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Abstract. Most geophysical models include many param-
eters that are not fully determined by theory, and can be
“tuned” to improve the model’s agreement with available
data. We might attempt to automate this tuning process in
an objective way by employing an optimisation algorithm to
find the set of parameters that minimises a cost function de-
rived from comparing model outputs with measurements. A
number of algorithms are available for solving optimisation
problems, in various programming languages, but interfacing
such software to a complex geophysical model simulation
presents certain challenges.

To tackle this problem, we have developed an optimisa-
tion suite (“Cyclops”) based on the Cylc workflow engine
that implements a wide selection of optimisation algorithms
from the NLopt Python toolbox (Johnson, 2014). The Cy-
clops optimisation suite can be used to calibrate any mod-
elling system that has itself been implemented as a (sepa-
rate) Cylc model suite, provided it includes computation and
output of the desired scalar cost function. A growing num-
ber of institutions are using Cylc to orchestrate complex dis-
tributed suites of interdependent cycling tasks within their
operational forecast systems, and in such cases application
of the optimisation suite is particularly straightforward.

As a test case, we applied the Cyclops to calibrate a global
implementation of the WAVEWATCH III (v4.18) third-
generation spectral wave model, forced by ERA-Interim in-
put fields. This was calibrated over a 1-year period (1997),
before applying the calibrated model to a full (1979–2016)
wave hindcast. The chosen error metric was the spatial av-
erage of the root mean square error of hindcast significant
wave height compared with collocated altimeter records. We

describe the results of a calibration in which up to 19 param-
eters were optimised.

1 Introduction

Geophysical models generally include some empirical pa-
rameterisations that are not fully determined by physical
theory and which need calibration. The calibration process
has often been somewhat subjective and poorly documented
(Voosen, 2016) but in a more objective approach has the aim
of minimising some measure of error quantified from com-
parisons with measurement (Hourdin et al., 2017). We can
turn this into an optimisation problem: namely, to find the
minimum of an objective function f (x), where x represents
the set of adjustable parameters, and f is a single error met-
ric (e.g. the sum of RMS differences between measured and
predicted values of a set of output variables) resulting from a
model simulation with that parameter set.

The most efficient optimisation algorithms require the
derivative ∇f (x) to be available alongside f (x). This, how-
ever, is rarely the case for a geophysical modelling system,
so we will restrict our attention to the field of differential free
optimisation (DFO), in which the objective function f can be
calculated, but its gradient is not available.

Various methods exist, many of which are summarised in
the review of Rios and Sahinidis (2012). Some are good at
exploring parameter space to improve the likelihood of find-
ing global rather than merely local minima. Others are pre-
ferred for quickly moving to the absolute minimum once in
its neighbourhood. The algorithms are encoded in various
languages (e.g. Fortran, C, Python, MATLAB) and usually
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require the user to supply a subroutine to compute f (x), that
can be called as required by the optimisation programme.

This is satisfactory for many problems where the objec-
tive function is readily expressed as an algorithm but is
somewhat less straightforward to interface an existing geo-
physical model, as well as all the methods needed to pro-
cess and compare measurement data with an optimisation
code, in this way. Nevertheless, examples of this approach
can be found in hydrological and climate modelling appli-
cations. For example, Seong et al. (2015) developed a cal-
ibration tool (using R software) to apply the shuffled com-
plex evolution optimisation algorithm to calibrate the Hydro-
logic Simulation Program–Fortran (HSPF) model. In climate
modelling, Severijns and Hazeleger (2005) used the down-
hill simplex method to optimise the parameter values of the
subgrid parameterisations of an atmospheric general circula-
tion model. More recently, Tett et al. (2013) applied a Gauss–
Newton line search optimisation algorithm to climate simu-
lations with the Hadley Centre Atmosphere Model version 3
(HadAM3) forced with observed sea surface temperature and
sea ice, optimising an objective function derived from re-
flected shortwave radiation and outgoing longwave radiation
comparisons. The Tett et al. (2013) method was subsequently
applied to optimise the sea ice component of the global cou-
pled HadCM3 climate model (Roach et al., 2017; Tett et al.,
2017).

Such custom applications of one particular optimisation
algorithm to a specific model, however, can require signifi-
cant effort to switch to alternative optimisation algorithms or
to be applied to new models. Modern coupled climate mod-
els, or operational forecast systems for weather and related
processes, encompass a diverse set of software tools, often
running on multiple platforms. Ideally, we would like to be
able to optimise performance of the modelling system (not
just a single model code) without major reconfiguration of
software between the calibration and operational/production
versions of the system.

The Cylc workflow engine is now applied in several oper-
ational centres to manage the scheduling of tasks within such
systems. So it seems natural to consider the possibility of de-
veloping a framework within Cylc for the optimisation of the
modelling systems under its control.

2 Methods

In very general terms, a derivative-free optimisation algo-
rithm will explore parameter space, selecting values of the
parameter vector x in some sequence. As each x is selected,
it calls the (user-supplied) subroutine to evaluate the objec-
tive function f (x). In our case, this would amount to running
a complete model simulation with the corresponding parame-
ter settings, comparing outputs to measurements, from which
a defined error metric is computed to provide the return value
of f . This can involve a lengthy simulation, needing a run

time Tmodel perhaps of the order of hours or days to repro-
duce months or years of measurements.

A self-contained optimisation programme, with an ex-
plicitly coded function-evaluation subroutine, will run much
faster, with a run time per iteration Titer typically being some
small fraction of a second, and will run in many orders of
magnitude less time than a typical geophysical model even
if a number of iterations N of order 1000 are required. This
might be the case for “deliberately difficult” test problems:
we might expect that a well-tested geophysical model will
come with reasonable defaults that in many new implemen-
tations will produce a result within a relatively simple “basin
of attraction” so thatO(10) iterations may suffice to get very
close.

If the optimisation procedure calls for a full model run to
evaluate the objective function, and N iterations are required
for convergence, the total run time would be

T ≈ To+N(Tmodel+ Titer), (1)

including an overhead To for initial and final tasks.
As Tmodel is orders of magnitude larger than To and

Titer, the geophysical modelling system totally dominates run
time, and we can comfortably afford not to be concerned with
reducing the efficiency of the optimisation routine, even by a
few orders of magnitude.

So let us consider a simple measure we might introduce
to allow us to recover from an interruption part of the way
through a long optimisation process. Normally, the optimi-
sation code will retain in memory the values of each x and
its objective function f (x) that has already been evaluated,
to use in selecting further points to be evaluated. If we write
these values to file each time the function evaluation is called,
we can build up a lookup table to use in case we need to
restart the process. In that case, we could have the func-
tion evaluation subroutine first search the lookup table for
a match to x (within some acceptable tolerance), in which
case it could return the tabulated error value. Only in the case
where a tabulated value was not found would the full model
simulation be required to compute the return value of f .

Now rather than actually perform that computation, the
function evaluation subroutine could simply write the x val-
ues (for the nth iteration, for instance) to file, and exit. We
could then run the model in its usual way, outside the optimi-
sation code, using those x values as parameters, and add that
result to our lookup table before restarting the whole process
from scratch. This time, assuming the optimisation algorithm
is deterministic, with no random process influencing the se-
quence of x values, the first n points would be exactly the
same sequence that was selected previously, and could be
quickly handled by table lookup, and the algorithm would
either find that a convergence criterion had been satisfied, or
select a new point n+1 to be passed to the model for simula-
tion.

In effect, we are simply employing the optimisation algo-
rithm in a generic tool that, given the results of all previous
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iterations, either signals that convergence has been reached
or generates the next parameter set to be evaluated by the
model, i.e.

xn+1 = Opt({xm,fm}m= 1,...,n). (2)

In this scheme, assuming that we start with an empty
lookup table, the first pass has one iteration of the optimisa-
tion code, the second has two, etc. So, allowing an additional
overhead T̂ for the full process, the total run time to reach
the termination condition(s) after N iterations should be

T ′ = T̂ +

N∑
n=1

(To+ nTiter+ Tmodel) (3)

= T̂ +N (To+ Tmodel)+
N(N + 1)

2
Titer. (4)

As Tmodel is orders of magnitude larger than the other
times, the ratio of the two run times is

T ′

T
≈ 1+

N + 1
2

Titer

Tmodel
. (5)

Given the expected relative magnitudes of the model and
optimisation iteration times, and N of order 10 or 100 s, the
increase in run time through this approach is actually negli-
gible.

On the other hand, this scheme has several benefits. Apart
from being simple to code, the optimisation algorithm, in-
cluding the user-defined function evaluation subroutine, can
be completely generic, and applied unmodified to different
modelling systems. The only requirements on the modelling
system are that, at the start of each simulation, it reads in
the parameter values requested by the optimisation code and
adapt them to its standard input formats, then at the end of
the simulation, computes and writes to file a single error
metric value. The optimisation code and the model system
could then remain separate, both controlled by some form of
scripting scheme, for example. This means that having in-
vested considerable time and resources in developing a com-
plex modelling scheme, no major reconfiguration needs to be
made to prepare it for optimisation in this manner or subse-
quently to re-implement the optimised modelling system in
operational or production mode.

