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Abstract. We use a normal-mode analysis to investigate
the impacts of the horizontal and vertical discretizations on
the numerical solutions of the quasi-geostrophic anelastic
baroclinic and barotropic Rossby modes on a midlatitude β
plane. The dispersion equations are derived for the linearized
anelastic system, discretized on the Z, C, D, CD, (DC), A, E
and B horizontal grids, and on the L and CP vertical grids.
The effects of various horizontal grid spacings and vertical
wavenumbers are discussed. A companion paper, Part 1, dis-
cusses the impacts of the discretization on the inertia–gravity
modes on a midlatitude f plane.

The results of our normal-mode analyses for the Rossby
waves overall support the conclusions of the previous studies
obtained with the shallow-water equations. We identify an
area of disagreement with the E-grid solution.

1 Introduction

In a companion paper (Konor and Randall, 2018; hereafter
Part 1), we discuss the horizontal discretization of the lin-
earized anelastic equations on the Z, C, D, CD, (DC), A,
E and B grids, and vertical discretization on the L and CP
grids. We introduced the DC grid in Part 1 to test the hy-
pothesis that the CD-grid (and DC-grid) solutions are dom-
inated by the corrector step and the grid used with it. Part 1
focuses on the dispersion of nonhydrostatic inertia–gravity
modes on an f plane. The present paper gives a correspond-
ing analysis of the dispersion of three-dimensional Rossby
modes on a midlatitude β plane. Previous studies (e.g., Neta
and Williams, 1989; Dukowicz, 1995) have mostly used the

discrete shallow-water equations on a midlatitude β plane.
Thuburn (2008) analyzed the inaccuracies of the Rossby
modes on the hexagonal C grid and proposed a discretiza-
tion that minimizes these inaccuracies.

We use the quasi-geostrophic and quasi-static equations in
our analysis because Rossby waves are not significantly in-
fluenced by ageostrophic or nonhydrostatic effects. Further-
more, the quasi-hydrostatic equations produce an exact solu-
tion on the β plane while the basic dynamical equations, in-
cluding fully compressible and anelastic equations, produce
exact solutions only for particular cases. A more detailed dis-
cussion is given in the Supplement.

In Sect. 2, we present the continuous linearized anelas-
tic equations with the quasi-geostrophic and quasi-static ap-
proximations on the midlatitude β plane and discuss the dis-
persion of the Rossby modes. Section 3 discusses the dis-
cretization of these equations on the seven horizontal grids
listed above and the discrete dispersion of the modes. At the
end of Sect. 3, we present a comparison of the performance
of the grids in simulating the Rossby modes. The vertical dis-
cretization using the L and CP grids is discussed in Sect. 4.
Finally, a summary and conclusions are provided in Sect. 6.
Additional details are given in the Supplement.

2 Linearized anelastic equations with an isothermal
basic state

In this section, we derive the basic linearized equations with
the quasi-geostrophic (and quasi-static) approximations, re-
ferring to the equations of Part 1 when possible, for brevity.
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Basic equations

Following Arakawa and Konor (2009), we assume quasi-
geostrophic (and quasi-static) balance with the midlatitude
β-plane approximation to obtain the dispersion relationship
for the baroclinic and barotropic Rossby waves.

Baroclinic Rossby modes. Baroclinic modes involve vertical
motions and are influenced by the static stability (B 6= 0
and w 6= 0). The equations for this case can be obtained
by assuming ∂D/∂t = 0 and ∂w/∂t = 0 in Eqs. (2)–(7) of
Part 1, adding a β term in the form of −(β/f0)(∂P/∂x)

to the vorticity equation and replacing f with f0 in the
divergence equation. The results are

∂ωz

∂t
=−f0D−

β

f0

∂P

∂x
, (1)

0= f0ωz−∇
2
HP, (2)

and

N2D =

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂P

∂t
. (3)

Note that for an isothermal atmosphere (1/ρ0)(∂ρ0/∂z)=

−1/H and N2
= gκ/H . By using Eq. (10) of Part 1 in

Eqs. (1)–(3), we obtain the continuous dispersion relation for
the baroclinic Rossby waves as

ν =
−βk(

k2+ `2
)
+

f 2
0
N2

(
m2+ 1

4H 2

) . (4)

Barotropic Rossby modes. Barotropic modes involve
purely horizontal motion and are not affected by the
static stability (B = 0). They also satisfy w = 0, D = 0
and

