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Abstract. Lagrangian particle dispersion models require in-
terpolation of all meteorological input variables to the posi-
tion in space and time of computational particles. The widely
used model FLEXPART uses linear interpolation for this pur-
pose, implying that the discrete input fields contain point val-
ues. As this is not the case for precipitation (and other fluxes)
which represent cell averages or integrals, a preprocessing
scheme is applied which ensures the conservation of the in-
tegral quantity with the linear interpolation in FLEXPART,
at least for the temporal dimension. However, this mass con-
servation is not ensured per grid cell, and the scheme thus
has undesirable properties such as temporal smoothing of
the precipitation rates. Therefore, a new reconstruction algo-
rithm was developed, in two variants. It introduces additional
supporting grid points in each time interval and is to be used
with a piecewise linear interpolation to reconstruct the pre-
cipitation time series in FLEXPART. It fulfils the desired re-
quirements by preserving the integral precipitation in each
time interval, guaranteeing continuity at interval boundaries,
and maintaining non-negativity. The function values of the
reconstruction algorithm at the sub-grid and boundary grid
points constitute the degrees of freedom, which can be pre-
scribed in various ways. With the requirements mentioned it
was possible to derive a suitable piecewise linear reconstruc-
tion. To improve the monotonicity behaviour, two versions
of a filter were also developed that form a part of the final al-
gorithm. Currently, the algorithm is meant primarily for the
temporal dimension. It was shown to significantly improve
the reconstruction of hourly precipitation time series from
3-hourly input data. Preliminary considerations for the ex-

tension to additional dimensions are also included as well as
suggestions for a range of possible applications beyond the
case of precipitation in a Lagrangian particle model.

1 Motivation

In numerical models, extensive variables (those being pro-
portional to the volume or area that they represent, e.g. mass
and energy) are usually discretised as grid-cell integral values
so that conservation properties can be fulfilled. A typical ex-
ample is the precipitation flux in a meteorological forecasting
model. Usually, one is interested in the precipitation at the
surface, and thus the quantity of interest is a two-dimensional
horizontal integral (coordinates x and y) over each grid cell.
Furthermore, it is accumulated over time t during the model
run and written out at distinct intervals together with other
variables, such as wind and temperature. After the trivial
postprocessing step of de-accumulation, each value thus rep-
resents an integral in x, y, t space – the total amount of pre-
cipitation which fell on a discrete grid cell during a discrete
time interval.

In Lagrangian particle dispersion models (LPDMs) (Lin
et al., 2013), it is necessary to interpolate the field variables
obtained from a meteorological model to particle positions in
(three-dimensional) space and in time. The simplest option,
to assign the value corresponding to the grid cell in which the
particle resides (often called “nearest-neighbour” method), is
not sufficiently accurate. For example, in the case of precip-
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Figure 1. Illustration of the basic problem using an isolated precip-
itation event lasting one time interval represented by the thick blue
line. The amount of precipitation is given by the blue-shaded area.
Simple discretisation would use the green circles as discrete grid-
point representation and interpolate linearly in between, indicated
by the green line and the green-shaded area. Note that supporting
points for the interpolation are shifted by a half-time interval com-
pared to the times when other meteorological fields are available.

itation, this would lead to an unrealistic, checkerboard-like
deposition field. A simple approach for improvement would
be to ascribe the gridded precipitation value to the spatio-
temporal centre of the space–time cell and then perform lin-
ear interpolation between these points, as illustrated in Fig. 1.
While this works for the case of intensive field quantities (ve-
locity, temperature, etc.) where gridded data truly represent
point values, it is not a satisfactory solution for extensive
quantities, as it does not conserve the total amount in each
time interval, as will be shown below. The problem became
obvious to us with respect to the precipitation field in the
LPDM FLEXPART (Stohl et al., 2005). Therefore, it will be
discussed using this example, even though the problem is of
a general nature and the solution proposed has a wide range
of possible applications.

1.1 Introduction of the problem using the example of
precipitation in FLEXPART

FLEXPART is a LPDM, which is typically applied to study
air pollution but is also used for other problems requiring the
quantification of atmospheric transport, such as the global
water cycle or the exchange between the stratosphere and the
troposphere; see Stohl et al. (2005). Before a FLEXPART
simulation can be done, a separate preprocessor is used to
extract the meteorological input data from the Meteorologi-
cal Archival and Retrieval System (MARS) of the European
Centre for Medium Range Weather Forecasts (ECMWF) and
prepare them for use in the model.1 The model is also able to
ingest meteorological fields from the United States National
Center for Environmental Prediction. However, it was origi-
nally designed for ECMWF fields, and we limit our discus-
sion here to this case. Currently, a relatively simple method
processes the precipitation fields in a way that is consistent

1This software is available from the FLEXPART community
website in different versions as described in https://www.flexpart.
eu/wiki/FpInputMetEcmwf (last access: June 2018).
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Figure 2. Example of so-called “disaggregation” of precipitation
data for the use in FLEXPART as currently implemented, with the
case of an isolated precipitation period. Note that the supporting
points for the interpolation now coincide with the times when other
meteorological fields are available. Colours are used as in Fig. 1.

with the scheme applied in FLEXPART for all variables: lin-
ear interpolation between times where input fields are avail-
able. Under these conditions, it is not possible to conserve
the original amount of precipitation in each grid cell. The
best option, which was realised in the preprocessing, is con-
servation within the interval under consideration plus the two
adjacent ones. Unfortunately, this leads to undesired tempo-
ral smoothing of the precipitation time series – maxima are
damped and minima are raised. It is even possible to produce
non-zero precipitation in dry intervals bordering a precipi-
tation period as shown in Fig. 2. This is obviously undesir-
able as it will affect wet scavenging, a very efficient removal
process for many atmospheric trace species. Wet deposition
may be produced in grid cells where none should occur, or
too little may be produced in others. Different versions of the
FLEXPART data extraction software refer to this process as
“disaggregation” or “de-accumulation”.

Horizontally, the precipitation values are averages for a
grid cell around the grid point to which they are ascribed,
and FLEXPART uses bilinear interpolation to obtain pre-
cipitation rates at particle positions. This causes the same
problem of spreading out the information to the neighbour-
ing grid cells and implied smoothing.2 However, the support-
ing points in space are not shifted between precipitation and
other variables as is the case for the temporal dimension.

The goal of this work is to develop a reconstruction algo-
rithm for the one-dimensional temporal setting which

– strictly conserves the amount of precipitation within
each single time interval,

– preserves the non-negativity,

2In reality, the problem is even more complex. In ECMWF’s
MARS archive, variables such as precipitation are stored on a re-
duced Gaussian grid, and upon extraction to the latitude–longitude
grid they are interpolated without paying attention to mass conser-
vation. This needs to be addressed in the future on the level of the
software used internally by MARS. Our discussion here is assum-
ing that this would already have happened, and even if that is not
the case, adding another step of non-mass-conserving interpolation
makes things even worse.
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Figure 3. Precipitation rate linearly interpolated using a sub-grid
with two additional points. Colours as in Fig. 1.

– is continuous at the interval borders,

– and ideally also should reflect a natural precipitation
curve (this latter condition can be understood in the
sense that the reconstruction graph should possess good
monotonicity properties),

– should be efficient and easy to implement within the ex-
isting framework of the FLEXPART code and its data
extraction preprocessor.

These requirements on the reconstruction algorithm imply
that time intervals with no precipitation remain unchanged,
i.e. the reconstructed values vanish throughout this whole
time interval, too. In the simplest scenario of an isolated pre-
cipitation event, where in the time interval before and after
the data values are zero, the reconstruction algorithm there-
fore has to vanish at the boundaries of the interval, too. The
additional conditions of continuity and conservation of the
precipitation amount then require us to introduce sub-grid
points if we want to keep a linear interpolation (Fig. 3). The
height is thereby determined by the condition of conserva-
tion of the integral of the function over the time interval. The
motivation for a linear formulation arises from the last point
of the above list of desirable properties.

It can be noted that in principle a single sub-grid point
per time interval would be sufficient. This, however, would
result in very high function values and steep slopes of the
reconstructed curve, which appears to be less realistic and
thus not desirable.

As we shall see in the next section, closing the algorithm
for such isolated precipitation events is quite straightforward,
since the only degree of freedom constituting the height of
the reconstruction function is determined by the amount of
precipitation in the interval. However, the situation becomes
much more involved if longer periods of precipitation oc-
cur, i.e. several consecutive time intervals with positive data.
Then, in general, each sub-grid function value constitutes 1
degree of freedom (Fig. 4).

Therefore, in order to close the algorithm, we have to fix
all of these additionally arising degrees of freedom. As a first
step we make a choice for the slope in the central subinterval,
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Figure 4. Illustration of a reconstruction for longer periods with
positive data values, where each sub-grid function value constitutes
1 degree of freedom.

which relates the two inner sub-grid function values. Three
possible approaches are discussed for this choice. Conser-
vation provides a second condition. These two can be con-
sidered to determine the two inner sub-grid points. Then,
the function values at the grid points in between time inter-
vals of positive data are left to be prescribed, and as each
point belongs to two intervals, this corresponds to the third
degree of freedom. The steps leading to the final algorithm
(of which there are some variants) are presented in Sect. 3.
Ways for extending the one-dimensional algorithms to a two-
dimensional setting are briefly discussed as well. Note that
we use the wording “reconstruction algorithm” and “interpo-
lation algorithm” interchangeably.

