Description	Symbol	Unit
Interception storage	$S_{ m int}$	m
Snow cover/storage in water equivalent thickness (excluding liquid part S_{slq})	$S_{ m swe}$	m
Liquid/meltwater storage in the snowpack	$S_{ m slq}$	m
Upper and lower soil storages	S_1 and S_2	m
Surface water storage (lakes, reservoirs, rivers, and inundated water)	$S_{ m wat}$	m
Groundwater storage (renewable part)	S_3	m
Fossil groundwater storage (non-renewable)	$S_{ m nrw}$	m
Total groundwater storage = $S_3 + S_{nrw}$	$S_{ m gwt}$	m
Total water storage thickness = $S_{\text{int}} + S_{\text{swe}} + S_{\text{slq}} + S_1 + S_2 + S_{\text{gwt}}$	TWS	m
Potential evaporation	E_{pot}	$m day^{-1}$
Evaporation flux from the intercepted precipitation	$E_{ m int}$	$m day^{-1}$
Evaporation from meltwater stored in the snowpack	$E_{ m slq}$	$ m mday^{-1}$
Bare soil evaporation	$E_{\rm soil}$	${ m mday^{-1}}$
Transpiration from the upper and lower soil stores	T_1 and T_2	${ m mday}^{-1}$
Total land evaporation = $E_{int} + E_{slq} + E_{soil} + T_1 + T_2$	E_{land}	${ m mday^{-1}}$
Surface water evaporation	E_{wat}	$m day^{-1}$
Total evaporation = $E_{\text{land}} + E_{\text{wat}}$	$E_{ m tot}$	${\rm mday}^{-1}$
Direct run-off	$Q_{ m dr}$	$m day^{-1}$
Interflow, shallow sub-surface flow	$Q_{ m sf}$	$m day^{-1}$
Baseflow, groundwater discharge	Q_{bf}	$m day^{-1}$
Specific run-off from land	Q_{loc}	$m day^{-1}$
Local change in surface water storage	Q_{wat}	$m day^{-1}$
Total specific run-off	Q_{tot}	$m day^{-1}$
Routed channel (surface water) discharge	$Q_{\rm chn}$	$m^3 s^{-1}$
		m day ⁻¹
Net fluxes from the upper to lower soil stores	Q_{12}	
Net groundwater recharge, fluxes from the lower soil to groundwater stores	$RCH = Q_{23}$	$m day^{-1}$
Surface water infiltration to groundwater	Inf	m day ⁻¹
Desalinated water withdrawal	W_{sal}	${ m mday}^{-1}$
Surface water withdrawal	$W_{ m wat}$	$m day^{-1}$
Renewable groundwater withdrawal	W_3	$m day^{-1}$
Non-renewable groundwater withdrawal (groundwater depletion)	$W_{ m nrw}$	$m day^{-1}$
Total groundwater withdrawal = $W_3 + W_{nrw}$	$W_{ m gwt}$	$m day^{-1}$
Water withdrawal allocated for irrigation purposes	A _{irr}	m day ⁻¹
Water withdrawal allocated for livestock demand/sector	$A_{\rm liv}$	$m day^{-1}$
Water withdrawal allocated for agricultural sector $= A_{irr} + A_{liv}$	$A_{\rm agr}$	$m day^{-1}$
National withdrawal and cated for agricultural sector = $N_{HT} + N_{HV}$ Domestic water withdrawal	A_{dom}	m day ⁻¹
Industrial water withdrawal		m day ⁻¹
industrial water withdrawar	A_{ind}	ııı uay