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Abstract. Regional atmospheric CO; inversions commonly
use Lagrangian particle trajectory model simulations to cal-
culate the required influence function, which quantifies the
sensitivity of a receptor to flux sources. In this paper, an
adjoint-based four-dimensional variational (4D-Var) assimi-
lation system, WRF-CO2 4D-Var, is developed to provide an
alternative approach. This system is developed based on the
Weather Research and Forecasting (WRF) modeling system,
including the system coupled to chemistry (WRF-Chem),
with tangent linear and adjoint codes (WRFPLUS), and with
data assimilation (WRFDA), all in version 3.6. In WRF-
CO2 4D-Var, CO; is modeled as a tracer and its feedback
to meteorology is ignored. This configuration allows most
WREF physical parameterizations to be used in the assimi-
lation system without incurring a large amount of code de-
velopment. WRF-CO2 4D-Var solves for the optimized CO»
flux scaling factors in a Bayesian framework. Two variational
optimization schemes are implemented for the system: the
first uses the limited memory Broyden—Fletcher—Goldfarb—
Shanno (BFGS) minimization algorithm (L-BFGS-B) and
the second uses the Lanczos conjugate gradient (CG) in an
incremental approach. WRFPLUS forward, tangent linear,
and adjoint models are modified to include the physical and
dynamical processes involved in the atmospheric transport
of CO,. The system is tested by simulations over a domain
covering the continental United States at 48 km x 48 km grid
spacing. The accuracy of the tangent linear and adjoint mod-
els is assessed by comparing against finite difference sensi-
tivity. The system’s effectiveness for CO; inverse modeling
is tested using pseudo-observation data. The results of the
sensitivity and inverse modeling tests demonstrate the poten-

tial usefulness of WRF-CO2 4D-Var for regional CO, inver-
sions.

1 Introduction

While rising atmospheric CO; has been well documented by
observations, major uncertainties still exist in attributing it to
specific processes (Gurney et al., 2002; Peylin et al., 2013).
Atmospheric CO; inversions estimate surface carbon fluxes
from atmospheric CO, measurements. Since the early study
by Enting et al. (1995), a large amount of effort has been de-
voted to developing and applying atmospheric CO; inversion
methods. Most of these inversions are based on a Bayesian
framework, and a wide range of different approaches has
been used, including synthesis inversion (Rayner et al., 1999;
Bousquet et al., 1999; Peylin et al., 2002; Gurney et al.,
2002), geostatistical estimation (Michalak et al., 2004; Gour-
dji et al., 2012), Kalman smoother (Bruhwiler et al., 2005),
ensemble Kalman smoother (Peters et al., 2005), and 4-D
variational inversion (Chevallier et al., 2005; Baker et al.,
2010). All of these inversion approaches are optimization
systems which yield an optimal estimate of CO; fluxes by
minimizing a Bayesian cost function. Within these optimiza-
tion systems, the observation vector is formed by atmo-
spheric CO, measurements, and the state vector is formed
by CO; fluxes and lateral boundary conditions (only for re-
gional inversion systems). The relationship between CO;
fluxes and atmospheric CO; is described by the influence
function, which is also called the footprint or adjoint sensitiv-
ity. Because all of the inversion approaches use a chemistry—
transport model (CTM) to relate CO, fluxes to atmospheric
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COa, the influence function in theory can be calculated by the
CTM using a finite difference method. However, the practi-
cal limits imposed by computational costs often necessitate
the aggregation of flux to reduce the state vector size, which
leads to aggregation errors (Bocquet, 2009; Kaminski et al.,
2001; Turner and Jacob, 2015). In practice, different inver-
sion systems use different approaches to determine the influ-
ence function. Some inversion systems, including synthesis
inversion, geostatistical estimation, and Kalman smoother,
require the influence function to be explicitly constructed
before the inversion. In comparison, the ensemble Kalman
smoother and 4D-Var inversion do not require precalcula-
tion of the influence function. Precalculation of the influence
function is typically carried out using a finite difference ap-
proach with the CTM when the state vector is smaller than
the observation vector, or by the adjoint model of the CTM
when the observation vector is smaller than the state vector.
While most of the Lagrangian CTM models have their ad-
joint developed together (Uliasz, 1993; Lin et al., 2003; Stohl
et al., 2005; Stein et al., 2015), separate and considerable ef-
forts were often needed to develop and maintain the adjoint
for Eulerian CTM models (Hourdin et al., 2006; Meirink
et al., 2008). An ensemble Kalman smoother requires neither
an adjoint model nor precalculation of the influence function.
Instead it creates an ensemble of CO, flux fields and runs a
CTM for each ensemble member. By sampling the ensemble
flux fields and their corresponding atmospheric CO3, the en-
semble Kalman smoother calculates the Kalman gain matrix
without explicitly constructing the influence function (Peters
et al., 2005), and it provides posterior flux error estimates.
The main disadvantage of the ensemble Kalman smoother is
that use of a small number of ensemble members is likely to
lead to misrepresentation of the true prior error variance.

Like ensemble Kalman smoothers, 4D-Var inversions do
not require precalculation of the influence function, but they
do require the adjoint of a CTM to calculate the observation
cost function. 4D-Var inversions use a CTM and prior CO,
fluxes to calculate the simulated CO;, which is compared
with observations to obtain the innovative vector. The adjoint
of the CTM is then used to calculate the cost function gradi-
ent based on the innovative vector. Through iterative mini-
mization of the cost function, 4D-Var inversions estimate the
optimal posterior fluxes. By avoiding calculation of the in-
fluence function, 4D-Var inversions enable CO, fluxes to be
estimated at much higher resolution provided that sufficient
observations are available. The major disadvantages of 4D-
Var inversions are that they do not explicitly provide poste-
rior flux error estimates (additional computation is required),
and their convergence is not always guaranteed.

4D-Var systems have been widely used for CO; inver-
sion at global and regional scales. Examples of global 4D-
Var inversions include the following. The offline transport
model parameterized chemistry and transport model (PCTM)
(Kawa et al., 2004) and its adjoint have been used for CO;
inversions (Baker et al., 2010, 2006; Butler et al., 2010; Gur-
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ney et al., 2005). Chevallier et al. (2005) developed a 4D-
Var system based on the LMDZ (Laboratoire de Météorolo-
gie Dynamique-Zoom) model (Hourdin et al., 2006) to as-
similate CO; observation data from the Television Infrared
Observation Satellite Operational Vertical Sounder (TOVS).
This system has also been used to invert surface CO; obser-
vations (Chevallier, 2007; Chevallier et al., 2010). The global
chemistry—transport model (TMS5) 4D-Var system (Meirink
et al., 2008), based on the TMS global two-way nested trans-
port model (Krol et al., 2005), is included in the TransCom
satellite intercomparison experiment (Saito et al., 2011).
TMS5 4D-Var has also been used to investigate total column
CO; seasonal amplitude (Basu et al., 2011) and to assimi-
late the Greenhouse Gases Observing Satellite (GOSAT) ob-
servations (Basu et al., 2013). Another widely used inver-
sion system is the GEOS-Chem 4D-Var (Henze et al., 2007;
Kopacz et al., 2009) with its CO, module updated by Nas-
sar et al. (2010). GEOS-Chem 4D-Var has been used to es-
timate CO; fluxes from the Tropospheric Emission Spec-
trometer (TES) and the GOSAT CO, observations (Nassar
et al., 2011; Deng et al., 2014), and it is also part of the JPL
(Jet Propulsion Laboratory) Carbon Monitoring System (Liu
etal., 2014).