In the following Sect. 2, some existing literature on con-
servative reconstruction algorithms is briefly reviewed, with
an emphasis on applications used for semi-Lagrangian ad-
vection schemes in Eulerian models. To our knowledge, con-
firmed by contacts with people active in this field, a piece-
wise linear, conservative reconstruction algorithm using a
sub-grid has not yet been proposed.

Section 4 then presents an evaluation of the algorithms by
verifying them with synthetic data and validating them with
original data from ECMWF where the available 1-hourly res-
olution serves as a reference data set and the 3-hourly resolu-
tion as input for the interpolation algorithms. The verification
demonstrates that the demanded requirements are indeed ful-
filled, and the validation compares the accuracy of the new
algorithms with the one currently used to show the improve-
ments.

The conclusions (Sect. 5) summarise the findings, present
an outlook for the next steps, and suggest a range of possible
applications of the new reconstruction algorithm beyond the
narrow case of precipitation input to a Lagrangian particle
dispersion model.

www.geosci-model-dev.net/11/2503/2018/ Geosci. Model Dev., 11, 2503–2523, 2018
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2 Possible approaches and related literature

A widely used form of interpolation is the well-known spline
interpolation consisting of piecewise polynomials, which are
typically chosen as cubic ones (e.g. Hämmerlin and Hoff-
mann, 1994; Hermann, 2011). The task of finding an ap-
propriate piecewise polynomial interpolation, which is non-
negative, continuous, mass conserving, and monotonic is a
challenging one. This fact has also been pointed out by White
et al. (2009), who stated that building a reconstruction pro-
file satisfying all these requirements is generally not possi-
ble. Typically, the reconstruction profiles are not continuous
on the edges of the grid cells. Sufficient conditions for posi-
tive spline interpolation in form of inequalities on the inter-
polation’s coefficients have been derived in Schmidt and Heß
(1988).

The issue of mass-conservative interpolation emerges also
in the context of semi-Lagrangian finite-volume advection
schemes, which have become very popular. These schemes,
with a two-dimensional application in mind, are known under
the heading of “remapping”. Eulerian grid cells are mapped
to the respective areas covered in the previous time step, and
then the mass in this area is calculated by a reconstruction
function from the available grid-cell average values (Lau-
ritzen et al., 2010). Apart from global interpolation func-
tions such as Fourier methods, piecewise defined polynomi-
als are the method of choice in this context. They can be
piecewise constant, linear, parabolic (second-order), or cu-
bic (third-order). The first two options are usually discarded
as not being accurate enough. While this application shares
the need for the reconstruction to be conservative and posi-
tively definite and the aim of preserving monotonicity, with
our problem there are some aspects where the characteris-
tics of the problems are different. For the advection schemes,
continuity at the cell interface is not a strict condition. How-
ever, they need to be able to reconstruct sharp peaks inside
each volume, as otherwise through the repetitive application
during the numerical integrations, strong artificial smoothing
of sharp structures would result. Therefore, at least second-
order and if possible higher-order methods are preferred. The
drawback of higher-order reconstruction functions is their
tendency to overshoot and produce wiggles, which have to
be removed or reduced by some sort of filter. However, as
in the remapping process one always integrates over some
domain, this is less of an issue than in our case, where for
each computational particle we need an interpolated value at
exactly one point.

An interesting example of such a semi-Lagrangian conser-
vative remapping is given by Zerroukat et al. (2002). The co-
efficients of the one-dimensional cubic spline in each interval
are determined using the conservation of mass in the under-
lying interval. The function values at the left border points
are determined by an additional spline interpolation using
the condition of mass conservation in the two preceding, the
current, and the following intervals. The function values at

the right border points are determined in a similar fashion.
This construction in particular provides continuity. A mono-
tonic and positively definite filter has then been applied to
this semi-Lagrangian scheme (Zerroukat et al., 2005), which
first detects regions of non-monotonic behaviour and then lo-
cally reduces the order of the polynomial until monotonicity
is regained. An improved version of this filter without reduc-
ing the order of the interpolating polynomial in most cases
is provided in Zerroukat et al. (2006), where a parabolic
spline is used for interpolation. The basic algorithm in all
these cases is one-dimensional, where the application to the
two-dimensional case has been explicitly demonstrated only
in Zerroukat et al. (2005), as a combination of the so-called
cascade splitting and the one-dimensional algorithm.

Considering the differences mentioned between the recon-
struction problem arising in the context of semi-Lagrangian
advection schemes and of the LPDM FLEXPART and the
fact that in addition that linear interpolation is used in FLEX-
PART for all other quantities and that evaluation of the inter-
polation function has to be done efficiently for up to millions
of particles in each time step, we have chosen to construct
a non-negative, continuous, and conservative reconstruction
algorithm based upon piecewise linear interpolation. Con-
trary to standard piecewise linear methods, we divide each
grid interval into three subintervals, so that our method has
some similarity with a piecewise parabolic approach while
being simpler and presumably faster.

3 Derivation of the interpolation algorithm

3.1 Notation and basic requirements

In accordance with the considerations presented in Sect. 1,
we consider our input data to be precipitation values defined
over a period [0, T ], where T is the time at the end of the
period. They are available as amounts (or equivalently, as av-
erage precipitation rates) duringN−1 constant time intervals
of duration 1t , bounded by equidistant times ti where

ti = i 1t , i ∈ {0, . . .,N}. (1)

The time intervals for which the precipitation amounts are
defined are denoted as

Ii =
(
ti , ti+1

]
= ( i1t,(i+ 1)1t] for i ∈ I := {0, . . .,N − 1} . (2)

The precipitation rate is then represented as a step function
g : [0,T ] → R with values

g(t)= gi for t ∈ Ii , i ∈ I. (3)

As an abbreviation, we write g(0)= g0. The total precipita-
tion within one time interval Ii is then given by∫
Ii

g dt = gi1t . (4)

Geosci. Model Dev., 11, 2503–2523, 2018 www.geosci-model-dev.net/11/2503/2018/
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Our aim is to find a piecewise linear function f : [0,T ] →
R to serve as interpolation. We require it

1. to be continuous,

2. to preserve the non-negativity such that f satisfies

f ≥ 0 , and (5)

3. to conserve the precipitation amount within each single
time interval Ii , i.e.∫
Ii

f dt = gi1t (6)

in particular,

gi = 0 ⇔ f (t)= 0 for t ∈ Ii . (7)

These conditions are also listed in Table 2 as the three strict
and main requirements of the algorithm. They necessitate the
introduction of sub-grid points. A single sub-grid point was
deemed insufficient for a realistic representation of precipi-
tation time series. For simplicity, we choose an equidistant
sub-grid setting with two additional points:

t
(1)
i = ti +

1
3
1t and t (2)i = ti +

2
3
1t = ti+1−

1
3
1t

for i ∈ I . (8)

The subintervals resulting from these sub-grid points are de-
fined as I (1)i = (ti, t

(1)
i ], I

(2)
i = (t

(1)
i , t

(2)
i ], I

(3)
i = (t

(2)
i , ti+1],

and the slopes of the interpolation algorithm f in these
subintervals are denoted accordingly by k(1)i , k(2)i , k(3)i . The
sub-grid function values are abbreviated in the following as
fi := f (ti), f

(1)
i := f (t

(1)
i ), f (2)i := f (t

(2)
i ). Figure 5 shows

a schematic overview of these definitions.
It is evident that the function f in Ii is uniquely deter-

mined by the function values fi , f
(1)
i , f (2)i , fi+1, with linear

interpolation between them. Equivalently, the problem can
be stated in terms of the slopes, such that the function f in
Ii is determined uniquely by fi , k

(1)
i , k(2)i , k(3)i . This equiva-

lence is based upon the relations between slopes and function
values:

f
(1)
i = fi +

1
3
k
(1)
i 1t , f

(2)
i = f

(1)
i +

1
3
k
(2)
i 1t ,

fi+1 = f
(2)
i +

1
3
k
(3)
i 1t . (9)

The key requirement for the interpolation algorithm f is
to preserve the precipitation amount within each single time
interval Ii as specified in Eq. (6). Therefore,

Pi =

∫
Ii

f dt =
∫
Ii

g dt for ∀i ∈ I , (10)
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Figure 5. Schematic overview of the basic notation in a precipita-
tion interval with the original precipitation rate g (green) as a step
function and the interpolated data f (dark blue) as the piecewise
linear function. The original time interval with fixed grid length 1t
is split equidistantly in three subintervals denoted by I (1,2,3)

i
, with

the slopes in the subintervals as denoted by k(1,2,3)
i

. The sub-grid

function values fi , f
(1,2)
i

, fi+1 are marked by red diamonds.

or, equivalently, equal areas underneath function graphs of f
and g. In the following, we thus also refer to Eq. (10) as the
equal-area condition. In terms of the function values, Eq. (10)
amounts (after division by 1t) to

gi =
1
6

[
fi + fi+1+ 2

(
f
(1)
i + f

(2)
i

)]
=

1
6
fi +

2
6
f
(1)
i +

2
6
f
(2)
i +

1
6
fi+1 . (11)

In order to fulfil Eq. (5) (non-negativity), we need a solution
satisfying

fi, f
(1)
i , f

(2)
i ≥ 0 for ∀i ∈ I . (12)

As already mentioned above, a further consequence of the
equal-area condition and the continuity condition is, in par-
ticular,

gi = 0 ⇒ fi = f
(1)
i = f

(2)
i = fi+1 = 0 , (13)

such that periods with zero precipitation rate remain un-
changed.

