focus on capturing basic features in plume development us-
ing a numerically robust and computationally efficient frame-
work with support for scalable parallel computing.

Open-source availability and the relatively easy extensibil-
ity of SPH will facilitate development of a more comprehen-
sive community-driven model.

1.4 Our contributions

Even though SPH has been known for several decades, im-
plementations of SPH for compressible multiphase turbu-
lent flows are few. Colagrossi and Landrini (2003) proposed
a multiphase SPH model for numerical simulation of air
entrapment in violent fluid-structure interactions. Hu and
Adams (2007) and Adami et al. (2010) proposed weakly
compressible and incompressible multiphase SPH solvers in
their papers. Monaghan and Rafiee (2013) also proposed new
formulations for weakly compressible fluid with the speed
of sound sufficiently large to guarantee that the relative den-
sity variations are typically 1 %. Chen et al. (2015) recently
presented a new SPH model for weakly compressible multi-
phase flows with complex interfaces and large density differ-
ences. All of them focus on incompressible or weakly com-
pressible flow.

Several issues endemic to classical SPH, like tensile insta-
bilities, compressible turbulence modeling and turbulent heat
exchange, are fixed in our implementation. The most popular
applications of SPH (and their original motivating applica-
tion) have been in the simulation of free surface flow, such as
breaking waves and floods. Less attention was paid to veloc-
ity inlet and pressure outlet boundary conditions which are
required in plume modeling.

– We develop methodology to impose pressure boundary
conditions by adding extra layers of static ghost parti-
cles. Additional constraints on the time step are used
to avoid the growth of numerical fluctuations near the
pressure boundary. We impose a velocity inlet bound-
ary condition by placing several layers of ghost particles
moving with eruption velocity.

– The turbulence model is crucial for reproducing the en-
trainment of air. There are several turbulence models
proposed for the SPH method (Issa, 2005; Violeau and
Issa, 2007). We adopt a Lagrangian-averaged Navier–
Stokes (LANS) turbulence model (Monaghan, 2011),
which was originally proposed for incompressible flow
and is extended here for compressible flow accounting
for turbulent heat exchange.

– Corrected formulation of SPH (Chen et al., 1999) is
adopted to bypass the well-known tensile instability is-
sues of classical SPH.

– Simulation of volcanic plumes with acceptable accuracy
requires fine resolution (very high particle counts) that

cannot be accomplished without parallel computing us-
ing large process counts. The core solver of our model
is parallelized by distributed memory message passing
interface (MPI) standard parallelism. In addition, a dy-
namic load balancing strategy is also developed.

– Imposition of some types of boundary conditions (such
as eruption boundary condition) requires dynamically
adding and removing of particles during simulation. To
address this issue, we adopt an efficient data manage-
ment scheme based on a time-dependent space-filling
curve (SFC) induced indexing and hash table. The com-
putational cost is further reduced by adjusting the simu-
lation domain adaptively.

The physical model of the plume is first presented in
Sect. 2 and leads to a complete mathematical description of
the volcanic plume (governing equations and boundary con-
ditions). In Sect. 3, we briefly introduce the numerical tool
– the SPH method. Both the fundamental discretization for-
mulation and techniques that are used to handle specific is-
sues involved in plume modeling are discussed. Verification
and validation with numerical tests are presented in Sect. 4.
In Sect. 5, a discussion on future work is given following a
brief summary.

2 Physical model

2.1 Description of the model

During an explosive eruption, a volcanic jet erupts out from
a vent with a speed of several tens to more than 150 m s−1,
driven by expanding gas. The jet is initially denser than the
surrounding atmosphere and begins to decelerate through
negative buoyancy and turbulent interaction with surround-
ing air. Cauliflower-like vortices are generated along jet mar-
gins, within which process, air is entrained and heated up,
reducing the bulk density of the entire jet, in many cases,
to less than that of the surrounding atmosphere. Once it be-
comes buoyant, such a jet develops into a Plinian or sub-
Plinian plume, rising up to several kilometers to tens of kilo-
meters until its heat is exhausted. Jets that lose their momen-
tum before becoming buoyant collapse back onto the ground
and transform into pyroclastic flows, surges and ignimbrites.
During the process of plume rising up, relatively larger par-
ticles might separate from main stream of the plume, falling
down onto the ground and possibly be re-entrained into the
plume at a lower height (Ernst et al., 1996). Within this pro-
cess, erupted vapor condenses to liquid (droplet) and even
further to ice. Latent heat released from phase change of
erupted vapor further heats up entrained air and further di-
lutes the bulk density. The entrained vapor might also ex-
perience a similar process and impact plume development.
Particle aggregation processes (Carey and Sigurdsson, 1982;
Taddeucci et al., 2011), either due to presence of liquid wa-
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ter, resulting from particle collision or driven by electrostatic
forces, might occur inside plume and thereby affect the sedi-
mentation.

All in all, the process of plume development is essen-
tially a multiphase turbulent mixing process coupled with
heat transfer and other microphysical and chemical reactions.

As an initial effort towards exploiting the feasibility and
advantage of SPH in plume modeling, our model is designed
to describe an injection of well-mixed solid and volcanic gas
from a circular vent above a flat surface into a stratified sta-
tionary atmosphere following SK-3D (Suzuki et al., 2005). In
this model, molecular viscosity and heat conduction are ne-
glected since turbulent exchange coefficients are dominant.
Erupted material consisting of solid materials with different
size and mixture of gases is assumed to be well mixed and
behave like a single-phase fluid (phase 2) which is valid for
eruptions with fine particles and ash. Air (also a mixture of
different gases) is assumed to be another phase (phase 1).
Thermodynamic equilibrium is assumed so that no separate
energy equation is needed for each phase. As a result, there
is only one energy equation for both phases (heat exchange
term between different phases does not show up under this
assumption). Dynamic equilibrium is assumed so that no sep-
arate momentum equation is needed for each phase. As a re-
sult, there is only one vector momentum equation for both
phases (drag force term does not show up with this assump-
tion).

Because of the above assumptions, all other microphysical
processes (such as the phase changes of H2O, aggregation,
disaggregation, absorption of gas on the surface of solids,
solution of gas into a liquid) and chemical processes are not
considered in this model. These ignored microphysics factors
would play critical roles under particular eruption conditions.
Capturing of these processes needs a more comprehensive
model. One critical element in plume development, the ef-
fect of wind, is also not yet considered in this model. Intro-
ducing wind effects in our model requires dynamic pressure
boundary conditions, which requires more numerical effort
and algorithm design. To summarize, our model is not valid
for eruptions where wind effect plays a significant role in its
development, usually referred to as a weak plume. Our model
also lacks the ability in modeling plumes with large parti-
cles or eruptions in which microphysics plays non-ignorable
roles, such as an eruption of the El Chichón volcano on
4 April 1982 (Sigurdsson et al., 1984; Folch et al., 2016).
We are focused here on developing the SPH-based method-
ology in the context of the more basic (and more critical) as-
pects of the volcanic plume and therefore devote our effort to
this relative simpler model. It is worthwhile to mention here
that because SPH is adopted as our numerical method, adding
these physics into our model would require much less work
in terms of programming compared to mesh-based methods.
Since our plan is an open-source distribution of the tool, we
believe some of these enhancements will rapidly ensue with
community participation.

2.2 Governing equations

Based on above assumptions, the governing equations of our
model are given as (which is the same as the governing equa-
tions of SK-3D) (Suzuki et al., 2005)

∂ρ

∂t
+∇ · (ρv)= 0 (1)

∂ρξ

∂t
+∇ · (ρξv)= 0 (2)

∂ρv

∂t
+∇ · (ρvv+pI)= ρg (3)

∂ρE

∂t
+∇ ·

[
(ρE+p)v

]
= ρg · v, (4)

where ρ is the density, v is the velocity, ξ is the mass fraction
of ejected material, g is the gravitational acceleration, and
I is a unit tensor. E = e+K is the total energy which is a
summation of kinetic energy K and internal energy e. An
additional equation is required to close the system. In this
model, the equation for closing the system is the following
equation of state (EOS):

p = (γm− 1)ρe, (5)

where

γm = Rm/Cvm+ 1 (6)
Rm = ξgRg+ ξaRa (7)
Cvm = ξsCvs+ ξgCvg+ ξaCva (8)
ξa = 1− ξ (9)
ξg = ξ · ξg0 (10)
ξs = ξ − ξg, (11)

where Cv is the specific heat with constant volume, and R is
the gas constant. ξ is the mass fraction of erupted material.
The subscript “m” represents mixture of ejected material and
air, “s” represents solid portion in the ejected material, “g”
represents gas portion in the ejected material, “a” represents
air, and 0 represents physical properties of erupted material.
ξg0 is the mass fraction of vapor in the erupted material.

