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Abstract. Previous research has shown that land surface
models (LSMs) are performing poorly when compared with
relatively simple empirical models over a wide range of met-
rics and environments. Atmospheric driving data appear to
provide information about land surface fluxes that LSMs are
not fully utilising. Here, we further quantify the informa-
tion available in the meteorological forcing data that are used
by LSMs for predicting land surface fluxes, by interrogating
FLUXNET data, and extending the benchmarking methodol-
ogy used in previous experiments. We show that substantial
performance improvement is possible for empirical models
using meteorological data alone, with no explicit vegetation
or soil properties, thus setting lower bounds on a priori ex-
pectations on LSM performance. The process also identifies
key meteorological variables that provide predictive power.
We provide an ensemble of empirical benchmarks that are
simple to reproduce and provide a range of behaviours and
predictive performance, acting as a baseline benchmark set
for future studies. We reanalyse previously published LSM
simulations and show that there is more diversity between
LSMs than previously indicated, although it remains unclear
why LSMs are broadly performing so much worse than sim-
ple empirical models.

1 Introduction

Land surface models (LSMs) represent the land surface
within climate models, which underlie most projections of
future climate, and inform a range of impacts, adaptation, and
policy decisions. LSMs are also routinely used in numerical
weather prediction and offline hydrological modelling sce-
narios. Recently, Best et al. (2015) (PLUMBER hereafter)

conducted a multi-model benchmarking experiment, com-
paring a broad set of current LSMs to a handful of simple
empirical models at multiple sites and for multiple fluxes.
PLUMBER showed that current LSMs are not performing
well relative to simple empirical models trained out of sam-
ple: an instantaneous simple linear regression on incoming
shortwave radiation was able to out-perform all LSMs for
sensible heat prediction, and a three-variable cluster-plus-
regression model was able to out-perform all LSMs for all
fluxes. A follow-up study (Haughton et al., 2016) ruled out
a number of potential methodological and data-based causes
for this result, and it remains unclear why LSMs are unable
to out-perform simple empirical models.

Many of the processes involved in LSMs demonstrate non-
linear interactions with other processes. It is also rarely (if
ever) possible to capture enough observationally based infor-
mation about a single process, in isolation from other pro-
cesses, to define clear physical relationships from empirical
data for the wide range of circumstances in which we ex-
pect a climate model to perform. This problem is an example
of “confirmation holism”, the idea that a single hypothesis
cannot be tested in isolation from auxiliary hypotheses upon
which it relies. The efficacy of a model’s treatment of a par-
ticular process can only be tested within the structure and set
of assumptions of that particular model. Observations typi-
cally only inform the result of a chain of process representa-
tions, so that a confirming result is holistic; we are unable to
know whether a performance improvement is because of bet-
ter representation or because of compensating biases. Con-
firmation holism is discussed in depth in a broader climate
modelling context in Lenhard and Winsberg (2010).

On top of this uncertainty about how the system oper-
ates in a general sense, there are often significant problems
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with obtaining reliable observational data of measurable pro-
cesses (e.g. lack of energy closure, Wilson et al., 2002; or
inconsistencies between different soil heat flux measurement
equipment, Sauer et al., 2003). Consequently, process repre-
sentations will always contain a mix of both “aleatory” un-
certainty – unknowable uncertainty, such as non-systematic
measurement error4 or irreducible noise from chaotic dy-
namics, and “epistemic” uncertainty – uncertainty related to
our lack of knowledge of the system, including systematic
measurement biases, unaccounted-for variables, or misun-
derstood or neglected processes (Gong et al., 2013; Nearing
et al., 2016).

In the past, model evaluations have largely consisted of in-
tercomparisons (Pitman et al., 1999; Dirmeyer et al., 2006;
Guo et al., 2006; Boone et al., 2009), where each model’s
output is evaluated relative to observations, and then its per-
formance is compared to other models’ performance (per-
haps including previous versions of the same model), us-
ing visual and statistical comparisons. While this might indi-
cate when one model is better than another, it does not show
whether one, both, or neither of the models is using the in-
formation provided to it well – it provides no indication of
how much more improvement can be made. Crucially, this
method fails to separate aleatory and epistemic uncertainty.
For example, an LSM might appear to perform well under
a given set of metrics in a particular environment and rel-
atively poorly in a second environment, but this difference
may be due to differences in the predictability of the en-
vironments. If the second environment is harder to predict
(higher aleatory uncertainty), then it is possible that there is
more scope for improving the model in the first environment
(where epistemic uncertainty might be dominant). Generally,
it is difficult to know how well our models are working in
an absolute sense, because we do not know how predictable
the system is. We do not know how much of the errors that
we see in our models are due to poor model performance or
due to fundamental unpredictability in the system itself (this
problem is described well in Fig. 1 of Best et al., 2015). More
generally, this has been an acknowledged difficulty in numer-
ical modelling for over half a century (Lorenz, 1963).

One of the most important aspects of Best et al. (2015)
was the clear distinction between benchmarking and di-
rect intercomparison-based evaluation. The benchmarking
methodology allows performance assessment of each LSM
in an absolute sense, independent of the relative performance
of other LSMs. More importantly, these benchmarks provide
strong a priori expectations of performance for LSMs, ef-
fectively putting a lower bound on the epistemic uncertainty
by giving a minimum estimate (assuming no over-fitting) of
the amount of information available in the predictor vari-
ables (e.g. meteorological forcings, site characteristic data)
that is of value for predicting the response variables (in this
case, land surface fluxes). The simple empirical models used
in Best et al. (2015) (univariate and multivariate linear re-
gressions) have been used for decades and come with an un-

derstanding of their power and limitations. This approach to
benchmarking provides considerably more objectivity in as-
sessing actual LSM performance than traditional methods of
model evaluation (e.g. direct analysis or model intercompar-
ison; see Best et al., 2015).

However, the selection of empirical models used as
benchmarks in Best et al. (2015) was somewhat ad hoc
(Gab Abramowitz, personal communication, 2016). In this
paper, we attempt to create a framework for assessing the
overall predictability of land surface fluxes by providing
a more thorough exploration of the predictive power of
empirical models using only meteorological forcing data
as inputs. This extends recent work by Salvucci and Gen-
tine (2013), Rigden and Salvucci (2015), and Gentine et al.
(2016). We aim to provide a hierarchy of empirical models
that each describe a priori estimates of how predictable land
surface fluxes are by providing a lower bound on best pos-
sible performance for a given set of driving variables. These
models are able to be used as benchmarks for evaluation of
LSMs. We also aim for this set of empirical models to ex-
hibit a diversity of error patterns under different conditions,
such that LSM evaluation might be narrowed down to spe-
cific failures under particular environmental circumstances
(for example, poor performance during drought periods or at
a particular time of day).