3.2 Isolated precipitation in a single time interval

We first demonstrate the basic idea of the interpolation al-
gorithm for the simplest case of an isolated precipitation
event; i.e. we assume an interval i ∈ I with gi > 0 and
gi−1 = gi+1 = 0 (see Fig. 6). As Eq. (13) then holds in the
surrounding intervals Ii−1 and Ii+1, the continuity condition
yields fi = fi+1 = 0 at the boundary of the interval. More-
over, as we do not want to create artificial asymmetry in the

www.geosci-model-dev.net/11/2503/2018/ Geosci. Model Dev., 11, 2503–2523, 2018
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Figure 6. Isolated precipitation event (no precipitation in gi−1 and
gi+1). The only degree of freedom is given by the function value
f
(1)
i
=

3
2gi and is marked by a red square.

problem, we let f be constant in the centred subinterval I (2)i ,
such that the only function value left to be determined is
f
(1)
i = f

(2)
i , which thus constitutes the only degree of free-

dom in the problem. This height of the interpolation function
is now obtained via the equal-area condition Eq. (11), which
in this particular case amounts to

f
(1)
i =

3
2
gi , (14)

therewith closing the algorithm.

3.3 General case

Whereas the derivation of the algorithm for the isolated pre-
cipitation event is straightforward, the problem becomes con-
siderably more involved if consecutive intervals with non-
zero precipitation occur. Treating each interval as an isolated
precipitation event as demonstrated in Fig. 6 by forcing the
function values at the original grid points to vanish would
be possible, but such an algorithm is not acceptable, as the
interpolation function f has to reflect the actual course of
precipitation in a realistic way. All function values fi in be-
tween periods with non-zero precipitation should be positive,
too. Thus, they constitute additional degrees of freedom and
need to be determined. The main challenge for a suitable in-
terpolation algorithm lies in finding a proper way to deal with
these additional degrees of freedom.

Therefore, we now consider the case of two consecutive
intervals with non-zero data gi gi+1 > 0 for some i ∈ I. The
first function value fi is assumed to be given by the algorithm
in the preceding interval Ii−1 or – for the first interval – a
prescribed boundary value. Then, since gi+1 > 0, we neither
have the condition of vanishing fi+1, nor is the symmetry
relation f (1)i = f

(2)
i desirable generally. Thus, with given fi ,

in general there are the three degrees of freedom f
(1)
i , f (2)i ,

fi+1, associated with the interval Ii , as illustrated in Fig. 4.
Since the equal-area condition corresponds to only one of
them, two additional relations are required.

3.3.1 Boundary conditions

In the following, we assume the boundary values

f0 := f (0) and fN := f (T ) (15)

as being prescribed. If their values are not explicitly pro-
vided, a simple assumption is to consider the precipitation
rate to be constant in time and thus f (0)= g(0) and f (T )=
g(T ) or, equivalently, f0 = g0 and fN = gN−1.

3.3.2 Prescribing the central slope

As a means to reflect the actual course of precipitation, a nat-
ural first step is to prescribe the central slope k(2)i . We choose
it as the average of the slopes in the outer two subintervals,
i.e.

k
(2)
i =

k
(1)
i + k

(3)
i

2
, (16)

which has the desirable property that it allows for the partic-
ular case k(1)i = k

(2)
i = k

(3)
i . Moreover, inserting Eq. (9), we

obtain the equivalent expression

k
(2)
i =

fi+1− fi

1t
. (17)

This result is quite intuitive in the sense that it corresponds to
the mean slope of the interpolation function throughout the
interval Ii . Letting k(2)i being determined via Eq. (17), the
function values f (2)i are uniquely determined by f (1)i through
Eq. (9) as

f
(2)
i = f

(1)
i +

1
3
k
(2)
i 1t = f

(1)
i +

1
3
(fi+1− fi) , (18)

and thus the degrees of freedom are reduced accordingly.
Other possible approaches for the central slope which have

not been selected would be the following:

i. Setting k(2)i = 0, which is the simplest choice for k(2)i . It
was used for the isolated precipitation event. This means
that f is constant in the central subintervals I (2)i , and
thus f (1)i = f

(2)
i . This choice, however, does not reflect

a natural precipitation curve.

ii. A more advanced, data-driven approach would be to
represent the tendency of the surrounding data values
by the centred finite difference

k
(2)
i =

gi+1− gi−1

21t
. (19)

The problem here is to fulfil the condition of non-
negativity if gi is small compared to one of its neigh-
bouring values.

Geosci. Model Dev., 11, 2503–2523, 2018 www.geosci-model-dev.net/11/2503/2018/
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3.3.3 Using the equal-area condition

Now, the function values f (1)i are determined in a way that
the equal-area condition in Eq. (11) is satisfied, which, after
inserting Eq. (18) yields

gi =
1

18

(
5fi+1+ fi

)
+

2
3
f
(1)
i . (20)

We thus obtain for the sub-grid function values

f
(1)
i =

3
2
gi −

1
12
fi −

5
12
fi+1 , (21)

f
(2)
i =

3
2
gi −

5
12
fi −

1
12
fi+1 . (22)

3.3.4 Closing the algorithm under the condition of
non-negativity

Equations (21) and (22) show that the algorithm is closed
once the function values at the grid points fi+1 are de-
termined. Thus, the function values fi+1 for indices i ∈ I
with gi gi+1 > 0 still need to be determined. An obvious first
choice would be to use the arithmetic mean value of the sur-
rounding data values gi and gi+1. However, in order to ful-
fil Eq. (13), a case distinction is required to deal separately
with gi+1 > 0 and gi+1 = 0 for a given gi > 0. This would
lead to a lack of continuity between the cases of precipita-
tion equal to or only close to zero. For the latter case, the al-
gorithm would even produce negative values. Therefore, the
arithmetic mean is not a good choice. A better choice is the
geometric mean

fi+1 =
√
gi gi+1 for i ∈ I, (23)

which has the main advantage that the case distinction is not
required. With the additional Eq. (23) for the function value
fi+1, having Eqs. (21) and (22) for the sub-grid values f (1)i

and f (2)i , respectively, the algorithm is now closed. However,
the problem of negative values still can arise in the case of
small values in between larger ones. This is due to the fact
that for gi+1→ 0, the geometric mean

√
gi gi+1 converges

to 0 in general too slowly.
A further possible approach would be to assign fi+1 =

min {gi, gi+1} with k(2)i = 0, which fulfils the non-negativity
but gives a non-monotonic solution curve and thus does not
produce a natural precipitation curve. A less restrictive ap-
proach would be to use fi+1 =min

{
f
(2)
i , f

(1)
i+1

}
. However,

this would also lead to one slope being artificially set to zero,
and it would thus be incompatible with a realistic course of
the precipitation. Furthermore, this solution would be im-
plicit, as the interval Ii depends on the solution in Ii+1. Since
the relation is via a minimum function, one would have to
distinguish between all possible cases of function values in
the whole interval of precipitation, probably too complex an
operation for longer periods.

We shall note that instead of prescribing the function val-
ues at the grid points directly, there are also other possible
approaches. Two of them have been looked at and are dis-
cussed in the following paragraphs.

Instead of a function value, we might prescribe an addi-
tional slope. We tested a basic finite difference approach in
terms of the involved data values as well as a symmetric ver-
sion of it. As this does not preseve monotonicity, we also de-
rived a global algorithm, where the slope of the right subin-
terval in Ii is equal to the slope in the left subinterval of
the next time interval. Thus, the solution in the time inter-
val Ii depends on the solution in the next time interval Ii+1,
such that the algorithm cannot be solved for each time in-
terval individually anymore but has to be solved globally in
form of a linear system. This algorithm was shown to cre-
ate better monotonicity properties, but the implementation is
much more complicated and solving the problem is clearly
computationally much more expensive. All of these algo-
rithms, however, have a common fault, namely the violation
of non-negativity. This is caused by the fact that the algo-
rithms with prescribed slopes all rely on a case distinction,
whether one involved precipitation value is positive or not,
and therefore are not continuous with respect to vanishing
values. One should also note that algorithms based on pre-
scribing additionally the slopes k(3)i for gi gi+1 > 0 are not
invariant with respect to being solved forward or backward
in time. This results from the asymmetry of the slopes, since
when solving backwards in time, the roles of the slopes k(3)i
and k(1)i from the original problem are interchanged.

Another approach would be to formulate the reconstruc-
tion problem as an optimisation problem. However, for large
data sets this turned out to be much more expensive than the
ad hoc methods described before (using the MATLAB Op-
timisation Toolbox). As the final aim is to solve the interpo-
lation problem for large data sets in three dimensions, this
approach was not further studied.