In mesh-based methods, governing equations in Eulerian
form, Eqs. (1)–(4), are directly discretized. For SPH, govern-
ing equations in Lagrangian form are needed. By deducting
kinetic energy from the energy equation, subtracting mass
conservation from the momentum equation, combining the
transient term and advection term into the material deriva-
tive term (for any function A, material derivative is defined
as dA

dt =
∂A
∂t
+ v · ∇A), the governing equations are put into

the final form, in which the advection term does not appear
explicitly.
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dρ
dt
+ ρ∇ · v = 0 (12)

dρξ
dt
+ ρξ∇ · v = 0 (13)

dv

dt
+
∇P

ρ
= g (14)

de
dt
+
P∇ · v

ρ
= 0 (15)

2.3 Boundary conditions

In the current model, the initial domain is a box. The bound-
aries are categorized as the velocity inlet (a circular area at
the center of the bottom of the box), wall boundary (box bot-
tom) and pressure outlet (other faces of the box).

2.3.1 Velocity inlet

At the vent, the temperature of erupted material T , eruption
velocity v, mass fraction of vapor in erupted material ξg0 and
mass discharge rate Ṁ are given. The pressure of erupted
material p is assumed to be the same as ambient pressure for
pressure-balanced eruption. The radius of the vent is deter-
mined from ρ, Ṁ and v. Equations (16)–(19) give the ve-
locity inlet boundary condition written in terms of primitive
variables:

ρ = const= p/(RmT ) (16)
ξ = const= 1 (17)

v = const= {u,v,w}T (18)
∂e

∂n
= Ṁe0/

(
πr2

)
, (19)

where r is the radius of the vent, n is the direction normal
to the boundary, and e0 is specific internal energy of erupted
material which can be calculated based on temperature and
specific heat of erupted material.

2.3.2 Non-slip wall boundary

Velocity is zero for the non-slip wall boundary. If we assume
the boundary to be adiabatic, heat flux should be zero on the
boundary. The flux of mass should also be zero. As a result,
internal energy flux, which consists of heat flux and energy
flux carried by mass flux, vanishes on the wall boundary.
Equations (20)–(23) give the non-slip wall boundary condi-
tion written in terms of primitive variables:

∂ρ

∂n
= const= 0 (20)

∂ξ

∂n
= const= 0 (21)

v = const= {0,0,0}T (22)
∂e

∂n
= 0. (23)

2.3.3 Open outlet pressure boundary condition

The pressure of the surrounding atmosphere is given. Ex-
cept for the pressure, boundary values for density, velocity
and energy on the outlet should depend on the solution. As
we ignore the viscosity, the shear stress is ignored and nor-
mal stress (whose magnitude equals its pressure) balances
the ambient pressure.

p = pa(z) (24)

3 SPH method

SPH is a mesh-free Lagrangian method. In SPH, the domain
is discretized by a set of particles or discretization points and
the position of each particle is updated at every time step
based on the motion computed. Approximation of all field
variables (velocity, density and pressure, etc.) is obtained
by interpolation based on discretization points. The physi-
cal laws (such as conservation laws of mass, momentum and
energy) written in the form of partial differential equations
(PDEs) or ordinary differential equations (ODEs) need to be
transformed into the Lagrangian particle formalism of SPH.
Using a kernel function that provides the weighted estima-
tion of the field variables at any point, the integral equations
are estimated as sums over particles in a compact subdomain
defined by the support of the kernel function associated with
the discretization points. Thus, field variables associated to
the particle are updated based on its neighbors. Each kernel
function has a compact support determined by the smooth-
ing length of each particle. There are several review papers
by Monaghan (1992), Monaghan (2005), Rosswog (2009),
Price (2012) and Monaghan (2012), giving a pretty compre-
hensive view over SPH. We only refer here to the representa-
tion of the constitutive equations in SPH and put more focus
on specific numerical techniques for plume modeling.

3.1 Fundamental principles

There are several procedures for discretizing governing equa-
tions (PDEs or ODEs) with SPH. We present here one of
them following Monaghan (1992, 2005, 2012). The starting
point of approximating a function with SPH is the translation
property of the Dirac function δ(x), for an arbitrary function
A(x), the following equation holds.

A(x)=

∞∫
−∞

A
(
x′
)
δ
(
x′− x

)
dx′ (25)

The Dirac function δ in Eq. (25) can be approximated by
a weighting function w

(
x− x′,h

)
(or w

(
x′− x,h

))
which

tends to a Dirac function when the smoothing length h→ 0:

lim
h→0

w
(
x′− x,h

)
= δ

(
x′− x

)
. (26)
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The weighting function, as an approximate form of the Dirac
function, should satisfy the normalization condition:∫
w
(
x− x′,h

)
dx′ = 1. (27)

Besides normalization, the weighting function of particle a
has to be symmetric with respect to a to ensure that neighbor
particles located at the same distance away from a contribute
equally to the SPH summation equation; see Eq. (28).

w
(
x− x′,h

)
= w

(
x′− x,h

)
(28)

The weighting function also needs to satisfy conditions
such as positivity and compact support. In addition, the ker-
nel function must be monotonically decreasing with the dis-
tance between particles.

There is a wide variety of possible weighting functions
that can satisfy these requirements, such as spline functions
(with different orders) and Gaussian functions. Generally, the
accuracy increases with the order of the polynomials of the
kernel function, but the computational cost also increases as
the number of interactions increases. We adopt a truncated
Gaussian function as the weighting function in our simula-
tion.

w
(
x− x′

)
= (29) 1

(h
√
π)

d exp
[
−

(
x−x′

h

)2
]
|x− x′| ≤ 3h

0 Otherwise
,

where d is the number of dimensions. The derivative of the
weighting function is

∇w
(
x− x′

)
= (30) −2

(
x− x′

h

)
1(

h
√
π
)d exp

[
−

(
x− x′

h

)2
]
|x− x′| ≤ 3h

0 Otherwise
.

By replacing the δ function in Eq. (26) with the kernel
function w, an arbitrary function A(x) can then be approxi-
mated by

A(x)≈<A(x) >= (31)∫
�

A
(
x′
)
w
(
x− x′,h

)
dx′+O

(
h2
)
.

As the weighting function is symmetric (Eq. 28) and sat-
isfies the normalization condition (Eq. 27), odd error terms
in Eq. (31) vanish, leading to a second-order approximation.
However, in practice, a second order of accuracy cannot be
achieved because there is no guarantee of the symmetry of
particle distribution in real simulation (Price, 2012). Recall
that dx′ = dm(x′)

ρ(x′)
; the integration equation, Eq. (31), can be

approximated by summation and can lead to an approxima-
tion of the function A:

<A(x) >≈
∑
b

mb
Ab

ρb
w(x− xb,h) , (32)

where the summation is over all the particles within the re-
gion of compact support (see Eq. 29) of the weighting func-
tion. Gradient terms may be straightforwardly calculated by
taking the derivative of Eq. (32), giving

< ∇A(x) >=
∂

∂x

∫
�

A
(
x′
)
w
(
x− x′,h

)
dx′+O

(
h2
)

(33)

≈

∑
b

mb
Ab

ρb
∇w(x− xb,h) .

For vector quantities, the expressions are similar, simply re-
placing A with A in Eq. (32) and Eq. (33), giving

<A(x) >≈
∑
b

mb
Ab

ρb
w(x− xb,h) (34)

< ∇ ·A(x) >≈
∑
b

mb
Ab

ρb
· ∇w(x− xb,h) (35)

< ∇ ×A(x) >≈
∑
b

mb
Ab

ρb
×∇w(x− xb,h) (36)

< ∇jAi (x) >≈
∑
b

mb
Ai
b

ρb
∇
jw(x− xb,h) . (37)

3.2 Artificial viscosity

In classical SPH, shock waves are handled by introducing
artificial viscosity, a term that is defined based on second
derivatives of velocity, to smear out discontinuities. As in the
case of first-order derivatives, second-order derivatives can
be estimated by differentiating a SPH interpolation twice.
However, such a formulation has two disadvantages: first, it
is very sensitive to irregular distribution of particles; second,
the second derivative of the kernel can change sign and lead
to unphysical representations (for example, viscous dissipa-
tion causes decrease of the entropy).