[
∂/∂z− (1/2ρ0)(∂ρ0/∂z)

]
P = 0. The equations that

govern the barotropic motion can be obtained by using these
assumptions in Eqs. (1)–(3) as

∂ωz

∂t
=−

β

f0

∂P

∂x
, (5)

and

0= f0ωz−∇
2
HP. (6)

Similarly, the continuous dispersion relation for the
barotropic modes is given by

ν =
−βk

k2+ `2 . (7)

3 Horizontal discretization on different grids and
discrete dispersion equation

In this section, we discuss the discretization of the basic
equations and derive the discrete dispersion relation on each
horizontal grid. At the end of this section, we present an il-
lustrative discussion of the dispersion equations showing fre-
quency plots that are similar to the ones presented in Part 1.

3.1 Solutions for the Z grid

Baroclinic Rossby modes. We horizontally discretize
Eqs. (1)–(3) on the Z grid shown in Fig. 1a of Part 1 as

∂

∂t
(ωz)i,j =−f0Di,j −

β

f0

Pi+1,j −Pi−1,j

2d
, (8)

0= (9)

f0(ωz)i,j −
1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
,

and

N2Di,j =

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂Pi,j

∂t
, (10)

respectively. By using Eq. (16) of Part 1 in Eqs. (1)–(3), we
obtain the discrete dispersion relation as

ν =
−βξ̃k(

ξ2k2+ η2`2
)
+

f 2
0
N2

(
m2+ 1

4H 2

) , (11)

where

ξ̃ ≡
sin(kd)
kd

, (12)

ξ ≡
sin
(

1
2kd

)
1
2kd

and

η ≡
sin
(

1
2`d

)
1
2`d

.

Barotropic Rossby modes. We horizontally discretize
Eqs. (5) and (6) on the Z grid as

∂

∂t
(ωz)i,j =−

β

f0

Pi+1,j −Pi−1,j

2d
, (13)

and

0= f0(ωz)i,j

−
1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1+Pi,j−1− 4Pi,j

)
, (14)

respectively. Equations (12) and (14) can also be obtained by
assuming D = 0 in Eqs. (8) and (9), respectively. The dis-
crete dispersion equation for the barotropic modes is

ν =
−βξ̃k

ξ2k2+ η2`2 , (15)
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where ξ̃ , ξ and η are given by Eq. (12), which have the same
definitions in Part 1. For d→ 0, both Eqs. (11) and (15)
become identical to their continuous counterparts given by
Eqs. (4) and (7), respectively. This confirms that the dis-
crete solutions are consistent and that they correspond to the
solutions of the continuous equations. On the other hand,
as the zonal scale approaches the shortest resolvable zonal
scale (hereafter SRZS), i.e., kd→ π and ξ̃ → 0, the discrete
modes lose their ability to recognize the β effect, and the fre-
quency of the modes becomes zero at the SRZS. This result
has been derived using the β-plane approximation. It is not
immediately clear whether or not it holds in true spherical
geometry. This could be studied through a discrete normal-
mode analysis on the sphere and/or numerical integrations of
the linearized equations on the sphere.

As in Part 1, we present plots of the discrete dispersion of
the Rossby modes generated by using the Z, C, D, CD, A, E
and B grids. The basic state and plot design are the same as
Part 1. We use β = 1.62× 10−11 m−1 s−1, which is typical
for a midlatitude plane.

The dispersion plots for baroclinic and barotropic Rossby
modes with the Z grid are presented in Fig. 1. The most strik-
ing feature is that the frequencies of all modes, for all verti-
cal scales and horizontal grid spacings, approach zero at the
SRZS. We use k = ` to plot these results. This is a conse-
quence of the use of the centered finite difference to approx-
imate the zonal pressure gradient at cell centers. As a result,
the β effect cannot be recognized by any of the modes at the
SRZS. Consequently, a dynamically inert mode is generated.
Again, it should be checked whether or not this conclusion
carries over to the linearized equations on the sphere.