2 Methodology

To select our benchmark ensemble, we used FLUXNET data
spanning multiple vegetation types and most continents. Us-
ing these data, we began by selecting potential input vari-
ables according to their relevance as flux predictors. We then
selected an appropriate model structure and generated sim-
ulations for all combinations of the selected variables. Once
model simulations were generated, we selected a small en-
semble such that range of performance and diversity of error
types were maximised. The details of each step are described
below.

We used the 20 FLUXNET sites used in Best et al. (2015),
plus an additional 41 high-quality sites, including 20 from
the La Thuile FLUXNET release (Fluxdata, 2017) via the
Protocol for the Analysis of Land Surface models (PALS),
and another 21 from the OzFlux network (see Table 1). All
data used in this study have a 30 min resolution.

We were interested in obtaining estimates for three land–
atmosphere fluxes that are important for climate and weather
prediction: latent heat (Qle), sensible heat (Qh), and net
ecosystem exchange (NEE). While there are other fluxes
that are relevant for climate modelling (runoff, for example),
these are less well constrained by data. For the sake of fair
comparison with LSMs, we corrected for energy budget clo-
sure at all sites where net radiation (Rnet) was available (all
but six sites) by scaling Qh and Qle values by the average
( Qh+Qle

Rnet ) over each site record.
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Table 1. FLUXNET sites used in this study. IGBP is the International Geosphere–Biosphere Programme.

Site FLUXNET code Years Lat Long IGBP vegetation type

AdelaideRiver AU-Ade 1 −13.077 131.118 Savanna
Amplero IT-Amp 4 41.904 13.605 Cropland
Audubon US-Aud 3 31.591 −110.509 Open shrubland
Blodgett US-Blo 7 38.895 −120.633 Evergreen needleleaf forest
Bondv US-Bo1 10 40.006 −88.290 Cropland
Boreas CA-Man 7 55.880 −98.481 Evergreen needleleaf forest
Brooking US-Bkg 2 44.345 −96.836 Cropland
Bugac HU-Bug 4 46.691 19.601 Cropland
Cabauw NL-Ca1 4 51.971 4.927 Cropland/natural vegetation mosaic
Calperum AU-Cpr 4 −34.002 140.589 Closed shrubland
CapeTribulation AU-Ctr 2 −16.103 145.447 Evergreen broadleaf
Castel IT-Cpz 6 41.705 12.376 Evergreen needleleaf forest
CowBay Au-Cow 6 −16.238 145.427 Evergreen broadleaf
CumberlandPlains AU-Cum 2 −33.613 150.722 Woody savanna
DalyPasture AU-DaP 5 −14.063 131.318 Savanna
DalyUncleared AU-DaS 7 −14.159 131.388 Woody savanna
Degero SE-Deg 5 64.182 19.557 Evergreen needleleaf forest
DryRiver AU-Dry 6 −15.259 132.371 Savanna
ElSaler ES-ES1 2 39.346 −0.319 Permanent wetland
ElSaler2 ES-ES2 8 39.276 −0.315 Cropland
Emerald AU-Emr 2 −23.859 148.475 Cropland
Espirra PT-Esp 4 38.639 −8.602 Woody savanna
FortPeck US-FPe 7 48.308 −105.102 Grassland
Gingin AU-Gin 3 −31.375 115.650 Woody savanna
Goodwin US-Goo 3 34.255 −89.874 Cropland/natural vegetation mosaic
GreatWesternWoodlands AU-GWW 2 −30.191 120.654 Woody savanna
Harvard US-Ha1 8 42.538 −72.171 Mixed forest
Hesse FR-Hes 6 48.674 7.066 Deciduous broadleaf forest
Howard AU-How 4 −12.495 131.150 Savanna
Howlandm US-Ho1 9 45.204 −68.740 Mixed forest
Hyytiala FI-Hyy 4 61.847 24.295 Evergreen needleleaf forest
Kaamanen FI-Kaa 2 69.141 27.295 Woody savanna
Kruger ZA-Kru 2 −25.020 31.497 Savanna
Loobos NL-Loo 10 52.167 5.744 Evergreen needleleaf forest
Majadas ES-LMa 3 39.941 −5.773 Closed shrubland
Matra HU-Mat 1 47.847 19.726 Cropland
Merbleue CA-Mer 7 45.409 −75.519 Permanent wetland
MitraE PT-Mi1 1 38.541 −8.000 Savanna
Mopane BW-Ma1 3 −19.916 23.560 Savanna
Otway AU-Otw 2 −38.532 142.817 Grassland
Palang ID-Pag 2 −2.345 114.036 Evergreen broadleaf forest
Quebecc CA-Qcu 5 49.267 −74.037 Evergreen needleleaf forest
Quebecf CA-Qfo 3 49.692 −74.342 Evergreen needleleaf forest
RedDirtMelonFarm AU-RDF 1 −14.560 132.480 Cropland
RiggsCreek AU-Rig 4 −36.656 145.576 Cropland
Rocca1 IT-Ro1 5 42.408 11.930 Cropland/natural vegetation mosaic
Rocca2 IT-Ro2 3 42.390 11.921 Cropland/natural vegetation mosaic
Samford AU-Sam 4 −27.388 152.878 Grassland
Sodan FI-Sod 4 67.362 26.638 Evergreen needleleaf forest
SturtPlains AU-Stp 6 −17.151 133.350 Grassland
Sylvania US-Syv 4 46.242 −89.348 Mixed forest
Tharandt DE-Tha 8 50.964 13.567 Evergreen needleleaf forest
Tonzi US-Ton 5 38.432 −120.966 Woody savanna
Tumba AU-Tum 4 −35.657 148.152 Evergreen broadleaf forest
UniMich US-UMB 5 45.560 −84.714 Deciduous broadleaf forest
Vaira US-Var 6 38.407 −120.951 Woody savanna
Wallaby AU-Wac 1 −37.429 145.187 Evergreen broadleaf forest
Whroo AU-Whr 3 −36.673 145.029 Woody savanna
Willow US-WCr 8 45.806 −90.080 Deciduous broadleaf forest
WombatStateForest AU-Wom 4 −37.422 144.094 Evergreen broadleaf forest
Yanco AU-Ync 2 −34.988 146.292 Grassland
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Figure 1. Histograms of percentage of high-quality data for each variable aggregated across all sites. The bottom right panels show the
percentage of time steps that are high quality for the intersection of all of the variables at each site and the intersection of all variables
except L.