One of the most commonly used models of artificial vis-
cosity (Monaghan and Gingold, 1983) is

5ab =−
ν

ρab

vab · xab

x2
ab+ (ηh)

2 . (38)

The coefficient ν is defined as

ν = αhabcab, (39)
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where

cab =
ca + cb

2
(40)

ρab =
ρa + ρb

2
(41)

vab = va − vb (42)
xab = xa − xb. (43)

The artificial viscosity term 5ab is a Galilean invariant and
vanishes for rigid rotation. It produces a repulsive force be-
tween two particles when they are approaching each other
and an attractive force when they are receding from each
other.

The SPH viscosity can be related to a continuum viscosity
by converting the summation to integrals (Monaghan, 2005).
It has been shown that shear viscosity coefficient η = ραhc

8
and bulk viscosity coefficient ζ = 5η

3 are appropriate for two-
dimensional flows. η = ραhc

10 and ζ = 5η
3 are appropriate for

three-dimensional flows. An extra term was added to ν con-
sidering aspects of the dissipative term in shock solutions
based on Riemann solvers and led to a new formulation of
artificial viscosity. We adopt this new formulation in our sim-
ulation:

5
β
ab =

{
−αµabcab+βµ

2
ab

ρab
vab · xab < 0

0 vab · xab > 0
, (44)

where

µab =
hvab · xab

x2
ab+ (ηh)

2
. (45)

α and β are two parameters that can be adjusted for different
cases. α = 1 and β = 2 are recommended by Monaghan for
best results. In our simulation, these two parameters are cal-
ibrated to α = 0.3 and β = 0.6. η is usually taken as 0.1 to
prevent singularities.

3.3 Discretization of governing equations and
extensibility

The basic interpolation given in Eqs. (32)–(37) provides a
general way to obtain SPH expressions of governing equa-
tions. The problem is that using these expressions “as is” in
general leads to quite poor gradient estimates. Various tricks
can be used to conserve linear and angular momentum and
thermal energy (Monaghan, 1992). Special treatments are
also needed for second-order derivative terms (Monaghan,
2005). We only refer here to one of these possible discretiza-

tions of compressible Euler equations with SPH:

< ρa >=
∑
b

mbwab(h) (46)

〈
dva

dt

〉
=−

∑
b

mb

(
pb

ρ2
b

+
pa

ρ2
a

+5ab

)
∇awab(h)+g (47)

〈
dea
dt

〉
= 0.5

∑
b

mbvab

(
pb

ρ2
b

+
pa

ρ2
a

+5ab

)
· ∇awab(h),

(48)

where a is the SPH particle index. 5 is an artificial viscosity
term, which is discussed in Sect. 3.2. wab(h) is a concise
form of w(xa − xb,h), and from here on, we will use this
concise form. As a Lagrangian method, particle position is
also updated at every time step.〈

dxa

dt

〉
= va (49)

We highlight an important feature of the SPH methodol-
ogy. Adding new physics and new phases into the model
is trivial in terms of discretization. For example, adding a
new source (or sink) into Eq. (46), adding a drag force into
Eq. (47) and adding a heat exchange term into Eq. (48) lead
to the new discretization form:

< ρa >=
∑

mbwab(h)+ ρ̇ (x, t) (50)

〈
dva

dt

〉
=−

∑
b

mb

(
pb

ρ2
b

+
pa

ρ2
a

+5ab

)
∇awab(h)+g (51)

+D
∑
b

mb
vb− va

ρb〈
dea
dt

〉
= 0.5

∑
b

mbvab

(
pb

ρ2
b

+
pa

ρ2
a

+5ab

)
· ∇awab(h)

(52)

+

∑
b

mb

ρb
(κa + κb)

(Ta − Tb)

xa − xb
wab(h),

where the source term ρ̇ can be a “sink” of erupted vapor
due to its phase change. D is a drag force coefficient. κ is
the heat conduction coefficient. T is the temperature. Other
physics can be added easily in a similar way. Adding these
new terms leads to modification of only a few lines in the
source code. The drag force term should show up when dy-
namic disequilibrium between different phases is considered.
In that case, each phase needs one set of governing equations
of Navier–Stokes type. Adding a new phase into SPH code
only requires adding a few new lines for the new phase be-
sides interaction terms introduced by the new phase.

3.4 Time step

The physical quantities (velocity, density and pressure) and
particle position change every time step. The Courant con-
dition, which is in spirit similar to the Courant condition for
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the mesh-based methods, is used to determine the time step
1t .

1t = CFLmin
a


[
ma
ρa

] 1
d

ca

 , (53)

where ca is sound speed at particle a and calculated based on
heat-specific ration of the mixture γm (see Eq. 54).

ca =

(
γm
p

ρ

)0.5

(54)

First-order Euler integration, with CFL= 0.2, is used to
advance in time.

3.5 Tensile instability and corrected derivatives

The classical SPH method was known to suffer from ten-
sile instability and boundary deficiency. Tests of the stan-
dard SPH method indicate an instability in the tensile regime,
while the calculations are stable in compression. A simple
example of such a test calculation exhibiting the instability
involves a body which is subject to a uniform initial stress,
either compressive or tensile. If the initial stress is tensile, a
very small velocity perturbation on a single particle can lead
to particles clumping together, forming large voids and seri-
ously corrupting density distribution. But if the initial stress
is compressive, the small velocity perturbation on a single
particle cannot lead to any changes in particle distribution
(Swegle et al., 1995). To address these difficulties, Chen et al.
(1999) proposed a corrected SPH formulation. For the 1-D
case, employing a Taylor expansion for A(x) about xa , mul-
tiplying both sides by kernel function and then doing an in-
tegration over the domain gives∫
�

A(x)w(x− xa,h)dx = (55)

Aa

∫
�

w(x− xa,h)dx+
∂A

∂x
(xa)

∫
�

(x− xa)w (x− xa,h)dx+ . . ..

Ignoring derivative terms higher than first order and writing
the integral in particle approximation form leads to

Aa =

∑
bmb

Ab
ρb
wab(h)∑

bmb
1
ρb
wab(h)

. (56)

Notice that the denominator in Eq. (56) is actually the sum-
mation approximation of the left side of Eq. (27). That is to
say, Eqs. (56) and (32) are the same for particles far away
from boundaries as the denominator in Eq. (56) becomes 1

in that case. The first-order derivative term can be obtained
in a similar way:

∇Aa =

∑
bmb

Ab−Aa
ρb
∇awab(h)∑

bmb
xb−xa
ρb
∇awab(h)

. (57)

For problems of higher dimension, the expressions for
function approximation are exactly the same as Eq. (56),
even though the derivation is different. The first-order deriva-
tive can be obtained by solving a system of equations explic-
itly or numerically (Chen et al., 1999).

3.6 Mass fraction update

Air and erupted material are represented by two different
sets of SPH particles (or discretization points) in the model.
Based on assumptions we made in Sect. 2, only density needs
to be updated respectively for each phase. The updating of
density is exactly the same as Eq. (46) in spirit. Particles of
phase 1 are not counted while evaluating density of phase 2,
and vice versa. Updating of density is then based on the fol-
lowing discretized equations.

< ρa
α>=

∑
mbwαb(h)∑ mb

ρb
wαb(h)+

∑ mj
ρj
wαj (h)

(58)

< ρ
sg
α >=

∑
mjwαj (h)∑ mb

ρb
wαb(h)+

∑ mj
ρj
wαj (h)

, (59)

where the subscripts a and b represent air particles (phase 1),
while i and j represent particles of erupted material. β and
α represent either erupted material particles or air particles.
ρa
a is density of phase 1 (air). ρsg

i is density of phase 2
(erupted material). ρ = ρa

+ ρsg is density of mixture of air
and erupted material. By definition, the mass fraction is up-
dated according to Eq. (60).

< ξα >=
ρ

sg
α

ρα
(60)

In areas far away from the interface, updating of density is
exactly the same as that for single-phase flow. For example,
on the right side and left side (or blue areas) in Fig. 1, where
there are only air particles, Eq. (59) evaluates to zero, and
total density is

ρα = ρ
a
α =

∑
mbwαb(h)∑ mb
ρb
wαb (h)

, (61)

which is a special case of Eq. (56). For these areas occupied
by only particles of phase 2 and far away from the interface,
similarly, the equation for the density update becomes

ρα = ρ
sg
α =

∑
mjwαj (h)∑ mj
ρj
wαj (h)

. (62)
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Figure 1. In panel (a), the blue particles (phase 1) represent air particles; the red ones (phase 2) represent erupted material. Panel (b) shows
corresponding mass fraction. Mass fractions are evaluated based on Eqs. (58) and (59) without any other interface track or capture method.