Regional 4D-Var inversion studies have been driven in
part by the need to resolve biosphere—atmosphere carbon ex-
change at smaller scales (Gerbig et al., 2009), and by the need
to address policy-relevant objectives, such as assessing emis-
sion reduction effectiveness (Ciais et al., 2014) and the im-
pact of regional-scale sources like wildland fire (French et al.,
2011). For instance, Gerbig et al. (2003) used an analyti-
cal approach to minimize the cost function and the Stochas-
tic Time-Inverted Lagrangian Transport (STILT) (Lin et al.,
2003) model driven by meteorological analyses to calculate
the influence function. In a later study, STILT, driven by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) meteorological data, is used to calculate the influ-
ence function to investigate the impacts of vertical mixing er-
ror (Gerbig et al., 2008). More recently, Lauvaux et al. (2012)
also used an analytical solution for cost function minimiza-
tion and the Lagrangian particle dispersion model (LPDM)
(Uliasz, 1993) to compute the influence function. In another
study, Pillai et al. (2012) used STILT driven by meteoro-
logical data from WREF to calculate the influence function
for comparing Lagrangian and Eulerian models for regional
CO» inversions. To improve accuracy, STILT has been cou-
pled to WRE, in which the latter provides online meteorol-
ogy to STILT to avoid interpolation error (Nehrkorn et al.,
2010). More recently, Alden et al. (2016) investigated bio-
spheric CO; flux in the Amazon using an analytical inver-
sion approach (Yadav and Michalak, 2013) with the influ-
ence function calculated by STILT and FLEXible PARTicle
(FLEXPART) (Stohl et al., 2005) models. Also, Chan et al.
(2016) applied a regional CO» inversion in Canada with both
analytical and Markov chain Monte Carlo (MCMC) LPDM-
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based approaches. The influence function is also calculated
with the FLEXPART model in this study.

In this paper, a regional CO, inversion system with online
meteorology, WRF-CO2 4D-Var, was developed by modi-
fying the WRFDA and WRFPLUS system (v3.6) in an ap-
proach similar to that used for black carbon emission in-
version by Guerrette and Henze (2015, 2017) (hereafter
GH15/17). WRFDA is a meteorology data assimilation sys-
tem which includes a 4D-Var assimilation system (Barker
et al., 2012; Huang et al., 2009) and related adjoint and tan-
gent linear models (WRFPLUS) (Zhang et al., 2013). De-
signed to improve weather forecasts, WRFDA 4D-Var opti-
mizes meteorological initial and boundary conditions by as-
similating a variety of observational data. WRFPLUS was
modified to include CO; transport processes and the cost
function was configured so that the state vector consists of
CO; fluxes instead of meteorological fields. In developing
WRFDA-Chem for black carbon inversion, GH15/17 ex-
cluded radiation, cumulus, and microphysics parameteriza-
tion schemes from the tangent linear and adjoint models be-
cause developing these procedures for black carbon would
incur a large amount of new code development. In WRF-CO2
4D-Var, CO; is a tracer, meaning its impacts on meteorol-
ogy are ignored. This configuration allows inclusion of the
full physics schemes in WRF-CO2 4D-Var’s tangent linear
and adjoint models with limited new code development (see
Sect. 2.4.1). As transport model error is detrimental to 4D-
Var inversion accuracy (Fowler and Lawless, 2016; Gerbig
et al., 2009), it is beneficial to use the full physics schemes in
the tangent linear and adjoint models for WRF-CO2 4D-Var.
In addition, while GH15/17 excluded convective transport of
chemistry species in WRFDA-Chem, the tangent linear and
adjoint code for this process was developed for WRF-CO2
4D-Var to reduce the vertical mixing error (see Sect. 2.4.3).
Two optimization schemes were developed for WRF-CO2
4D-Var: an incremental optimization with the Lanczos ver-
sion of the conjugate gradient (Lanczos-CG) and a limited
memory Broyden—Fletcher—Goldfarb—Shanno (BFGS) mini-
mization algorithm (L-BFGS-B)-based optimization.

In the WREF system, CO, mixing ratio variations could im-
pact meteorology fields through the radiation scheme, which
provides temperature tendency to the dynamical core (Iacono
et al., 2008; Skamarock et al., 2008). None of the radiation
schemes (as of version 3.6) use the simulated CO; from the
chemistry module but instead use climatological values. A
sensitivity test was conducted to assess the short-term im-
pacts of CO, variation on meteorology. The results show that
with the CO, mixing ratio changed from 391 to 500 ppm,
the mean differences in horizontal wind (U, V) and air tem-
perature at the end of the 48 h simulations are 0.0794 ms~!,
0.0791 ms~!, and 0.0366 K, respectively. Although these dif-
ferences grow with time, their magnitudes are considerably
smaller compared with the contribution from other factors
for the short assimilation window (days to weeks) that WRF-
CO2 4D-Var is designed for. Based on the above analysis,
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the impact of CO, on meteorology is ignored in WRF-CO2
4D-Var, and CO; is modeled as a passive tracer. This simpli-
fication allows WRF-CO2 4D-Var to use the full version of
most WRF physics schemes in its tangent linear and adjoint
models to minimize the linearization error (Tremolet, 2004).

Compared with offline regional inversion systems, WRF-
CO2 4D-Var has an advantage provided by the close one-way
coupling between meteorological processes and chemistry
transport. For example, adequately representing CO» verti-
cal transport and eddy turbulent mixing in high-resolution
regional simulations is crucial, as vertical motions in the at-
mosphere exhibit significant temporal variability. Grell et al.
(2004) shows that less than 40 % of the total vertical veloc-
ity variability in a 3 km resolution simulation is captured by
a 1 h output interval. He estimated that the meteorological
output interval must be less than 10 min in order to capture
more than 85 % of the variability in cloud-resolving simula-
tions. In WRF-CO2 4D-Var, CO; transport runs at the same
time step as the meteorology, avoiding the problems facing
its offline counterparts.

The remainder of this paper is organized as follows: Sect. 2
details the implementation of the two variational optimiza-
tion schemes for cost function minimization, and the modifi-
cation to the tangent linear and adjoint models. Section 3 ex-
amines the accuracy of sensitivity calculated by the tangent
linear and adjoint models, and the system’s effectiveness in
inverse modeling. Section 4 describes the treatment of CO,
lateral boundary conditions in the WRF-CO2 4D-Var system.
Finally, a summary and outlook are presented in Sect. 5.

2 Method

This section describes the WRF-CO2 4D-Var cost function
configuration and the associated minimization schemes, fol-
lowed by a description of the forward, tangent linear, and
adjoint models.

2.1 Cost function configuration

WRF-CO2 4D-Var is designed to optimize the CO; flux by
assimilating CO, observations into an atmospheric chemistry
transport model. The CO, flux is optimized through use of a
linear scaling factor:

E =keoE, (1)

where E is the CO flux read from flux files, k.o is the flux
scaling factor, and E is the effective CO; flux. It is the effec-
tive flux E that is used in WRF-Chem’s emission driver to
update CO, mixing ratio (¢g.,,). The flux scaling factor k¢2,
its tangent linear variable g_k.y, and its adjoint variable
a_kcop are used in calculating model sensitivity and mini-
mizing the cost function defined in Eq. (2).

The cost function J(x) of WRF-CO2 4D-Var follows the
Bayes framework that is widely used in atmospheric chem-
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istry and numerical weather prediction (NWP) data assimila-
tions:

J(x) = Jo(x) + Jo(x), @)

where the background cost function J,(x) is defined as
1
Jo@) = (" —x") B (" —x"), 3)

and the observation cost function J,(x) is defined as

K

1
Jo(x) =2 > [HIME")] =y} RTUHIM "] =y} (4)
k=1

In Egs. (3)—(4), B is the background error covariance ma-
trix, R is the observation error covariance matrix, M is the
transport model, H is the observational operator, y; is the
observation vector, and x? is the prior state vector. The su-
perscript n indicates that x" is the optimized state vector at
the nth iteration. For a full list of variables used in this paper,
please refer to Table 1. Throughout the paper, boldface low-
ercase characters represent vectors and boldface uppercase
characters represent matrices.

Like other data assimilation systems, WRF-CO2 4D-Var
is an optimization scheme. Its state vector x consists of the
flux scaling factors ko and lateral boundary condition scal-
ing factors. The summation K in Eq. (4) indicates the entire
assimilation time period is evenly split into K observation
windows during which observational data are ingested into
the assimilation system. Details about how observations are
ingested in the variational optimization schemes are given in
Sect. 2.2 and 2.3.

Two optimization schemes are implemented in WRF-CO2
4D-Var to minimize the cost function. The first scheme uses
the L-BFGS-B algorithm (Byrd et al., 1995) and the second
uses the Lanczos-CG (Lanczos, 1950) minimization algo-
rithm. Both schemes are iterative processes, and they call on
WRF-CO2 4D-Var model components (the forward, tangent
linear, and adjoint models) to calculate the model sensitiv-
ity 0¢ .o/ 0kco2 between the iterations. The two optimization
schemes are described in Sect. 2.2 and 2.3, respectively, and
the three model components are described in Sect. 2.4.