We aimed to make use of all of the meteorological forc-
ing variables that LSMs routinely use, including shortwave
down (S), longwave down (L), air temperature (T ), wind
speed (W ), rainfall (R), specific humidity (Q), and rela-
tive humidity (H ). For the purposes of model training, we
only used the high-quality periods of data, according to the
quality-control flags provided in the La Thuile release, plus
some quality control from the PALS project (detailed in
Sect. 2a of Best et al., 2015). These flags remove periods of
data that are clearly incorrect or synthesised. An overview of
how much data are considered high quality for each variable
across all sites is provided in Fig. 1. All quality-controlled
data were used for training, so that data from sites with no
high-quality data for longwave down, for example, were ex-
cluded from the training of models that include longwave
down as a driver. However, all models still had substantial
training data after low-quality data were excluded.

Although site characteristic data (for instance, soil and
vegetation properties) are also likely to have significant ef-
fects on fluxes at a specific site, collection of these data at
the site level is less standardised (for example, soil heat plate
design and implementation differ substantially between dif-
ferent sites; see Sauer et al., 2003). Remotely sensed esti-
mates are typically on much larger spatial scales than a flux
tower’s fetch (Chen et al., 2009) and have considerably larger
uncertainties than in situ measurements. The data are also of-
ten discretised (e.g. by plant functional type) and thus cannot
be used as a real-valued input to empirical models, effec-
tively forcing models to provide separate parameterisations
for each soil/vegetation combination.

By ignoring site characteristic data, and using meteoro-
logical variables only, we can set a lower bound on site
predictability. Adding in accurate site characteristic data to

empirical models should, conceptually at least, allow for
improved empirical model performance, but as Best et al.
(2015) and Haughton et al. (2016) showed, LSMs that al-
ready use these data do not perform better than simple em-
pirical models based on meteorological data only.

The empirical benchmark models used in PLUMBER used
only instantaneous meteorological driving data. However, the
land surface has various storage pools for energy, water, and
carbon. These storage pools effectively modulate the effect
of meteorological forcing, modifying flux responses accord-
ing to past meteorological information. While it would be
possible to add state variables to an empirical model to repre-
sent these pools, without adding constraints, there would be
a high risk of numerical instability. Such constraints would
either have to come from conceptually based theory (mak-
ing the models no longer purely empirical) or would have to
be empirically calibrated, an extremely difficult task given
the aforementioned numerical instability. An alternative ap-
proach is to assume that the historical record of a forcing
variable has some impact and leave it to the empirical model
to decide how to include that impact. We implemented this by
calculating lagged averages of each variable, at varying time
lags, and then used the variable selection process described
below to pinpoint individually relevant lags.

The PLUMBER benchmarks had extremely simple struc-
tures. There are many potential empirical model structures
that could be used to estimate an unknown functional re-
lationship. While polynomial models, neural networks, and
Gaussian process models can all fit arbitrary functions, these
approaches often require either convoluted fitting processes
(and thus are less desirable for broad-scale application to
LSM benchmarking) and/or are likely to over-fit data for in-
experienced users.
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Table 2. Metrics used for performance assessment of model simulations. x indicates simulation values; o indicates observed values.

Metric Meaning Formulation Set

rmse Root mean squared error
√∑

(oi−xi )
2

n

nme Normalised mean error
∑
|oi−xi |∑
|oi−o|

common

mbe Mean bias error
∑
(xi − oi)/n common

sd_diff Difference in SDs
∣∣∣1− σX

σO

∣∣∣ common

corr Correlation coefficient (inverted) 1− corr(O,X) common

extreme_5 Difference in 5th percentile value |P5(X)−P5(O)| extremes

extreme_95 Difference in 95th percentile value |P95(X)−P95(o)| extremes

skewness Difference in skewness
∣∣∣1− skew(X)

skew(O)

∣∣∣ distribution

kurtosis Difference in kurtosis
∣∣∣1− kurtosis(X)

kurtosis(O)

∣∣∣ distribution

overlap Intersection of histograms (100 bins)
∑
(min(binX,k,binO,k)) distribution

Best et al. (2015) used a cluster-plus-regression approach
for the most complex of their models (3km27, a k-means
clustering (k = 27) with a linear regression at each cluster).
This approach, originally from Abramowitz et al. (2010), is
conceptually simple yet able to fit arbitrary functions sim-
ply by increasing the number of clusters. It is also compu-
tationally efficient, aside from the initial k-means clustering
(which can be made more efficient via a number of optimi-
sations). It does potentially have the problem of a prediction
surface that is discontinuous at the edges of clusters (where
several linear regressions meet), but we did not find this to
be problematic. The k-means clustering is also somewhat
dependent on its random cluster centre initialisation, which
means that repeated k-means-based empirical models using
the same training data result in slightly different outputs, but
in our testing this variance only rarely affected ranks (see
the Supplement for more details). In Best et al. (2015), the
3km27 model out-performed all LSMs for all fluxes when
averaged across metrics and sites. We chose to continue to
use this model structure here.

Following Best et al. (2015), all empirical models were
tested out of sample only. They were trained using a leave-
one-out strategy: for each site, they were trained on all of
the other 60 sites and then given the meteorological data to
run at the site in question. They were then evaluated using
that site’s flux measurements, which were not included in its
training.

For all of our models, we use the Best et al. (2015) 3km27
(re-implemented and from here on labelled STH_km27; see
naming scheme in Table 3) as a baseline from which to add
complexity. The criterion for model selection in the final en-
semble was simple – additional complexity must add predic-
tive value to the model. Additional complexity can poten-
tially degrade performance out of sample, due to increased
risks of over-fitting (more parameters) or equifinality (essen-

Table 3. Empirical model naming key. For example, a model
named “STHWdT_lR10d_lT6hM_km243” has seven inputs (short-
wave down, air temperature, relative humidity, wind speed, the dif-
ference in temperature between the current time step and dawn, 10-
day lagged average of rainfall, and 6 h lagged average of air temper-
ature minus instantaneous air temperature), and uses a 243-cluster
k-means regression, with a separate linear regression of over all in-
put variables for each cluster.