That is to say, the same density updating equation can be ap-
plied for both phases and no additional numerical treatment
is needed to locate where the interface is.

Interface construction will become necessary and impor-
tant when attempting to include the effects of mixing by
resolving the detailed interface structure and dynamics of
turbulence. As a Lagrangian method, interface tracking in
SPH is explicit through capturing of the locations of the par-
ticles, much simpler than Eulerian methods. The existence
of complex evolving interfaces between phases presents se-
vere challenges to conventional Eulerian grid-based numer-
ical methods. Either interface tracking (Lagrangian) (Har-
low and Welch, 1965; Wrobel and Brebbia, 1991; Cheng
and Armfield, 1995) or interface capturing (Eulerian) (Hirt
and Nichols, 1981; Youngs, 1982; Gerlach et al., 2006;
Gopala and van Wachem, 2008) methods are used to re-
construct the flow interface of free boundary flow. High
computational cost, a tendency to form numerical instabili-
ties and the inability to track complex topological changes
are the significant drawbacks of tracking techniques (Hirt
and Nichols, 1981; Unverdi and Tryggvason, 1992; An-
derson et al., 1998). For the interface capturing (Eule-
rian) method, the surrendering of surface detail before the
phase transport calculation means that interface reconstruc-
tion is required between time steps to recover the inter-
face information, which needs additional numerical effort
(Hirt and Nichols, 1981; Youngs, 1982). Since SPH is able
to adaptively adjust the discretization and automatically con-
struct the interface, SPH requires less additional numerical
effort for interface construction and therefore is more suit-
able for volcanic plume simulation.

3.7 Turbulence modeling with SPH

For high-speed shearing flow, the momentum exchange and
heat transfer are dominated by turbulent fluctuations as tur-
bulent exchange coefficients are several magnitudes larger
than corresponding physical coefficients (molecular viscos-

ity and heat conduction coefficient). In addition to momen-
tum and energy exchange, mixing between plume and air
is important in plume modeling. Quantifying these mix-
ing processes in real implementation is challenging be-
cause of the scale disparity between the large-scale fluid
motion and the diffusion processes on interface that ulti-
mately lead to mixing. Ideally, one would like to be able
to include the effects of mixing on the large-scale dy-
namics without resolving the detailed interface structure
and dynamics of turbulence to reduce computational cost.
To resolve all turbulent exchange at all different scales
and sub-particle-scale mixing with relative coarse resolu-
tion, a SPH sub-particle-scale (SPH-SPS) turbulence mod-
els should be included. Among existing SPH-SPS turbulence
models (Holm, 1999; Monaghan, 2002; Violeau and Issa,
2007; Monaghan, 2011), we adopt a LANS-type turbulence
model, the SPH− ε turbulence model (Monaghan, 2011).
However, the SPH− ε turbulence model was proposed only
for incompressible flow. In the following section, we will
extend it for compressible flow. It is necessary to men-
tion that all other existing SPH-SPS turbulence models
(Holm, 1999; Monaghan, 2002; Violeau and Issa, 2007) also
only focus on incompressible flow.

3.7.1 Lagrangian average in SPH− ε

Monaghan (2011) constructed SPH− ε turbulence model
within the framework of SPH in such a way that general prin-
ciples such as conservation of energy, momentum and circu-
lation are satisfied using the ideas associated with the LANS
turbulence modeling. The basic idea of SPH− ε is to deter-
mine a smoothed (averaged in space) velocity v̂ by a linear
operation on the unsmoothed velocity v. The SPH particles
move with this smoothed velocity, and hence the average mo-
tion of the fluid is determined by the averaged velocity v̂:

dxa

dt
= v̂a . (63)
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The average of physical quantities over space introduces
extra terms into the governing equations. Once the form of
the smoothing (average) is chosen, these extra terms are de-
termined. The typical LANS model uses a smoothed velocity
v̂ defined in terms of the unsmoothed velocity v by

v̂(x)=

∫
v
(
x′
)
G
(
|x′− x|, l

)
dx′, (64)

where G satisfies∫
G
(
|x′− x|, l

)
dx′ = 1, (65)

and is a member of a sequence of functions which tends to
the δ function in the limit when l→ 0. A typical example
is Gaussian. The length scale l determines the characteristic
width of the kernel and the distance over which the velocity
is smoothed.

It is a common practice in LANS to use a differential equa-
tion for the smoothing rather than the integral form and fi-
nally reach a system of equations that need to be solved im-
plicitly. In the SPH− ε method, a XSPH (Monaghan, 1989)
smoothing is adopted which conserves linear and angular
momentum. In this way, solving a system of equations is
avoided, and it also makes the method simple to imple-
ment and cheap for computation. The discretized form of the
momentum equation is obtained through lengthy derivation.
Derivation and other discussions are available in the litera-
ture; see, e.g., Monaghan (2011). Here, we provide a brief
summary of the key steps.

The smoothing adopted by Monaghan (2011) is

v̂(x)= v(x)+ ε

∫ (
v
(
x′
)
− v(x)

)
G
(
|x′− x|, l

)
dx′. (66)

As function G has the same feature as kernel function w,
SPH approximation of the integration leads to

v̂(x)= v(x)+ ε
∑
b

mb
(vb− v)

ρb
G(|xb− x|, l) . (67)

By making the replacement,

G(|xb− xa|, l)

ρb
→

Kab

M
, (68)

where Kab = ldGab, M = ρ0l
d in which ρ0 is initial den-

sity. The SPH− ε turbulence model is obtained after lengthy
derivation:

dva

dt
=−

∑
b

[
mb

(
pb

ρ2
b

+
pa

ρ2
a

)
∇awab(h)

]
(69)

+

∑
b

mb
ε

2
vab · vab

M
∇aKab.

Notice that, if l is constant,

∇Kab =∇
(
ldGab

)
= ld∇Gab. (70)

The discretized momentum equation with the SPH−ε turbu-
lence model can be written in terms of Gab instead of Kab:

dva

dt
=−

∑
b

[
mb

(
pb

ρ2
b

+
pa

ρ2
a

)
∇awab(h)

]
(71)

+

∑
b

mb8ab∇aGab(l),

where

8ab =
ε

2
vab · vab

ρb
, (72)

which is the extra stress term induced by average. We take
coefficient ε as 0.8 following Monaghan (2011).

For compressible flow, the energy equation is coupled with
the momentum equation and mass conservation equation.
Averaging of thermal energy over space introduces some ad-
ditional terms besides the stress term induced by velocity
average (Rumsey, 2014). The averaged momentum equation
for compressible flow is in the same form as that for incom-
pressible flow; all of the other additional terms, besides the
corresponding velocity-average-induced stress term, show up
in the energy equation. Most turbulence modeling focuses on
the stress terms induced by the average of velocity. These
stress terms are usually either solved directly (for example,
LANS methods) or defined via a constitutive relation (for ex-
ample, large eddy simulation method). Less attention is typ-
ically given to the other terms. Most commonly, a Reynolds
analogy is used to model the turbulent exchange. Simula-
tions of heat transfer, or other scalar transfer, in turbulent
flow simply involve adding transport terms for thermal en-
ergy or species concentration, at the expense of greater stor-
age and longer computing times but without other difficulties
(Cebeci, 2013). We adopt this strategy. The additional terms
associated with molecular diffusion and turbulent transport
in the energy equation are either modeled in different ways
or neglected sometimes (Rumsey, 2014). We neglect these
terms in our simulation.

3.7.2 Turbulent heat transfer

We adopt the Reynolds analogy to get the heat transfer coef-
ficient due to turbulence. The Prandtl number is defined as

Pr =
Cpµ

κ
, (73)

where µ is the dynamic viscosity, and κ is the thermal con-
ductivity. In addition, µ can be written in terms of the abso-
lute viscosity (kinematic viscosity) as

µ= ρν. (74)

Then,

κ =
Cpµ

Pr
. (75)
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The typical value of Prt for air is 0.7–0.9. We take Prt = 0.85
for gases as recommended Kays (1994) from summarizing
experimental results.