The preservation of non-negativity is a challenging re-
quirement, as discussed above. In the following, we investi-
gate sufficient conditions for the non-negativity to hold. The
algorithm consisting of Eqs. (21), (22), and (23) (function
values fi+1 determined via the geometric mean) is consid-
ered as the base. It has the strong advantage of not requir-
ing a case distinction between vanishing and positive val-
ues. It will be combined with the minimum value approach,
which guarantees the non-negativity of the solutions. We thus
now investigate which conditions on generally prescribed
non-negative function values fi are required to guarantee
that the sub-grid function values are also non-negative, i.e.
f
(1)
i ≥ 0 ∧ f (2)i ≥ 0. For the central slope being defined as

the mean Eq. (17), the sub-grid function values are given by
Eqs. (21) and (22). The requirement of non-negativity of f (1)i

and f (2)i then amounts to

18gi ≥max {fi + 5fi+1, 5fi + fi+1} . (24)
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Figure 7. Results with the IA0 algorithm. The original precipita-
tion rate g is shown in green with a 3-hourly resolution. The IA0
interpolated data f on the new sub-grid with 1-hourly resolution is
given in dark blue. A zero baseline is shown in black.

Thus, a sufficient condition for the algorithm to preserve non-
negativity is the restriction

fi+1 ≤ 3min {gi, gi+1} , ∀i ∈ I . (25)

The same condition for non-negativity is obtained if the
central slope is prescribed as zero, k(2)i = 0 (option i in
Sect. 3.3.2). With the data-driven definition of Eq. (19) for
the central slope, option ii, the additional restriction

18gi ≤ |gi+1− gi−1| (26)

would have to be fulfilled by the input data. However, this
relation is often violated in realistic precipitation data, which
justifies the decision to discard this approach.

We thus return to the geometric-mean method (Eq. 23) and
combine it with the non-negativity constraint Eq. (25), which
results in

fi+1 =min
{
3gi, 3gi+1,

√
gigi+1

}
. (27)

We have thus obtained a piecewise linear interpolation func-
tion determined by Eqs. (27), (21) and (22), which defines
a non-negative, continuous, and area-preserving algorithm,
called Interpolation Algorithm 0 (IA0) henceforth.

3.3.5 Monotonicity filter as a postprocessing step

Figure 7 illustrates the IA0 algorithm with a practical exam-
ple. It fulfils the mentioned requirements, but it appears not
to be sufficiently realistic, as it does not preserve the mono-
tonicity as present in the input data (minimum at t = 6 h).

In response to this problem, we introduce a monotonicity
filter which is active only in the regions where the graph of
f resembles the shape of an “M” or “W”, or where

sgn
(
k
(2)
i

)
· sgn

(
k
(3)
i

)
=−1 ∧ sgn

(
k
(3)
i

)
· sgn

(
k
(1)
i+1

)
=−1
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Figure 8. Illustration of the monotonicity filter construction. The
original precipitation rate g is shown in green with a 3-hourly res-
olution. A zero baseline is shown in black. (a) The interpolated se-
ries f from IA0, using the new sub-grid with 1-hourly resolution, is
given in dark blue. First, the function value fi+1 is split in f �

i+1 and
f ��
i+1 shown as red squares. Other function values are recomputed

as shown with the red line where fi and fi+2 remain unchanged as
shown with purple circles. (b) Second, the function value fi+1 is
substituted by the new function value fmon

i+1 as marked with a red
square. The unfiltered graph f derived by IA0 is shown in orange
here, while the filtered graph resulting after recomputation of the
neighbouring values is shown in dark blue.

∧ sgn
(
k
(1)
i+1

)
· sgn

(
k
(2)
i+1

)
=−1 . (28)

In this case, we replace the function value fi+1 by

fmon
i+1 =min

{
3gi, 3gi+1,

√(
f �i+1 f

��

i+1
)
+

}
, (29)

where f �i+1 and f ��i+1 are now the values at ti+1 obtained by

taking either k(3)i = 0 in Ii , starting from fi , or k(1)i+1 = 0 in
Ii+1, ending at fi+2, respectively. Since these values can be-
come negative, we just set negative values to zero, as indi-
cated by the shorthand notation F+ :=max{F,0} for some
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value F . The function values fi and fi+2 thereby remain un-
changed while the sub-grid function values in the intervals Ii
and Ii+1 are recomputed accordingly to satisfy the equal-area
condition (see Fig. 8).

More precisely, given fi , we compute fi+1 by setting
k
(3)
i = 0, further on denoted by f �i+1. With Eq. (9), this

amounts to f (2)i = f
�

i+1. According to Eq. (22), the function
value f �i+1 becomes

f �i+1 =
18
13
gi −

5
13
fi . (30)

On the other hand, given fi+2, the function value f ��i+1 cor-

responds to the one obtained from setting k
(1)
i+1 = 0, such

that f (1)i+1 = f
��

i+1 (with Eq. 9) while leaving fi+2 unchanged.
Then, from Eq. (21) it follows that

f ��i+1 =
18
13
gi+1−

5
13
fi+2 . (31)

The monotonicity filter then recomputes
f
(1)
i ,f

(2)
i ,f

(1)
i+1,f

(2)
i+1 according to Eqs. (21) and (22)

with fi+1 being replaced by fmon
i+1 from Eq. (29). The

interpolation algorithm which uses the monotonicity filter
as a postprocessing step is henceforth called Interpolation
Algorithm 1 (IA1) and is summarised in Table 1.

3.3.6 Alternative monotonicity filter yielding a
single-sweep algorithm

It is also possible to construct an algorithm which directly
incorporates the idea from the monotonicity filter introduced
above. In order to apply the filter in a single sweep, we need
a kind of educated guess for fi+2 as this appears in Eq. (31).
We estimate it similar to Eq. (29) as

f̃i+2 =min
{
3gi+1, 3gi+2,

√
gi+1 gi+2

}
, (32)

where the tilde indicates that it is a preliminary estimate. We
can now proceed analogously to above by constructing

f �i+1 =
18
13
gi −

5
13
fi , (33)

f ��i+1 =
18
13
gi+1−

5
13
f̃i+2 , (34)

and determine fi+1 as

fi+1 =min
{

3gi , 3gi+1,

√(
f �
i+1 f

��

i+1

)
+

}
, for i ∈ I , (35)

respecting again the sufficient condition for non-negativity.
Having obtained fi+1, the sub-grid function values in Ii are
determined as before by Eqs. (21) and (22), thus closing the
algorithm. This improved version of the interpolation algo-
rithm, with the monotonicity filter directly built in, is called
Interpolation Algorithm 2 (IA2) henceforth and is also sum-
marised in Table 1. It applies the filter to all the intervals
rather than to M- or W-shaped parts of the graph only, as is
the case in IA1.

3.4 Summary of the interpolation algorithms IA1 and
IA2

Three interpolation algorithms – IA0, IA1, and IA2 – were
developed. They were introduced on an additional sub-grid
based on the geometric mean and fulfil the conditions to
be non-negative, continuous, and area-conserving. The ba-
sic algorithm is called IA0. A monotonicity filter was then
introduced to improve the realism of the reconstructed func-
tion. The IA1 algorithm requires a second sweep through the
data, while IA2 has a monotonicity filter already built into
the main algorithm. The equations defining IA1 and IA2 are
listed in Table 1, and Fig. 9 illustrates all three with an ex-
ample. The algorithms were realised in Python and can be
downloaded with the Supplement.

3.5 The two-dimensional case

We have also carried out a preliminary investigation of the
two-dimensional case. In the case of precipitation, this could
be used for horizontal interpolation. We follow the same ap-
proach and introduce a sub-grid with two additional grid
points, now for both directions.

The isolated two-dimensional precipitation event can then
easily be represented on the sub-grid as a truncated pyramid.
For multiple adjacent cells with non-zero data, this type of in-
terpolation is, however, not suitable due to the non-vanishing
values at the boundaries of the grids which would be difficult
to formulate.

A more advantageous approach is the bilinear interpola-
tion, which defines the function in a square uniquely through
its four corner values. (Note that we assume that the grid
spacing is equal in both directions, without loss of gener-
ality, as this can always be achieved by simple scaling.) The
main idea here is to apply the bilinear interpolation in each of
the nine sub-squares. We recall that for given function values
F(Xi,Yj ) := Fij , with i, j ∈ {1,2}, at the corners of an area
A= [X1,X2]×[Y1,Y2], the bilinear interpolation amounts to

F(X,Y )=
Y2−Y

Y2−Y1

(
X2−X

X2−X1
F11+

X−X1

X2−X1
F21

)
+
Y −Y1

Y2−Y1

(
X2−X

X2−X1
F12+

X−X1

X2−X1
F22

)
, (36)

which corresponds to interpolating first in X at Y = Y1 and
Y = Y2 and then performing another interpolation in Y (or
vice versa). Thus, the algorithm is closed if the 16 sub-grid
function values in each grid cell are known, where again only
one is determined by the conservation of mass. The case of
the isolated precipitation event with vanishing boundary val-
ues is again easily solved, since only the corner values of
the centred sub-square with constant height need to be de-
termined, amounting to 1 degree of freedom. This in partic-
ular demonstrates that the bilinear interpolation algorithm is
a natural extension of the one-dimensional case, since the
function value in the centred sub-square of such an isolated
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Figure 9. Illustration of the basic IA0 algorithm in (a), with the additional monotonicity filter in algorithm IA1 in (b) and the directly
implemented filter in the algorithm IA2 in (c). The original precipitation rate g is shown in green with a 3-hourly resolution. The IA0-
interpolated data f on the new sub-grid with 1-hourly resolution are drawn in dark blue. A zero baseline is shown in black.

Table 1. Overview of the two algorithms IA1 and IA2.