2.1 Cylc

Cylc (http://cylc.github.io/cylc/) is an open-source workflow
engine that can manage ongoing distributed workflows of cy-
cling (repeating) tasks. It was originally developed at the Na-
tional Institute of Water and Atmospheric Research (NIWA)
to automate environmental forecasting systems and has since
been adopted by many other institutions – notably the UK
Met Office and its international partners in climate, weather
and related sciences. Cylc can manage large production sys-
tems of great complexity, but it is also easy to use for indi-

viduals and groups with less demanding automation require-
ments. Cylc workflows (or suites) are defined with an effi-
cient graph syntax that expresses dependence between tasks
and an efficient inheritance hierarchy for optimal sharing of
all task run time properties (exactly what each task should
execute, and where and how to submit task jobs to run).

Cylc tasks are related by trigger expressions that combine
to form a dependency graph. This trigger,

A:status => B

says that task B depends on task A achieving the sta-
tus status (“=>” represents an arrow). The default trigger
status is succeeded (job execution completed successfully)
and can be written simply as A=> B; others include
submitted, submit-failed, started, finished, failed and custom
task output messages. Tasks can depend on the wall clock
and on external events, as well as on other tasks, and a task
job can be submitted to run once all its dependencies are
met. Cylc automatically wraps user-defined task content
(environment, scripting, etc.) in code to trap errors and
report job status back to the suite server programme via
authenticated HTTPS messages. Tasks can even trigger off
tasks in other suites, so for coupled systems you can choose
between a larger suite that controls all tasks and multiple
smaller suites that interact with each other.

In cycling systems, tasks repeat on sequences that may
represent forecast cycles or separate chunks of a model sim-
ulation that is too long for a single run, or iterations in an
optimisation scheme, or different datasets to be processed
as they are generated and so on. Cycling is specified with
ISO 8601 date–time recurrence expressions (e.g. for environ-
mental forecasting) or with integer recurrence expressions
(e.g. for iterative processes). Both date–time and integer cy-
cling are used in the application described in this paper. De-
pendence across cycles (consider a forecast model that is
initialised with outputs from a previous cycle) creates on-
going, potentially neverending, workflows. Uniquely, Cylc
can manage these without imposing a global cycle loop: one
cycle does not have to complete before the next can start. In-
stead, tasks from many cycles can run concurrently to the full
extent allowed by individual task dependencies and external
constraints such as compute resource and data availability.
So, for example, on restarting after extended downtime, a
suite that processes real-time data can clear its backlog and
catch up again very quickly, by automatically interleaving
cycles.

2.2 Implementation

We have developed a Cylc suite (“Cyclops”, https://zenodo.
org/badge/latestdoi/1836229) to perform optimisation of a
modelling system that has itself been set up as a separate
Cylc suite. In the example we describe below, the model suite
controls a multi-year wave model hindcast, including the
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Table 1. Derivative-free optimisation algorithms from the NLopt toolbox supported in the Cyclops optimisation suite.

Global

DIRECT Dividing RECTangles Jones et al. (1993)
DIRECT-L Dividing RECTangles, locally optimised Gablonsky and Kelley (2001)
DIRECT-L-RAND A slightly randomised variant of DIRECT-L Johnson (2014)
CRS Controlled Random Search Hendrix et al. (2001)
CRS2 Controlled Random Search Price (1983)
CRS2-LM Controlled Random Search with Local Mutation Kaelo and Ali (2006)
MLSL Multi-Level Single-Linkage Rinnooy Kan and Timmer (1987)
ISRES Improved Stochastic Ranking Evolution Strategy Runarsson and Yao (2005)
ESCH Evolutionary algorithm da Silva Santos et al. (2010)

Local

COBYLA Constrained Optimization BY Linear Approximations Powell (1994)
BOBYQA Bounded Optimization BY Quadratic Approximation Powell (2009)
NEWUOA Unconstrained Optimization Powell (2006)
NEWUOA-BOUND A bounded variant of NEWUOA Johnson (2014)
PRAXIS Principal Axis Brent (1972)
Nelder-Mead Simplex Nelder and Mead (1965)
Sbplx Nelder–Mead applied on a sequence of subspaces Rowan (1990)

preprocessing of necessary model inputs (principally wind
fields) and verification data (satellite altimeter data), running
the wave model code, postprocessing of model outputs and
generation of error statistics from comparisons of predicted
and observed significant wave height fields.

Typically, date–time cycling is used to run a model at suc-
cessive forecast cycles, or to break a long simulation into a
succession of shorter blocks. The optimisation suite, on the
other hand, uses integer cycling, with each cycle correspond-
ing to a single evaluation of the objective function.

There are several tasks controlled by the optimisation
suite. One of these is responsible for running an optimisa-
tion algorithm to identify either an optimal parameter vec-
tor from previous model runs or the next parameter vector
to be evaluated. This main optimisation task within the suite
is implemented with Python code calling the NLopt Python
toolbox (Johnson, 2014).

NLopt includes a selection of optimisation algorithms:
both “local” solvers, which aim to find the nearest local min-
imum to the starting point as efficiently as possible, and
“global” solvers, which are designed to explore the full pa-
rameter space, giving high confidence in finding the optimal
solution out of a possible multitude of local minima. NLopt
includes algorithms capable of using derivative information
where available, which is not the case in our application, and
Cyclops is restricted to the derivative-free algorithms listed
in Table 1.

We have assumed that the sequence of parameter vectors
tested by an optimisation algorithm is deterministic. Several
of the algorithms available in NLopt have some inherently
stochastic components. It is, however, possible to make these

algorithms “repeatably stochastic” by enforcing a fixed seed
for the random number generator.

In NLopt, any combination of the following termination
conditions can be set:

1. maximum number of iterations by each call of the opti-
misation algorithm,

2. absolute change in the parameter values less than a pre-
scribed minimum,

3. relative change in the parameter values less than a pre-
scribed minimum,

4. absolute change in the function value less than a pre-
scribed minimum,

5. relative change in the function value less than a pre-
scribed minimum and

6. function value less than a prescribed minimum.

In the second and third of these convergence criteria, the
“change in parameter values” means the magnitude of the

vector difference, i.e.

√
Npar∑
n=1
(1xn)2.

We have implemented Python code that uses NLopt calls
to seek a minimum of an objective function f that represents
a non-negative model error metric. As described above, the
user-defined function evaluation has been implemented as a
generic Python function f (x) that simply searches a lookup
table (stored in a file). If x is found in the table, it returns
the corresponding f value; otherwise, it saves the vector x
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to a file and returns an invalid1 f value. Any of the termina-
tion conditions listed above can be set by the user: the last
of these can use a prescribed minimum f value as a con-
vergence condition, while an invalid f value signals that the
optimisation algorithm has stopped because a new parameter
vector x needs to be evaluated externally by a model simula-
tion. In this case, a file is written containing parameter names
and values in a format that can be parsed by the modelling
system to generate the needed input files for a simulation.
At present, a generic namelist format is used as output from
Cyclops for this purpose.

A “parameter definition” file is used to specify parameter
names and their initial values, as used within the model. If a
parameter is allowed to be adjusted by the optimisation suite,
an allowable range is also set. This choice will generally re-
quire some experience with the particular model. Within the
optimisation suite, these adjustable parameters will be scaled
linearly to normalised parameters x that lie between 0 and
1. Fixed parameters can be include for convenience, so that
their names and values will be written to the namelist file but
these are ignored by the optimisation suite.

The major tasks carried out by Cyclops on each cycle are

0. (first cycle only): Init: write initial normalised parame-
ters x0 to file.

1. Optimise: run the optimisation code, starting from x0
and evaluating every x in the sequence, until either a
stopping criterion is met (in which case the task sends
a “stop” message), or a parameter set x is reached that
is not in the lookup table so needs evaluating (signalled
by a “next” message).

2. Namelist: convert x to non-normalised parameters in a
namelist file.

3. Model: create a new copy of the model suite, copy the
namelist file to it and run it in non-daemon mode (i.e.
so the task will not complete until the model suite shuts
down). A new copy of the suite is made so that files
created in one cycle do not overwrite those created on
other cycles.

4. Table: read the resulting error value from the model
suite and update the lookup table.

Within one cycle, the dependencies of the optimisation
suite are simply

Optimise:next => Namelist => Model => Table

to make these tasks run sequentially when no stop condition

1At present, f < 0 is treated as an “invalid” return value, which
is appropriate for positive-definite error metrics, but the code could
be modified to return the Python value “None” for invalid f in more
general cases.

is met. We set a dependency on a previous cycle:

Table[−P1] => Optimise

(the notation −P1 denotes a negative displacement of
one cycle period), to ensure that the lookup table is up to
date with all previous results before starting the next opti-
misation cycle and to prevent Cylc from running successive
cycles concurrently. The stopping condition is handled by

Optimise:stop => Namelist_Final => Stop

where the Namelist_Final task produces the final ver-
sion of the namelist file, and the Stop task does a final
wrap-up of the completed optimisation before the suite
shuts down. For the purposes of good housekeeping, we can
also add a Model_delete task to delete each copy of the
model suite once all its outputs have been used. Also, tasks
which will not be needed (e.g. “Namelist” if “Optimise”
gives a “stop” message) can be removed, along with any
dependencies on those tasks, by so-called “suicide triggers”.
Figure 1 illustrates the workflow of the optimisation suite
described above in graphical form.