2.2 L-BFGS-B optimization

L-BFGS-B (Byrd et al., 1995) is a quasi-Newton method for
nonlinear optimization with bound constraints. L-BFGS-B
has been used in a number of atmospheric chemistry inverse
modeling systems, including the GEOS-Chem adjoint model
system (Henze et al., 2007) and the TM5 4D-Var system
(Meirink et al., 2008). The diagram in Fig. 1 demonstrates the
steps involved in the L-BFGS-B-based optimization scheme.
The scheme is an iterative process which searches for the
optimized k¢y> by minimizing the cost function defined in
Eq. (2)—-(4). Between its iterations, the minimization algo-
rithm L-BFGS-B requires the values of the cost function and
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Table 1. A list of symbols used in this article.

J(x) Cost function

Jp(x) Background cost function
Jo(x) Observation cost function
VJ(x) Cost function gradient

IVJ(x)|| Cost function gradient norm

v2J (x) Cost function Hessian

B Background error covariance

R Observation error covariance

M WREF-CO2 forward model

M WREF-CO2 tangent linear model

mT WRF-CO2 adjoint model

H Observation operator

H Tangent linear observation operator

HT Adjoint observation operator

ko CO; emission scaling factor

qeo2 CO;, mixing ratio (dry air)

8 keon Tangent linear variable for CO; emission scaling factor
a_keo Adjoint variable for CO, emission scaling factor

g 4co2 Tangent linear variable for CO, mixing ratio (dry air)
a_qcon Adjoint variable for CO, mixing ratio (dry air)

xb Prior estimate of CO, emission scaling factor

x" Analysis of CO, emission scaling factor

x Analysis increment of CO; emission scaling factor
Yk Observation at the kth assimilation window

dy Innovation vector at the kth assimilation window

its gradient, which are supplied by the forward model and the
adjoint model as indicated in Fig. 1.

The calculation of the cost function is carried out based on
Egs. (2)—(4). Starting with the prior estimate of k¢q2, the for-
ward model run generates the CO;, mixing ratio ¢, which
is transformed from the WRF model space to the observation
space by the forward observation operator H. This results
in the H(M (x")) term in Eq. (4), which is then paired with
the observation vector y, to calculate the innovation vector
dy = H(M(x")) — y;. Next, the innovation vector and ob-
servation error covariance R are used to calculate the ob-
servation cost function J,(x) as expressed in Eq. (4). Fi-
nally, the background cost function Jy(x) is calculated ac-
cording to Eq. (3) and combined with the observation cost
function J,(x) to form the total cost function J(x) accord-
ing to Eq. (2).

L-BFGS-B requires the values of the cost function J(x)
and its gradient V J(x) in searching for the optimized k¢q».
The gradient is calculated using Eq. (5).

K
VIx)=> MTH R H[M")] -y}
k=1
+ B x" —x) (5)

The first term on the right-hand side of Eq. (5) is the ob-
servation gradient and the second is the background gradient.
The observation gradient is calculated in two steps. (1) The
innovation vector is scaled by R™! and transformed to the
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> KCOZ

Forward model

Simulated
4co2

Cost

Observed
qco2

Innovation

function vector

L-BFGS-B J Adjoint model

Cost
function
gradient

Figure 1. Diagram of L-BFGS-B-based optimization implemented
for WRF-CO2 4D-Var.

WRF model space by the adjoint observation operator, result-
ingin H'R~!(H (M (x™))—y,), which is the adjoint forcing.
(2) The adjoint forcing is then ingested by the WRF-CO2 ad-
joint model during its backward (in time) integration, which
yields the observation gradient. Supplied with the values of
the cost function and gradient, the L-BFGS-B algorithm finds
a new value of k..», which is used for the next iteration. The
iterative optimization process continues until a given conver-
gence criterion is met. The L-BFGS-B-based optimization in
WRF-CO2 4D-Var is implemented based on the Fortran code
of Algorithm 788 version Lbfgsb.2.1 (Zhu et al., 1997). Ver-
sion Lbfgsb.3.0 (Luis Morales and Nocedal, 2011) will be
implemented in the next model update.

2.3 Incremental optimization

The second optimization scheme implemented for WRF-
CO2 4D-Var is the incremental approach commonly used in
NWP data assimilation systems, including ECMWF 4D-Var
(Rabier et al., 2000) and WRFDA (Barker et al., 2012). A
major difference between the L-BFGS-B-based optimization
and the incremental optimization is that the former optimizes
for the state vector while the latter optimizes for the state vec-
tor analysis increment. The incremental assimilation scheme
uses a linear approximation to transform the observation cost
function from what is defined in Eq. (4) to Eq. (6):
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Jo(x)=5;{H[M<x )]
— e+ HIM " —x"" D) RYH[M "]
— Y+ HM(x" —x"" 1]} (6)

Compared to Eq. (4), Eq. (6) approximates the innovation
vector by a sum of two parts. The first part, H (M (x"~1)) —
Yk 1s the inngvaiion vector from the previous iteration. The
second part, H (M (x" —x"~ 1Y), is the state vector analysis in-
crement (x" —x"~1) transformed by the tangent linear model
M and tangent linear observation operator H. With the linear
approximation of the cost function the gradient is calculated
by

K
Vi)=Y M"H'RTH[Mx""")]-y)
k=1
+B_1(xn_l _xb)

K
+> MTHTRTMH[M (" —x""")])
k=1
+B7 (" —x"h. @)

In WRF-CO2 4D-Var, the incremental optimization is im-
plemented as a double loop in which the outer loop calcu-
lates the first and second items on the right-hand side of
Eq. (7), while the inner loop calculates the third and fourth
items. The superscript n — 1 indicates that x”~! is the opti-
mized state vector in the last outer loop, and superscript n
indicates that x” is the optimized state vector in the inner
loop. The outer loop first calls the forward model M and ad-
joint model MT tocalculate MT HTR™! (H(M(x”_l)—yk))
and B~ (x"~! — x?), which remain unchanged during the
subsequent inner loop calculation. The analysis increment
(x" —x""1) is optimized in the inner loop, which calls
the tangent linear and adjoint models to calculate the third
and fourth items of Eq. (7). Inner loop calculation is car-
ried out by Lanczos-CG (Lanczos, 1950), which can option-
ally estimate eigenvalues of the cost function Hessian ma-
trix (V2 J(x)). The diagram in Fig. 2 shows the structure
of the Lanczos-CG-based incremental optimization imple-
mented in WRF-CO2 4D-Var.

2.4 Forward, tangent linear, and adjoint models

WRFPLUS consists of three model components: the WRF
model, its tangent linear model, and its adjoint model (Barker
et al., 2012; Huang et al., 2009). The three models are used
by WRFDA to optimize the initial meteorological condi-
tion in order to improve numerical weather prediction. Un-
like WRFDA, WRF-CO2 4D-Var is designed to optimize the
CO; flux, instead of the meteorological initial and boundary
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conditions. This difference means the physical and dynami-
cal processes involved in the atmospheric CO; transport are
needed in WRF-CO2 4D-Var’s model components. To in-
clude these processes, the chemistry module was added to
the forward model. The chemistry module includes chem-
istry, deposition, photolysis, advection, diffusion, and con-
vective transport of chemistry species (Grell et al., 2005).
These processes are included in different modules of WRF-
Chem: ARW (Advanced Research WRF) dynamical core,
physics driver, and chemistry driver. The GHG (greenhouse
gas) tracer option was removed and CO is treated as an inert
tracer. In the emission driver, the CarbonTracker 2016 ver-
sion (Peters et al., 2007) replaces the online biogenic CO;
model Vegetation Photosynthesis and Respiration Model
(VPRM) (Mahadevan et al., 2008). This change is made be-
cause WRF-CO2 4D-Var optimizes the CO; flux instead of
online emission model parameters.