Key Meaning

S Shortwave down
T Air temperature
H Relative humidity
L Longwave down
W Wind speed
R Rainfall
Q Specific humidity
l(v)(time)(M) Lagged average of variable (v), over the

preceding (time); M indicates that the orig-
inal variable is subtracted from the result

d(v) Delta (v) – change in (v) since dawn, each
day

lin Linear regression
km(k) k-means cluster ((k) clusters), linear regres-

sion per cluster

tially, getting the right answer for the wrong reason; see Med-
lyn et al., 2005). Where additional complexity did not sub-
stantially improve performance, we took an Ockham’s razor
approach – that is, where no clear distinction in performance
is evident, prefer parsimony – and used the simpler model.

Other than choice of model structure, there are a number
of ways that a model’s complexity can increase. Firstly, using
the same input and output variables, a model’s internal struc-
tural complexity can be increased. In the case of cluster-plus-
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regression models, which are effectively a non-continuous
piece-wise linear surface with one plane per cluster, this cor-
responds to using more clusters. Since the number of clusters
defines the number of gradient discontinuities in the model,
and hence its ability to fit more complex functions, we refer
to this as the model’s “articulation”. The input data are not in-
herently strongly clustered and so the number of clusters cho-
sen is largely subjective. The Best et al. (2015) STH_km27
model was designed such that it could potentially divide the
input space of three variables into three distinct regions in
each dimension (hence, k = 33). In this study, we chose to
continue this conceptual approach and look at models with
k = 243, 729, and 2187 (35, 36, and 37 for 5, 6, and 7 input
variables, respectively). This design continues to allow suf-
ficient articulation in each variable dimension as more vari-
ables are added, i.e. for 243 clusters, five input variable do-
mains could each be split into three bins, independent of the
other variables. In practice, however, the clusters are not dis-
tinct in each individual variable domain – they each generally
have some overlap. The articulation over one variable condi-
tional on other variables may therefore be higher or lower. It
is also worth noting that a model with more input variables
effectively has less articulation per variable than a model
with fewer variables but the same number of clusters.

Another obvious method of increasing complexity is to
add extra predictor variables. Starting from STH_km27, we
can add in any of the remaining variables (L, W , R; see
Table 3). We also noted that Gentine et al. (2016) iden-
tified two key meteorological variable transformations as
highly predictive for heat fluxes, namely change in T since
dawn (delta T ) and change in Q since the previous sunrise
(delta Q). We included both of these transformations as ad-
ditional predictors, using the first time step with≥ 5 Wm−2 S

as our “dawn” reference point.
For each predictor variable not included in the origi-

nal PLUMBER study, we generated variants of the original
STH_km27 that included each variable, one at a time, for
k = 27 and 243 (e.g. STHL_km27, STHL_km243). These
were compared to the results from the original PLUMBER
models (S_lin, ST_lin, STH_km27) as well as an increased-
articulation variant with only the original three PLUMBER
variables (STH_243) to ensure that each new variable was
actually adding predictive power. Since adding in extra vari-
ables increases the dimensionality of the input space, we
might expect increased articulation to have more impact.

Thirdly, we can add in some historical variant of any of
the input variables. For each variable, we used varying time
periods and calculated the average of the preceding period
for each time step (excluding the time step itself; e.g. since
all data were half hourly, for the 2 h lagged average, we cal-
culated the average of the previous four time steps). The av-
erages we used were 30 min, 1, 2, 6, 12 h, 1, 2, 7, 10, 30,
60, 90, and 180 days. We then compared the set of models
with added lagged averages for a given variable to each other,
as well as the original three Best et al. (2015) benchmarks.

This allowed us to identify which variants of the lagged vari-
ables were adding the most value. Lagged correlation plots
are shown for each variable in the Supplement and give an
a priori indication of which lags for different variables might
add additional information to an empirical model.

Variables also have interacting responses; for example,
two variables might have a multiplicative flux response. It
is theoretically possible to generate models that cover all
the possible interactions between variables. However, even
if we only included a handful of instantaneous variables and
a handful of possible interactions, the set of models to run
would quickly become impossibly large. Fortunately, the ar-
ticulation that the cluster-plus-regression model structure al-
lows for can approximately fit any such interaction without
the need to actually include the interaction terms in the re-
gressions.

To ensure that any variables identified as providing addi-
tional predictive power did not interact in problematic ways
(e.g. collinearity), we investigated the pair-wise correlations
between each variable. Given that the system has significant
non-linearities, this is not a perfect method of ensuring lack
of collinearity. However, as a first approximation, it allows
us to remove any obviously pair-wise-correlated variables.

Once we had identified the key variables that provided
substantial performance increases, we generated an small hi-
erarchically defined ensemble of models using these vari-
ables. The ensemble is designed to be a conceptually simple
set of benchmarks that can be used by other researchers in
model evaluation and development. The ensemble includes
the original three PLUMBER benchmarks and several other
models of gradually increasing in complexity. We use this
model ensemble to reanalyse the LSM results from the orig-
inal PLUMBER experiment.

3 Results

As a first step, we investigated how much value additional ar-
ticulation would add to the STH_km27 model by comparing
it to models with the same inputs and structure but using 243,
729, and 2187 clusters (Fig. 2). This and subsequent figures
use the same methodology as Figs. 4–6 in Best et al. (2015).
They show the performance rank of each model, relative to
other models in the plot, for each flux variable averaged over
the 61 FLUXNET sites and over 10 different performance
metrics (listed in Table 2). In this and the following similar
plots, a lower rank average is better and should be interpreted
as a model performing better than a higher model more often
than not. The larger the difference, the more often the lower-
ranked model wins. The differences in the y values in these
plots do not necessarily indicate how much better a model
performs than other models, although analysis in Haughton
et al. (2016) indicates that ranks do tend to approximate rel-
ative performance values when assessed in aggregate.
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Figure 2. Rank-average plots of empirical models using the same inputs as STH_km27, with an increasing number of clusters. Metrics
(Table 2) are calculated for each flux variable for each model simulation at each of the 61 FLUXNET sites, and in each case models are
ranked. The first column of values in each panel represents the rank average over all sites and all 10 metrics, the second column all sites and
“common” metrics (NME, MBE, SD_diff, correlation), the third column all sites and the two extremes metrics (extreme_5, extreme_95), and
the fourth column all sites and the distribution-related metrics (skewness, kurtosis, overlap). Lower values indicate better overall performance,
and lines only serve to visually connect data points (gradients are irrelevant).