The optimisation suite’s Model task for each cycle is a
proxy for a copy of the full model suite being run for the
corresponding parameter set. The model suite is run in non-
daemon (non-detaching) mode, so that the Model task does
not finish until the suite that it represents runs to completion.
Information passed between the suites consists of two simple
files: a “namelist” file containing parameter names and val-
ues written by the optimisation suite for the model suite and
an “error” file containing the single value of the error metric
returned by the model suite.

The model suite needs to include a task to process the
namelist file into the particular modelling system’s stan-
dard input formats. Because the formats are highly model-
specific, this task needs to be tailored for the particular model
suite. For example, in our wave hindcast application de-
scribed below, this task consists of a shell script which simply
includes the namelist file verbatim as part of an ASCII con-
trol file, which also has various timing parameters provided
from environment variables. Namelists can include named
groups of parameters, which may be helpful in this process
in cases where these groups need to be treated differently
(e.g. affecting different model input files for multiple coupled
models and pre- and postprocessing tasks within the model
suite). However, if the namelist format proved inadequate to
supply the needed information, this format could be changed
within the optimisation suite to something more suitable. It
should be stressed, though, that no change should be needed
to the main model codes: they can run as standard release
versions under a separate task within the model suite.
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Figure 1. Dependency graph for a version of the Cyclops optimisation suite in which no concurrent simulations are allowed, showing three
successive cycles. Arrows represent dependency, in that a task at the head of an arrow depends on the task at the tail of the arrow meeting a
specified condition (by default, this means completing successfully) before it can start.

2.3 Concurrent simulations

For some DFO algorithms, at least some parts of the se-
quence of vectors tested are predetermined and independent
of the function values found at those points. For example,
BOBYQA (which we chose to use in the test application de-
scribed below) sets up a quadratic approximation by sam-
pling the initial point, plus a pair of points on either side of
it in each dimension. With N parameters, the first 2N + 1
iterations are spent evaluating these 2N + 1 fixed points, re-
gardless of the function values obtained there. In such situ-
ations, the function values for each of these points could be
evaluated simultaneously.

This can be done within Cylc by allowing tasks from mul-
tiple cycles to run simultaneously. In practice, this means
that multiple copies of the model suite are running simul-
taneously, to the extent allowed by resource allocation on the
host machine(s). This makes it imperative that a new copy of
the model suite is made for each cycle.

If concurrent model simulations are allowed, this means
that at any time there is a certain set of parameter vectors
for which the function values are still being determined (we
can call this the “active” set). We can add another parame-
ter vector to that set if it will be selected by the optimisation
algorithm regardless of the function values at the active pa-
rameter vectors.

We would clearly like to determine that without needing
specific knowledge of how the particular optimisation algo-
rithm works. Instead, we use a simple empirical method. To
this end, we supplement the lookup table (of vectors already
computed, with the resulting f values) with a second table
(the “active file”) listing the active vectors. We have the func-

tion evaluation subroutine search for x first among the “com-
pleted” vectors, then among the “active” vectors. If it finds x
among the active vectors (for which f is not yet known), it
assigns f a random positive value (in this application, we do
not re-initialise the random number generator with a fixed
seed). Otherwise, it writes x to file and returns an “invalid”
f value to force the optimisation algorithm to stop as usual.

The Python code controlling the optimisation algorithm
has also been modified. Now, when the active file is empty,
it will act as before, but if there are active vectors it will run
a small set of repeated applications of the optimisation al-
gorithm (Eq. 2), each of which will use a different set of
randomised f values for the active vectors. That is, in the
Optimise task for cycle n+ 1, we evaluate

x
(q)

n+1 = Opt
({
xm,f

(q)
m

}
m= 1,..., n

)
(6)

for a set of iterations q = 1, . . .,Q, with

f
(q)
m =

{
fm completed m
random active m (7)

If these all result in the same choice of xn+1 to be evalu-
ated, a “next” message is sent to trigger further tasks for this
cycle as before, since this choice is independent of the re-
sults for the active parameter vectors. If not, we do not have
a definite xn+1 to evaluate, and we must wait until at least
one of the presently active simulations has finished before
trying again; a “wait” message is sent. But clearly this does
not mean that the optimisation is complete.

These repeated randomised applications of the optimisa-
tion algorithm are run sequentially within one cycle of the
Optimise task, simply to determine if there is a unique pa-
rameter set with which further tasks for that cycle can be

Geosci. Model Dev., 11, 2153–2173, 2018 www.geosci-model-dev.net/11/2153/2018/



R. M. Gorman and H. J. Oliver: Automated model optimisation using Cyclops v1.0 2159

Figure 2. Dependency graph for an implementation of the Cyclops optimisation suite in which up toM concurrent simulations are supported.
Solid arrows represent dependency, in that a task at the head of an arrow depends on the task at the tail of the arrow meeting a specified
condition (by default, this means completing successfully) before it can start. The dashed arrows represent a task retrying after a set interval.
Only four cycles are shown, omitting tasks in intervening cycles and their dependencies.

Figure 3. Example of the cycling behaviour of an implementation
of the Cyclops optimisation suite in which concurrent simulations
are supported. Optimise tasks (purple boxes) which succeed trigger
further tasks in the same cycle (blue boxes representing a sequence
of Namelist, Model and Table tasks) and the Optimise task in the
next cycle. Green arrows represent these dependencies on task suc-
cess. Optimise tasks which fail to select a parameter vector indepen-
dent of the result of active tasks retry (yellow arrows) at prescribed
intervals until they succeed. The time axis is not to scale: Model
tasks will typically have run times orders of magnitude longer than
the run times of Optimise tasks. In this example, we suppose that
the particular optimisation algorithm employed allows for up to five
concurrent cycles during the initial stages.

started, concurrently with Model tasks already running for
other cycles. They do not themselves need to run in parallel.

We also need to consider how the Cylc suite dependency
structure can accommodate concurrent simulations. This
can be handled in two ways. In the first method, we let the
Optimise task fail when it determines a “wait” condition,
and utilise Cylc’s facility to retry failed tasks at specified
intervals. We also replace the dependency

Table[−P1] => Optimise

with the combination

Optimise[−P1] => Optimise

Table[−PM] => Optimise

where M is a specified maximum number of concur-
rent simulations. This means that each cycle can first
attempt to start a new model simulation as soon as the
previous cycle’s simulation has started and the Mth previous
simulation has completed. The Optimise task will keep
retrying at intervals until it is able to give either a “stop” or
“next” signal. This method has a simple workflow structure,
illustrated in Fig. 2, that does not change as M increases.

A schematic illustration of how this might work is shown
in Fig. 3. Here, we consider an application in which the op-
timisation algorithm uses predetermined values for the first
five parameter vectors, after which each new parameter vec-
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tor selected depends on all previous results (BOBYQA has
this behaviour for a two-parameter optimisation). We also
assume we have set M ≥ 5. Hence, in cycle 2, the Optimise
task’s randomised test shows that the same parameter vector
will be chosen regardless of the outcome of the cycle 1 Model
task, so that further cycle 2 tasks can start immediately. Sim-
ilarly, the cycle 3 Model task does not need to wait for the
active cycle 1 and 2 Model tasks to complete, and so forth
up to cycle 5. But the cycle 6 Optimise task will detect that
its choice of a parameter vector will depend on the results of
the active Model tasks, so it will fail and retry. Under our as-
sumptions it will not succeed until no other Model tasks are
active, and this will remain the case for all subsequent cycles.

The second method, described in Appendix A and used
in the tests described here, uses more complex dependencies
and additional Optimise tasks, instead of a single retrying
Optimise task. It is somewhat more efficient in that there is
no need to wait on a (short) retry interval before determining
if a new cycle can start, but the workflow is more complicated
and its complexity increases with M . Both methods achieve
the same result; however, they both allow up to M model
suites to run concurrently, rather than iterating through them
in sequence.

It should be stressed that the optimisation code itself is
simply run as a serial process in each case: it is simply re-
quired to produce the single set of parameters, if any, for the
next model run given the known results of the completed sim-
ulations. As it checks that this parameter set is independent of
the results of the presently active model runs without needing
to know the actual results, no parallel processing is required
within the optimisation code.