IA1 Ref. IA2 Ref.

f
(1)
i
=

3
2gi −

1
12fi −

5
12fi+1 Eq. (21) f

(1)
i
=

3
2gi −

1
12fi −

5
12fi+1 Eq. (21)

f
(2)
i
=

3
2gi −

5
12fi −

1
12fi+1 Eq. (22) f

(2)
i
=

3
2gi −

5
12fi −

1
12fi+1 Eq. (22)

fi+1 = min{3gi ,3gi+1,
√
gigi+1} Eq. (27) f̃i+2 = min{3gi+1, 3gi+2,

√
gi+1 gi+2} Eq. (32)

if sgn(k(2)
i
) · sgn(k(3)

i
)=−1 ∧ Eq. (28)

sgn(k(3)
i
) · sgn(k(1)

i+1)=−1 ∧

sgn(k(1)
i+1) · sgn(k(2)

i+1)=−1 then
f �
i+1 =

18
13gi −

5
13fi Eq. (30) f �

i+1 =
18
13gi −

5
13fi Eq. (33)

f ��
i+1 =

18
13gi+1−

5
13fi+2 Eq. (31) f ��

i+1 =
18
13gi+1−

5
13 f̃i+2 Eq. (34)

fi+1 = min
{

3gi , 3gi+1,
√
(f �
i+1 f

��

i+1)+
}

Eq. (29)∗ fi+1 = min
{

3gi , 3gi+1,
√
(f �
i+1 f

��

i+1)+
}

Eq. (35)

f
(1)
i
=

3
2gi −

1
12fi −

5
12f

mon
i+1 Eq. (21)

f
(2)
i
=

3
2gi −

5
12fi −

1
12f

mon
i+1 Eq. (22)

endif

∗ In the original Eq. (29), the superscript “mon” to fi+1 is omitted here for simplicity.

precipitation event turns out to be

f 0
ij =

9
4
gij =

(
3
2

)2

gij . (37)

For the general case involving larger precipitation areas many
different possibilities for prescribing the slopes and func-

tion values arise at the sub-grid points. The geometric-mean-
based approach can be extended to the two-dimensional
setting with corresponding restrictions guaranteeing non-
negativity. The derivation of a full solution for the two-
dimensional case is reserved for future work.
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Table 2. Classification of requirements for the interpolation algo-
rithm. They are classified into strict requirements (stRE), which
are essential and need to be fulfilled, and soft requirements (soRE),
which are desirable but not absolutely necessary.

Requirements

stRE1 Mass shall be conserved in each single time interval.
stRE2 The interpolated function shall preserve non-negativity.
stRE3 The boundary transitions shall be continuous.
soRE1 The interpolated function shall remain monotonic

where input data are.
soRE2 Symmetric structures shall remain symmetric.
soRE3 The interpolated curve shall be realistic and accurate.
soRE4 The algorithm shall be computationally efficient

and easy to implement into the existing
framework of the FLEXPART model.

4 Evaluation of interpolation algorithms

The evaluation of the new algorithms IA1 and IA2 was car-
ried out in three steps. First, the interpolation algorithms
were applied to ideal, synthetic time series to verify the ful-
filment of the requirements. Next, they were validated with
ECMWF data. Short sample sections were analysed visu-
ally. The main validation is then based on statistical metrics.
The original algorithm from the ECMWF data extraction for
FLEXPART (flex_extract) was also included in the evalua-
tion. In the following, it is referred to as the Interpolation
algorithm FLEXPART (IFP). This allows us to see and quan-
tify the improvements through the new algorithms. The IFP
is not published, but it is included in the flex_extract down-
load on the FLEXPART website (http://flexpart.eu/, last ac-
cess: June 2018) and a Python version of it is included in the
Supplement.

4.1 Verification of algorithms with synthetic data

Verification is the part of evaluation where the algorithm is
tested against the requirements to show whether it is doing
what it is supposed to do. These requirements, mentioned in
the previous sections, are classified into strict requirements
(main conditions, stRE) and soft requirements (soRE), as for-
mulated in Table 2.

The synthetic time series for the first tests is specified with
3-hourly resolution. It consists of four isolated precipitation
events, with constant precipitation rates during the events and
durations which increase from one to four 3 h intervals. As
the variation within each 3 h interval is unknown, it is visu-
alised as a step function. We refer to it as the synthesised 3-
hourly (S3h) time series. Both new algorithms IA1 and IA2
and the currently used IFP were applied to these data. The
IFP produces 3-hourly disaggregated output which is divided
into 1 h segments by the usual linear interpolation between
the supporting points. As all three algorithms are intended to
be used in connection with linear interpolation, they are vi-

sualised by connecting the resulting supporting points with
straight lines. Figure 10 shows the input data set together
with the results from the reconstruction algorithms.

It is easy to see that IFP violates requirement stRE1 (cf.
Table 2): the mass of the first precipitation event is spread
over three intervals instead of one in the first event. This
leads to a reduction in the precipitation intensity in the orig-
inally rainy interval while precipitation appears also in adja-
cent, originally dry intervals, constituting the basic problem
introduced in Sect. 1. The second event is the only one in
this synthetic time series where IFP conserves mass within
each interval. The peak value constructed is twice the input
precipitation rate. In the third event, which has a duration of
three times 3 h, mass is shifted from the two outer intervals
into the middle one. Similarly, in the fourth event, mass is
shifted from the border to the central intervals; however, here
two local maxima separated by a local minimum are created.
In all these events, IFP produces a non-negative and contin-
uous reconstruction, hence, requirements stRE2 and stRE3
are fulfilled. Concerning the soft requirements, the mono-
tonicity condition (soRE1) may appear to be violated in the
fourth event. However, some overshooting is necessary un-
less an instantaneous onset of the precipitation at the full rate
is postulated. The symmetry condition (soRE2) is fulfilled.
Requirements soRE3 and soRE4 cannot be tested well with
this short and simple case.

Concerning the behaviour of the two newly developed al-
gorithms IA1 and IA2, we clearly see in Fig. 10 that no mass
is spread from the wet intervals into the dry neighbourhood.
For a strict verification of local mass conservation (stRE1),
we compared the integral values in each interval of the in-
terpolated time series and S3h numerically and found that
mass is conserved perfectly for both algorithms. Moreover,
non-negativity (stRE2) as well as the continuity requirement
(stRE3) are also fulfilled.

With respect to soRE1 (monotonicity), we are faced with
the overshooting behaviour already mentioned. In the events
lasting three and four intervals, the new algorithms introduce
a local minimum in the centre of the event. As directly in-
telligible, it is not possible for the interpolated curve to turn
into a constant value without overshoot. This would either
lead to excess mass in the inner period as seen in the IFP
algorithm, or to a lack in the outermost periods. Obviously,
interpolated curves have to overshoot to compensate for the
gradual rise (or fall) near the borders of precipitation periods.
While IA1 accomplishes this within a single 3 h interval, al-
gorithm IA2 falls off more slowly towards the middle with
the consequence of requiring another interval on each side
for compensation. In order to investigate how these wiggles
would develop in an even longer event, a case with eight con-
stant values, lasting 24 h, was constructed (Fig. 11). It shows
that the amplitude of the wiggles in IA2 falls off rapidly.

The symmetry condition (soRE2) is satisfied by IA1 but
not by IA2. The wiggles in the 24 h event (Fig. 11) spread
beyond the second rainy interval on the left but not on the
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Figure 10. Verification of the interpolation algorithms for four simple precipitation events. The 3-hourly synthetic precipitation rate (S3h)
is illustrated as a step function in light blue. Reconstructions are shown as linear connections of their respective supporting points, with the
current FLEXPART algorithm (IFP) in green, the newly developed algorithm IA1 in orange, and IA2 (also new) in red (dashed–dotted).

right side. A tiny asymmetry is visible also in Fig. 10. The
reason for this difference between IA1 and IA2 is the way
in which the monotonicity filter is applied. In the IA1 algo-
rithm, the filter is only applied if the curve is M- or W-shaped
(Eq. 28), while in IA2 the filter is applied for each time in-
terval. We would see in IA1 exactly the same behaviour as in
IA2 if we removed the condition of Eq. (28). In the context of
investigating symmetry, we have also run the reconstruction
algorithms in the reverse direction. This produced identical
results for IA1 but different results for IA2. We have also
tried to run IA2 in both directions, taking the mean of the re-
sulting values for the supporting points. This yields a nearly
symmetrical solution (Fig. 12) and fulfils the symmetry re-
quirement soRE2. Thus, from now on, we use this version of
IA2, calling it Interpolation Algorithm 2 modified (IA2m).
The question of monotonicity will be revisited with more re-
alistic cases. As mentioned above, this idealised test case is
not suitable for judging the fulfilment of soRE3 and soRE4.

In the next step, we extended the verification to a case with
more realistic but still synthetic data (Fig. 13). Again, we
can see the non-conservative behaviour of the IFP algorithm.
The new algorithms IA1 and IA2m conserve the mass within
each single interval within machine accuracy (ca. ±10−15).
As even spurious negative values need to be avoided for cer-
tain applications, values of supporting points resulting from
IA1 and IA2m within the range between −10−12 and zero
were set to zero. All of the three strict requirements (mass
conservation, non-negativity, continuity) are fulfilled.