3.2 Solutions for the C grid

Baroclinic Rossby modes. We horizontally discretize Eqs. (1)
and (2) on the C grid shown in Fig. 1b of Part 1 as

∂(ωz)i+1/2,j+1/2

∂t
=

− f0
1
4

(
Di,j +Di+1,j +Di,j+1+Di+1,j+1

)
−
β

f0

(
P i+3/2,j+1/2−P i−1/2,j+1/2

2d

)
, (16)

where

P i+1/2,j+1/2 ≡ (17)
1
4

(
Pi,j +Pi+1,j +Pi,j+1+Pi+1,j+1

)
,

and
0=

f0
1
4

[
(ωz)i+1/2,j+1/2+ (ωz)i+1/2,j−1/2+ (ωz)i−1/2,j+1/2

+(ωz)i−1/2,j−1/2
]
−

1
d2

(
Pi+1,j +Pi−1,j +Pi,j+1

+Pi,j−1− 4Pi,j
)
.

Equations (16), (17) and (10) complete the set of discrete
equations for the C grid. By using Eqs. (16) and (22) of
Part 1, we obtain the discrete dispersion relation as

ν =
−µ2ξ̃βk

ξ2k2+ η2`2+
µ2f 2

0
N2

(
m2+ 1

4H 2

) , (18)

where ξ̃ , ξ and η are given by Eq. (12), and

µ≡ cos
(

1
2
kd

)
cos

(
1
2
`d

)
. (19)

The definition of µ is identical to that used in Part 1.

Barotropic Rossby modes. By using D = 0 in Eqs. (16)
and (17) and then using Eqs. (16) and (22) of Part 1, we
obtain the discrete dispersion relation for barotropic Rossby
modes on the C grid as

ν =
−µ2ξ̃βk

ξ2k2+ η2`2 . (20)

The discrete baroclinic and barotropic dispersion relations,
Eqs. (18) and (20), for the C grid include an averaging fac-
tor µ2. This is a difference from their Z-grid counterparts,
Eqs. (11) and (15). Averaging of pressure term P from the
cell centers to the corners in Eq. (17) leads to the factor of µ2

in the numerators of Eqs. (18) and (20). A factor of µ2 also
appears in the inertia term at the denominator of Eq. (18), due
to the averaging of divergence and vorticity to each other’s
grid points. Since µ and ξ̃ are both equal to zero at the SRZS,
dynamically inert modes exist for both the baroclinic and
barotropic Rossby modes on the C grid, similar to those that
exist in the Z-grid solutions.

The C-grid solutions shown in Fig. 2 are qualitatively sim-
ilar to the Z-grid solutions, but the C-grid solution deviates
slightly because the dispersion relation for the C grid given
by Eq. (18) contains an averaging factor µ2 in the numerator.
Since µ also approaches zero at the SRZS, and ξ̃ approaches
zero, the small-scale modes on the C grid move or oscillate
more slowly than on the Z grid. As mentioned above, at the
SRZS, a dynamically inert mode is generated with the C grid.

3.3 Solutions for the D grid

Baroclinic Rossby modes. We horizontally discretize Eqs. (1)
and (2) on the D grid shown in Fig. 1c of Part 1 as

∂(ωz)i,j

∂t
= (21)

− f0
1
4

(
Di−1/2,j−1/2+Di+1/2,j−1/2+Di−1/2,j+1/2

+Di+1/2,j+1/2
)
−
β

f0

Pi+1,j −Pi−1,j

2d
,
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Figure 1. Plots of the absolute value of frequency of the baroclinic (red lines) and barotropic (dashed red lines) Rossby modes obtained on
the Z grid for the grid spacings (a) 2 km, (b) 10 km, (c) 25 km and (d) 100 km, and for the various vertical wavenumbers. The thin blue and
thick green dashed lines are the corresponding true baroclinic and barotropic frequencies, respectively.

and

0= (22)

f0
1
4

[
(ωz)i+1,j+1+ (ωz)i,j+1+ (ωz)i+1,j + (ωz)i,j

]
−

1
d2

(
P i+3/2,j+1/2+P i+1/2,j+3/2+P i+1/2,j−1/2

+P i−1/2,j+1/2− 4P i+1/2,j+1/2
)
,

respectively. In Eq. (22), P i+1/2,j+1/2 ≡
1
4

(
Pi,j +Pi+1,j +Pi,j+1+Pi+1,j+1

)
. By adding the

discrete version of Eq. (3) given by

N2
[

1
4

(
Di−1/2,j−1/2+Di+1/2,j−1/2+Di−1/2,j+1/2 (23)

+Di+1/2,j+1/2
)]
−

[
∂2

∂z2 −

(
1

2ρ0

∂ρ0

∂z

)2
]
∂

∂t
Pi,j = 0

to Eqs. (21) and (22), we complete the discrete equations for
the D grid. The resulting discrete dispersion relation is

ν =
−ξ̃βk

ξ2k2+ η2`2+
f 2

0
N2

(
m2+ 1

4H 2

) . (24)
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Figure 2. Same as Fig. 1 but on the C grid.