3 Application: a global wave hindcast based on
ERA-Interim inputs

Here, we describe a global wave simulation, using the
WAVEWATCH III model (WW3), forced by inputs from the
ERA-Interim reanalysis (Dee et al., 2011), covering the pe-
riod from January 1979 to December 2016. Such multi-year
wave model simulations are a valuable means of obtaining
wave climate information at spatial and temporal scales that
are not generally available from direct measurements. It is
rare for a particular location of interest to have a suitably long
nearby in situ wave record, e.g. from a wave-recording buoy,
to provide statistically reliable measures of climate variabil-
ity on interannual timescales. And while satellite altimetry
has provided near-global records of significant wave height
that have been available for more than two decades, these
have limited use for many climate applications for several
reasons, including a return cycle that is too long to resolve
typical weather cycles, limitations in providing nearshore
measurements and lack of directional information. Model
simulations can in many cases overcome these limitations,

but available measurements still play an essential role in cal-
ibrating and verifying the simulations.

In our case, one of the principal motivations for carrying
out this hindcast is to investigate the role of wave–ice interac-
tions in the interannual variability of Antarctic sea ice extent,
which plays an important role in the global climate system.
The ERA-Interim reanalysis is a suitable basis for this work,
providing a consistent long-term record, with careful con-
trol on any extraneous factors (e.g. changing data sources or
modelling methods) that might introduce artificial trends or
biases into the records. While the ERA-Interim reanalysis in-
cludes a coupled wave model, direct use of the wave outputs
does not fully meet our requirements, which include the need
for the wave hindcast to be independent of near-ice satellite
waves, which were assimilated into the ERA-Interim reanal-
ysis. Hence, we chose to carry out our own wave simulation,
forced with ERA-Interim wind fields but with no assimila-
tion of satellite wave measurements.

3.1 Comparison of model outputs with altimeter data

Rather than being assimilated in the hindcast, satellite al-
timetry measurements of significant wave height were used
as an independent source of model calibration. These were
obtained from the IFREMER database of multi-mission
quality-controlled and buoy-calibrated swath records (Quef-
feulou, 2004).

Swath records of significant wave height were first collo-
cated to the hourly model outputs on the 1◦× 1◦ model grid.
For each calendar month simulated, collocations were then
accumulated in 3◦× 3◦ blocks of nine neighbouring cells
to produce error statistics, including model mean, altimeter
mean, bias, root mean square error (RMSE) and correlation
coefficient R. Spatial averages of these error statistics were
taken over the full model domain between 65◦ S and 65◦ N
(excluding polar regions with insufficient coverage).

The final error statistic used in the objective function was
the spatially averaged RMSE, normalised by the spatially av-
eraged altimeter mean, temporally averaged over the simula-
tion period, excluding spinup.

3.2 WW3 parameters

For this simulation, we used version 4.18 of the WW3 third-
generation wave model (Tolman, 2014). The model repre-
sents the sea state by the two-dimensional ocean wave spec-
trum F(kxt), which gives the energy density of the wave
field as a function of wavenumber k, at each position x in
the model grid and time t of the simulation. The spectrum
evolves subject to a radiative transfer equation,

∂N

∂t
+∇x · (ẋN)+

∂

∂k

(
k̇N
)
+
∂

∂θ

(
θ̇N

)
=
S

σ
, (8)

for the wave action N (k,θ,x, t)= F(k,x, t)/σ (k), where σ
is the frequency associated with waves of wavenumber mag-
nitude k through the linear dispersion relation, and θ is the
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Table 2. Parameters used to calibrate the simulation using the source term package of Tolman and Chalikov (1996), for February through
April 1997. The first two columns list the parameter as defined in the WW3 v4.18 user manual (Tolman, 2014) and as specified in WW3
namelist input. The namelist groupings correspond to parameterisations related to wind input (SIN2), dissipation (SDS2), nonlinear in-
teractions (SNL1) and some “miscellaneous” parameters (MISC). Lower and upper bounds are specified for parameters adjusted during
calibration, along with their final values, and the corresponding index n of the normalised parameter vector, as used to label plots in Fig. 3.
Other parameters were fixed at the initial value.

Parameter Code variable Initial Lower bound Upper bound Final n

SIN2

Xs SWELLF 0.1 0.0 1.0 0.1175 1
c0 STABSH 1.38 1.0 1.8 1.374 2
ST0 STABOF −0.01 −0.02 −0.001 −0.01031 3
c1 CNEG −0.01 −0.02 −0.001 −0.01033 4
c2 CPOS 0.01 0.001 0.02 0.009666 5
−f1 FNEG 150.0 100.0 200.0 148.25 6

SDS2

a0 SDSA0 4.8 4.0 6.0 4.8045 7
a1 SDSA1 1.7×10−4 1.0×10−4 5.0×10−3 1.7023×10−4 8
a2 SDSA2 2.0 1.0 4.0 2.0120 9
b0 SDSB0 0.310−3

−0.01 0.01 0.0002059 10
b1 SDSB1 0.47 0.2 1.0 0.2494 11
φmin PHIMIN 0.003 0.002 0.005 0.002972 12

SNL1

C NLPROP 2.5×10−7 2.4×10−7 2.8×10−7 2.498×10−7 13

propagation direction. The dots represent time derivatives.
The terms on the left-hand side represent spatial advection
and the shifts in wavenumber magnitude and direction due to
refraction by currents and varying water depth. The source
term S on the right-hand side represents all other processes
that transfer energy to and from wave spectral components,
including contributions from wind forcing, energy dissipa-
tion and weakly nonlinear four-wave interactions.

Adjustable parameters within WW3 that can influence a
deep-water global simulation such as the one described here
are principally concentrated in the wind input and dissipa-
tion source terms. It is generally necessary to treat these
two terms together as a self-consistent “package” of input
and dissipation treatments designed to work together. In this
study, we undertook two separate calibration exercises, based
on two “packages” of input/dissipation source terms: firstly,
that of Tolman and Chalikov (1996) (activated in WW3 by
the ST2 switch), and secondly, the Ardhuin et al. (2010) for-
mulation (using the ST4 switch).

In Appendix B, we describe some of the details of these
two packages. We also include some description of the WAM
Cycle 4 (ST3) input source term formulation (Janssen, 1991),
on which the ST4 input term is based, even though the ST3
package was not tested in this study.

In addition to the input and dissipation terms, the other
main control on deep-water wave transformation is pro-
vided by weakly nonlinear four-wave interactions (Hassel-

mann, 1962). Unfortunately, acceptable run time require-
ments for multi-year simulations over extensive domains still
preclude using a near-exact computation of these terms, such
as the Webb–Resio–Tracy method (Webb, 1978; Tracy and
Resio, 1982) that is available in spectral models including
WW3 (van Vledder et al., 2000). Instead we use the much-
simplified form of the discrete interaction approximation
(Hasselmann et al., 1985), treating its proportionality con-
stant C as a tunable parameter.

Common to both optimisations, sea ice obstruction was
turned on (FLAGTR= 4) with non-default values for the
critical sea ice concentrations, εc,0 and εc,n, between which
wave obstruction by ice varies between zero and total block-
ing: these were set to 0.25 and 0.75, respectively. All other
available parameters beyond the input and dissipation terms
were left with default settings, noting that shallow water pro-
cesses, while activated, are not expected to have more than
a negligible and localised influence on model outputs in a
global simulation at 1◦ resolution.

For initial testing, in which two sets (ST2 and ST4)
of optimisation parameters were compared, we used a 1-
month (January 1997) spinup to a 3-month calibration pe-
riod (February–April 1997). The selection of the calibration
period from the full extent of the satellite record was arbi-
trary.

Relevant parameters used in the two calibrations are listed
in Tables 2 and 3, respectively, which refer to the parame-
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Table 3. As for Table 2 but for parameters used to calibrate the simulation using the source term package of Ardhuin et al. (2010), for
February through April 1997. The namelist groupings in bold correspond to parameterisations related to wind input (SIN4), dissipation
(SDS4), nonlinear interactions (SNL1) and some “miscellaneous” parameters (MISC). Lower and upper bounds are specified for parameters
adjusted during calibration, along with their final values, and the corresponding index n of the normalised parameter vector, as used to label
plots in Fig. 4.

Parameter Code variable Initial Lower bound Upper bound Final n

SIN4

βmax BETAMAX 1.52 1.0 2.0 1.5197 1
su TAUWSHELTER 1.0 0.0 1.5 0.9594 2
s2 SWELLF 0.8 0.5 1.2 0.8010 3
s1 SWELLF2 −0.018 −0.03 −0.01 −0.01812 4
s3 SWELLF3 0.015 0.01 0.02 0.01484 5
Rec SWELLF4 1.0×105 0.8×105 1.5×105 0.9973×105 6
s5 SWELLF5 1.2 0.8 1.6 1.2078 7
s7 SWELLF7 2.3×105 0.0 4.0×105 2.2600×105 8

SDS4

Csat
ds SDSC2 −2.2×10−5

−2.5×10−5 0.0 −2.1506×10−5 9
Ccu SDSCUM −0.40344 −0.5 0.0 −0.4020 10
Cturb SDSC5 0.0 0.0 1.2 0.4168 11
δd SDSC6 0.3 0.0 1.0 0.2654 12
Br SDSBR 0.0009 0.0008 0.0010 0.0009035 13
CBCK

ds SDSBCK 0.0 0.0 0.2 0.0 14
CHCK

ds SDSHCK 0.0 0.0 2.0 0.0933 15
sB SDSCOS 2.0 0.0 2.0 2.0 16

SNL1

C NLPROP 2.5×10−7 2.4×10−7 2.8×10−7 2.510×10−7 17

ter names as defined (more completely than we do here) in
the WW3 user manual (Tolman, 2014) and as specified in
namelist inputs to the model. These tables include the ini-
tial values of the parameters, the range over which they were
allowed to vary and the final optimised values. Other param-
eters not listed were kept fixed. A particular example was the
input wind vertical level zr (ST2)= zu (ST4)= 10 m, which
is a property of the input dataset and hence not appropriate
to adjust. Others were left fixed after an initial test confirmed
that they had negligible influence on the objective function,
leaving 13 adjustable parameters for ST2 and 17 for ST4.