In Fig. 2, the three panels show the rank-average results
for each of the models over the three flux variables relative
to each other. The first column of each panel represents the
averages across all sites and all metrics, the second column
averages only over the common metrics, third column only
over the extremes metrics, and the fourth column only the
distribution-related metrics (see figure caption for details).
At the most general level, with performance averaged over all
metrics (first column of each panel), the STH_km243 model
(yellow) provides substantial improvement over STH_km27
for Qle and NEE. There does not appear to be any improve-
ment for Qh. STH_km729 appears to provide a slight further
improvement for all three fluxes. STH_km2187 provides mi-
nor and probably negligible improvement over STH_km729
for all fluxes, with the possible exception of extremes and
distribution metrics for Qh and Qle. Examining the results
separately over the different metric sets used in Best et al.
(2015) (columns 2, 3, and 4 in each panel), the models with
more articulation substantially improve the performance of
the prediction of extremes for NEE, and both extremes and
distributions for Qh and Qle. Articulation beyond 729 clus-
ters offers no additional benefit for the common metrics.
ST_lin does exceptionally well for Qh prediction under the
extremes, relative to all but the highest cluster-count non-
linear model. We note that this is the most volatile category
due to the sensitivity of empirical models to outliers affect-

ing the extremes, and because this group only contains two
metrics. Increased articulation is more likely to provide more
benefit with more input variables, but using more variables
also increases the likelihood of both incomplete time steps
(as any given variable might have a low-quality data point)
and of the clustering algorithm failing to converge (e.g. some
clusters may not be assigned a value, causing the model to
crash). We did some further testing of 2187 clusters in later
parts of the study, but since these models crashed more fre-
quently, and did not obviously add further performance im-
provement, we excluded them from the remainder of the pa-
per.

Next, we tested which of the additional available mete-
orological forcing variables added value to the models. We
tested L, W , and R (we omitted Q, as this information
is already largely contained in the T and H variables), as
well as delta Q and delta T . For each variable, we created
km27 and km243 variants, and compared them to the original
PLUMBER benchmarks (S_lin, ST_lin, STH_km27), plus
STH_km243.

Figure 3 shows that instantaneous W provides substantial
benefits for model prediction for all fluxes at both 27 and
243 clusters. Instantaneous L appears to provide substantial
benefit for Qle prediction but does not clearly improve the
performance of Qh or NEE fluxes. Instantaneous R appears
to slightly degrade performance across all fluxes at both clus-
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Figure 3. Models with a single additional variable. As per Fig. 2, except that each column includes four baseline benchmark models (S_lin,
ST_lin, STH_km27, and STH_km243), plus STHX_km27 and STHX_km243, versions of STH_km27 and STH_km243 with an extra in-
stantaneous meteorological or derived variable included as an input (variables are listed along the x axis, models with added variables are in
blue shades). All points are rank averages over all sites and all metrics.

ter counts. DeltaQ provides substantial improvement for Qle
prediction, and some improvement for Qh, but the impact
on NEE performance is a negligible degradation of perfor-
mance. Delta T also provides some improvement for Qle and
NEE, and does not clearly improve Qh prediction.

Even if the additional variables do not add substantially
to the performance of the models, lagged averages of those
variables might. We additionally tested model variants with
lagged averages of each meteorological variable. Figure 4
shows that despite instantaneous S, T , and H already being
in the reference models, lagged averages of these variables
appear to offer additional predictive ability. Longer lags of S
andH help the prediction of Qle, perhaps because these vari-
ables act as proxies for soil moisture, ground heat storage, or
boundary layer dynamics (e.g. Gentine et al., 2016). Both 2
and 6 h lags of T appear to provide a performance improve-
ment, but these lags likely also correlate highly with instanta-
neous T (see the Supplement). Models with lagged averages
of L and W do not appear to provide any benefit over the
instantaneous variables and appear to degrade performance
substantially for longer lags. Short lags of R appear to sub-
stantially decrease the performance of models for all fluxes;
however, longer lags appear to provide some benefit, espe-
cially for Qle (10–90 days).

From the above investigations, we determined that there
were eight key variables in addition to the three already used
in the PLUMBER benchmark models. The entire set of rel-
evant variables is instantaneous S, T , H , and wind; delta T ;

delta Q; and lagged average variants of T (6 h), S (30 days),
R (30 days), andH (10 days). In some cases, there were mul-
tiple lags with similar overall performance gains. For these,
we chose one by selecting the variant that gave the best com-
promise performance increase between the three fluxes, as
well as preferring lags towards the middle of the spectrum,
so as to avoid correlation with instantaneous variables and to
maximise the available training data (longer lags mean fewer
windows with complete data available). To ensure minimal
likelihood of problems with collinearity of forcing variables,
we calculated the pair-wise correlations between each pair
of potential forcing variables and the fluxes. For this inves-
tigation, we removed all low-quality data across all selected
variables, which resulted in the AdelaideRiver site being re-
move due to it having no controlled rainfall data. This left
over 1.6 million time steps of data.

Figure 5 shows that the three fluxes are fairly highly cor-
related with one another and with S. This was already in-
dicated by the good performance of the 1lin benchmark in
PLUMBER. Of the other individual driving variables, T ,
H , and delta T have the next highest correlations with the
fluxes. The first two of these were also indicated by the per-
formance of 3km27 in PLUMBER. Delta T also has high
correlations with S, T , and H . However, a multiple linear
regression on these three variables only has an R2 value of
0.66, indicating that there is still substantial independent in-
formation in this variable that may be of use to empirical
models. There are also very high correlations between the 30-
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Figure 4. Models with a single additional lagged average meteorological variable input. The five leftmost models (columns) in each panel
are for reference; other models represent STH_lxxx_km243, where xxx is the time average over the lag period (specified on the horizontal
axis) of the variable shown in each panel (e.g. S for panel a). Vertical axes show the average rank average of each of the models (on the
x axis) against all other models in the panel.

day lagged average of S, instantaneous T , and the 6 h lagged
average T . In particular, the regression of 6 h lagged aver-
age T on instantaneous T has an slope coefficient of 0.9992
and an R2 value> 0.999. This is because the lagged average
still contains all of the annual cycle information and all of
the daily cycle information (albeit out of phase by 3 h). How-
ever, the lagged average does not contain any of the high-
frequency information, and because of the lag it effectively
gives the model a time-of-day proxy. To overcome the cor-
relation problem, we added a lagged average minus instan-
taneous variant (last row/column in Fig. 5), which avoided
the high correlation with 30-day averaged S and instanta-
neous T . This variable has a relative high correlation with
instantaneous S but still contains substantial independent in-
formation (R2 of 0.41 for a regression on S).