This case provides more interesting structures for look-
ing at monotonicity than the idealised case with constant
precipitation values in each rainy period. For the new algo-
rithms, minor violations of monotonicity can be observed,
e.g. around hour 30 and a smaller one after hour 3. They
occur when a strong increase of the precipitation rate is fol-
lowed by a weaker one or vice versa. Thus, they represent a

transition to the situation discussed above where the over-
shooting is unavoidable, and it is difficult to judge which
overshoot is possibly still realistic. Subjectively, we would
prefer an algorithm that would be less prone to this phe-
nomenon; however, we consider this deviation from soRE1
to be tolerable. The symmetry requirement (soRE2) is not
strictly tested here, as no symmetric structure was prescribed
as input, but it can be noted that gross asymmetries as we see
in IFP as the shifting of peaks to the border of an interval do
not occur in IA1 and IA2m.

The reconstructed precipitation curves resulting from al-
gorithms IA1 and IA2m have a more realistic shape (soRE3)
than that from IFP. Due to the two additional supporting
points per interval, they are able to adapt better to strong
variations. Computational efficiency (soRE4) is not tested for
this still short test period.

Summarising the verification with synthetic cases, it is
confirmed that IA1 and IA2m fulfill all of the strict require-
ments whereas IFP does not. The soft requirements are ful-
filled by the new algorithms with a minor deficiency for the
monotonicity condition. Next, they will be validated with
real data.

4.2 Validation with ECWMF data

The validation with ECMWF data makes use of precipitation
data retrieved with 1-hourly and 3-hourly time resolution.
The 3-hourly data serve as input to the algorithms, while the
1-hourly data are used to validate the reconstructed 1-hourly
precipitation amounts. In this way, the improvement of re-
placing IFP by one of the new algorithms can be quantified.
By using a large set of data, robust results are obtained.
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Figure 11. Verification of the different behaviour of the interpolation algorithms for a longer constant precipitation event plotted in mmh−1.
The 3-hourly synthesised precipitation rate (S3h) is illustrated as a step function in light blue, the old interpolation algorithm of FLEXPART
(IFP) in green and the newly developed algorithms IA1 and IA2 are shown in orange and red (dashed–dotted), respectively.
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Figure 12. Same as Fig. 11 but comparing only IA2 (green line) and the modified version IA2m (red; dashed–dotted). It is recommended to
zoom in to see the differences clearly.

4.2.1 ECWMF precipitation data

Fields of both large-scale and convective precipitation in
the operational deterministic forecasts were extracted from
ECMWF’s MARS archive with 0.5◦ resolution for the whole
year 2014 and the whole globe, thus yielding approximately
2.28 × 109 1-hourly data values (720 grid points in E–W
direction, 361 in N–S direction,3 8761 h including the last
hour of 2013). They were extracted as 3-hourly and as 1-
hourly fields. ECMWF output distinguishes these two precip-
itation types, derived from the grid-scale cloud microphysics
scheme in the case of large-scale precipitation and from the
convection scheme in the case of convective precipitation.
Note that parameterised convection by definition is a sub-

3As explained in footnote 2, currently the precipitation extracted
on a lat–long grid is a point value. As the global grid includes the
poles, there are 361 points per meridian. Nevertheless, as explained,
we also use the concept of a cell horizontally, as does FLEXPART.

gridscale process, while reported precipitation intensities are
averaged over the grid cell. Precipitation data are accumu-
lated from the start of each forecast at 00:00 and 12:00 UTC.
We used both these forecasts, so that the forecast lead time is
at most 12 h. This is in line with typical data use in FLEX-
PART. Data were immediately de-accumulated to 1 and 3 h
sums (see the “Data availability” section for more details).

4.2.2 Visual analysis of sample period

Two short periods in January 2014 were selected for vi-
sual inspection at a grid cell with significant precipitation,
one dominated by large-scale and another one by convective
precipitation. Convective precipitation occurs less frequently
(cf. Table 5) and its variability is higher (cf. Table 3) than in
the case of large-scale precipitation, which is more continu-
ous and homogeneous. We are interested in the performance
of the reconstruction algorithms for both of these types. Fur-
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Figure 13. Verification of the different behaviour of the interpolation algorithms for a complex synthetic precipitation time series. S3h is
the input data series with 3 h resolution (light blue), IFP is the linearly interpolated curve according to the current scheme in FLEXPART
(green), while IA1 (orange) and IA2m (red; dashed–dotted) are the reconstructions using the new algorithms.

thermore, a criterion for the selection of the sample was that
it should exhibit monotonicity problems as discussed above.
The two days are typical; they do not represent a rare or ex-
treme situation. The results are shown in Fig. 14 including
the reference 1- and 3-hourly ECMWF data, called R1h and
R3h, respectively. Note that the same input, namely R3h, is
used for all the algorithms; R1h serves for validation.

Similar to the synthetic cases, large discrepancies between
the real ECMWF data and the interpolated data from the
IFP algorithm can be found. This is true especially for the
convective precipitation, where frequently the real peaks are
clipped and the mass is instead redistributed to neighbouring
time intervals with lower values, leading to a significant pos-
itive bias there. The function curves of IA1 and IA2m follow
the R3h signal and are even able to capture the tendency of
the R1h signal as long as R1h does not have too much vari-
ability within the 3 h intervals of R3h. Again, in the convec-
tive part there is an interval where monotonicity is violated,
near 11 January 12:00 UTC. The secondary minimum occurs
a bit earlier in the IA1 algorithm than in the IA2m algorithm,
which seems typical for the case of the ascending graph (vice
versa in the descending sections; see also Fig. 13).

The large-scale precipitation rate time series is smoother
and precipitation events last longer (Fig. 14). This is easier
for the reconstruction with all three algorithms. Neverthe-
less, there are occasions which show a clear improvement
compared to the old IFP algorithm, for example, the double-
peak structure of the precipitation event between 15 January
18:00 UTC and 16 January 09:00 UTC, which is missing in
the IFP curve but reconstructed by the new algorithms. Ob-
viously, single-hour interruptions of precipitation cannot be
exactly reconstructed and it is not possible to reproduce all
the little details of the R1h time series.

Regarding the monotonicity, the large-scale precipitation
time series produces a few instances with unsatisfactory

monotonic behaviour, for example on 14 January 12:00 UTC
or on 14 January 21:00 UTC, in the IA1 curve while the
IA2m algorithm avoids the secondary minima in these cases
(there are other cases where the behaviour is vice versa; not
shown). The double peak structure in the IA1 and IA2m re-
constructions on 15 January between 06:00 and 15:00 UTC
is similar to the plateau-like ideal cases where overshooting
is unavoidable.

Notwithstanding the minor problems with the monotonic-
ity condition, the reconstructed precipitation curves from IA1
and IA2m are much closer to the real ones than the IFP curve.
Therefore, we consider requirement soRE3 as basically ful-
filled. This example raises the expectation that the new algo-
rithms will be capable of improving the performance of the
FLEXPART model.

4.2.3 Statistical validation

A statistical evaluation comparing the 1-hourly precipitation
reconstructed by the new IA1 and IA2m algorithms as well
as by the old IFP algorithm from 3-hourly input data (R3h) to
the reference 1-hourly data (R1h) was carried out. While the
R1h data directly represent the amount of precipitation in the
respective hour, the output of the algorithms represents pre-
cipitation rates at the supporting points of the time axis, and
the hourly integrals had to be calculated, under the assump-
tion of linear interpolation. The data set comprises the whole
year of 2014 and all grid cells on the globe as described in
Sect. 4.2.1. All evaluations were carried out separately for
large-scale and convective precipitation.

A set of basic metrics is presented in Table 3. Since all
the reconstruction algorithms are conservative, either glob-
ally (IFP) or locally (IA), the overall means must be identical.
This is the case for all of the 1-hourly time series. However,
the average of R3h large-scale data slightly deviates from
the R1h data (fourth decimal place). This can be explained
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Figure 14. Sample periods in January 2014 at the grid cell centred on 48◦ N, 16.5◦W. (a) 11 January 00:00 UTC to 13 January 06:00 UTC
for convective precipitation intensity, and (b) 14 January 00:00 UTC to 17 January 00:00 UTC for large-scale precipitation intensity. Original
ECMWF data are shown as step functions (1-hourly: R1h – dark blue; 3-hourly: R3h – light blue), while the interpolation resulting from
the reconstruction algorithms (new algorithms: IA1, orange, and IA2m, red; dashed–dotted, current FLEXPART algorithm: IFP, green) are
piecewise linear between the respective supporting points. A baseline is drawn in black at intensity value zero.

Table 3. Statistical metrics for the global large-scale and convective precipitation rates (mmh−1) of the ECMWF data set for the year
2014. It comprises the minimum (MIN), mean of event maxima (MEX; see text for definition), mean value (MEAN), standard deviation
(SD), skewness (SKEW), and kurtosis (KURT) of the true ECMWF R3h and R1h data as well as of the data reconstructed by the current
FLEXPART algorithm IFP and the two new algorithms IA1 and IA2m. Among the reconstructed data, those being closest to R1h have been
marked by bold font.