2.4.1 Variable dependence analysis

The tangent linear and adjoint models of WRFPLUS needed
to be modified to include the physical and dynamical pro-
cesses involved in the atmospheric transport of CO», so that
they will be consistent with the forward model. A thorough
variable dependence analysis was conducted and the results
are summarized in Table 2, which groups WRF-Chem pro-
cesses into three categories regarding CO; tracer transport.
The first category includes the chemistry processes that do
not apply to CO», including gas- and aqueous-phase chem-
istry, dry and wet deposition, and photolysis. These processes
are simply excluded from the forward, tangent linear, and ad-
joint models in WRF-CO2 4D-Var.

The second category is comprised of the physical pa-
rameterizations that do not provide CO, tendency but pro-
vide meteorological tendency. This category includes radia-
tion, surface, cumulus, and microphysics parameterizations.
While the full physics schemes of surface, cumulus, plane-
tary boundary layer (PBL), and microphysics are used in the
forward model of WRFPLUS, simplified versions of these
schemes are used in its tangent linear and adjoint models.
In addition, WRFPLUS uses full radiation schemes (long-
wave and shortwave) in its forward model, but it excludes
radiation schemes from its tangent linear and adjoint models.
The difference in the physical parameterizations between the
forward model and tangent linear/adjoint models in a 4D-
Var system is a source of linearization error. For instance,
Tremolet (2004) found linearization error in ECMWF 4D-
Var larger than expected and recommended more accurate
linear physics for higher resolution 4D-Var systems. Because
WRF-CO2 4D-Var ignores the impacts of CO, mixing ra-
tio variation on the meteorological fields, no tangent linear
and adjoint variables for meteorological fields are needed
in its tangent linear and adjoint models. Since this second
category of processes is not directly involved in CO, trans-
port, there is no need for their tangent linear and adjoint pro-
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Figure 2. Diagram of Lanczos-CG-based incremental optimization
implemented for WRF-CO2 4D-Var.

cedures in WRF-CO2 4D-Var. In WRFPLUS’s tangent lin-
ear model, the tangent linear code of the simplified versions
of the cumulus, surface, and microphysics schemes was re-
moved and replaced with the code for the full schemes as
used in the forward model. In WRFPLUS’s adjoint model,
the forward sweep updates the state variables and local vari-
ables just as in the forward model, but it also stores these
variables’ values for the subsequent backward sweep, which
updates the adjoint variables of the state variables. The sim-
plified versions of the cumulus, surface, and microphysics
schemes used in the forward sweep of WRFPLUS’s adjoint
model were removed and replaced with the full schemes used
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in the forward model. Since these processes do not directly
modify CO;, mixing ratio, their corresponding adjoint code
was removed from the backward sweep of the adjoint model,
as indicted by the “X” in Table 2.

The third category includes advection, diffusion, emission,
and turbulence mixing in the PBL, along with convective
transport of CO,. Because these processes directly modify
CO» mixing ratio, their tangent linear code and adjoint code
are needed for WRF-CO2 4D-Var. The modifications made
for advection and diffusion are described in Sect. 2.4.2, and
those for emission, turbulent mixing in the PBL, and convec-
tive transport of CO; are detailed in Sect 2.4.3.

2.4.2 Advection and diffusion of CO;

WREF includes the advection and diffusion of inert tracers
along with other scalars in its ARW dynamical core. The
tangent linear and adjoint code for these processes has been
implemented in WRFPLUS. It should be noted that the vari-
ables for these inert tracers are part of WREF, instead of WRF-
Chem. WRF-Chem uses a separate array for its chemistry
species. Since WRF-Chem is used as the forward model of
WRF-CO2 4D-Var, the CO; mixing ratios are included in
the chemistry array. In the GHG option of WRF-Chem used
for WRF-CO2 4D-Var, CO, from different sources (anthro-
pogenic, biogenic, biomass burning, and oceanic) is repre-
sented by separate variables in the chemistry array. Follow-
ing the treatment for the inert tracers in WRFPLUS, subrou-
tines solve_em_tl and solve_em_ad were modified to add the
tangent linear and adjoint code for the advection and dif-
fusion of the chemistry array. The modifications made in-
clude adding calls to the procedures that calculate advec-
tion and diffusion tendencies, updating the chemistry array
with the tendencies and boundary conditions, and address-
ing the Message Passing Interface (MPI) communications.
The new upgrade to WRFPLUS described in Zhang et al.
(2013) greatly expedited this part of development for WRF-
CO2 4D-Var. The “Add” in Table 2 for advection and dif-
fusion emphasizes that their tangent linear and adjoint code
is added to WRF-CO2 4D-Var based on the existing WRF-
PLUS code without substantial new code development.

2.4.3 Vertical mixing of CO; in PBL and convective
transport

An accurate representation of vertical mixing is important for
inversion accuracy, because misrepresentation causes trans-
port error, which manifests itself in the innovation vector
and causes error in posterior estimation (Fowler and Law-
less, 2016). For instance, Stephens et al. (2007) pointed out
that global chemistry transport model error in vertical mixing
and boundary layer thickness could cause significant overes-
timation of northern terrestrial carbon uptake. A comparison
of four global models found that model transport uncertainty
exceeds the target requirement for the A-SCOPE mission of
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0.02Pg C yr~! per 10® km? (Houweling et al., 2010). In addi-
tion, Jiang et al. (2008) reported that convective flux is likely
underestimated in boreal winter and spring based on simu-
lated upper tropospheric CO from 2000 to 2004 using three
chemistry transport models.

In WRF-Chem, vertical mixing of chemical species is
treated in three separate parts: in the vertical diffusion
(subgrid-scale filter) in the dynamical core, in the PBL
scheme in the physics driver, and in the convective trans-
port in the chemistry driver. The subgrid-scale filter in the
dynamical core treats both horizontal and vertical diffusion,
but vertical diffusion is turned off if a PBL scheme is used.

For PBL parameterization, the asymmetrical convective
model version 2 (ACM2) (Pleim, 2007) was chosen for
WREF-CO2 4D-Var. ACM2 is a hybrid local-non-local clo-
sure PBL scheme, and it updated the non-local scheme,
ACMI1 (Pleim and Chang, 1992), by adding an eddy diffu-
sion component. Because ACM?2 explicitly defines local and
non-local mass fluxes, it is particularly applicable for atmo-
spheric chemistry simulations. In a one-dimensional model
evaluation, ACM2 showed a very good agreement with large-
eddy simulations for PBL heights with a very slight low
bias (Pleim, 2007). In addition to WRF, ACM2 has been im-
plemented in the fifth-generation Penn State/National Cen-
ter for Atmospheric Research (NCAR) Mesoscale Model
(MMS5) and the Community Multiscale Air Quality (CMAQ)
model. An evaluation using PBL heights derived from radar
wind profiles showed that the MM5-ACM?2 is capable of re-
alistic simulation of PBL heights (Pleim, 2007). Hu et al.
(2010) evaluated three WRF PBL schemes and found that
ACM?2 resulted in less bias than the local closure Mellor—
Yamada—Janji¢ (MYJ) scheme when compared with surface
and boundary layer observations. Furthermore, model evalu-
ations also showed that ACM2 performed well with CMAQ
for air pollution simulations (Nolte et al., 2015; Appel et al.,
2017).

Convective transport of chemistry species in WRF-Chem
is not treated by the cumulus scheme in the physics
driver but by a separate convective transport module (mod-
ule_ctrans_grell) in the chemistry driver (Grell et al., 2004).
This convective transport module includes a deep convec-
tive process and a shallow convective process. The deep con-
vective transport process requires the convective precipita-
tion rate calculated by the cumulus scheme (in the physics
module of WRF): it calculates the base mass flux based on
the convective precipitation rate. Compared to the ensem-
ble stochastic approach used in the Grell-Freitas cumulus
scheme (Grell and Freitas, 2014), this is a rather crude rep-
resentation of the vertical convective transport. The shallow
convective process requires three parameters passed in from
the cumulus scheme in the physics module: updraft origi-
nating level, cloud top level, and total base mass flux. Only
two cumulus schemes in WRF provide these parameters: the
Grell-Freitas (Grell and Freitas, 2014) and Grell 3D Ensem-
ble (Grell and Devenyi, 2002).
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Table 2. Summary of variable dependence analysis for developing WRF-CO2 4D-Var component models on top of WRFPLUS. In the table,
an “F” means a full physics scheme is used in the forward model, tangent linear model, or the forward sweep of the adjoint model. An
“X” means a process is not needed for CO, treatment. A “Dev” means a process does not exist in WRFPLUS and has been developed for
WRF-CO2 4D-Var. An “Add” means a process for CO, is simply added using the existing WRFPLUS code for other tracers.