Monaghan (2005) summarized the simulation of viscos-
ity and heat conduction in his review on SPH. We will refer
to his summary in our following discussion. The additional
term in the discretized momentum equation, Eq. (71), is the
turbulent shear stress term. Recall that molecular viscosity
can be discretized with SPH as shown in Eq. (38). It has been
shown that the discretized molecular viscosity has both bulk
viscosity and shear viscosity, where shear viscosity coeffi-
cient is (Monaghan, 2005)

νt = Sν, (76)

with

S =


1

10 if d = 3

1
8 if d = 2

. (77)

The turbulent viscosity coefficient can be inferred from that
formulation if we can reformulate the turbulent shear stress
term in a form which is similar to the molecular shear term.
Reformulating the turbulent shear stress term,∑
b

ε

2
mb

ρb
vab · vab∇aGab (la)= (78)

∑
b

ε

2S
mb

vab

ρb

Svab · xab

x2
ab

x2
ab

xab
∇aGab (la) ,

the turbulent viscosity coefficient can be inferred from
Eq. (78).

νt =
ε

2S
vab · xab

1
(79)

Please note that the turbulent viscosity term has the opposite
sign of the molecular viscosity term in the discretized mo-
mentum equation and there is a minus sign in the expression
of 5ab, and they cancel out.

However, the above equation is correct only for the 1-D
situations. For 2-D or 3-D, it is not easy to get an explicit
expression. We adopt an alternative way: obtaining a value
for each pair of particles instead of persisting on getting an
analytical expression. Choosing the smoothing function to be
the same as the SPH kernel and the smoothing length scale l
to be the same as the smoothing length h, the ratio between
turbulent shear stress and physical shear stress is

ϒab =

ε
2

vab·vab
ρb

Sν
ρab

vab·xab
x2
ab+η

2h2
ab

(80)

=
ε
(
x2
ab+ η

2h2
ab

)
2Sν

vab · vab

vab · xab
.

ϒab is essentially equivalent to the ratio between the turbu-
lent viscous effect of particle b on particle a and molecular

viscous effect of particle b on particle a. Turbulent viscosity
can be easily obtained by

νt,ab = νϒab (81)

=
ε
(
x2
ab+ η

2h2
ab

)
2S

vab · vab

vab · xab
.

The corresponding turbulent thermal conductivity should be

κt,ab =
εCp,abρab

(
x2
ab+ η

2h2
ab

)
vab · vab

2SPrtvab · xab
. (82)

Cp,ab and ρab are simply the arithmetic means of specific
heat and density. The term used to prevent singularity now
can be removed.

κt,ab =
εCp,abρabx

2
abvab · vab

2SPrtvab · xab
(83)

We also need to prevent singularity, so

κt,ab =

{
0 if vab = 0 or xab = 0
εCp,abρabx

2
abvab·vab

2SPrtvab·xab
otherwise

. (84)

The heat conduction equation without the source term is

Cp
dT
dt
=

1
ρ
∇ (κ∇T ) . (85)

The second spatial derivative can be approximated with SPH
by following Monaghan (2005):

Cp
dT
dt
=

∑
b

mb

ρaρb
(κa + κb)(Ta − Tb)Fab(h), (86)

where Fab(h) is short for F (xa − xb,h), whose definition is

Fab(h)xab =∇awab(h). (87)

Fab is always non-positive, which guarantees that heat flux
flows from hot to cold. Plug the turbulent thermal conductiv-
ity into the heat conduction equation:

Cp
dT
dt
=

∑
b

mb

ρaρb
(κa + κb)(Ta − Tb)Fab(h) (88)

= 2
∑
b

mb

ρaρb

Cp,abρabεx
2
abvab · vab

2PrtSvab · xab
(Ta − Tb)Fab(h).

Notice that the number “2” in the front of Eq. (88) comes
from integration approximation of the second-order deriva-
tive (Cleary and Monaghan, 1999). By further simplification,
we get

Cp
dT
dt
= (89)

ε

SPrt

∑
b

mb

ρaρb

Cp,abρabx
2
abvab · vab

vab · xab
(Ta − Tb)Fab(h).
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Figure 2. A cross-section view of the simulation domain in the y− z plane at 66 s. Panel (a) shows the mass fraction. Panel (b) shows
all boundary conditions: the dark blue region is occupied by eruption ghost particles with a “ghost particle ID” of 0; the light blue area is
occupied by pressure ghost particles with a “ghost particle ID” of 1; the gray area is filled with wall ghost particles with a “ghost particle
ID” of 2. The “ghost particle ID” of all real particles is set to 100; they occupy the major portion of the domain in panel (b). Panel (c) shows
the cross-section view of domain decomposition based on SFC. The simulation is conducted on 12 processors, so there are 12 subdomains
in total. The cross-section view shows a portion of them.

3.7.3 Discretized governing equations with SPH− ε

turbulence model

Plugging in the discretized turbulent stress term and turbulent
heat transfer term into the momentum and energy equation,
we get new discretized governing equations:〈

dvα

dt

〉
= (90)

−

∑
b

[
mb

(
pb

ρ2
b

+
pα

ρ2
α

+5
β
αb−8αb

)
∇αwαb(h)

]

−

∑
j

[
mj

(
pj

ρ2
j

+
pα

ρ2
α

+5
β
αj −8αj

)
∇αwαj (h)

]
+g,

with

8αβ =
ε

2
vαβ · vαβ

ρβ
(91)

〈
deα
dt

〉
= (92)

0.5
∑
b

[
mbv̂αb

(
pb

ρ2
b

+
pα

ρ2
α

+5
β
αb−8αb

)
∇αwαb(h)

]
+ 2

∑
b

mb

ραρb
κt,αb (Tα − Tb)Fαb(h)

+ 0.5
∑
j

[
mj v̂αb

(
pj

ρ2
j

+
pα

ρ2
α

+5
β
αj −8αj

)
∇αwαj (h)

]

+ 2
∑
j

mj

ραρj
κt,αj

(
Tα − Tj

)
Fαj (h),

with κt,αβ given by Eq. (84). As the particle-scale movement
of flow is based on smoothed velocity, the velocity in the en-

ergy equation should also be smoothed. The filtering process
is done according to Eq. (67). Position of particles is updated
according to Eq. (63). Smoothed velocity is also used while
computing artificial viscosity.

3.8 Boundary conditions

All boundary conditions are imposed by ghost particles. Fig-
ure 2b shows how boundaries are deployed.

3.8.1 Wall boundary condition

Traditionally, either ghost particles that mirror real particles
across the boundary (Ferrari et al., 2009) or boundary forces
(Monaghan and Kajtar, 2009) have been used to impose the
wall boundary conditions. One disadvantage of the latter is
that the boundary forces tend to corrupt the solution in the
local neighborhood. In addition, a natural way of imposing
the eruption boundary condition is using eruption ghost par-
ticles. To impose boundary conditions in a consistent way, we
adopt a modified version of the ghost particle method (Kumar
et al., 2013) for wall boundary conditions. Stationary wall
ghost particles are deployed in the same way as real particles.
Instead of enforcing symmetry particle by particle, a sym-
metric field across the boundary is explicitly enforced. Ghost
particles are reflected into the domain and physical quanti-
ties are calculated at these reflected positions by SPH inter-
polations. It should be noted that wall ghost particles should
not be counted when computing physical properties of these
reflected positions. All properties, except for velocity, are as-
signed at the corresponding reflected position to the ghost
particle. The velocity of each wall ghost particle is set to have
the same value but opposite direction of the interpolated ve-
locity at its corresponding reflection. This way, the non-slip
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wall boundary condition (Eq. 22) is imposed naturally. These
wall ghost particles serve as neighbors in momentum and en-
ergy update. More implementation details about this method
can be found in Kumar et al. (2013). As these wall ghost par-
ticles are stationary, there is no mass flux on the boundary
(Eqs. 20 and 21). In addition, as temperature is also symmet-
ric with respect to the boundary, the gradient of temperature
vanishes, and hence there is no internal energy flux on the
wall boundary (Eq. 23). In our current model, the ground
is assumed to be flat. For more complicated topography, it
has been shown in other work (Kumar et al., 2013) that this
method works as well. We do have concern regarding poten-
tial limitation of this method of deployment of ghost particles
for more complicated boundaries in three dimensions. Fortu-
nately, the current model does not involve complicated wall
boundary.

3.8.2 Eruption boundary condition

A natural way of imposing eruption boundary condition is
using ghost particles that move with the eruption velocity
and bear the temperature of the erupted material. A parabolic
velocity profile that represents a fully developed Hagen–
Poiseuille flow is used to determine the inlet particle veloc-
ity. The detailed shape of the parabolic profile is determined
based on an averaged eruption velocity (Eq. 18). The mass
of eruption ghost particles is set to a value so that evaluation
of Eq. (46) can return a density that is consistent with the
value given in Eq. (16). The internal energy associated with
these particles is set to a value so that Eq. (19) is satisfied.
The mass fraction of erupted material (Eq. 17) is automat-
ically satisfied as all particles in the eruption conduit are of
phase 2. The density, momentum and internal energy of these
eruption ghost particles are not updated before they move
aboveground. As soon as they move out from eruption con-
duit, these ghost particles will be shifted to real particles and
their physical quantities and position will be updated based
on discretized governing equations. New ghost particles need
to be added at the bottom of the eruption conduit as these ex-
isting ghost particles move upwards.