Next, we combined our approach to generate a set of mod-
els that uses the informative variables identified above. To
create a set of models that spans a range of performance and
behaviours, we generated all combinations of the model with
a selected set of input variables, according to the results of
previous sections. In addition to the three variables used in

the original PLUMBER empirical models (S, T , and H ),
these variables were instantaneous wind, delta T , delta Q,
and lagged average variants of S (30 days), R (30 days), H
(10 days), and T (6 h, with instantaneous values subtracted).
Each variable was chosen for its ability to improve the per-
formance of the models substantially for at least two of the
three fluxes. Initially, we also included L in the models, but
we found that this appeared to substantially decrease perfor-
mance of models (in some cases so much that these models
were outperformed by S_lin). This may be due to the low
quality of L in the datasets and complete lack of L in over
a third of sites (see Fig. 1), which would minimise the data
available both for training as well as for evaluation. There-
fore, we decided to remove L as a candidate driving vari-
able. In the case of the lagged variables, there was the added
concern that long lags (>∼ 30 days) would decrease the per-
formance over shorter datasets (the models use the long-term
average when not enough data are available to calculate the
lags) and that short lags (< 1–2 days) would have a high cor-
relation with instantaneous variables (only relevant when the
instantaneous variables were also included).
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Figure 5. Pair-wise correlations between forcing variables and fluxes.

We aimed to generate an objectively “best” ensemble that
evenly spanned the range of performance in each variable,
and maximised behavioural diversity. For example, we might
expect that models with instantaneous humidity would ex-
hibit different patterns in their outputs after a rain event than
models that do not include humidity. Likewise, models with
lagged rainfall averages as drivers should also have a differ-
ing behaviour in the period after a rainfall event.

We initially attempted a pseudo-optimisation-based en-
semble generation approach. This consisted of first generat-
ing models for all possible combinations of the seven vari-
ables identified above at 243- and 729-cluster counts. Then,
starting with the three PLUMBER benchmarks and the best
performing of these model for each flux, we sequentially
added in the models that were most independent from the ex-
isting models in the ensemble by selecting the models with
the lowest average error correlation with the models already
selected. This resulted in ensembles quite similar in perfor-
mance to the ensemble described below but with less well-
defined conceptual structure. Therefore, we decided to man-
ually create an ensemble from a conceptual classification of
the input variables.

Of the newly identified variables there are three clear
groupings. Firstly, W is the only instantaneous variable that
adds substantially to the performance of models. The second
group is the three variables that only include short-term in-

formation: delta T , deltaQ, and the 6 h lagged average of T .
These variables likely provide proxies for short timescale
states in the system (e.g. within-canopy heat and surface wa-
ter). The last group is the three variables that include long-
term information: the 30-day averages for S and R, and the
10-day average for H . These variables provide information
about long timescale states in the system, such as ground
heat, soil moisture, and perhaps leaf area index.

We decided to create models that gradually increased
in complexity by first adding further articulation to the
PLUMBER models and then gradually adding in these vari-
able groupings. In doing so, we noted that the 243-cluster
variants more often out-performed the 729-cluster variants
in the common metrics, while the 729 variants tended to
perform better in the extremes and distribution metrics. As
such, we decided to include models starting with the three
PLUMBER benchmarks, then a model with further articula-
tion, then a model with the relevant instantaneous variable
(wind), then a model with the short-term information, and
then a model with the long-term information. We also added
both the 243- and 729-cluster variants of the most complex
model. This model is most likely to benefit from a higher
cluster count because it has more driving variables. The two
variants display quite different behaviour. This left us with
this final ensemble (short names in parentheses):
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Figure 6. Rank-average plot of the eight models in the final ensemble.

– S_lin,

– ST_lin,

– STH_km27,

– STH_km243,

– STHW_km243,

– STHWdTdQ_lT6hM_km243 (short_term243),

– STHWdTdQ_lT6hM_lS30d_lR30d_lH10d_km243
(long_term243), and

– STHWdTdQ_lT6hM_lS30d_lR30d_lH10d_km729
(long_term243).

The selected set spans a broad range of performance in
each of the three fluxes and includes multiple modes of in-
creased complexity (increasing articulation, added variables,
lagged variables). The relative performance of these models
is shown in Fig. 6. The three original empirical models in
PLUMBER are consistently out-performed across variables
and the more complex models tend to out-perform less com-
plex models. There are some notable exceptions to this. The
performance in the most complex models is reduced under
the common metrics, especially for Qh. The performance
of the increased articulation model (STH_km243, yellow)
is also reduced relative to the simpler model with the same
inputs (STH_km27, orange) under the common metrics for
Qh, and the distribution and extremes metrics for Qle. As in
Fig. 2, the two-variable linear model performs well against

the next most complex models for NEE under the distribu-
tion metrics and relatively well for the Qh extremes metrics.

These data are shown again in Fig. 7a–c, this time with
more emphasis on individual metrics, and how they change
as models become more complex. In many cases, there is
a clear graduation from the simplest model performing worst
(blue) to the most complex model performing best (red;
e.g. the pdf overlap metric for all fluxes). Some metrics, how-
ever, clearly degrade with complexity, such as skewness for
NEE where performance appears to degrade further as more
variables are added. Some of the less consistently improving
metrics (e.g. MBE, SD_diff, Corr, and Extreme95 for Qh)
are due to the fact that these metrics only change by about
5 % between the worst and best models (< 1 % for Corr),
and so noise in the metric results may dominate any trend.
In general, however, there is a consistent gradation of per-
formances across the model ensemble. Figure 7d shows the
distributions of the energy-closure-corrected observed site
fluxes, plotted and overlaid for each site, for comparison with
value-dependent metrics.