Barotropic Rossby modes. By using D = 0 in Eqs. (21)
and (22), and using Eqs. (16) and (22) of Part 1, we obtain the
discrete dispersion relation for the discrete barotropic modes
as

ν =
−ξ̃βk

ξ2k2+ η2`2 . (25)

The dispersion equation for the discrete baroclinic and
barotropic Rossby modes on the D grid is identical to that
of the Z-grid solution. In the linear system, every averaging
introduces a factor µ. For nontrivial solutions of Eqs. (21)–
(23), the factors of µ cancel each other. As a result, the dis-
persion equation is identical to that of the Z grid.

Figure 1 is effectively a plot of the frequencies for the D
grid because the dispersion equations for the Z grid given by
Eqs. (11) and (15) are identical to those for the D grid, as
given by Eqs. (24) and (25), respectively.

3.4 Solutions for the CD grid

Baroclinic Rossby modes. By dropping the finite-difference
time derivatives of divergence and vertical velocity in
Eqs. (32)–(42) of Part 1 and adding − i

∼

1
2τµ(β/f0) ξ̃kP̂ and

− i
∼
τ (β/f0) ξ̃kP̂ to Eqs. (32) and (38) of Part 1, respectively,

we write the CD-grid equations for a midlatitude β plane as

Predictor step on the C grid:

ω̂(∗)z = µω̂
(n)
z −

1
2
τf0D̂− i

∼

1
2
τµ(β/f0) ξ̃kP̂ , (26)

0= f0ŵ
(n)
z +L

2P̂ , (27)

0=−
(
i
∼
m+

1
2H

)
P̂ + B̂(n), (28)

B̂(∗) = B̂(n)−
1
2
τN2ŵ, (29)
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D̂+

(
i
∼
m−

1
2H

)
ŵ = 0. (30)

Corrector step on the D grid:

ω̂(n+1)
z = ω̂(n)z − τf0µD̂− i

∼
τ (β/f0) ξ̃kP̂ , (31)

0= f0ŵ
(n)
z +µL

2P̂ , (32)

0=−
(
i
∼
m+

1
2H

)
P̂ + B̂(∗), (33)

B̂(n+1)
= B̂(n)− τN2ŵ, (34)

µD̂+

(
i
∼
m−

1
2H

)
ŵ = 0. (35)

In these equations, ξ̃ is given by Eq. (12), L2
≡ ξ2k2

+

η2`2, ξ and η are given by Eq. (12) andµ is given by Eq. (15).
In this system, the divergence is a diagnostic variable, de-

fined on the cell corners. This is why the divergence D̂ is
multiplied by the averaging factor µ in Eq. (31) but not in
Eq. (26). Using Scheme I, as discussed in Part 1, we elimi-
nate ω̂(∗)z by using Eq. (26) in Eq. (32) and eliminate B̂(∗) by
using Eq. (29) in Eq. (33). Then Eq. (43) of Part 1 is used to
obtain the real frequency and amplification factor equations
as follows:

e2νiτ
(
µ2N2L2

+ f 2
0 σ

2
m

)
sin(2νrτ) (36)

+
1
2
τe2νiτµ2N2βξ̃ cos(2νrτ)+ τeνiτµ2N2 cos(νrτ)βξ̃k

+ 2f 2
0 e
νiτ
(
µ2
− 1

)
σ 2
m sin(νrτ)+

1
2
τµ2N2βξ̃k = 0,

and

eνiτ =
−b+

√
b2− 4ac

2a
, (37)

where

a ≡µ2N2L2 cos(2νrτ)−
1
2
τµ2N2βξ̃k sin(2νrτ) (38a)

+ f 2
0 σ

2
m cos(2νrτ) ,

b ≡2f 2
0

(
µ2
− 1

)
σ 2
m cos(νrτ) (38b)