Tangent linear ~ Adjoint model  Adjoint model

Process Forward model  model forward sweep  backward sweep
Chemistry X X X X

Photolysis X X X X

Dry deposition X X X X

Wet deposition X X X X

Radiation F F F X

Surface F F F X

Cumulus F F F X
Microphysics F F F X

Advection F Add F Add

Diffusion F Add F Add

Emission F Dev F Dev

PBL F Dev F Dev
Convective transport  F Dev F Dev

Because the ACM2 PBL and chemistry convective trans-
port are not included in WRFPLUS, their tangent linear and
adjoint code was developed for WRF-CO2 4D-Var. First, the
automatic differentiation tool Tapenade (Hascoet and Pas-
cual, 2013) was used to generate the tangent linear and ad-
joint code based on the forward code: module_bl_acm for
the ACM2 PBL and module_ctrans_grell for the chemistry
convective transport. Then, the Tapenade-generated code was
manually modified to remove redundancy and unnecessary
loops. It should be pointed out that these code developments
were made significantly simpler because the meteorological
state variables are merely passive variables in the tangent
linear and adjoint code. For instance, to calculate the moist
static energy and environmental values on cloud levels, the
chemistry convective transport code (module_ctrans_grell)
in the chemistry driver calls a number of subroutines in the
cumulus parameterization code in the physics driver. Be-
cause these subroutines in the cumulus parameterization only
involve meteorology state variables and not the chemistry ar-
ray, no tangent linear or adjoint code is needed for them in
WRF-CO2 4D-Var.

3 Results

This section presents an accuracy assessment of the newly
developed WRF-CO2 4D-Var system. First, the simulation
model setup is described; then, the sensitivity tests and in-
verse modeling experiments are presented.

Geosci. Model Dev., 11, 1725-1752, 2018

3.1 Model setup

WRF-CO2 4D-Var is set up with a domain covering the con-
tinental United States with 48 km x 48 km grid spacing and
50 vertical levels (Fig. 3). The domain dimension is 110
points in the east—west and 66 points in the north—south
directions. Model configuration includes the Rapid Radia-
tive Transfer Model (RRTM) longwave radiation (Mlawer
etal., 1997), Goddard shortwave radiation (Chou and Suarez,
1999), Pleim surface layer (Pleim, 2006), Pleim—Xiu land
surface model (Pleim and Xiu, 2003), ACM2 PBL (Pleim,
2007), Grell-Freitas cumulus (Grell and Freitas, 2014), and
Thompson microphysics (Thompson et al., 2008). Positive—
definite transport is applied to the transport of scalars and
COs.

CO, fluxes used for the simulations are from the Car-
bonTracker 2016 version (hereafter CT2016) (Peters et al.,
2007). These fluxes are the optimized surface fluxes at a 3h
interval and at 1 x 1 degree spatial resolution. The four indi-
vidual CO; fluxes (biosphere, fossil fuel, fire, and ocean) are
spatially interpolated to the WRF grid and saved in chem-
istry input files. In the following sensitivity tests and inverse
experiments, the emission scaling factor ko is applied only
to the biosphere flux. Daily mean biospheric fluxes are calcu-
lated as the arithmetic mean of the 3-hourly CT2016 fluxes at
each surface grid cell, and the scaling factor k.o, is applied
as in Eq. (1). The daily mean biospheric flux used for the
24 h simulation is shown in Fig. 4. The model configuration
and emission data used are summarized in Table 3. Although
the daily mean biospheric flux was used for the forward and
inverse modeling in this paper, the WRF-CO2 4D-Var imple-
mentation allows flexibility in configuring the prior fluxes.
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Table 3. WRF-CO2 4D-Var model configuration and CO, flux used
in sensitivity and inverse modeling tests.

Longwave radiation
Shortwave radiation

Rapid Radiative Transfer Model (RRTM)
Goddard shortwave

Microphysics Thompson
Surface layer Pleim—Xiu
Land surface Pleim—Xiu
Planetary boundary layer ~ACM?2 PBL

Grell-Freitas
Positive—definite advection
CarbonTracker 2016

Cumulus
CO; advection
biosphere CO, flux

ocean CO; flux CarbonTracker 2016
fire CO, flux CarbonTracker 2016
fossil fuel CO, flux CarbonTracker 2016

For instance, fluxes from respiration and photosynthesis can
be estimated independently and at higher temporal resolution
(Gourdji et al., 2012). When using these options with real ob-
servations, the balance between the degrees of freedom in the
state vector and the constraints provided by the observations
needs to be carefully considered.

Model simulations span 24 h from 00:00 UTC on 2 June to
00:00 UTC on 3 June 2011. Meteorological initial and lateral
boundary conditions are prepared using the National Centers
for Environmental Prediction (NCEP) Climate Forecast Sys-
tem version 2 (CFSv2) 1 x 1 degree 6-hourly products (Saha
et al., 2014). CO;, initial and lateral boundary conditions are
from the CT2016 global 3 x 2° CO, mole fraction. A method
similar to PREP-CHEM-SRC (Freitas et al., 2010) was used
to horizontally and vertically interpolate CT2016 mole frac-
tion data to the WRF grid.

First, the forward model (WRF-Chem) was run for 24 h
with the CO; emission as described in the last section. Tra-
jectory files that contain model state variables including both
meteorology and CO, mixing ratio are saved at model dy-
namical time step intervals (120s). These files are required
for the subsequent tangent linear and adjoint model runs.
Figure 5 shows the instantaneous values of sea level pressure
(SLP) and horizontal wind at the model’s lowest vertical level
at every 6 h. The figure shows that a high pressure system
was located off the west coast, causing a northerly surface
wind off southern California, and a westerly wind for most
of the Pacific Northwest. A low pressure system intensified
over Montana and North Dakota during the 24 h, causing a
strong southerly wind over the Midwest. In the northeast, as
a low pressure system moved eastward out of the domain, the
surface wind shifted from southwesterly to westerly.

In the model setup, the initial and boundary meteorologi-
cal conditions are generated by downscaling the CFSv2 data.
Downscaling coarse-resolution global reanalysis data could
lead to poor WRF performance. Although this potential prob-
lem is not a concern for the present pseudo-observation-
based inversion experiments, it must be properly treated in
future applications with real observations. Error in the initial
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condition will lead to erroneous flux attribution, especially
for inversions with a short assimilation window.

In order to be useful for applications which employ real
observational data, WRF-CO2 4D-Var requires accurate sim-
ulations of the meteorological fields by the forward model.
Because transport error can only be partially accounted for
in the 4D-Var system through the observation error covari-
ance matrix, it is imperative to minimize errors due to inaccu-
rate simulation of meteorological processes as much as possi-
ble. Although the present paper uses pseudo-observation data
(which have zero transport error by definition) in its inver-
sion experiments, future applications with real observations
will require vigorous evaluation of the model-simulated me-
teorology and associated transport error. In the following, the
forward-model-simulated horizontal winds at the surface and
500 hPa constant pressure surface are evaluated using in situ
measurements from weather stations and radiosondes.

For the surface level, WRF-simulated 10 m winds are com-
pared against surface weather station measurements archived
in the National Oceanic and Atmospheric Administration
(NOAA) Integrated Surface Database (Smith et al., 2011).
Hourly surface wind measurements from more than 2000 sta-
tions within the WRF domain are used for the evaluation.
Comparisons of wind speed and wind direction are carried
out at the top of each hour during the 24 h simulation period
starting at 00:00 UTC on 2 June 2011. Excluding missing
observations, this results in 31745 valid data pairs, which
are summarized in the histograms of Fig. 6. RMSE for the
hourly wind speed is 2.16 ms~! and the mean difference in
the hourly wind direction is 29.4°.