Large-scale precipitation Convective precipitation

MIN MEX MEAN SD SKEW KURT MIN MEX MEAN SD SKEW KURT

R3h 0.0 0.75 0.0443 0.2139 22.39 1021.20 0.0 0.85 0.0567 0.2503 9.91 155.08
R1h 0.0 1.02 0.0444 0.2282 23.98 1144.16 0.0 1.53 0.0567 0.3017 12.86 275.50
IFP 0.0 0.81 0.0444 0.2172 23.66 1211.27 0.0 0.86 0.0567 0.2462 9.95 159.43
IA1 0.0 0.91 0.0444 0.2195 23.84 1188.61 0.0 1.09 0.0567 0.2584 10.70 190.07
IA2m 0.0 0.89 0.0444 0.2200 23.72 1168.20 0.0 1.07 0.0567 0.2591 10.65 187.13

as a numerical effect, as R3h averages were calculated from
fewer data. All the data sets fulfil the non-negativity require-
ment as indicated by a minimum value of zero. The column
MEX in Table 3 contains the means of the maxima of all dis-
tinct precipitation events. They were derived from R3h and

are defined as consecutive intervals with a precipitation rate
of at least 0.2 mmh−1 in each interval bounded by at least
one interval with less than 0.2 mmh−1. The periods thus de-
rived are also used for the 1-hourly time series. The mean of
all event maxima in R1h is best reproduced by the IA1 algo-
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Table 4. Root-mean-square error (RMSE, mmh−1), normalised root-mean-square error (NMSE), and correlation coefficient (R) between
the interpolated data sets IFP, IA1, and IA2m and the true ECMWF data R1h, based on the global data set for the year 2014 and large-scale
and convective precipitation. Note that NMSE is calculated only for data pairs clearly different from zero as described in the text.

Large-scale precipitation Convective precipitation

RMSE NMSE R RMSE NMSE R

IFP_R1h 0.0860 0.4270 0.927 0.1896 0.9091 0.779
IA1_R1h 0.0630 0.3330 0.961 0.1605 0.7995 0.847
IA2m_R1h 0.0610 0.3241 0.964 0.1597 0.7970 0.849

rithm which underestimates it by about 10 % for large-scale
and 30 % for convective precipitation, whereas the underesti-
mation is considerably larger in IFP, about 20 % and, respec-
tively, 45 %. The higher-order moments (standard deviation,
skewness, kurtosis) serve to measure the similarity of the dis-
tributions; for precipitation, the skewness is of specific inter-
est as it characterises the relative frequency of high values.
They are generally underestimated by the reconstruction al-
gorithms. However, the new algorithms are always closer to
the R1h values than the IFP values. An exception is the kur-
tosis of the large-scale precipitation which is overestimated
(again, less by IA1 and IA2m than by IFP).

The root mean square error (RMSE), the normalised root
mean square error (NMSE), and the correlation coefficient
(R) between the R1h and the reconstructed data are listed in
Table 4. The NMSE is calculated as

NMSE=

√√√√ 1
N

∑
i

(R1hi − IAi)2[
(R1hi + IAi)/2

]2 , (38)

where only cases with (R1hi + IAi)/2> 0.1 are considered,
N being the total number of these cases. The new methods
represent a clear improvement compared to the IFP method,
with IA2m being slightly better than IA1 with respect to
all parameters. The large-scale precipitation reconstruction
is obviously more accurate than that of the convective pre-
cipitation, even though this gap is reduced by IA1 and IA2m.

Another aspect is the ability of the algorithms to conserve
the ratio of dry and wet intervals (Table 5). Two different
thresholds of the precipitation intensity were chosen to sep-
arate “dry” and “wet”. The lower one, 0.002 mmh−1 cor-
responds to about 0.05 mm day−1 (rounded to 0.1 mm, the
lowest non-zero value reported by meteorological stations).
The higher one is 0.2 mmh−1 and indicates substantial rain
or snowfall. Again, the results are reported separately for
large-scale and convective precipitation. In all cases, the re-
constructions produce too many wet intervals. The relative
deviations are larger for the lower threshold and for convec-
tive precipitation in comparison to large-scale precipitation.
In all cases, the new algorithms result in a clear improve-
ment compared to the current IFP algorithm. For the high
threshold and large-scale precipitation; however, already IFP
deviates only by 1.9 %; for convective precipitation, the rel-

ative deviation is improved from 15 to 11 %. In the case of
the lower threshold, the improvement is from 18 to 13 % and
35 to 23 %, the latter for convective precipitation. The dif-
ferences between IA1 and IA2m are marginal, with the latter
being better in three of the four situations.

Finally, two-dimensional histograms (relative frequency
distributions) are provided for a more detailed insight into
the relationship between the reconstructed and the true R1h
values (Fig. 15). The larger scatter in the convective precipi-
tation compared to the large-scale one is striking.

The distributions are clearly asymmetric with respect to
the diagonal, especially for the convective precipitation. One
has to be careful in the interpretation, however, because most
cases are concentrated in the lower left corner (log scale for
the frequencies, spanning many orders of magnitude). Thus,
at least for the high values, more points fall below the diag-
onal, indicating more frequent underprediction. This might
be due to the short duration of peaks with the highest inten-
sity. For both precipitation types, but especially for convec-
tive precipitation, an overestimation of very low intensities
is noticeable. Zooming in, the first R1h bin for the convec-
tive precipitation shows enhanced values corresponding to
the bias towards wet cases in Table 5. This is continued as
a general levelling off of (imagined) frequency isolines to-
wards the y axis, which corresponds to the weaker but still
present wet bias with higher thresholds. Another feature for
the convective precipitation is the structure noticeable in the
sector below the diagonal. Especially in the IFP plot, a sec-
ondary maximum is visible in the light-blue area, indicat-
ing a characteristic severe underprediction. This is less pro-
nounced for IA1 and almost absent for IA2m. Summarising,
the scatter plots indicate an improvement from IFP towards
IA1 and IA2m. A near-perfect agreement obviously cannot
be expected as the information content in the 3 h input data
is of course less than in the 1 h data. This information gap is
larger for the convective precipitation which obviously has a
shorter autocorrelation timescale.
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Table 5. Frequencies of dry (hd) and wet (hw) intervals in the reference (R3h, R1h) and interpolated (IFP, IA1, IA2m) precipitation data
(upper part), based on the global data set for the year 2014. Relative deviations (δd and δw) between the three interpolations and R1h are
shown in the lower part. Two different thresholds (0.2 and 0.002 mmh−1) were used to separate “wet” and “dry”. Large-scale and convective
precipitation were analysed separately. All values are in percent. The reconstructed values that match best the true R1h data are printed in
bold.

Threshold: 0.002 mmh−1 Threshold: 0.200 mmh−1

Large-scale Convective Large-scale Convective
precipitation precipitation precipitation precipitation

hd hw hd hw hd hw hd hw

R3h 59.74 40.26 72.11 27.89 95.39 4.61 94.06 5.94
R1h 64.72 35.28 77.62 22.38 95.49 4.51 94.72 5.28
IFP 58.21 41.79 69.79 30.21 95.40 4.60 93.93 6.07
IA1 60.16 39.84 72.51 27.49 95.42 4.58 94.13 5.87
IA2m 60.24 39.76 72.46 27.54 95.43 4.57 94.15 5.85

δd δw δd δw δd δw δd δw

IFP_R1h −10.06 18.46 −10.08 34.95 −0.09 1.87 −0.83 14.97
IA1_R1h −7.05 12.94 −6.59 22.84 −0.08 1.59 −0.63 11.29
IA2m_R1h −6.93 12.71 −6.65 23.04 −0.07 1.41 −0.60 10.78

4.3 Performance

Potential applications for the new algorithm include situa-
tions where computational performance is relevant. For the
precipitation (and possibly other input data; see Sect. 5), both
the time for the preprocessing software flex_extract (which
includes the reconstruction algorithm to calculate the sup-
porting points) and time for interpolation in FLEXPART it-
self are relevant, and they should not significantly exceed the
current computational efforts.

During the evaluation process, a computationally more ef-
ficient version of the IA1 algorithm was developed. It ap-
plies the monotonicity filter within one sweep through the
time series (filter trailing behind the reconstruction) rather
than processing the series twice. The algorithmic equations
are unchanged. We refer to this version as speed-optimised
Interpolation Algorithm 1 (IA1s). It was verified that results
are not different from the standard IA1.

The wall clock time for the application of each of the al-
gorithms to the 1-year global test data set is listed in Table 6.
This is the time needed to reconstruct the new time series
with Python and to save the data in the npz format provided
by Python’s NumPy package, which is the most efficient way
to write them out. The computing time for all the new algo-
rithms is similar to that of the old algorithm. The fastest ver-
sion is IA1s, which needs about 85 % of the time required by
IFP, while the IA2m, the slowest version, takes about 118 %
of IFP.

Table 6. Computing time (wall clock) for the processing of 1-year
of global data (ECMWF test data used in this paper) with the old
IFP algorithm and the new IA1, IA1s, and IA2m algorithms, on
a Linux server with Intel(R) Xeon(R) E5-2690 @ 2.90 GHz CPU,
single thread. The fastest algorithm is marked in bold.

Algorithm Wall clock time

IFP 2 h 29 min
IA1 2 h 24 min
IA1s 2 h 06 min
IA2m 2 h 56 min

5 Conclusions and outlook

5.1 Conclusions

We have provided a one-dimensional, conservative, and pos-
itively definite reconstruction algorithm suitable for the in-
terpolation of a gridded function whose grid values repre-
sent integrals over the grid cell, such as precipitation output
from numerical models. The approach is based on a one-
dimensional piecewise linear function with two additional
supporting points within each grid cell, dividing the interval
into three pieces.