− τµ2N2βξ̃k sin(νrτ) ,

and

c ≡ f 2
0

(
1− 2µ2

)
σ 2
m−µ

2N2L2. (38c)

Barotropic Rossby modes. By eliminating the divergence,
vertical velocity and buoyancy in Eqs. (26)–(35), we obtain
the two-part dispersion equation for the barotropic modes as

0=

[(
L2
)2
−

(
1
2
τβξ̃k

)2
]

sin(νrτ) (39)

+ τβξ̃kL2 cos(νrτ) ,

and

eνiτ =
L2

L2 cos(νrτ)− 1
2τβξ̃k sin(νrτ)

. (40)

At the SRZS, for which ξ̃ = 0 and µ= 0, the real frequency
νr becomes 0 in Eqs. (36) and (39), and the amplification
factor eνiτ becomes 1 in Eqs. (37) and (40). The Supplement
gives a more detailed derivation of the discrete equations.

The CD-grid solution shown by Fig. 3 is virtually identical
to that for the Z-grid solutions (and D-grid solutions) shown
in Figs. 1 and 2, respectively.

DC grid

As stated above, the CD grid behaves similarly to the D grid
rather than the C grid in the numerical solution of the Rossby
waves on a midlatitude β plane. The normal-mode analysis
of the Rossby waves with the DC grid produce a solution
that is very close to the C-grid solution. A detailed discussion
and frequency plots are presented in the Supplement. This is
consistent with the findings of Part 1 that the correction step
dominates the solutions with the CD and DC grids.

3.5 Solutions for the A grid

Baroclinic Rossby modes. We horizontally discretize
Eqs. (1)–(3) on the A grid shown in Fig. 1e of Part 1 as

∂

∂t
(ωz)i,j =−f0Di,j −

β

f0

Pi+1,j −Pi−1,j

2d
, (41)

and

0= (42)

f (ωz)i,j −
1

4d2

(
Pi+2,j +Pi,j+2+Pi,j−2+Pi−2,j − 4Pi,j

)
,

respectively. Similarly, we obtain the discrete dispersion re-
lation for the baroclinic Rossby modes as

ν =
−βξ̃k

ξ̃2k2+ η̃2`2+
f 2

0
N2

(
m2+ 1

4H 2

) , (43)

where the definition of ξ̃ is given by Eq. (12) and

η̃ ≡
sin(`d)
`d

. (44)

The frequency becomes zero at the SRZS because ξ̃ is zero
in the nominator of Eq. (43). This indicates the existence
of a non-moving and non-oscillating computational mode.
Moreover, the factor of ξ̃2 in the denominator causes the
frequency to behave badly near the smallest resolvable
horizontal scale.
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Figure 3. Same as Fig. 1 but on the CD grid.

Barotropic Rossby modes. By dropping(
f 2

0 /N
2)(m2

+ 1/4H 2) in Eq. (43), the discrete dis-
persion relation for the barotropic Rossby modes can be
obtained as

ν =
−βξ̃k

ξ̃2k2+ η̃2`2
. (45)

The frequency of the barotropic modes becomes strongly
negative (retrogressing) at the SRZS. This means that small-
scale barotropic Rossby modes can behave very badly. We
discuss the behavior of these modes in connection with the
plots below.

Figure 4 shows the frequency of the Rossby modes ob-
tained on the A grid. The A grid produces very fast retrogres-
sion speeds of the barotropic mode at the SRZS. The baro-
clinic modes with short vertical scales retrograde faster than
the true solution near the SRZS, but right at the SRZS, they
do not move at all.

3.6 Baroclinic and barotropic Rossby modes with
the E grid

Part 1 discusses in detail the horizontal discretization on the
E grid. There it is pointed out that the E grid can be viewed
as the superposition of the two C grids, in which the cell cen-
ters of one C grid are placed at the corners of a second C
grid. It is also shown that, from the vorticity and divergence
point of view, the E grid can be viewed as a superposition
of two independent and non-interacting Z grids, as shown in
Fig. 1f of Part 1. The dispersion relation for the E grid is iden-
tical to that for the Z grid, but the smallest resolvable zonal
scale extends to kmax = 2π/d (and `max = 2π/d) for the E
grid. Therefore, the dispersions of baroclinic and barotropic
modes on the E grid are governed by Eqs. (11) and (15) with
kmax and `max as described above. Recall that we use a grid
spacing of