3.8.3 Pressure boundary condition

Another boundary condition in our model is the pressure out-
let boundary. For flow in a straight channel, it is possible to
treat the exit the same as the entry with a prescribed veloc-
ity profile. For flow with a more complex channel, an exit
far downstream of the flow disturbance is also feasible. How-
ever, the natural boundary condition (Eq. 24) is more suitable
for plume simulation as the outlet is open atmosphere. The
way we impose pressure boundary condition is by adding
several layers of pressure ghost particles surrounding the real
atmosphere particles. Pressure, density and temperature are
determined based on the elevation of particles. Velocity is
set to zero for static atmosphere. The physical quantities for

pressure ghost particles are not updated while these for real
particles are updated at every time step. As the position of all
pressure ghost particles keeps constant, we essentially im-
pose a static pressure boundary condition. Real particles are
removed as soon as they move out of the pressure boundary.

As simulations progress, changes in position and physi-
cal quantities of real particles near pressure boundaries might
corrupt the pressure boundary condition that was established
initially. This shortcoming is relieved by choosing a larger
computational domain so that boundaries that might be cor-
rupted are far away from turbulent mixing area. In addition,
to avoid enlarging fluctuations, we add another constraint on
the time step:

1t ≤ CFLp
h

v
, (93)

where CFLp is a safety coefficient which has similar func-
tion to the normal Courant–Friedrichs–Lewy (CFL) number.
Too small CFLp would slow down simulation, while too large
CFLp would lose its ability of mitigate numerical fluctuation
near the boundary. The proper CFLp is determined by a series
of simulation tests.

3.9 Parallelism and performance

One disadvantage of the 3-D model is that it usually takes
a much longer time than 1-D models to complete one
simulation. This disadvantage further prevents simulation
with finer resolution and accounting for more physics in
one model. Non-intrusive uncertainty analysis, which is
commonly adopted in hazard forecasting, requires finish-
ing multiple simulations within a given time window. High-
performance computing is therefore essential. Among exist-
ing CPU parallel SPH schemes, most of them focus on the
neighbor search algorithm and dynamic load balancing (Fer-
rari et al., 2009; Crespo et al., 2015). Less attention has been
paid to developing more flexible data management schemes
for more complicated problems. Motivated by techniques de-
veloped for mesh-based methods, we develop a complete
framework for parallelizing SPH with distributed memory
parallelism (MPI) allowing flexible and efficient data access.

The time complexity for an SPH method is O(N2), where
N is the total number of SPH particles. Efficient neighbor
searches and compact-supported kernel functions can help
to reduce computational cost. Of the many possible choices,
we adopt a background grid which was proposed by Mon-
aghan and Lattanzio (1985) and is quite popular in parallel
SPH. Then, the time complexity is reduced toO(MN+mN),
where m is the average of number of particles within the
compact support of the kernel function, M is the average
number of particles in subdomain within which neighbor
searches are carried out. This background grid is also used
for domain decomposition. We refer to the elements of the
background grid, namely squares for two dimensions and
cubes for three dimensions, as buckets. As for the actual stor-
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age of the physical quantities, different strategies have been
adopted in existing implementations of SPH.

In DualSPHysics (Crespo et al., 2015), the physical quan-
tities of each particle (position, velocity, density, etc.) are
stored in arrays. The particles (and the arrays with particle
data) are reordered following the order of the cells. This has
two advantages: (1) the access pattern is more regular and
more efficient; (2) it is easy to identify the particles that be-
long to a cell by using a range since the first particle of each
cell is known. But adding, deleting and especially access-
ing particles are cumbersome. Ferrari et al. (2009) adopted
linked lists using pointers so that particles can be deleted
or added during the simulation. Storage problems caused by
fixed-size arrays are thereby also eliminated. We define C++
classes which contain all data of particles and buckets. As
for the management of data, we adopt hash tables to store
pointers to particles and buckets, which gives us not only
flexibility of deleting and adding elements but also quicker
access compared with linked lists. Instead of using the “nat-
ural order” to number particles, we adopt a SFC-based index
to give each particle and background bucket a unique identi-
fier – a strategy known to preserve data locality at minimal
cost. The SFC-based numbering strategy is further extended
to include time step information so that particles added at the
same position but different time have different identifiers.

The parallelization is achieved by splitting computational
domain into subdomains. Each subdomain is computed by
a single processor. For any subdomain, information from its
neighboring subdomains is required when updating physical
quantities. To guarantee consistency, data are synchronized
if physical quantities are updated. Even though more com-
plicated graph-based partitioning tools (Biswas and Oliker,
1999) might get higher quality decomposition, they require
much more effort in programming and computation. So we
adopt an easy programming scheme based on SFC (Patra and
Kim, 1999) to decompose the computational domain. Fig-
ure 2c shows a cross-section view of domain decomposition.

More details about the data structure, domain decompo-
sition, load balancing, domain adjusting and performance
benchmarking have been published separately (Cao et al.,
2017).

Performance tests have been carried out on the computa-
tional cluster of Center for Computational Research (CCR)
at the University at Buffalo. Intel Xeon E5645 CPUs running
at 2.40 GHz clock rate with 4 GB memory per core on a Q-
Logic Infiniband are used in these tests. Each node is com-
prised of two sockets with six of these cores. Memory and
level 3 cache are shared on each node. The initial domain is
[−4.8 km, 4.8 km]× [−4.8 km, 4.8 km]× [0 km, 6 km]. Al-
most linear speed up is observed in our strong scalability test
(Fig. 3).

The weak scalability test is conducted with the same ini-
tial domain and various smoothing lengths. Each simulation
runs for 400 time steps. The average number of real par-
ticles of each process keeps constant at 25 900. As shown
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Figure 4. Weak scalability test result.

in Fig. 4, simulation times increase around one-third when
the number of cores increases from 16 to 4208. For the test
problem in this section, the volcanic plume finally reaches
a region of [−30 km, 30 km]× [−30 km, 30 km]× [1.5 km,
40 km] after around 400 s of eruption. When numerical sim-
ulation goes up to 90 s, the plume is still within a region of
[−10 km, 10 km]× [−10 km, 10 km]× [0 km, 25 km]. This
implies that adjusting of domain can avoid computing a large
number of uninfluenced air particles, especially for the be-
ginning stage of simulation. A domain-adjusting algorithm
(Cao et al., 2017) is designed and implemented in our code.
Figure 5 shows that simulation time of the test problem is
greatly reduced when we adopt the domain-adjusting strat-
egy.

4 Verification and validation

We present a series of numerical simulations to verify and
validate our model in this section. Plume-SPH is first verified
by 1-D shock tube tests, then by a JPUE (jet or plume that
is ejected from a nozzle into a uniform environment) sim-
ulation. Velocity and mass fraction distribution both along
the central axis and cross transverse are compared with ex-
perimental results. The pattern of ambient particle entrain-
ment is also clearly shown. Then, a simulation of represen-
tative strong volcanic plume is conducted. Integrated local
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Figure 5. The effect of domain adjusting on simulation time.
Panel (a) shows execution time without domain adjusting;
panel (b) shows execution time with domain adjusting. Different
bins represent execution time up to specific physical time indicated
by horizontal axis.

Table 1. Input parameters of 1-D shock tube tests.

ρL pL vL ρR pR vR tf

Test 1 1.0 1.0 0 0.5 0.2 0 0.2
Test 2 1.0 1.0 0 0.25 0.1795 0 0.17
Test 3 2.0 1.95 1.0 1.0 1.95 −1.0 0.13

variable are comparable with simulation results from exist-
ing 3-D plume models.

4.1 1-D shock tube tests

1-D shock tube tests are first conducted to verify our code.
Input parameter of each tests can be found in Table 1. These
tests can represent typical cases in 1-D. Test 1 consists of a
left rarefaction, a right traveling contact and a right shock.
Density decreases downwind of the contact wave. Test 2 also
consists of a left rarefaction, a right traveling contact and
a right shock. Density increases downwind of the contact
wave. Test 3 is a double expansion test with different initial
density.