This approach has three degrees of freedom, similar to a
piecewise parabolic polynomial. They are fixed through the
mass conservation condition, the slope of the central interval
which is taken as the average of the slopes of the two outer
subintervals, and the left and right border grid points (each
counting as half a degree of freedom). For the latter, the geo-
metric mean value of the bordering integral values is chosen.
Its main advantage is that the function values vanish automat-
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Figure 15. Two-dimensional histogram (relative frequencies) showing the relationship between the hourly precipitation reconstructed by
(a) IFP, (b) IA1, and (c) IA2m and the true R1h precipitation, based on the global data set for the year 2014. For each axis, 100 equally
distributed bins were used. The correlation coefficient is given in each plot, and the one-to-one line is shown in red.

ically if one of the involved values is zero, which is a neces-
sary condition for continuity. However, the geometric mean
in general converges too slowly with vanishing values to pre-
vent negative values under all conditions. This led us further
to derive a sufficient condition for non-negativity and restrict
the function values accordingly by these upper bounds.

This non-negative geometric-mean-based algorithm, how-
ever, still violates monotonicity. Therefore, we further intro-
duced a (conservative) filter for regions where the remapping
function takes an M- or W-like shape, requiring a second run
through the data (IA1). Alternatively, the filter can be applied
during the first sweep immediately after the construction of
the next interval (IA1s). We also showed how this basic idea
of the monotonicity filter can be directly incorporated into
the construction of an algorithm (IA2). As in this case the
algorithm is not symmetric, we apply it a second time in the
other direction and average the results (IA2m).

The evaluation, consisting of verification and validation,
confirmed the advantages of the new algorithms IA1 (includ-

ing IA1s) and IA2m. After the verification of our require-
ments, each evaluation step revealed a significant improve-
ment by the new algorithms as compared to the algorithm
currently used for the FLEXPART model. Nevertheless, the
soft requirement of monotonicity has not been fulfilled per-
fectly, but the deviation is considered to be acceptable. The
modified version of IA1 (IA1s) yields identical results to IA1
and is quite fast. However, the results of the quantitative sta-
tistical validation would slightly favour the IA2m algorithm,
whose computational performance is still acceptable, even
though in this modified form the original IA2 algorithm is
applied twice.

5.2 Outlook

The next steps will be the integration of the method into
the preprocessing of the meteorological input data for the
FLEXPART Lagrangian dispersion model and the model it-
self for the temporal interpolation of precipitation. The ap-
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plication to two dimensions, intended for spatial interpola-
tion, is also under investigation. Options include the straight-
forward operator-splitting approach as well as an extension
based on bilinear interpolation with additional supporting
points. As the monotonicity filter appears to be not yet per-
fect, this may also be revisited.

5.3 Possible other applications of the new piecewise
linear reconstruction method

It may be noted that there is a wide range of useful appli-
cations of such conservative reconstructions. Interestingly,
at least in the geoscientific modelling community, they have
largely remained restricted to the specific problem of semi-
Lagrangian advection schemes. Therefore, we sketch out
more possible use cases below.

In typical LPDMs, other extensive quantities which are be-
ing used, apart from precipitation, are surface fluxes of heat
and momentum which enter boundary-layer parameter cal-
culations and which could be treated similarly, especially for
temporal interpolation. The often-used 3-hourly input inter-
val is quite coarse and may, for example, clip the peak values
of the turbulent heat flux.

In many applications, output is required for single points
representing measurement stations or, in the case of back-
ward runs (Seibert and Frank, 2004), point emitters. While
FLEXPART has the option of calculating concentrations at
point receptors with a parabolic sampling kernel, the re-
sults have often been similar to simple bilinear interpolation
of gridded output, probably because of the difficulty of de-
termining an optimum kernel width; therefore, many users
produce only the gridded output and take the point values
through a nearest-neighbour or a bilinear interpolation ap-
proach. The piecewise linear interpolation with additional
supporting points as introduced here or one of the higher-
order methods discussed in Sect. 2 would probably provide
an improvement.

This latter example could be easily extended to all kinds of
model output postprocessing, where currently methods that
are too simple often prevail. It should be clear that applying
naive bilinear interpolation to gridded output of precipitation
and other extensive quantities, including fluxes, introduces
systematic errors as highlighted in Sect. 1.

Finally, this also includes contouring software. Contour-
ing involves interpolation between neighbouring supporting
points to determine where the contour line should intersect
the cell boundaries. It is obvious that linear interpolation is
inadequate for extensive quantities whose values represent
grid averages. This holds in particular for precipitation, en-
ergy fluxes, and trace species concentrations. While we can-
not expect the many contouring packages to be rewritten with
an option for conservative interpolation, our method (once
extended to two dimensions) provides an easy implementa-
tion through preprocessing resulting in an auxiliary grid with
triple (one-dimensional) resolution that then could be lin-
early interpolated without violating mass conservation, thus
enabling it to be used with standard contouring software.

Code availability. The piecewise linear reconstruction routines
IA1, IA2, and IA1s are written in Python2. The code is included
in the Supplement and is licensed under the Creative Commons At-
tribution 4.0 International License. For IA2m, IA2 has to be called
with the original and the reversed time series and the results have
to be averaged. The software for the statistical evaluation (written
in Python2) is available on request by contacting the second author,
A. Philipp (anne.philipp@univie.ac.at). It relies on the NumPy (van
der Walt et al., 2011) and SciPy (Jones et al., 2001–2017) libraries
for data handling and statistics and on Matplotlib (Hunter, 2007) for
the visualisation. The FLEXPART model as well as the accompany-
ing data extraction software can be downloaded from the commu-
nity site: http://flexpart.eu/ (last access: June 2018).

Data availability. The precipitation data used for evaluating the
interpolation algorithms were extracted from ECMWF through
MARS retrievals (ECMWF, 2017). For easy reproducibility of the
results, we provide the MARS retrieval routines in the Supplement,
licensed under the Creative Commons Attribution 4.0 International
License. Note that only authorised ECMWF users have access to
the operational archive data.
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Appendix A: Theoretical aspects of the monotonicity
filter

We show in the following that the monotonicity filter as in-
troduced in Sect. 3.3.5 improves the monotonicity behaviour
and also does not destroy non-negativity. The conservation
of mass (equal-area condition) is clearly preserved by con-
struction.

i. The M-shape: this corresponds to the case

k
(2)
i > 0 ∧ k

(3)
i < 0 ∧ k

(1)
i+1 > 0 ∧ k

(2)
i+1 < 0 . (A1)

Then, the filter improves the monotonicity behaviour in
the sense that

fmon
i+1 > fi+1 for all i ∈ I . (A2)

To see this we note that according to Eq. (17), the con-
ditions k(2)i > 0 and k(2)i+1 < 0 are equivalent to

fi < fi+1 and fi+2 < fi+1 . (A3)

Furthermore, from the condition k(3)i < 0, we can de-
duce

fi+1 < f
(2)
i =

3
2
gi −

5
12
fi −

1
12
fi+1 and thus

gi >
13
18
fi+1+

5
18
fi ,

implying in particular also

fi+1 < 3gi , and furthermore

f �i+1 =
18
13
gi −

5
13
fi > fi+1 . (A4)

From the condition k(1)i+1 > 0, we can deduce in a similar
fashion that

fi+1 < f
(1)
i+1 =

3
2
gi+1−

1
12
fi+1−

5
12
fi+2 and thus

gi+1 >
13
18
fi+1+

5
18
fi+2 ,

such that in particular also

fi+1 < 3gi+1 , and moreover

f ��i+1 =
18
13
gi+1−

5
13
fi+2 > fi+1 . (A5)

Making use of all derived inequalities, we can deduce

fmon
i+1 =min

{
3gi,3gi+1,

√(
f �i+1 f

��

i+1
)
+

}
> fi+1 .

ii. The W-shape: this corresponds to the case

k
(2)
i < 0 ∧ k

(3)
i > 0 ∧ k

(1)
i+1 < 0 ∧ k

(2)
i+1 > 0 . (A6)

Again the filter improves the monotonicity behaviour in
the sense that

fmon
i+1 < fi+1 for all i ∈ I . (A7)

Arguing similarly, now the conditions k
(2)
i < 0 and

k
(2)
i+1 > 0 imply

fi+1 < fi and fi+1 < fi+2 (A8)

and thus in particular

fi+1 <min {3gi, 3gi+1} . (A9)

This can be easily proven by contradiction, since other-
wise if fi+1 = 3gi (or fi+1 = 3gi+1), then also fi ≤ 3gi
(or fi+2 ≤ 3gi+1, respectively) by construction, imply-
ing furthermore fi ≤ fi+1 (or fi+2 ≤ fi+1), which ob-
viously contradicts (Eq. A8). From the condition k(3)i >

0, we can deduce in a similar way as above

gi <
13
18
fi+1+

5
18
fi , and therefore

f �i+1 =
18
13
gi −

5
13
fi < fi+1 . (A10)

From k
(1)
i+1 < 0, we accordingly obtain

gi+1 <
13
18
fi+1+

5
18
fi+2 such that

f ��i+1 =
18
13
gi+1−

5
13
fi+2 < fi+1 . (A11)

Note that in comparison to the M-shape above, there
is no lower bound for the different constructed values
f �i+1, f ��i+1. Thus, they can take possibly negative values
and care has to be taken here to ensure that the filter still
preserves non-negativity. Combining Eqs. (A9), (A10),
and (A11), we can now deduce

fmon
i+1 =min

{
3gi,3gi+1,

√(
f �i+1 f

��

i+1
)
+

}
=

√(
f �i+1 f

��

i+1
)
+
< fi+1 . (A12)
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