√
2d with the E grid to maintain the same cell

density as with the other grids.
The E grid produces the wildest solutions, as shown in

Fig. 5. It is the only grid that generates prograding Rossby
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Figure 4. Same as Fig. 1 but on the A grid.

modes. The modes with all vertical scales and horizontal
grid spacings used in the models generate prograding solu-
tions near the SRZS. The deeper the mode is, the faster the
progradation speed is. The prograding modes are generated
near the SRZS because the factor ξ̃ yields negative values for
k > π/d . A interpretation is that the finite-difference pres-
sure gradient determined over the two-grid distance is sub-
ject to aliasing errors for zonal waves with k > π/d , which
causes the system to recognize the pressure gradient with the
wrong sign.

3.7 Solutions for the B grid

Baroclinic Rossby modes. We can obtain the equations for
the B grid by ignoring ∂D/∂t in Eq. (63) of Part 1, replacing
f with f0 and using Eqs. (8) and (9). Similarly, we obtain the
discrete dispersion relation for the baroclinic Rossby modes

on the B grid as

ν =
−ξ̃βk

ξ2k2+ η2`2− 1
2d

2ξ2k2η2`2+
f0
N2

(
m2+ 1

4H 2

) , (46)

where the factors ξ , η and ξ̃ are defined by Eq. (12). The fre-
quency becomes zero for the SRZS because ξ̃ is zero. The
Laplacian term ξ2k2

+η2`2
−

1
2d

2ξ2k2η2`2 also approaches
zero in the numerator of Eq. (46) as the zonal wavenumber
approaches the SRZS. This makes the frequency behave sim-
ilarly to that of the A grid.
Barotropic Rossby modes. By dropping(
f 2

0 /N
2)(m2

+ 1/4H 2) in Eq. (46), we obtain the dis-
crete dispersion relation of the barotropic Rossby modes
as

ν =
−ξ̃βk

ξ2k2+ η2`2− 1
2d

2ξ2k2η2`2
. (47)

The denominator approaches zero at the SRZS, which yields
an infinite retrogression speed for these modes.
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Figure 5. Same as Fig. 1 but on the E grid.
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Figure 6. Same as Fig. 1 but on the B grid.

Figure 6 shows the frequency of the Rossby modes on the
B grid. As with the A-grid solutions, the B grid produces
infinitely fast retrogression speeds for the barotropic mode at
the SRZS, and the shallow baroclinic modes retrograde faster
than the true solution near the SRZS and do not move at all
at the SRZS.

As discussed in Sect. 3.8 of Part 1, the A, E and B grids
generate multiple (or non-unique) solutions and dynamically
inert modes. Here, we see that the impact of the dynamically
inert modes on the short Rossby waves is very severe.

The results of our normal-mode analysis of the nonhydro-
static anelastic barotropic and baroclinic Rossby waves on a
midlatitude β plane the C, D, A, E and B grids overall agree
with the results of Dukowicz’s (1995) normal-mode analy-
sis with the shallow-water equations. An exception is that
we include the prograding modes with the E-grid solutions,
whereas Dukowicz (1995) excludes them as “inadmissible”.

3.8 Vertical discretization of the linear anelastic
equations on the L and CP grids and discrete
dispersion equation

Part 1 presents a discussion on the vertical grids, including a
historical perspective, used in atmospheric models. Our pur-
pose in this section is to assess and compare the performance
of the L and CP grids in simulating Rossby modes on a mid-
latitude β plane through a normal-mode analysis.

3.9 The L grid

By replacing f with f0 in Eqs. (65) and (66) of Part 1,
adding the β term −(β/f0)(∂Pk/∂x) to the right-hand side
of Eq. (65) of Part 1 and dropping ∂Dk/∂t and ∂wk+1/2/∂t in
Eqs. (66) and (67) of Part 1, respectively, and using Eq. (70)
of Part 1, we obtain (after some manipulations) the discrete
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Figure 7. Plots of (a, d) true and discrete frequencies for the baroclinic and barotropic Rossby modes obtained on the (b, e) L and
(c, f) CP grids. The thick blue and green dashed lines on the left panels indicate the true baroclinic and barotropic frequencies, respectively.
The thick red and red dashed lines on the center and right panels indicate the discrete baroclinic and barotropic frequencies, respectively.
The upper and lower panels show the plots for the maximum vertical integer wavenumbers of nmax = 320 (δz= 250 m) and nmax = 80
(δz= 1 km), respectively.