The selection of which parameters to tune, and the range
over which they are allowed to vary, is an area where some
(partly subjective) judgement is still required, based on some
familiarity with the relevant model parameterisations. In this
case, parameter ranges were chosen to be physically realistic
and to cover the range of parameter choices used in previous
studies reported in the literature.

3.3 Optimisation settings

We elected to primarily use the BOBYQA optimisation algo-
rithm (Powell, 2009) for this study. Given that we expected
WW3 to be already reasonably well-tuned for a global sim-

ulation such as our test case, we wished to use a local opti-
misation algorithm that could reach a solution to a problem
with 10–20 variables in as few iterations as possible. Of the
algorithms available in NLopt that were included in the inter-
comparison study of Rios and Sahinidis (2012), BOBYQA
was found to be the most suitable in that respect. In particu-
lar, it allows for concurrent model runs in the early stages of
the optimisation process.

Both optimisations were stopped when either the abso-
lute change in (normalised) parameter values was less than
0.0001, or the relative change in the objective function was
less than 0.0001. Less stringent conditions were initially
used, but the ability of the optimisation suite to be restarted
with revised stopping criteria was invoked to extend the op-
timisation.

These first two tests used a local optimisation method on
the assumption that the respective default parameter sets are
near optimal or at least within the “basin of attraction” of the
optimal solution. In order to test this assumption, two fur-
ther approaches can be considered. The first choice would
be to use a truly global optimisation algorithm to explore
the selected parameter space as thoroughly as possible. This
approach may be expected to require a number if iterations
in the thousands, which is rather challenging given typical
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model run times, especially as global methods do not gener-
ally allow for parallel iterations.

A simpler approach is to still use a local algorithm but ini-
tialise it at a range of different starting points. This was the
approach we took for our next set of tests, restricted to the
ST4 case, in which the initial value of each parameter was
selected at random with uniform probability distribution over
its allowed range. Five randomised tests were done, along
with a control optimisation starting from the default param-
eter set used previously. For these tests, we made some fur-
ther simplifications in the interests of computational speed,
running the hindcast for only 1 month (February 1997) and
initialising all simulations from a common initial condition,
spun up over 1 month with the default parameter set. Both
simplifications detract from how applicable the resulting pa-
rameter sets would be for hindcast applications but can be
justified in allowing a more extensive examination of param-
eter space with a given computational resource. A slightly re-
duced set of ST4 parameters was optimised, omitting CBCK

ds ,
CHCK

ds and sB. The initial and final values of these parameters
from each of the tests are listed in Tables 4 and 5, respec-
tively. The allowed range of each of the adjustable parame-
ters was the same as in the previous simulations, as listed in
Table 3, while both stopping criteria were relaxed to a value
of 0.005.

Despite the expected high computational demands, we
next attempted an optimisation using the global evolution-
ary algorithm ESCH of da Silva Santos et al. (2010). This
was initialised from the default parameter values and used
the same 1-month hindcast, parameter ranges and stopping
criteria as described above.

Following these test simulations, the ST4 parameterisa-
tion was chosen for a final calibration, carried out over a
12-month period (January–December 1997) following a 1-
month spinup (December 1996). This calibration was fi-
nally terminated with both stopping criteria set to a value
of 0.0001. This was a somewhat arbitrary choice made to
observe the evolution of the solution. For practical applica-
tions, the choice of stopping criteria should take into account
the sensitivity of the objective function to measurement er-
ror in the data used for the calibration, to avoid unnecessary
“overtuning” of the model.

The full hindcast, from January 1979 to December 2016,
was then run using the optimised parameter set. Compar-
isons with altimeter data were made for each month from
August 1991 onward.

Each WW3 simulation was run on 64 processors on a sin-
gle core of either an IBM Power6 or a Cray XC50 machine.
Other processing tasks within the suites were run on single
processors. The resulting hindcast simulations required an
average of approximately 25 min of wall-clock time to com-
plete each month of simulation.

4 Results

4.1 Local optimisation of 3-month hindcasts with ST2
and ST4 source terms

The BOBYQA algorithm develops a quadratic model of the
objective function. To do so, the first iteration evaluates the
objective function at the initial point, then perturbs each com-
ponent in turn by a positive increment, then by an equal neg-
ative increment (leaving all other components at the initial
value). This can be seen for the ST2 optimisation in Fig. 3, in
which the bottom panel shows the sequence of (normalised)
parameter values tested. With 13 adjustable parameters, this
amounts to 27 iterations in this preliminary phase. As this
sequence of parameter values is fixed, independent of the re-
sulting objective function values, all of the first 27 iterations
could have been run simultaneously as detailed above, if per-
mitted by the queuing system. We, however, applied a limit
of seven parallel iterations in line with anticipated resource
limitations.

The 3-month ST2 optimisation only required a further
seven iterations after this initial phase to reach a stopping cri-
terion. The ST2 default parameter settings used as the start-
ing point for optimisation resulted in an objective function
value of 0.1901, which was reduced to 0.1424 in the optimi-
sation process.

In the optimal configuration, none of the tunable parame-
ters were at either of the limits of their imposed range, indi-
cating that convergence to a true minimum (at least locally)
had been reached. Most of the parameters were only slightly
modified from their initial values: the largest changes were
in parameters b0 (reduced from 0.0003 to 0.0002059) and b1
(0.47 to 0.2493), both influencing the low frequency dissipa-
tion term.

The ST4 3-month optimisation was initialised with the de-
fault settings from the TEST451 case reported by Ardhuin
et al. (2010), for which the objective function returned a
value of 0.1427. Optimisation only managed to reduce this
to 0.1419 (Fig. 4), indicating that the default ST4 parameter
set was already quite closely tuned for our case, having been
selected by Ardhuin et al. (2010) largely from broadly similar
studies, i.e. global simulations (at 0.5◦ resolution) compared
with altimeter records.

Three of the parameters ended the optimisation at one
end of their allowed range, in each case at the same value
at which it was initialised. The 16th adjustable parameter
(sB) controls the assumed directional spread of the dissi-
pation spectrum, and the fact that it remained at its upper
limit suggests that the optimisation may be improved by as-
suming the dissipation spectrum to have a narrower direc-
tional distribution than anticipated. On the other hand, pa-
rameters 14 (CBCK

ds ) and 15 (CHCK
ds ) are associated with an al-

ternative breaking formulation proposed by Filipot and Ard-
huin (2012), who chose values CBCK

ds = 0.185 and CHCK
ds =

1.5 (and correspondingly, turned off the default saturation-
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Figure 4. Sequence of objective function values (a) and parameter
vector components (b) at each iteration in the 3-month (February–
April 1997) ST2 calibration. The red dashed line marks the optimal
solution found.

based dissipation term by settingCsat
ds = 0), whereas this term

is turned off in the ST4 default; hence, both were initially
set to zero. On the face of it, one might think that the op-
timisation algorithm would have been free to explore solu-
tions with positive values of these parameters, resulting in
an optimal “hybrid” total dissipation term. In fact, the way
the dissipation algorithm is coded, this form of the dissipa-
tion term is not computed at all in the event that CBCK

ds = 0.0,
which would have been the case when the BOBYQA algo-
rithm explored sensitivity to CHCK

ds in the initial stages. This
means that our choice of initial values may have spuriously
caused the BOBYQA algorithm to underestimate sensitivity
to CHCK

ds and may have missed a distinct second local mini-
mum (approximately corresponding to the parameter settings
of Filipot and Ardhuin, 2012).

4.2 Tests with local optimisation with randomised
initial parameter sets and global optimisation

The next set of five tests compared results of the local
BOBYQA algorithm starting from different parameter sets
chosen at random within the allowed ranges (Table 4). The
resulting final parameter sets, listed in Table 5, show that
each test located a different minimum. This indicates that
there are multiple local minima for the error metric in our
chosen parameter ranges, in addition to the local minimum
derived from the default parameters. The corresponding val-
ues of the error metric were all slightly higher than the value
(0.1454) obtained from the baseline optimisation starting
from the default parameter set, although much reduced from
their initial values (Table 4). Although none of those addi-
tional local minima found so far have replaced the baseline
set as a candidate for a global optimum, this gives no guar-
antee that this would not be the case after a more thorough
search.