There is inevitable subjectivity in choosing an ensemble
such as this, given the infinite number of possible model
structures. This ensemble strikes a balance between selecting
a diverse range of performance and behaviours and maintain-
ing a clear conceptual hierarchy. The three forcing variable
groupings (instantaneous, short-term, and long-term) also
potentially provide a way to understand how much perfor-
mance improvement different model state variables should
provide and thus help to identify which model process repre-
sentations might require improvement.
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Figure 7. The three matrix panels (a–c) show metric values averaged over all sites. All models are compared to STH_km27 as a baseline
(grey), better models are shown in red, and worse models in blue, where dark red/blue indicates the best/worst model in ensemble, for
each metric independently. The fourth panel (d) shows observed distributions of each flux, trimmed at the 5th and 95th percentiles, plotted
independently for each site and overlaid at 10 % opacity. The red box plots show the distribution of site means for each flux, with whiskers
extending to 1.5 times the interquartile range, and outlying sites shown beyond as points.

Having explored FLUXNET datasets for key forcing vari-
ables relevant for flux prediction, as well as the longer-term
information contained in those variables, and having created
a conceptually coherent benchmark ensemble, we now put
the ensemble to use in an LSM intercomparison.

Land surface model evaluation

We compare the ensemble selected above with the LSM sim-
ulations used in Best et al. (2015), continuing the work from
Haughton et al. (2016). Figure 8 shows a recreation of the
key figures from Best et al. (2015) using our empirical bench-
marks. NEE is omitted from this figure for ease of compar-

ison with the original Best et al. (2015) figures (see figure
caption) and because NEE is only included in the output of 4
of the 13 LSMs.

In the second row, we still see the pattern shown by Best
et al. (2015) for Qh, that the LSMs are all consistently beaten
by even the simplest empirical models (LSMs in black are
consistently above S_lin in pink and ST_lin in red). How-
ever, in our version, for Qle, the LSMs appear to be doing
relatively better, beating STH_km27 consistently. This is for
a number of reasons. Firstly, the empirical models in this
study are trained on more sites than the Best et al. (2015) em-
pirical models, and this may cause some differences, partic-
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Figure 8. Comparison of the final ensemble to the PLUMBER LSMs. Each panel compares a single LSM (in black, different in each column)
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(2015).

ularly with the cluster-and-regression model variants, which
are sensitive to initialisation of the k-means clusters (see the
Supplement). Secondly, all site data used in this version of
the figure are energy-closure corrected which improves LSM
rankings in some cases. This is similar to Fig. 8 in Haughton
et al. (2016), but the closure is dealt with differently. The
analyses undertaken here also only use the quality-controlled
data for each site in contrast with Best et al. (2015) and
Haughton et al. (2016) which used all data. Thirdly, if the
empirical models tend to cluster around certain values for
a particular metric, then it is more likely that if an LSM
beats STH_km27 it will beat many of the empirical models
and therefore skew the overall rank average towards a lower
value. This is the case for SD_diff in particular as can be
seen for Qle in Fig. 10. This is perhaps to be expected as
the empirical benchmarks are smoothers, only adding vari-
ance from the meteorological forcings (this was also shown
in Fig. 4 in Haughton et al., 2016). This effect is potentially
even more pronounced in the absence of the physical bench-
marks used in Best et al. (2015) and Haughton et al. (2016).
Despite this latter effect, we still see the LSMs generally
falling in the middle of the range of empirical models for
Qle under the common metrics. This indicates that our newer
and more complex benchmarks are adding substantial non-
spurious performance improvements over the PLUMBER
benchmarks.

In the third row of Fig. 8, aside from a few cases (in partic-
ular COLASSiB2), the LSMs generally perform better under

the extremes metrics. Indeed many of the LSMs beat all of
the empirical models for Qle and at least fall in the middle of
the range of performances for Qh. This is quite similar to the
results shown in Fig. 5 in Best et al. (2015) where the LSMs
generally performed similarly to the most complex bench-
mark, 3km27. Under the distribution metrics (fourth row),
the LSMs generally perform better than all but the most com-
plex of the empirical models. This corresponds reasonably
well with Fig. 6 in Best et al. (2015). It is notable here, as
in Best et al. (2015), that the LSMs perform reasonably well
under Qle relative to the other two fluxes. The three fluxes
operate very differently, and so it is not clear why this per-
formance difference exists, but it may be due to, e.g. tighter
constraints on Qle from upper-level soil moisture (which is
not available to the empirical models), or it may be that the
boundary layer turbulence affects Qle less strongly than the
other fluxes.

We also examine the performance of the mean of the
13 LSMs in PLUMBER (Fig. 9) against our new empiri-
cal model ensemble (similar to Fig. 12 in Haughton et al.,
2016). In the first panel, we see that the mean performs sub-
stantially better under all metrics for Qle than nearly all in-
dividual models but substantially worse for Qh (first row in
Fig. 8). The LSM mean is competitive with the most complex
empirical benchmarks for Qle under all four metrics sets, out-
performing all of the benchmarks under all metrics and the
extremes metrics. NEE performance of the mean falls toward
the middle of the range of the benchmarks under all four met-
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unweighted mean of all 13 PLUMBER model simulations at a given site and variable. Note that the NEE results are the mean of only the
four models that included NEE in their output.

ric sets. The LSM mean performs substantially worse than
most benchmarks for Qh, except under the distribution met-
rics, where it out-performs all benchmark models.

It is also instructive to examine these data through other
lenses. The original PLUMBER results compared LSMs av-
eraged over sites and metrics for multiple variables at once.
One could alternatively compare LSMs over only a single
variable at once, as per earlier figures in this paper. Fig-
ure 10 compares models over a single variable in each ma-
jor column and over a single metric in each row, with each
point representing the relative rank over all 20 sites. While
it represents the same data shown in Fig. 8, it is perhaps
a more straightforward intercomparison between LSMs than
the original Best et al. (2015) figures. In particular, it be-
comes clear under which metrics the models are collectively
performing poorly for Qh (RMSE, NME, Corr, extreme_95)
and that performances for Qle are perhaps more heteroge-
neous than might be interpreted from Fig. 8. It also high-
lights that some models stand out as poor performers in par-
ticular circumstances (e.g. MOSAIC for RMSE, Noah 3.2
for MBE, and COLASSiB for extreme_5). It is difficult to
assess the relative performances of the LSMs for NEE due
to the small group size. However, it is clear that the CABLE
variants out-perform JULES and ORCHIDEE for NEE under
RMSE, NME, SD_diff, and the extremes metrics.