In Table 1, subscript “L” refers to the left side and “R”
to the right side; tf is the total simulation time. The initial
interval between two adjacent particles is 0.03. The compu-
tational domain is [−0.4,0.4]. The specific internal energy
is compared against exact solutions. As shown in Fig. 6, the
position and magnitude of the waves are correctly predicted.
The fluctuations near the contact discontinuity are caused by
sharp change of smoothing length.

4.2 Simulation of JPUE

JPUE can be considered as a simplified volcanic plume.
While the effect of stratified atmosphere and the effect of
expansion due to high temperature in volcanic plume are not
represented, JPUE reproduces the entrainment due to turbu-

Table 2. List of eruption condition for the test cases.

Parameters Units JPUE Plume

Vent velocity m s−1 500 275
Vent gas mass fraction 1.0 0.05
Vent temperature K 273 1053
Vent height m 0 1500
Mass discharge rate kg s−1 5.47× 107 1.5× 109

lent mixing which is one of the key elements in the volcanic
plume development. There exist consistently good experi-
mental data (List, 1982; Dimotakis et al., 1983; Papanico-
laou and List, 1988; Ezzamel et al., 2015) that describe the
JPUE flow field giving insight into details of JPUE, such as
transverse velocity and concentration profile. In this section,
we verify that our code and the SPH− ε turbulence model is
able to reproduce the features of turbulent entrainment by a
JPUE simulation.

As many of these experiments were conducted with liq-
uid, we replace the original equation of state (Eq. 5) with
a weakly compressible Tait equation of state (Becker and
Teschner, 2007) (see Eq. 94) to avoid solving the Poisson
equation:

p = B

[(
ρ

ρ0

)γ
− 1

]
, (94)

with γ = 7 and B is evaluated by

B =
ρ0c

2

γ
, (95)

where c is the speed of sound in the liquid. The energy equa-
tion is actually decoupled from the momentum conservation
equation and the mass conservation equation by using this
EOS. In addition, the “atmosphere” is assumed to be uni-
form and gravity is set to be zero. We set the temperature and
density of ejected material the same as surrounding ambient.
This further simplifies the scenario for the convenience of
studying turbulent mixing.

One overall feature of JPUE is “self-similarity”, which
means that the evolution of the JPUE is determined solely
by the local scale of length and velocity, which theoretically
account for the fact that the rate of entrainment at the edge
of JPUE is proportional to a characteristic velocity at each
height. As a result, physical and numerical experiments do
not necessarily have exactly the same setups and are com-
pared on a non-dimensional basis.

A three-dimensional axisymmetric JPUE which
ejects from a round vent is simulated with erup-
tion parameters listed in Table 2. Material proper-
ties of water are used as material properties for both
phases. The results are compared with experiments
(George et al., 1977; Papanicolaou and List, 1988) for
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Figure 6. Comparison of specific internal energy of simulation results against analytical results for shock tube tests. The plots from left to
right correspond to test 1, test 2 and test 3, respectively.

Figure 7. Dimensionless concentration and velocity distribution across the cross section.

verification purposes. Experimental data of concen-
tration and velocity distribution across the cross sec-
tion were fit into a Gaussian profile (see Eq. 96) by
Papanicolaou and List (1988) and George et al. (1977) even
though the actual profiles are slightly different from the
Gaussian profile.

ϕ

ϕc
= exp

[
−coef

((
r

z

)2
)]

, (96)

where ϕ is either velocity or concentration, the subscript “c”
represents the centerline. r is the distance from the centerline
on any cross section. z is the axial distance from the origin of
the jet transverse section under consideration. The coefficient
“coef” for concentration is 80 and 50, respectively, according
to George et al. (1977) and Papanicolaou and List (1988).
The “coef” for velocity is 90 and 55, respectively, according
to George et al. (1977) and Papanicolaou and List (1988).

Papanicolaou and List (1988) also fit concentration distri-
bution and jet width based on velocity along the centerline
into a straight line (see Eq. 97).

ϕ0

ϕc
= slope

( z
D
+ intercept

)
, (97)

where subscript 0 represents the cross-sectionally averaged
exit value; D is the diameter of vent. The “slope” for jet
width based on velocity is 0.104 and for concentration is

0.157. The “intercept” for jet width based on velocity is 2.58,
while that for the concentration is 4.35.

Although both velocity and concentration are found to be
well matched with experimental results, a small disparity in
both velocity and concentration is observed near the bound-
ary of the jet, which is possibly caused by overestimation
of the drag effect by standard SPH (Ritchie and Thomas,
2001). Ritchie and Thomas (2001) also proposed an alter-
native way to update density which relieved the overestimat-
ing of the drag effect. However, how well this method con-
serves mass is not clear. There are several other factors that
might also attribute to such disparity. The Reynolds number
is not reported in many experiments assuming a high enough
Reynolds number. In addition, some details of the experi-
ments, such as exit velocity profile and viscosity of the ex-
perimental liquid, are not reported. These factors prevent us
from numerically reproducing these experiments in an exact
way as they were conducted. However, the features of JPUE
are correctly reproduced with our code.

We also investigated the mixing due to turbulence in the
JPUE simulation by checking the mixture of the two phases.
It is shown in Fig. 9 that the ejected material and ambient flu-
ids are mixed through eddies at the outer shear region. Also,
the inner dense core dispersed gradually due to erosion of
the outer shear region. Hence, our confidence in the numeri-
cal correctness of our code is greatly reinforced.
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Figure 8. Panel (a) shows normalized jet width (which determined based on velocity) along the centerline. Panel (b) shows normalized
concentration along the centerline.

Figure 9. Panel (a) shows particle distribution. Particles of phase
1 (blue) are gradually entrained and mixed with erupted particles
(red) as jet flows downstream. Panel (b) shows the mass fraction of
erupted material at the moment corresponding to panel (a).

4.3 Simulation of a volcanic plume

The development of a volcanic plume is more complicated
than JPUE in several aspects. Besides turbulent entrainment
of ambient fluids, development of the volcanic plume also
involves heating of entrained air and expansion in a strati-
fied atmosphere. A strong eruption column without wind is
tested in this section for the purpose of further verification
and validation. Both global variables and local variables are
compared with existing models.

4.3.1 Input parameters

Eruption parameters, material properties and atmosphere
are chosen to be the same as the strong plume no-wind
case in a comparison study on eruptive column models by
Costa et al. (2016). Eruption conditions are listed in Table 2.
As our model does not distinguish solid particles of differ-
ent sizes, only mass fraction of solids of all sizes is used
in simulation even though two size classes were provided

Table 3. List of material properties.

Parameters Units Value

Specific heat of gas at constant volume J kg−1 K−1 717
Specific heat of air at constant volume J kg−1 K−1 1340
Specific heat of solid J kg−1 K−1 1100
Specific heat of gas at constant pressure J kg−1 K−1 1000
Specific heat of air at constant pressure J kg−1 K−1 1810
Density of air at vent height kg m−3 1.104
Pressure at vent height Pa 84 363.4

by Costa et al. (2016). The density of erupted material at the
vent and radius of the vent can be computed from the given
parameters. The eruption pressure is assumed to be the same
as the ambient pressure at the vent and hence is not given in
the table. The vertical profiles of atmospheric properties were
obtained based on the reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
for the period corresponding to the climactic phase of the
Mt. Pinatubo eruption (Philippines, 15 June 1991). These
conditions are more typical of a tropical atmosphere (see
Fig. 1b in Costa et al., 2016). Vertical distribution of temper-
ature, pressure and density is used to establish stratified at-
mosphere. Wind velocity and specific humidity are not used
in our simulation even though they were also provided by
Costa et al. (2016) (see Fig. 1b). Material properties, shown
in Table 3, are selected based on properties of the Pinatubo
and Shinmoedake eruptions. Other material properties not
given in the table can be inferred from these given param-
eters based on their relationships.

Figure 10 shows the mass fraction of the simulated vol-
canic plume at 500 s after eruption, at which time the plume
starts spreading radially. A contour plot of the mass fraction
on the vertical cross section (x− z plane) was also provided.
The zoomed view of the quiver plot shows detailed entrain-
ment of air at the margin of the plume.
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Figure 10. Mass fraction for t = 500 s after eruption. Panels (a, b) are visualizations of SPH simulation results. Panel (b) shows visualization
of a slice of the computational simulation, whose thickness is around 10 000 m. The lowest portion of the plume represents erupted material
in the eruption vent (the underground portion). Panels (c, d) show the contour of the mass fraction and velocity quiver on an x− z plane.
These panels are plotted utilizing postprocessed data (see Appendix A). The contour levels in the plot are 0.00001, 0.0001, 0.001, 0.1, 0.3,
0.75 and 0.95. Panel (d) is a zoomed view of velocity quiver showing plume expansion and entrainment of air.