The attempted global optimisation (using the ESCH algo-
rithm) of the same hindcast had not converged to within the
chosen tolerances after 800 cycles. However, in the course
of its operation, it did identify over 30 parameter sets with
slightly lower error metric than the minimum value (0.1450)
obtained in the corresponding baseline local optimisation.
The lowest value within 800 iterations was 0.1441, and the
corresponding parameter values are included in Table 5. This
supports our suspicion that a local optimisation algorithm
cannot be relied upon to identify the global optimum for this
hindcast problem. On the other hand, the very small decrease
in the error metric obtained from this wider search does not
give strong justification for making a significant change in
parameters from near their default values. We need to bear in
mind that the optimisation problem we have addressed in this
set of tests (i.e. minimising RMS errors in significant wave
height from a 1-month partial hindcast) is not quite the same
as optimising this measure over a more representative period.

4.3 Local optimisation of 12-month hindcast with ST4
source terms

In the final 12-month ST4 optimisation, two additional pa-
rameters were allowed to vary that were fixed in the 3-
month optimisation, bringing the number of adjustable pa-
rameters to 19. These were the critical sea ice concentration
parameters εc,0 and εc,n between which wave obstruction by
ice varies between zero and total blocking: these had been
fixed at 0.25 and 0.75, respectively, in the 3-month optimisa-
tions. Otherwise, the initial parameters (Table 4) again corre-
sponded to the ST4 defaults, which in this case produced an
error metric of 0.1436. At the termination after 89 iterations
(with the more stringent stopping criteria), this had decreased
to 0.1431.

Most of the resulting optimised parameters (Table 6) were
close to the values obtained from the 3-month optimisation
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Table 4. Initial parameters used to calibrate the simulations using the source term package of Ardhuin et al. (2010), for February 1997, using
randomised initial conditions (simulations 1–5). Simulation 0 is the control case, with default initial parameters.

Simulation number

Parameter Code variable 0 1 2 3 4 5

SIN4

βmax BETAMAX 1.520 1.215 1.160 1.538 1.660 1.550
su TAUWSHELTER 1.000 0.244 1.281 1.381 0.996 0.950
s2 SWELLF 0.800 0.962 0.948 0.582 0.995 1.026
s1 SWELLF2 −0.018 −0.022 −0.012 −0.026 −0.0253 −0.018
s3 SWELLF3 0.015 0.016 0.014 0.0116 0.0131 0.0159
Rec SWELLF4 1.000×105 1.428×105 1.368×105 1.295×105 0.837×105 0.809×105

s5 SWELLF5 1.200 1.100 1.411 1.589 1.290 1.290
s7 SWELLF7 2.300×105 1.188×105 2.908×105 0.621×105 2.492×105 2.905×105

SDS4

Csat
ds SDSC2 −2.200×10−5

−1.528×10−5
−1.069×10−5

−1.493×10−5
−1.639×10−5

−1.303×10−5

Ccu SDSCUM −0.403 −0.159 −0.470 −0.488 −0.205 −0.387
Cturb SDSC5 0.000 1.116 1.074 1.025 0.476 0.882
δd SDSC6 0.300 0.957 0.596 0.947 0.855 0.583
Br SDSBR 9.00×10−4 9.13×10−4 8.24×10−4 8.14×10−4 9.73×10−4 8.39×10−4

SNL1

C NLPROP 2.500×107 2.690×107 2.794×107 2.644×107 2.780×107 2.437×107

Initial error score 0.1454 0.1685 0.2346 0.1722 0.2156 0.1677

Table 5. Final values of parameters from simulations using the source term package of Ardhuin et al. (2010), for February 1997, using
BOBYQA with randomised initial conditions (simulations 1–5) and using ESCH with default initial parameters. Simulation 0 is the control
case, using BOBYQA with default initial parameters.

Simulation number

Parameter Code variable 0 1 2 3 4 5 ESCH

SIN4

βmax BETAMAX 1.515 1.348 1.221 1.671 1.491 1.599 1.520
su TAUWSHELTER 0.950 0.244 1.275 1.385 1.035 0.953 0.898
s2 SWELLF 0.811 0.761 0.872 0.591 1.065 0.986 0.800
s1 SWELLF2 −0.0178 −0.0256 −0.0120 −0.0148 −0.0226 −0.0248 −0.018
s3 SWELLF3 0.0149 0.0168 0.0134 0.0112 0.0150 0.0170 0.0150
Rec SWELLF4 0.996×105 1.428×105 1.376×105 1.339×105 0.837×105 0.809×105 1.198×105

s5 SWELLF5 1.201 1.099 1.406 1.589 1.291 1.290 0.973
s7 SWELLF7 2.30×105 1.19×105 2.84×105 0.64×105 2.47×105 2.89×105 2.42×105

SDS4

Csat
ds SDSC2 −2.12×10−5

−1.75×10−5
−0.09×10−5

−1.93×10−5
−2.05×10−5

−1.29×10−5
−2.34×10−5

Ccu SDSCUM −0.401 −0.158 −0.469 −0.488 −0.209 −0.387 −0.454
Cturb SDSC5 0.386 1.116 1.067 1.027 0.526 0.831 0.567
δd SDSC6 0.246 0.957 0.560 0.940 0.860 0.585 0.043
Br SDSBR 9.03×10−4 9.19×10−4 8.26×10−4 8.20×10−4 9.72×10−4 8.38×10−4 9.09×10−4

SNL1

C NLPROP 2.51×107 2.69×107 2.80×107 2.69×107 2.78×107 2.44×107 2.45×107

Error score 0.1450 0.1479 0.1513 0.1515 0.1501 0.1500 0.1441

Iterations 38 37 41 62 37 39 800+
(not converged)
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Figure 5. Sequence of objective function values (a) and parameter
vector components (b) at each iteration in the 3-month (February–
April 1997) ST4 calibration. The red dashed line marks the optimal
solution found.

(Table 3). An exception was the 11th adjustable parame-
ter, Cturb , scaling the strength of the turbulent contribution
to dissipation, which finished the 3-month optimisation at
0.41298, but at 0.0 (the lower bound) in the 12-month simu-
lations.

For this longer optimisation, we have additionally com-
puted a measure of the sensitivity of the objective function,
using the initial phase of the BOBYQA iterations to estimate
the change in the (un-normalised) parameter required to pro-
duce a 0.1 % change in the objective function. This is listed
as “delta” in the seventh column of Table 6, and provides
a measure, at least in relative terms, of the bounds within
which each parameter value has been determined.

The full hindcast, run from 1979 to 2016, could be com-
pared with satellite data from August 1991 onward. The re-
sulting bias in significant wave height, averaged over the Au-
gust 1991–December 2016 comparison period, is shown in
Fig. 6. Positive biases are obtained in latitudes south of 45◦ S,
particularly south of Australia and in the South Atlantic. This
is also seen in the vicinity of some island groups (notably
French Polynesia, Micronesia, the Maldives, Aleutians, Car-
ribean and Azores), which may be indicative of insufficient
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Figure 6. Bias in significant wave height from the hindcast com-
pared with satellite altimeter measurements, over the period Au-
gust 1991–December 2016.

subgrid-scale obstruction. On the other hand, negative biases
are seen near the western sides of major ocean basins and
in the “swell shadow” to the northeast of New Zealand. A
similar pattern is seen in the results reported by Ardhuin et
al. (2010) for their TEST441 case (their Fig. 9).

Normalised root mean square error (i.e. RMSE divided by
the observed mean) from the same comparison, again aver-
aged over the period August 1991–December 2016, is shown
in Fig. 7. Note that the objective function for our optimisa-
tion used this measure, spatially averaged over ocean waters
between 61◦ S and 61◦ N. For the majority of the ocean sur-
face, this lies in the range 0.08–0.14 but with higher values
near some island chains and the western boundaries of ocean
basins. Again, similar results were reported by Ardhuin et
al. (2010).

5 Discussion

In their review of methods used to tune numerical weather
prediction and climate models, Hourdin et al. (2017) observe
that with the number and complexity of parameterisations
to consider, the task of tuning these parameters was for a
long time largely left to “expert judgement”, and that objec-
tive methods have made a more recent appearance than in
the statistical, engineering and computing fields. The method
we have presented here, along with the approaches of Sev-
erijns and Hazeleger (2005), Tett et al. (2013) and Roach
et al. (2017) described in the introduction, performs model
tuning through the relatively direct approach of defining and
minimising a cost function. Our method has the advantage
of employing a tool (Cylc) that is already commonly used to
control complex workflows for weather forecasting and cli-
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Table 6. As for Table 3 but for parameters used to calibrate the simulation using the source term package of Ardhuin et al. (2010), for January–
December 1997. The delta value in the seventh column is the estimated change in the (un-normalised) parameter required to produce a 0.1 %
change in the objective function.