For the upper level, WRF-simulated 500 hPa horizon-
tal winds were compared against radiosonde measurements
from 90 stations obtained from the NOAA Earth System Re-
search Laboratory (ESRL) radiosonde database (https://ruc.
noaa.gov/raobs/, last access: 27 April 2018). Since most sta-
tions release balloons at 00:00 and 12:00 UTC, WRF winds
were compared against the radiosonde measurements at a
12 h interval during the 24 h simulation period. The results
are shown in Fig. 7: RMSEs of wind speed are 2.54, 4.0, and
5.11ms!, on 2 June at 00:00 UTC, 2 June at 12:00 UTC,
and 3 June at 00:00 UTC, respectively. Wind direction dif-
ferences between WRF and radiosonde are 11.5, 16.4, and
19.1° at the three times. Locations of the weather stations
and radiosonde sites used in the evaluations can be found in
the Supplement.

The above-described evaluations using in situ measure-
ments indicate that the meteorological simulation is of ad-
equate accuracy for the pseudo-observation-based inverse
modeling tests conducted in this paper. When the 4D-Var sys-
tem is applied with real observations, the error and bias must
be considered. In WRF 4D-Var’s cost function configuration,
the observation error matrix R is a combination of three er-
Tor sources: measurement error, aggregation error, and trans-
port model error. The uncertainty of the CO, measurements
is about 0.05 %, while the transport and aggregation errors
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Figure 3. WRF 4D-Var simulation domain covering the continental United States with 48 km x 48 km grid spacing. The domain boundary
is marked by the bold dark outline. Grid cells used for evaluating sensitivities are marked: red triangles are the 20 CO, tower sites used as
receptor locations; blue stars are source locations. While receptors are placed at the first, fifth, and tenth vertical levels at each site; all sources

are at the first level only.
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Figure 4. Daily mean CarbonTracker biosphere CO, flux, calculated as the arithmetic mean of the 3-hourly flux between 2 June 2011 at

00:00:00 UTC and 3 June 2011 at 00:00:00 UTC.

are typically an order of magnitude larger (Bruhwiler et al.,
2005). For real observation applications, the variance and co-
variance in R need to represent the transport error. Further-
more, Fig. 6 shows that WRF-simulated 10 m wind speed
is biased high, which is likely to result in bias in the sim-
ulated atmospheric CO, mixing ratio. Because Bayes inver-
sion framework assumes unbiased observation error, it may
be imperative to correct the error for inversions. One ap-
proach is to nudge the meteorology fields toward the obser-
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vations. For instance, Gupta et al. (1997) found that nudging
the model-simulated winds in the boundary layer to the radar
wind profile observations substantially improved estimates
of plume dispersion. An alternative approach is to use a com-
bined 4D-Var inversion of meteorology and CO, fluxes. For
instance, Bocquet et al. (2015) discussed data assimilation
using coupled chemistry meteorology models (CCMMs). If
the CO, impact on meteorology is not considered, the current
implementation of WRF-CO2 4D-Var can be extended to a
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Figure 5. Sea level pressure (hPa) and horizontal wind (m s~1) at the model’s lowest vertical level plotted at 6 h intervals during the 24 h

simulation starting on 2 June 2011 at 00:00 UTC.

joint meteorology and CO; assimilation system. Since the
adjoint code for meteorology has been developed and tested
in WRFPLUS and WRFDA (Zhang et al., 2013; Barker et al.,
2012), the major modification would be in the optimization
schemes where the combined state vector of meteorology and
CO;, is optimized. It should be noted that in such a joint as-
similation framework, optimization of meteorology is an ini-
tial condition problem, whereas the CO; flux optimization
is a boundary condition problem (bottom and lateral bound-
aries).

3.2 Accuracy of tangent linear and adjoint sensitivities

Next, the accuracy of the newly developed tangent linear and
adjoint models was evaluated by comparing their sensitivity
calculations against finite difference sensitivity calculated by
the forward model. Grid cells involved in the sensitivity cal-
culations are shown in Fig. 3, in which the 35 blue stars are
the source cells, and the 20 red triangles are 20 tower sites
where the receptors are placed (Table 4). All the 35 sources
are placed at the grid’s bottom vertical level. Receptors are
placed at the first, fifth, and tenth vertical levels at each of
the 20 tower sites, resulting in 60 receptor cells.

A tangent linear model run for a grid cell will calculate the
tangent linear sensitivity 0¢.,,/0kco2, which approximates a
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column vector of the forward model’s Jacobian matrix and
quantifies the influence of the cell’s flux change on CO; mix-
ing ratio of its receptor cells downwind. In comparison, an
adjoint model run for a grid cell will calculate adjoint sensi-
tivity 0q.,,/0kco2, Which approximates a row vector of the
forward model’s Jacobian matrix and quantifies the influence
on the cell’s CO, mixing ratio by its source cells upwind. Be-
cause k.o,» multiplies emission in Eq. (1), the magnitude of
the sensitivity is determined by both the magnitude of emis-
sion and meteorological transport.

To calculate tangent linear sensitivity at a grid cell, g_kco2
is set to unity at the cell and zero at all other cells at the start
of a tangent linear model run. Upon completion, the values
of g_gq.., are the tangent linear sensitivities 0qc2/0kco2. To
calculate adjoint sensitivity at a cell, an adjoint model run
starts with a_g ., set to unity at the cell and zero at all others,
and the values of a_k.y) at the end of the simulation are the
adjoint sensitivities. The adjoint model running in this mode
is analogous to using a Lagrangian particle transport model
in backward trajectory mode to compute the footprint of a
receptor, as shown in Fig. 4 of Gerbig et al. (2008).

The tangent linear sensitivity is first compared against the
finite difference sensitivity. After confirming the accuracy of
the tangent linear model, the adjoint sensitivity is compared
against the tangent linear sensitivity. Finite difference sensi-

Geosci. Model Dev., 11, 1725-1752, 2018



1736 T. Zheng et al.: Development of the WRF-CO2 4D-Var assimilation system v1.0

Wind speed difference (ms )*

12 000

. (@

2000 4000 6000 8000

0

Wind direction difference (degree)

4000 6000 8000
| |
—_
&

2000
|

0
L

Figure 6. Histograms of the 10 m wind speed difference (a) and
wind direction difference (b) between the WRF simulation and sur-
face meteorological station measurements.

tivities are calculated using the two-sided formula (Eq. 8).

of _ fx+Ax)— f(x — Ax)
ax 2Ax

The magnitude of Ax used in Eq. (8) is determined by
comparing the result from a range of different values. The
finite sensitivities were calculated at the 35 sites using Ax
set to 0.01, 0.1, and 1.0, and the results show that the magni-
tude of all differences is less than 10710 (results not shown)
because WRF-CO?2 is largely linear. For all subsequent cal-
culations, Ax = 0.1 is used for Eq. (8).

Since both finite difference and tangent linear sensitivi-
ties form columns of the Jacobian matrix, their values can
be compared cell by cell for all receptor cells for a given
site. Figure 8 shows the comparison between the finite dif-
ference and tangent linear sensitivities at 9 of the 35 source
cells. The dark straight lines in the figures are the 1:1 line.
The maximum and minimum of the difference between finite
difference and tangent linear sensitivities are given for each
source cell. Results at the rest of the sources are similar (not
shown). All differences are less than 10_10, confirming that
the tangent linear model is accurate.

®)
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The adjoint model is next evaluated by comparing adjoint
sensitivities against the tangent linear sensitivities. Because
finite difference sensitivities form columns of the Jacobian
matrix while adjoint sensitivities form rows of the Jacobian
matrix, they can only be compared at the intersections of the
rows and columns of the Jacobian matrix, meaning there are
2160 (35 x 60) pairs of comparison. We organized these 2160
pairs into three groups based on the vertical levels a receptor
is placed at and the result is shown in Fig. 9. The minimum
and maximum value of the difference between tangent linear
and adjoint sensitivities in all three groups are no greater than
1075, which is comparable to the accuracy tests from other
adjoint model developments (Meirink, 2008; Henze, 2007),
indicating that the adjoint model has been correctly imple-
mented.