dispersion relation for the baroclinic Rossby modes as

ν =
−µ2

zβk

µ2
z

(
k2+ `2

)
+

f 2
0
N2

(
ζ 2m2+µ2

z
1

4H 2

) , (48)

where

ζ ≡
1

1
2mδz

sin
(

1
2
mδz

)
and µz ≡ cos

(
1
2
mδz

)
. (49)

By dropping
(
f 2

0 /N
2)(ζ 2m2

+µ2
z/4H

2) in Eq. (48), we
obtain the discrete dispersion relation for the barotropic
Rossby mode as

ν =
−βk

k2+ `2 . (50)

In Eq. (48), the numerator is proportional to µ2
z , which is

zero for the smallest resolvable vertical scale (SRVS), for
which mδz= π . This means that, for all horizontal scales,
the modes with the SRVS cannot propagate. They are dy-
namically inert (computational) modes. The pressure in the
β term cannot recognize the SRVS buoyancy perturbation
in the vertical velocity equation Eq. (67) of Part 1 with the
quasi-static assumption (∂wk+1/2/∂t ≈ 0). The frequency of
the discrete barotropic mode given by Eq. (50) is identical to
the true frequency in Eq. (7), which is expected because the

barotropic mode has no vertical structure and therefore is not
affected by the vertical discretization.

3.10 The CP grid

We now derive the discrete dispersion relation for the baro-
clinic and barotropic Rossby modes on the CP grid, follow-
ing the same strategy used with the L grid. The results are

ν =
−βk(

k2+ `2
)
+

f 2
0
N2

(
ζ 2m2+µ2

z
1

4H 2

) , (51)

and

ν =
−βk

k2+ `2 , (52)

respectively. The dispersion equation for the baroclinic
Rossby modes on the CP grid given by Eq. (51) does not
have an averaging factor in the numerator, and therefore it
does not allow a dynamically inert mode with zero frequency
at the SRZS.

Figure 7 shows the frequencies as functions of composite
horizontal wavenumber of barotropic and baroclinic Rossby
modes obtained with the L and CP grids. The true frequen-
cies are also shown in separate panels of the figure. The
figure shows the results for two vertical wavenumbers (or
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Table 1. A summary of the continuous and discrete dispersion relations with various horizontal and vertical grids.

True Z and D grid

Baroclinic modes: Barotropic modes: Baroclinic modes: Barotropic modes:

ν =
−βk(

k2+`2
)
+
f 2

0
N2

(
m2+ 1

4H2

) ν =
−βk

k2+`2 ν =
−βξ̃k(

ξ2k2+η2`2
)
+
f 2

0
N2

(
m2+ 1

4H2

) ν =
−βξ̃k

ξ2k2+η2`2

m≡ πn/zT for n= 1,2,3, . . . ξ ≡ sin
(

1
2kd

)
/
(

1
2kd

)
, η ≡ sin

(
1
2`d

)
/
(

1
2`d

)
,

ξ̃ ≡ sin(kd)/(kd), 0≤ [kd,`d]≤ π

C grid E grid

Baroclinic modes: Barotropic modes: Baroclinic modes: Barotropic modes:

ν =
−µ2 ξ̃βk

ξ2k2+η2`2+
µ2f 2

0
N2

(
m2+ 1

4H2

) ν =
−µ2 ξ̃βk
ξ2k2+η2`2 Same as Z grid but for 0≤ [kd,`d]≤ 2π

µ≡ cos
(

1
2kd

)
cos

(
1
2`d

)
CD grid

Baroclinic modes: Barotropic modes:

e2νiτ
(
µ2N2L2

+ f 2
0 σ

2
m

)
sin(2νrτ)+ 1

2 τe
2νiτµ2N2βξ̃k cos(2νrτ) 0=

[(
L2
)2
−

(
1
2 τβξ̃k

)2
]

sin(νrτ)+ τβξ̃kL2 cos(νrτ)

+τeνiτµ2N2 cos(νrτ)βξ̃k+ 2f 2
0 e
νiτ
(
µ2
− 1

)
σ 2
m sin(νrτ) eνiτ = L2/

[
L2 cos(νrτ)− 1

2 τβξ̃k sin(νrτ)
]