Parameter Code variable Initial Lower bound Upper bound Final Delta n

SIN4

βmax BETAMAX 1.52 1.0 2.0 1.5194 0.02498 1
su TAUWSHELTER 1.0 0.0 1.5 0.9339 0.2706 2
s2 SWELLF 0.8 0.5 1.2 0.8224 0.0206 3
s1 SWELLF2 −0.018 −0.03 −0.01 −0.01721 0.00064 4
s3 SWELLF3 0.015 0.01 0.02 0.01526 0.00042 5
Rec SWELLF4 1.0×105 0.8×105 1.5×105 0.9888×105 0.2328×105 6
s5 SWELLF5 1.2 0.8 1.6 0.9360 0.3974 7
s7 SWELLF7 2.3×105 0.0 4.0×105 2.2433×105 0.7911×105 8

SDS4

Csat
ds SDSC2 −2.2×10−5

−2.5×10−5 0.0 −2.1433×10−5 0.0087×10−5 9
Ccu SDSCUM −0.40344 −0.5 0.0 −0.40194 0.02145 10
Cturb SDSC5 0.0 0.0 1.2 0.0 – 11
δd SDSC6 0.3 0.0 1.0 0.2736 0.0928 12
Br SDSBR 9.0×10−4 8.0×10−4 10.0×10−4 8.9788×10−4 0.0951 ×10−4 13
CBCK

ds SDSBCK 0.0 0.0 0.2 0.0 – 14
CHCK

ds SDSHCK 0.0 0.0 2.0 0.0 – 15
sB SDSCOS 2.0 0.0 2.0 2.0 0.0757 16

SNL1

C NLPROP 2.5×107 2.4×107 2.8×107 2.5181×107 0.1191×107 17

MISC

εc,0 CICE0 0.25 0.15 0.45 0.2413 0.1285 18
εc,n CICEN 0.75 0.55 0.85 0.7521 0.2358 19
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Figure 7. Normalised root mean square error in significant wave
height from the hindcast compared with satellite altimeter measure-
ments, over the period August 1991–December 2016.

mate modelling systems, to optimise the parameters of such a
system under its control, in a way that is simple to implement
and flexible in choice of optimisation algorithm.

We have shown this to be a practical method for optimising
10–20 parameters in a model application of sufficient com-
plexity to require several hours per simulation in a parallel
processing computing environment. For applications that are
yet more time-consuming, it is becoming increasingly com-
mon (Bellprat et al., 2012; Wang et al., 2014; Duan et al.,
2017) to first build a surrogate model to provide a statisti-
cal emulator for the actual model and then apply an opti-
misation algorithm to the surrogate model. Such multi-stage
model optimisation frameworks are beyond the scope of this
paper, but the flexibility of our approach could potentially
bring benefits to them as well. For example, it may be worth
considering a hybrid approach of using a surrogate model
to quantify the role of the full set of model parameters and
perform an initial global optimisation, before switching to a
method such as ours for a final refinement using the original
model directly.

In our study, we have largely restricted our attention to
one local optimisation algorithm (BOBYQA), but our initial
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results suggest the need in some circumstances to apply a
more global method. This is not difficult to do in principle,
with multiple algorithms, both global and local, implemented
in Cyclops. However, the generally higher computational de-
mands of a global algorithm put a limit on such applications.
In this study, we have only been able to undertake a prelim-
inary exploration of the wider parameter space of our single
chosen test case. This did, however, illustrate that the pos-
sibility of multiple alternative local minima must be consid-
ered.

As we have seen, there remains a need for care with the
choices of which parameters to attempt to optimise and what
bounds to set on their values. Most optimisation algorithms
are intended for continuously variable parameters and may
rely on the objective function having a continuous depen-
dence on these parameters. In many cases, it is clear which
parameters fall into this category, as opposed to discrete val-
ued options. But in some cases, model code may make bi-
nary choices based on real parameters lying within discrete
ranges, which may break this assumption. Hence, the Cy-
clops optimisation suite is best employed in conjunction with
a good understanding of the role each parameter plays in the
model and the interplay between them.

It is also important to be aware of the role played by the de-
sign of the error metric, which may make it sensitive to some
parameters and insensitive to others. One should be wary of
accepting a large change in these insensitive parameters to
achieve a tiny improvement in the chosen error metric, when
the resulting model could then perform poorly against other
relevant criteria. In the particular wave modelling case we
have investigated, our approach would not be sufficient on
its own to identify suitable values of the large set of WW3
parameters without guidance from previous studies.

Tett et al. (2017) point out that the inherently chaotic na-
ture of the climate system means that a certain level of noise
is introduced into evaluations of an atmospheric model sim-
ulation, which can cause problems in evaluating the termi-
nation criteria. They describe a procedure to rerun a simula-
tion that had nominally satisfied the prescribed convergence
criteria, with randomised perturbations before determining
whether or not to terminate. Unlike the atmosphere, ocean
surface waves are an essentially dissipative system, and per-
turbations introduced in the initial conditions and forcing
will tend to diminish, rather than grow, with time. As a result,
noise in the objective function was not so relevant for our
wave hindcast application as for atmospheric models but may
need to be addressed in systems with an underlying chaotic
nature, possibly through implementing similar measures to
those of Tett et al. (2017) into Cyclops.

Similarly, the dissipative nature of ocean waves means that
a cost function based on a spatial average of the (temporal)
RMSE of model–data comparisons will not be subject to the
level of chaotic variability seen in similar measures for atmo-
spheric models. Small-scale variability in wave model output
is therefore more likely to be genuinely sensitive to parame-

ter variation. In that case, it is worth capturing such variabil-
ity in the cost function, whereas for a chaotic system it may
be wiser to average out such variability before evaluating the
cost function.

6 Conclusions

The Cyclops Cylc-based optimisation suite offers a flexi-
ble tool for tuning the parameters of any modelling system
that has been implemented to run under the Cylc workflow
engine. Minimal customisation of the modelling system is
required beyond providing tasks to input and apply model
parameter values in a simple namelist format and output
the value of the scalar error metric that is to be minimised.
This then allows any of 16 optimisation algorithms (from the
NLopt toolbox) to be applied to the optimisation. This opti-
misation suite is expected to be especially applicable to oper-
ational forecasting systems, where minimal reconfiguration
is required between “tuning” and “operational/production”
versions of the forecast suite.

Results of the initial test case we have investigated, a
global hindcast using a spectral wave model forced by ERA-
Interim input fields, illustrate that the method is applicable
to a modelling system of moderate complexity, both in terms
of the number of parameters to tune and the computational
resources required, at least for the purposes of local optimi-
sation to fine tune a model that already has a more-or-less
well-developed initial parameter set from previous studies.
Investigations of systems that require a more global tuning
approach, or are more computationally demanding, remain
for future work.

Code and data availability. Cyclops-v1.0 has been published
through Zenodo (https://doi.org/10.5281/zenodo.837907) under a
Creative Commons Attribution Share-Alike 4.0 licence.

Cylc is available from GitHub (https://cylc.github.io/cylc/)
and Zenodo (https://zenodo.org/badge/latestdoi/1836229) under the
GPLv3 licence.

The following additional software and data was used in this
study:

– NLopt nonlinear-optimization package (version 2.4.2)
(http://ab-initio.mit.edu/nlopt, Johnson, 2014),

– Wavewatch III (version 4.18) (http://polar.ncep.noaa.gov/
waves/wavewatch/),

– ERA-Interim surface fields (https://www.ecmwf.int/en/
forecasts/datasets/archive-datasets/reanalysis-datasets/
era-interim),

– IFREMER Satellite altimeter data (ftp://ftp.ifremer.fr/ifremer/
cersat/products/swath/altimeters/waves/data/).
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Appendix A: Handling concurrent simulations through
dependencies

An alternative way to allow for concurrent simulations
involves modifying the simple Cylc suite described above to
have several versions of the “Optimise” task. Now “Opt_m”
runs the optimisation algorithm when there are m active
model simulations still running, with m ranging from 0 to
a set maximum M − 1, where M is the maximum number
of concurrent cycles we chose to allow. There is a more
complex set of dependencies to ensure that this is the case.
In particular, there is a condition

Table[−P(m+ 1)] => Opt_m

to ensure that the lookup table has been updated with
the results of all completed (i.e. inactive) cycles. If that is the
case, the optimisation code will be run to determine if a new
model simulation can be launched while those m tasks are
active. If not, the suite will wait until one of the active model
runs completes and try again with “Opt_m−1” and so forth.

The dependency diagram for the case in which up to three
concurrent simulations are allowed (i.e.M = 3) is illustrated
in Fig. A1. Assume, for example, that we are still well short
of convergence and that the optimisation algorithm is such
that the next parameter set tested depends on all previous re-
sults. Then, “Opt_2” and “Opt_1” will always give a “wait”
message, and “Opt_0” will be needed on each cycle. This ef-
fectively produces the same behaviour as in Fig. 1, with each
cycle waiting for the immediately preceding cycle to com-
plete before “Opt_0” can start, leading to a new model run.
If, on the other hand, the algorithm never depends on the re-
sults of the previous two (active) calculations, “Opt_2” will
always give a “next” message. This removes the “Opt_1 and
“Opt_0” tasks (and any dependencies upon them), leading to
the “Model” task being called for cycle N as soon as the cy-
cle N − 3 model run has completed and updated the lookup
table, even if the cycle N − 2 and N − 1 “Model” tasks are
still running.