3.3 Spatial patterns of adjoint sensitivities

Adjoint sensitivity q..,/kco2 quantifies how g, of a given
receptor is impacted by the flux scaling factor of all surface
cells. It is similar to the receptor footprint typically calcu-
lated using LPDM, such as Fig. 4 of Gerbig et al. (2008)
and Fig. 1 of Alden et al. (2016). But g, /kco2 differs from
footprint in that the former contains the combined impact of
tracer transport and flux magnitude, while the latter is deter-
mined by tracer transport alone. The spatial patterns of the
adjoint sensitivity were examined to discern the impacts of
tracer transport. Figure 10 shows g .y, /kco2 of Centerville,
Towa (top row), and WLEF (tower at Park Fall), Wisconsin
(bottom row). At each tower site, g, /kco2 of the receptor
placed at the first and tenth vertical levels is plotted.

The adjoint sensitivities of the Centerville tower site in-
dicate its gy, results primarily from surface flux located
immediately south of the site. This pattern agrees with the
fact that low-level wind during the simulation period is pre-
dominantly southerly, transporting tracers northward. There
is also a marked difference in the adjoint sensitivity of the
same tower site when the receptor is placed at a different
height. The figure in the top left panel of Fig. 10 shows that
the highest magnitude of ¢ ., /kco2 is closest to the tower
itself, indicating a large impact from local fluxes. In compar-
ison, when the receptor is placed at the tenth vertical level,
the peak magnitude of its adjoint sensitivity is located further
south of the tower site. Results from the WLEF site show
the adjoint sensitivity is located to the southeast of the site,
matching the southeasterly wind patterns around Wisconsin
during the simulation period. There are also clear difference
between the receptors at the different vertical levels. Results
from other sites all show a similar pattern of impacts of trans-
port and receptor placement height (not shown).

To provide a comparative view of the source-receptor
relations, backward trajectories of particles released from
the Centerville and WLEF sites were also calculated using
the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model (Stein et al., 2015). WRF-CO2 forward-
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Figure 7. Comparison of 500 hPa wind speed and wind direction between WRF simulation and radiosonde measurements. Panels (a) and
(b) are the comparison on 2 June 2011 at 00:00 UTC; panels (c¢) and (d) are on 2 June 2011 at 12:00 UTC; and panels (e) and (f) are on
3 June 2011 at 00:00 UTC. RMSE and relative error (RE) for wind speed and mean difference in wind direction are shown in each figure.
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Figure 8. Comparison between d¢q;/dkco calculated by finite difference (x axis) and tangent linear models (y axis) for nine source cell

locations (see Fig. 3 for source locations).

model-simulated meteorology saved at 1 h intervals was used
to drive the HYSPLIT trajectory calculations. To compare
with the adjoint model result, two sets of simulations were
carried out for each of the two tower sites. For each sim-
ulation, 30 000 particles were released from the location of
the corresponding WRF grid box used in the adjoint sen-
sitivity calculations. The starting locations of the particles
were randomly distributed within the grid box. The result-
ing backward trajectories were combined with the biospheric
CO; flux to calculate the footprint for the receptor locations.
The HYSPLIT footprints were calculated on the same grid as

Geosci. Model Dev., 11, 1725-1752, 2018

used in the WRF-CO?2 simulations to facilitate the compar-
isons between the two models.

Figure 11 shows the HYSPLIT-calculated footprints for
the Centerville and WLEF sites at the two different vertical
levels. The four figures in Fig. 11 are the HYSPLIT coun-
terparts of the adjoint sensitivity figures in Fig. 10. A com-
parison between Figs. 10 and 11 shows that the results from
HYSPLIT and the WRF-CO2 adjoint model compare well
spatially. For instance, for the receptor placed at the first
vertical level at Centerville, Iowa (Figs. 10a and 11a), the
footprints from both models are primarily located in Mis-
souri and northwestern Arkansas. Based on the horizontal

www.geosci-model-dev.net/11/1725/2018/
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Figure 9. Comparison between 9¢ .., /9k.q2 calculated by the tan-
gent linear (x axis) and adjoint models (y axis).

wind fields at the first level, these areas were upwind of the
receptor location during the simulation period. Overall, the
WRF-CO?2 adjoint sensitivities contain larger surface areas
compared to their HYSPLIT footprint counterparts. This dif-
ference is likely caused by the more diffusive nature of tracer
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transport in WRF-CO2: its finite difference scheme for tracer
advection contains numerical diffusion, and it also includes
an explicit horizontal diffusion term in the tracer transport
(Skamarock et al., 2008). A further comparison at individ-
ual grid points reveals magnitude differences between the
footprints from HYSPLIT and the WRF-CO2 adjoint model.
This is mainly caused by the different treatments of turbulent
vertical mixing by the two models. In WRF-CO2, the PBL
and convective schemes parameterize tracer vertical mixing
(see Sect. 2.4.3). For vertical mixing, HYSPLIT either uses
the PBL heights calculated by WRF or it calculates PBL
heights independently by analyzing temperature profiles. The
footprints shown in Fig. 11 were simulated by HYSPLIT us-
ing PBL heights from the WRF-CO2 ACM2 PBL scheme. In
a separate set of HY SPLIT simulations with PBL heights cal-
culated from the temperature profiles, only minor differences
are observed in the resulting footprints (not shown).

3.4 Inverse modeling tests
3.4.1 Inverse modeling setup

The sensitivity tests in Sect. 3.2 have confirmed that the tan-
gent linear and adjoint models of WRF-CO2 4D-Var are cor-
rectly implemented. In this section, inverse modeling tests
are conducted to confirm that the two optimization schemes
described in Sect. 2.2 and 2.3 are also correctly implemented.
The inverse modeling tests here are designed following the
approach used in Henze et al. (2007). To confirm that the
GEOS-Chem 4D-Var code was correctly developed, Henze
et al. (2007) set B~! =0 and R =1 (the identity matrix)
and constrained the optimizations with error-free pseudo-
observations. Because B! =0, analysis deviations from the
first guess cause no increase in the cost function (see Eq. 3).
This means that if the 4D-Var code is correctly implemented,
the optimization will converge to the true solution used to
generate the pseudo-observations. Such a configuration of B
and R, although highly ideal and unrealistic for real applica-
tions, is an effective way to test the code accuracy in isolation
from external errors. If the code is correctly implemented, the
optimization will converge to the true solution used to gener-
ate the pseudo-observations. Because the background error is
set to infinity (B~! = 0), the optimization should converge to
the true solution with any first guess. A different first guess
will impact the process of the convergence but not the result:
the optimization should eventually converge to the true so-
Iution. Following Henze et al. (2007), inverse modeling tests
here involve the following steps:

1. Run the WRF-CO2 forward model for 24 h using the
daily mean biospheric CO; flux (Fig. 4) as the true bio-
spheric CO; fluxes.

2. Generate pseudo-observations by saving the model-
simulated atmospheric CO; at all grid points of the bot-
tom 30 vertical levels every 4 h. This creates a set of six

Geosci. Model Dev., 11, 1725-1752, 2018
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Figure 10. Adjoint sensitivities calculated by the WRF-CO2 adjoint model. The top panels show adjoint sensitivity of receptors placed at the
first (a) and tenth (d) vertical levels at Centerville, lowa. The bottom panels show adjoint sensitivity of receptors placed at the first (¢) and
tenth (d) vertical levels at WLEF, Wisconsin. The black cross in each figure marks the corresponding tower site.

pseudo-observation files, which contain no error with
respect to the true biospheric CO, flux used in Step 1.

3. Generate a set of first-guess biospheric CO, fluxes.

4. Set the background error to infinity (B~! = 0) and the
observation error to the identity matrix (R =R~! =1T).

5. Run the L-BFGS-B and incremental optimizations with
the first-guess biospheric CO; flux (Step 3), constrained
by the pseudo-observations (Step 2), until the optimized
biospheric flux converges to the true biospheric CO;
flux (Step 1).

Geosci. Model Dev., 11, 1725-1752, 2018

Repeat Steps 3-5 twice for two different sets of first-guess
biospheric CO, fluxes:

— Case 1: set flux scaling factor ko> = 1.5 at all surface
grid point.

— Case 2: set flux scaling factor k¢, randomly distributed
between 0.5 and 1.5.