+
1
2 τµ

2N2βξ̃k = 0 L2
≡ ξ2k2

+ η2`2, σ 2
m ≡m

2
+ 1/

(
4H 2

)
, 0≤ [kd,`d]≤ π

eνiτ =
(
−b+

√
b2− 4ac

)
/(2a) for a, b and c; see Eqs. (38a)–(38c)

A grid B grid

Baroclinic modes: Barotropic modes: Baroclinic modes: Barotropic modes:

ν =
−βξ̃k

ξ̃2k2+η̃2`2+
f 2

0
N2

(
m2+ 1

4H2

) ν =
−βξ̃k

ξ̃2k2+η̃2`2 ν =
−ξ̃βk

L2
B+

f0
N2

(
m2+ 1

4H2

) ν =
−βξ̃k

L2
B

η̃ ≡ sin(`d)/(`d), 0≤ [kd,`d]≤ π L2
B
≡ ξ2k2

+ η2`2
−

1
2d

2ξ2k2η2`2

L grid CP grid

Baroclinic modes: Barotropic modes: Baroclinic modes: Barotropic modes:

ν =
−µ2

zβk

µ2
z

(
k2+`2

)
+
f 2

0
N2

(
ζ 2m2+µ2

z
1

4H2

) ν =
−βk

k2+`2 ν =
−βk(

k2+`2
)
+
f 2

0
N2

(
ζ 2m2+µ2

z
1

4H2

) ν =
−βk

k2+`2

ζ ≡ sin
(

1
2mδz

)
/
(

1
2mδz

)
µz ≡ cos

(
1
2mδz

)
0≤mδz= nπδz/zT ≤ π for n= 1,2,3, . . .

number of layers), namely nmax = 320 and 80. We included
additional frequency lines corresponding to more vertical
wavenumbers than were used in the plots of Sect. 3 (indi-
cated by thinner solid lines in the plots). In the L-grid so-
lutions shown in Fig. 7b and e, the frequency of the smallest
vertical resolvable mode, identified by nmax , deviates greatly
from the true frequency, which yields zero values. Similar to
the case of the inertia–gravity modes, as the vertical scale
approaches the smallest resolvable scale, the modes gradu-
ally lose their ability to recognize the effects of buoyancy
and therefore baroclinicity. For the mode with the smallest
scale, the buoyancy and baroclinicity are completely decou-
pled from the wind field; for that mode, the buoyancy is dy-
namically inert. In contrast, the frequency of the CP-grid so-
lutions shown in Fig. 7c and f is generally close to the true
frequency but slightly higher.

4 Summary and conclusions

We have discussed the effects on the dispersion of middle-
latitude Rossby waves of the horizontal and vertical dis-
cretizations of the quasi-geostrophic (quasi-static) linearized
equations on the A, B, C, CD, (DC), D, E and Z horizontal
grids and the L and CP vertical grids. We present a summary
of the discrete dispersions of Rossby modes for the horizon-
tal and vertical grids in Table 1 for an easy comparison.

The Z, C, D and CD (DC) grids generate similar disper-
sion of the baroclinic and barotropic Rossby modes. All have
a dynamically inert mode at the SRZS because these scales
cannot recognize the β effect. The dispersion equations for
the A and B grids give infinite frequencies at the SHZS.
Among all horizontal grids, the E grid produces the wildest
solutions. The Rossby modes of all vertical scales near the
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SHZS prograde, while the true modes retrograde. The A, E
and B grids generate multiple (non-unique) solutions, includ-
ing dynamically inert (computational) modes. The impact of
the computational modes on the short Rossby modes appears
very severe on these grids.

The results of our normal-mode analysis of the Rossby
waves for the C, D, A, E and B grids overall agree with
the results of Dukowicz’s (1995) normal-mode analysis with
the shallow-water equations. Dukowicz (1995) considers the
prograding modes with the E-grid solutions “inadmissible”,
however, while we include them.

The selection of the vertical grid impacts the dispersion of
the Rossby modes as much as the horizontal grid selection.
The modes with the smallest resolvable vertical scale on the
L grid do not retrograde. The CP-grid solutions are much
more accurate than the L-grid solutions.

Code and data availability. Fortran codes that are used to compute
and plot the frequencies for the CD grid will be provided by the
corresponding author upon request. Related files can also be found
in http://doi.org/10.5281/zenodo.1117930.
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