4.3.2 Global and local variables

One of the key global quantities of great interest is the al-
titude to which the plume rises. The top height predicted
by our model is around 40 km which agrees with other
plume models. For example, the height predicted by PDAC
is 42 500 m, by SK-3D is 39 920 m, by ATHAM is 33 392 m
and by ASHEE is 36 700 m. As for local variables, the pro-
files of integrated temperature, density, mass fraction of en-
trained air, gas mass fraction, mass fraction of solid materials
and the radius of the plume as a function of height are com-
pared with existing 3-D models in Figs. 11–14. To get rid
of significant fluctuations in time and space, we conducted
a time-averaging and spatial integration of the dynamic 3-D
flow fields by following Cerminara et al. (2016b).

As particles distribute irregularly in the space in SPH sim-
ulation results, we need to project simulation results (on ir-
regular particles) onto a predefined grid before doing time-
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Figure 11. Temperature as a function of height.
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Figure 12. The mass fraction of entrained air, gas and solids as a function of height.
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Figure 13. Density of the strong plume without wind after reaching
its top height.

average and spatial integration. See Appendix A for more
details of postprocessing.

The profiles of local variables match well with simulation
results of existing 3-D models in a general sense. The ba-
sic phenomena in volcanic plume development are correctly
captured by our model.

As the height increases, the amount of entrained air also
increases. Around the neutral height, where the umbrella ex-
pands, the entrainment of air shows a slight decrease due to
lack of air surrounding the column at that height. The pro-
file for gas, which accounts for both air and vapor, shows a
very similar tendency to that of entrained air. Recall that va-
por condensation is not considered in our model. In addition,
we assume that erupted material behaves like a single-phase
fluid. So the mass fraction of gas is simply a function of en-
trained air (Eq. 98).

ξa + ξg = ξa + (1− ξa)ξg0 (98)

Among these 3-D models, ATHAM takes vapor conden-
sation into account and Eq. (98) does not hold for ATHAM.
However, the profile of entrained air and profile of gas pre-
dicted by ATHAM are still very close to each other, which
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Figure 14. Radius of the strong plume without wind after reaching
its top height.

implies that ignoring water phase change is a valid assump-
tion for eruptions similar to this test case (strong plume with
erupted water fraction in erupted material less than 5 %). This
observation can be explained by the fact that air occupies a
larger portion of the gas, and ignoring phase change of vapor
(which is only a small portion of gas) has a slight influence
on plume development. As for mass fraction of solids, simi-
larly, Eqs. (99) and (100) hold for our model.

ξs = (1− ξa)
(
1− ξg0

)
(99)

ξs = 1−
(
ξa + ξg

)
(100)

PDAC, which treats particles of two different sizes as two
separate phases, predicted a similar mass fraction profile.
That implies that assumption of dynamic equilibrium in our
model is at least valid for eruptions similar to the test case.

With more cool air entrained into the plume and mixing
with the hot erupted material, the temperature of the plume
decreases as the height increases as shown in Fig. 11. Mean-
while, bulk density decreases due to entrainment and expan-
sion (Fig. 13).
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Our model adopts the same assumptions and governing
equations as SK-3D. However, there is still an obvious dis-
parity between the profiles of local variables of our model
and SK-3D. One of the big differences between these two
models is that we adopt a LANS type of turbulence model
while SK-3D adopts a large eddy simulation (LES) turbu-
lence model. This implies that choice of turbulence model
might play a critical role in plume simulation.

5 Conclusions

A new plume model was developed based on the SPH
method. Extensions necessary for Lagrangian methodology
and compressible flow were made in the formulation of the
equations of motion and turbulence models. Advanced nu-
merical techniques in SPH were exploited and tailored for
this model. High-performance computing was used to miti-
gate the tradeoff between accuracy (which depends on com-
prehensiveness of the model, resolution, order of accuracy of
numerical methods, scheme for time upgrading) and simula-
tion time (which depends on comprehensiveness of model,
resolution, order of accuracy of numerical methods, scheme
for time upgrading, etc. and computational techniques). The
correctness of the code and model was verified and validated
by a series of test simulations. Typical 1-D shock tube prob-
lems were simulated and compared against analytical results
showing good agreement. Dimensionless velocity and con-
centration distribution across the cross section and along the
jet axis match well with experimental results of JPUE. Top
height and integrated local variables simulated by our model
are consistent with simulation results of existing 3-D plume
models. Comparison of our results with those of SK-3D im-
plies that the turbulence model plays a significant role in
plume modeling.

Currently existing 3-D models focus on certain aspects of
the volcanic plume (PDAC on pyroclastic flow, ATHAM on
microphysics and SK-3D on entrainment with higher reso-
lution and higher order of accuracy), and hence, naturally,
different assumptions were made in these models. However,
these different aspects of volcanic plumes are not indepen-
dent but are actually coupled. For example, it has been il-
lustrated by Cerminara et al. (2016b) that gas–particle non-
equilibrium would introduce a previously unrecognized jet-
dragging effect, which has great influence on plume devel-
opment, especially for weak plumes. In addition, there is no
absolute boundary to determine which kind of hazard is dom-
inant in certain eruptions. So it is necessary to simulate all
associated hazards in one model. Actually, effort has already
been put into developing more comprehensive plume mod-
els. For example, a large-particle module (LPM) was added
to ATHAM to track the paths of rocky particles (pyroclastic
or tephra) within the plume and predict where these parti-
cles fall (Kobs, 2009). We were also motivated by such an
evolution of plume modeling to choose SPH as our numer-

ical tool. Besides its ability to deal with interfaces for mul-
tiphase flows, as mentioned in the introduction section, the
SPH method has good extensibility and adding new physics
and phases requires much less modification of the code com-
pared with mesh-based methods. Last but not least, the dra-
matic development of computational power makes it possible
to establish a comprehensive model. While current compu-
tational capacity may not allow us to have a fully compre-
hensive model, the easy-extension feature of SPH makes it
convenient to keep adding new physics into the model when
necessary and computationally feasible.

We have presented in this paper an initial effort and results
towards developing a first principle-based plume model with
comprehensive physics, adopting proper numerical tools
and high performance computing. More advanced numer-
ical techniques, such as adaptive particle size, Godunov-
SPH, semi-explicit time-advancing schemes and better data
management strategies and algorithms are on our list to ex-
ploit in the future. In the near future, the effect of wind
field will be taken into account. Our code will also be
made available in the open-source form for the commu-
nity to enhance. Besides improving the plume model, cou-
pling the volcanic plume model with magma reservoir mod-
els (e.g., Terray et al., 2018), which could provide more ac-
curate eruption conditions, might improve accuracy of the
volcanic plume simulation.

Code availability. The Plume-SPH code, together with a user man-
ual providing instructions for installation, running and visualization,
is archived at https://zenodo.org/record/572819#.WRCy7xiZORs
(https://doi.org/10.5281/zenodo.572819).

The input data for all simulations presented in this work are
archived in the same repository. The MIT license governs the dis-
tribution and use of the code and associated documentation files.
Permission is granted, free of charge, to any person to deal with
the software without restriction. The complete copyright statement
can be found in the repository: https://github.com/Plume-SPH/
plume-sph/blob/master-1.0/COPYING.

User manual and input data for test runs are also archived in the
same repository.

Output data of simulations presented in the paper are around tens
of gigabytes and are archived in UBbox. Access will be provided to
all upon request.
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Figure A1. Procedure of projection of simulation results carried by particles onto regular grids, as shown in these figures from left to right:
(a) raw data of SPH simulation results (irregularly distributed in space), (b) addition of a regular mesh and (c) searching for neighbors of
each node (the blue SPH particles within the green circle around the red dot). The last step is not shown in these pictures, which treats each
node on the regular mesh as a SPH particle and projects data on particles onto nodes utilizing SPH interpolation (see Eq. 31).

Appendix A: Postprocessing of particle data

Particles distribute irregularly in SPH simulation results. To
adapt postprocessing originally proposed for the mesh-based
method, we need to project simulation results onto a prede-
fined regular mesh. As shown in Fig. A1, the basic steps for
such projection are to

– obtain raw simulation results carried by particles that
irregularly distribute in the space,

– create regular grids,

– search for neighbor particles for each node of the regu-
lar grids and

– interpolate physical quantities from neighbor particles
onto the corresponding node of regular grids according
to Eq. (31).
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