4 Discussion

We have shown that empirical model performance can
be improved substantially over the benchmarks used in
PLUMBER using meteorological data alone. This is true for
all three fluxes under investigation and across multiple sets
of performance metrics. Although we used models capable
of fitting arbitrary function surfaces, it is probable that more
information could be extracted from the FLUXNET meteo-
rological forcings and allow even higher predictability given
enough training data. For example, there may be better ways
to include information from the historical time series of each
forcing variable than just using lagged averages.

There is also no doubt that performance could be further
increased using similar models with additional site character-
istic data, such as soil composition, vegetation structure, and
orography. This is a much more complex problem as noted
in the introduction. While we ruled out a number of meteo-
rological variables and derived variants in our models, it is
possible – should suitable site data be made available during
model training – that these variables might be more relevant
if they have dependent interactions with those site variables.

This current empirical model ensemble provides a set of
a priori lower bounds on the information available in the me-
teorological forcings for predicting fluxes. The ensemble also
provides a number of intermediate complexity estimates for
instances where less data are available or of interest. In par-
ticular, the values in Fig. 7 can be used as a benchmark for
LSMs in other studies and the hierarchy of model complex-
ity can give an idea of the spread of metrics that might be
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expected. It could also predict how much a metric should be
expected to improve as a model is supplied with more infor-
mation. We hope that this ensemble might be used among
the land surface modelling community as a common refer-
ence point and that it might pave the way to the creation
of a benchmarking standard. As such, we have provided the
code required to reproduce the benchmarks on appropriate
data (with slight variation, as noted in the Supplement).

If conceptually simple empirical models are already com-
prehensively out-performing physically informed LSMs and
can presumably be improved upon with additional site char-
acteristic data, then the following question arises: why bother
with physically based models? One argument is that empir-
ical models will only predict well in environments that are
similar to their training environments. For example, they may
not predict well in a world with raised CO2 levels. However,
we now have tower-based measurements of a broad spectrum
of environments – much broader than the change at any par-
ticular location expected over the next century (Pitman and
Abramowitz, 2005) – so it is not unreasonable to expect em-
pirical models to perform reasonably well for some range
outside the norm. It is worth noting that empirical models
of complex systems are necessarily simplifications, and as
a consequence, even when they may adequately model the
aggregate behaviour, they are likely to miss important be-
haviours that arise from the complex interactions within the
system (Batty and Torrens, 2001). On the other hand, LSMs
report a range of other variables aside from fluxes that are
key to coupled modelling systems (e.g. runoff) and impact
assessments (e.g. soil moisture and temperature). They also
have one major benefit over empirical models: their parame-
ters have a physical meaning and can be manipulated to learn
about changes in the behaviour of the system. However, this
is only true if those parameters are representative of some-
thing real, if they are constrained adequately by data, and if
the model’s components interact realistically. A hybrid ap-
proach of empirical model components constrained by avail-
able data and conservation principles remains a possibility
for future work.

In general, numerical LSMs have become increasingly
complex over the last 5 decades, expanding from basic
bucket schemes to models that include tens or even hun-
dreds of processes involving multiple components of the soil,
biosphere, and within-canopy atmosphere. Model compo-
nents may have been added on to existing models without
adequate constraint on component parameters (Abramowitz,
2013) or without adequate system closure (Batty and Tor-
rens, 2001). New component parameters may be calibrated
against existing model components, leading to problems of
equifinality (Medlyn et al., 2005), non-identifiability (Kavet-
ski and Clark, 2011), and epistemological holism (Lenhard
and Winsberg, 2010). These problems can often only be over-
come by ensuring that each component is itself well con-
strained by data and numerically stable (Kavetski and Clark,

2011). As noted earlier, these conditions rarely exist for any
given component.

While appropriate use of available data is a prerequisite to
model generation, it is not sufficient by itself. Over-reliance
on data could lead to underestimation of uncertainty, where
systematic errors in the data are not accounted for. Data can
be used to inform model development, but they should not
be used alone to drive model development: “Data is a valu-
able adviser but a tyrannical master” (Bowles, 2016). Over-
reliance on data could lead to poor decision making when
expertise is ignored in favour of data-driven approaches that
ignore aspects of the environment outside of the scope of the
dataset. Even assuming no systematic errors in the data and
an appropriate model structure, model results must still be
interpreted. This requires significant experience on the part
of the researcher. However, as long as they are not over-
fitted, we can use naive empirical models as benchmarks, as
prior distributions for the prediction performance of LSMs
(as demonstrated by Nearing and Gupta, 2015), wherever ad-
equate data exist.

The empirical model ensemble outlined in this paper is rel-
atively easy to reproduce on any land surface data. It may be
used by LSM developers as a tool for identifying situations
in which their model is performing inadequately. For exam-
ple, if empirical models are performing significantly better
than an LSM at a particular subset of sites or at a particu-
lar time of year or day, this difference could be used to help
identify environments in which the LSM could improve. The
diversity of models in the ensemble could also help high-
light which components of an LSM might be targeted for im-
provement. For example, if the models with W included as
a driving variable are performing substantially better than the
models withoutW in a particular situation, that may indicate
that there are problems with the LSM’s handling of surface
evaporation. Alternatively, if the model with lagged R is per-
forming better than other models over a dry period, that may
indicate that soil moisture might be a key factor in behaviour
of the fluxes over that period.

5 Conclusion

We have attempted to set lower bounds on the predictability
of surface fluxes and have shown that using only meteoro-
logical driving data empirical model performance in previous
studies can be improved by adding further complexity. This
study used only meteorological data to predict fluxes and as
such does not attempt to quantify the relevance of various
important site characteristic variables, including soil, vege-
tation, or orography. As records of these types of variables
become more standardised, the methodology used here may
be extended to include them.

This study provides an ensemble of empirical models
spanning a broad range of performance and behaviour that
can be used as a standard set of benchmarks for LSM evalua-
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tion. The conceptual structure of the ensemble also illustrated
the degree to which predictability is derived from instanta-
neous, short-term, or long-term information. The ensemble
is relatively easy to reproduce and may be used by LSM de-
velopers as a tool for identifying situations in which their
model is performing inadequately.

We have also shown that LSMs, while still clearly per-
forming less well than we might hope, are performing sub-
stantially less homogeneously than might have been expected
from Best et al. (2015) or Haughton et al. (2016). Actually
attributing poor LSM performance to particular aspects of
those models remains elusive, but we hope that the bench-
mark ensemble presented here will allow for more nuanced
evaluation of LSMs in the near future.
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