| Description | Symbol | Unit | |---|--------------------|---------------------| | Interception storage | $S_{ m int}$ | m | | Snow cover/storage in water equivalent thickness (excluding liquid part S_{slq}) | $S_{ m swe}$ | m | | Liquid/meltwater storage in the snowpack | $S_{ m slq}$ | m | | Upper and lower soil storages | S_1 and S_2 | m | | Surface water storage (lakes, reservoirs, rivers, and inundated water) | $S_{ m wat}$ | m | | Groundwater storage (renewable part) | S_3 | m | | Fossil groundwater storage (non-renewable) | $S_{ m nrw}$ | m | | Total groundwater storage = $S_3 + S_{nrw}$ | $S_{ m gwt}$ | m | | Total water storage thickness = $S_{\text{int}} + S_{\text{swe}} + S_{\text{slq}} + S_1 + S_2 + S_{\text{gwt}}$ | TWS | m | | Potential evaporation | E_{pot} | $m day^{-1}$ | | Evaporation flux from the intercepted precipitation | $E_{ m int}$ | $m day^{-1}$ | | Evaporation from meltwater stored in the snowpack | $E_{ m slq}$ | $ m mday^{-1}$ | | Bare soil evaporation | $E_{\rm soil}$ | ${ m mday^{-1}}$ | | Transpiration from the upper and lower soil stores | T_1 and T_2 | ${ m mday}^{-1}$ | | Total land evaporation = $E_{int} + E_{slq} + E_{soil} + T_1 + T_2$ | E_{land} | ${ m mday^{-1}}$ | | Surface water evaporation | E_{wat} | $m day^{-1}$ | | Total evaporation = $E_{\text{land}} + E_{\text{wat}}$ | $E_{ m tot}$ | ${\rm mday}^{-1}$ | | Direct run-off | $Q_{ m dr}$ | $m day^{-1}$ | | Interflow, shallow sub-surface flow | $Q_{ m sf}$ | $m day^{-1}$ | | Baseflow, groundwater discharge | Q_{bf} | $m day^{-1}$ | | Specific run-off from land | Q_{loc} | $m day^{-1}$ | | Local change in surface water storage | Q_{wat} | $m day^{-1}$ | | Total specific run-off | Q_{tot} | $m day^{-1}$ | | Routed channel (surface water) discharge | $Q_{\rm chn}$ | $m^3 s^{-1}$ | | | | m day ⁻¹ | | Net fluxes from the upper to lower soil stores | Q_{12} | | | Net groundwater recharge, fluxes from the lower soil to groundwater stores | $RCH = Q_{23}$ | $m day^{-1}$ | | Surface water infiltration to groundwater | Inf | m day ⁻¹ | | Desalinated water withdrawal | W_{sal} | ${ m mday}^{-1}$ | | Surface water withdrawal | $W_{ m wat}$ | $m day^{-1}$ | | Renewable groundwater withdrawal | W_3 | $m day^{-1}$ | | Non-renewable groundwater withdrawal (groundwater depletion) | $W_{ m nrw}$ | $m day^{-1}$ | | Total groundwater withdrawal = $W_3 + W_{nrw}$ | $W_{ m gwt}$ | $m day^{-1}$ | | Water withdrawal allocated for irrigation purposes | A _{irr} | m day ⁻¹ | | Water withdrawal allocated for livestock demand/sector | $A_{\rm liv}$ | $m day^{-1}$ | | Water withdrawal allocated for agricultural sector $= A_{irr} + A_{liv}$ | $A_{\rm agr}$ | $m day^{-1}$ | | National withdrawal and cated for agricultural sector = $N_{HT} + N_{HV}$
Domestic water withdrawal | A_{dom} | m day ⁻¹ | | Industrial water withdrawal | | m day ⁻¹ | | industrial water withdrawar | A_{ind} | ııı uay |