Appendix B: WW3 source term parameterisations

B1 Tolman and Chalikov input + dissipation source
term package

The input source term is defined as

Sin(kθ)= σβN(kθ), (B1)

where β is a non-dimensional wind–wave interaction param-
eter, which has a parameterised dependence on wind speed
and direction, through boundary layer properties influenced
by the wave spectrum. These dependencies are, however,
fully determined with no user-adjustable terms, so we omit
the details here.

This input term was, however, adjusted by Tolman (2002)
following a global test case to ameliorate an excessive dissi-
pation of swell in weak or opposing winds, in which cases β
can be negative. This is done by applying, when β is negative,
a swell filtering scaling factor with a constant value Xs for
frequencies below 0.6fp (where fp is the peak frequency),
scaling linearly up to 1 at 0.8fp, with higher frequencies un-
modified.

The same study also led to the introduction of a correction
for the effects of atmospheric stability on wave growth iden-
tified by Kahma and Calkoen (1992) by replacing the wind
speed u with an effective wind speed ue, with(ue

u

)2
= 1+ c1 tanh(max(0,f1 {ST−ST0})) (B2)

+ c2 tanh
(

max
(

0,f1
c1

c2
{ST−ST0}

))
,

where ST is a bulk stability parameter,

ST=
hg

u2
h

Ta− Ts

T0
, (B3)

in terms of air, sea and reference temperatures Ta, Ts and
T0, respectively, and uh is the wind speed at reference height
h= 10 m, with g the gravitational acceleration. As air and
sea surface temperature fields are available from the ERA-
Interim dataset, it was possible to apply this parametrisation,
treating c0, c1, c2, f1 and ST0 as adjustable dimensionless
parameters.

The dissipation term consists of a dominant low-frequency
constituent, with an empirical frequency dependence param-
eterised by constants b0, b1, φmin and a high-frequency term,
parameterised by constants a0, a1 and a2, the details of which
we leave for the WW3 manual (Tolman, 2014) and original
references therein.

B2 WAM Cycle 4 source term package

The input source term implemented in WAM Cycle 4 by
Janssen (1982) was based on the wave growth theory of
Miles (1957). The starting point is the assumption the wind
speed U has a logarithmic profile, so that if the wind fields
input to the model are specified at elevation zu, then

U (zu)=
u∗

κ
log

(
zu

z1

)
, (B4)

where u∗ is the friction velocity, defined by the total wind
stress τ = u2

∗, κ is von Karman’s constant, and z1 is a rough-
ness length modified by wave conditions:

z1 =
z0

√
1− τw/τ

, (B5)

in which τw is the magnitude of the wave-supported stress,
while

z0 = α0τ/g, (B6)
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Figure A1. Dependency graph for the Cyclops optimisation suite, configured to use dependencies to allow for concurrent simulations. This
example shows four successive cycles, for the case in which up to three parallel simulations are allowed. Arrows represent dependency,
which in some cases are combined by a logical OR (enclosed “+” symbol). All tasks and explicit dependencies (other than suicide triggers)
are shown for cycle N , but dependencies on cycles before N − 3 are omitted for clarity.

with α0 a tunable dimensionless parameter.
The wave-supported stress can be equated to the rate of

momentum transfer between wind and waves:

τw =

∫
dkdθ

k

C
Sin(kθ), (B7)

where c is the wave phase velocity. The WAM Cycle 4 input
source term is then given by

Sin (k,θ)=
ρa

ρw

βmax

κ2 eZZ4
(u∗
C
+ zα

)2
(B8)

[max(cos(θ − θu) ,0)]pinσN (k,θ)+ Sout(kθ),

with

Z = log(kz1)+
κ

cos(θ − θu)
(
u∗
C
+ zα

) . (B9)

In these terms, ρa and ρw are the densities of air and water,
βmax is a dimensionless constant, zα is a wave-age tuning
parameter, and pin is a parameter controlling the directional
dependence relative to the wind direction θu.

The interdependence of τw and Sin expressed in Eqs. (B7)
and (B8) creates an implicit functional dependence of u∗ on
U and τw/τ . In practice, this dependence can be tabulated,
using the resolved model spectrum for the low-frequency
(k < kmax) part of Eq. (B7), above which a f−5 diagnostic
tail is assumed.

The Sout term represents a linear damping of swells, in the
form (Bidlot, 2012)

Sout (k,θ)= (B10)

2s1κ
ρa

ρw

(u∗
C

)2
[

cos(θ − θu)−
κC

u∗ log(kz0)

]
σN (k,θ) ,

with s1 set to 1 (0) to turn on (off) the damping.
Dissipation is represented in the form

Sds (k,θ)= Cdsα
2σ

[
δ1
k

k
+ δ2

(
k

k

)2
]
N (k,θ) , (B11)

where Cds is a dimensionless constant, and δ1 and δ2 are
weighting parameters. These take values Cds =−1.33, δ1 =

0.5 and δ2 = 0.5 in the ECMWF implementation of WAM
as reported by Bidlot (2012) but are adjustable within WW3.
Mean wavelength and frequency are defined as

k =

[∫
kpN (k,θ)dk∫
N (k,θ)dk

]1/p

, (B12)

and

σ =

[∫
σpN (k,θ)dk∫
N (k,θ)dk

]1/p

, (B13)

with p = 0.5 and p = 1 being the respective WAM defaults
(Bidlot, 2012), while mean steepness is

α = Ek
2
. (B14)
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B3 Ardhuin (2010) source term package

This package introduces a saturation-based dissipation term.
In order to accommodate this, the WAM Cycle 4 input source
function is modified by replacing u∗ in Eq. (B8) with a
frequency-dependent form:

(
u′∗ (k)

)2
=

∣∣∣∣∣∣u2
∗− |su|

∣∣∣∣∣∣
k∫

0

dk′
∫

dθ
k′

C
Sin(k

′,θ)

∣∣∣∣∣∣
∣∣∣∣∣∣ , (B15)

in which su ≈ 1 is a sheltering coefficient, to allow for bal-
ance with a saturation-based dissipation term. Also, a limit
can be placed on the roughness length z0, replacing Eq. (B6)
with

z0 =min(α0τ/g,z0,max). (B16)

The swell dissipation parameterisation of Ardhuin et
al. (2009) is used, consisting of terms

Sout,visc (k,θ)=−s5
ρa

ρw

[
2k
√

2νaσ
]
N (k,θ) (B17)

and

Sout,turb (k,θ)=−
ρa

ρw

[
16feσ

2uorb,s/g
]
N (k,θ) , (B18)

due to effects of the viscous and turbulent boundary layers,
respectively. The latter depends on the significant surface or-
bital velocity,

uorb,s = 2
[∫

dkdθσ 3N(k,θ)

]1/2

, (B19)

while νa is air viscosity and s5 is a tunable coefficient of or-
der 1. The two terms are combined in weighted form:

Sout (k,θ)= r−Sout,vis (k,θ)+ r+Sout,turb (k,θ) , (B20)

with weights

r± = 0.5
(
1± tanh

(
(Re−Re′c)/s7

))
, (B21)

depending on a modified air–sea boundary layer Reynolds
number,

Re= 2uorb,sHs/νa, (B22)

which is taken to have a threshold value depending on signif-
icant wave height:

Re′c = Rec(4m/Hs)
1−s6 . (B23)

The turbulent dissipation term is parameterised to depend
on wind speed and direction:

fe = s1fe,GM+ [|s3| + s2 cos(θ − θu)]u∗/uorb, (B24)

based on the friction factor fe,GM from the Grant and Mad-
sen (1979) theory of oscillatory boundary layer flow over a
rough surface.

The dissipation term is based on the saturation of the wave
spectrum and takes the form

Sds (k,θ)=σ
Csat

ds
B2

r

[
δdmax(B (k)−Br ,0)2 (B25)

+(1− δd)max(B ′ (k,θ)−Br ,0)2
]

N (k,θ)+ Sbk,cu(kθ)+ Sturb(kθ),

where the dissipation spectrum is integrated over a limited
direction range, i.e.

B ′ (k,θ)=

θ+1θ∫
θ−1θ

σk3cossB (θ − θ ′)N (k,θ)dθ ′ (B26)

and

B(k)=max(B ′ (k,θ)θ ∈ [0,2π ]). (B27)

The cumulative breaking term, associated with large-scale
breakers overtaking short waves, is

Sbk,cu (k,θ)=
−14.2Ccu

π2 N (k,θ) (B28)

r2
cuk∫
0

dk′
2π∫

0

dθ ′max
{√
B (f ′,θ ′)−

√
Br ,0

}2
,

where rcu = 0.5 and Ccu is a tuning coefficient. The turbulent
dissipation term is

Sturb (k,θ)=−2Cturbσ cos(θu− θ)k
ρau

2
∗

gρw
N(k,θ). (B29)

An alternative breaking formulation (Filipot and Ardhuin,
2012) based on a bore model uses a dissipation rate per unit
crest length of

εCK =
1
4
ρwg

[
CBCK

ds H

tanh(kh)C
HCK
ds

]3√
gk

tanh(kh)
. (B30)
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