Figure 12 shows the two sets of first-guess biospheric CO;
as compared with the true biospheric CO; fluxes. Each point
in the figures represents a surface grid point. It should be
noted that because the Case 1 first guess overestimates the
true fluxes by 50 % at all surface grid points, the background

www.geosci-model-dev.net/11/1725/2018/
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Figure 11. Footprints calculated using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectories and Car-
bonTracker biospheric fluxes for the tower sites at Centerville, lowa, and WLEF, Wisconsin. The receptor locations are the same as in Fig. 10.
Each HYSPLIT footprint is plotted in the same color scale as its counterpart in Fig. 10 for comparison.

error is perfectly correlated, implying that all off-diagonal
elements in B should be set to unity. However, since the in-
verse modeling tests are designed to be driven solely by the
pseudo-observations (by setting B~! = 0), the detailed con-
tent of B becomes irrelevant. It should also be noted that the
same set of pseudo-observations (Step 1) is used for both of
the two cases of first guesses, and the pseudo-observations
were not perturbed with errors; it is appropriate to set R=1
for both cases. This simply assigns all the observations equal
weight in calculating the observation cost function using
Eq. (4). In these inverse modeling tests, because the pseudo-
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observations are of g, at the forward model’s grid points,
the mapping between model space and observation space is
trivial: the observation operator (H), tangent linear observa-
tion operator (H ), and adjoint observation operator (H T) are
all simply the identity matrix. For application with real ob-
servations, however, each type of CO; observations will need
itsown setof H, H,and H” to map between the model space
and observation space.

A very simple error configuration (B~! =0, and R =1T)
was used in the inverse modeling tests here, but such a set-
ting is only appropriate to confirm code accuracy using error-

Geosci. Model Dev., 11, 1725-1752, 2018
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Figure 12. The first-guess biosphere CO, fluxes used in the two
inverse modeling experiments. The x axis is the true daily mean
CarbonTracker biosphere CO, value (as shown in Fig. 4), and the
y axis is the first guess (background value). The solid line in each
figure is the 1: 1 line.

free observations. For real data applications, an appropriate
specification of background (B) and observation error (R) is
a critical and challenging task. Ideally, the variance and co-
variance in B should be specified based on comparisons be-
tween prior fluxes and accurate flux measurements (Cheval-
lier et al., 2006; Gerbig et al., 2006). But available flux mea-
surements are often of insufficient amount, thus necessitat-
ing assumptions regarding the form of the background error
matrix. For instance, prior flux errors were treated as uncor-
related in Gockede et al. (2010), and Rodenbeck et al. (2003)
used an exponential decaying spatial correlation for the prior
flux error. In another study, Peylin et al. (2005) found that
significantly different flux estimation resulted from varying
the prior flux error correlation scale from 500 to 2000 km.
For the observation error covariance matrix R, the spatial
and temporal error correlations were often neglected in ear-
lier inversion studies (Gurney et al., 2002; Pillai et al., 2016).
With more recent inversion studies using continuous obser-
vation at towers (Law et al., 2008), airborne observations
(Lauvaux et al., 2008), and satellite observations (Chevallier
et al., 2005), attempts have been made to represent the spatial
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Figure 13. Results of the inverse modeling experiment (Case 1).
Panel (a) shows the reduction of the cost function, represented by
Jx"y/J (xb ). Panel (b) shows the reduction of the gradient norm,
represented by ||VJ(x")||/||VJ(xb)||. Panel (c¢) shows the reduc-
tion of biospheric CO, flux RMSE.

and temporal correlations of observation errors. For instance,
Kountouris et al. (2015) found the temporal autocorrelation
time for observation data using the VPRM model is around
30 days.
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figure. All iterations of Lanczos-CG are from one outer loop.
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3.4.2 Inverse modeling results

The results from inverse modeling experiments with Case 1
prior are shown in Figs. 13 and 14. Figure 13 shows the it-
erative reduction of the cost function J(x), gradient norm
[IVJ(x)]|l, and RMSE. The iteration number for Lanczos-CG
is all from its inner loop, and only one outer loop is used. The
figures show both L-BFGS-B and Lanczos-CG reduce the
cost function monotonically. In about the first 10 iterations,
the cost function reduction is more or less similar for the
two optimization schemes, but Lanczos-CG starts to grad-
ually outperform L-BFGS-B after. In gradient norm reduc-
tion, both schemes feature periodic oscillations embedded in
the large-scale downward trend. By comparison, Lanczos-
CG has a smaller magnitude oscillation and steeper down-
ward trend than L-BFGS-B. It should be noted that while L-
BFGS-B calculates cost function and its gradient in each iter-
ation, Lanczos-CG only approximates these values in its in-
ner loop. The cost function and gradient norm from Lanczos-
CG shown in Fig. 13 are calculated by extra calls to the for-
ward and adjoint models in each inner iteration, which dou-
bles the computation cost and is not needed in actual inver-
sion applications. Figure 13c shows that both optimization
schemes reduce RMSE of daily biosphere flux monotoni-
cally, and Lanczos-CG achieves better reduction after about
the first 10 iterations. Figure 14 shows the snapshots of the
optimized daily mean biosphere flux (obtained as the prod-
uct of the prior flux and the optimized scaling factor) at a
selected set of iterations. These figures depict the iterative
process of priors converging to the true solution.

The results of inverse modeling experiments using Case 2
prior are shown in Figs. 15 and 16. The reductions of J(x),
IVJ(x)|l, and RMSE are similar to Case 1 in that Lanczos-
CG substantially outperforms L-BFGS-G after about the first
10 iterations. Table 5 summarizes the results from all four
inverse modeling experiments described above. It must be
pointed out that these inverse modeling results are obtained
from a highly unphysical setup, and they are not the expected
level of performance (in terms of cost function and RMSE
reduction) that would be obtained in a inversion with real
observations.

4 Tracer lateral boundary condition

The lateral tracer boundary condition is necessary to connect
regional tracer simulations to the global background tracer
distribution (Gerbig et al., 2003). A number of regional in-
version studies have explored the sensitivity of the estimated
posterior flux to the lateral boundary condition. For instance,
Schuh et al. (2010) found a 30 % magnitude difference in
the retrieved North American biospheric flux when bound-
ary conditions from two different global models were used
(CarbonTracker and PCTM). In an inversion study over the
state of Oregon, Gockede et al. (2010) found the estimated
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Figure 15. Same as Fig. 13 but for the inverse modeling experiment
(Case 2).

biospheric CO; fluxes were highly sensitive to systematic
changes in the advected background CO; through the lateral
boundaries. To address the lateral boundary uncertainty, Lau-
vaux et al. (2008) used LPDM backward trajectories to calcu-
late the atmospheric CO; sensitivity to the lateral boundary
conditions, and optimized lateral boundary conditions along
with surface fluxes in a synthesis inversion approach. An al-
ternative is to use part of the observations to correct the lat-
eral boundary error before the inversion, which then only in-
cludes surface fluxes in its state vector (Lauvaux et al., 2012).
In the pseudo-observation-based inverse modeling tests de-
scribed in Sect. 3 of this work, CO, lateral boundary con-
ditions do not contain error, and they were not included in
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Table 4. Summary of CO; tower sites. Sensitivity d¢.op/0kco2 as
calculated by WRF-CO2 4D-Var’s tangent linear and adjoint mod-
els is compared against finite difference sensitivity at these sites.

Site name Symbol Latitude  Longitude
Kewanee RKW 41.28°N 89.77° W
Centerville RCE 40.79°N  92.88°W
Mead RMM 41.14°N  96.46°W
Round Lake RRL 4353°N  9541°W
Galesville RGV 44.09°N  91.34°W
Ozarks AMO 38.75°N 92.2°W
WLEF LEF 45.95°N 9.27°W
West Branch WBI 41.73°N 91.35°W
Canaan Valley ACV 39.06° N 72.94° W
Chestnut Ridge ACR 3593°N  84.33°W
Fort Peck AFP 48.31°N  105.10°W
Roof Butte AFC_RBA  3646°N  109.09° W
Storm Peak Lab SPL 40.45°N  106.73° W
Argle AMT 45.03°N  68.68°W
Harvard Forest HFM 42.54°N 72.17°W
Southern Great Plains SGP 36.80° N 97.50° W
Sutro STR 3775°N  12245°W
Hidden Peak HDP 40.56°N  111.64°W
Mary’s Peak ARC_MPK 4450°N 123.55°W
KWKT KWT 31.31°N 97.32°W

(tower at Moody, Texas)

Table 5. Summary of inverse modeling experiment results. The re-
ductions of cost function J(x), gradient norm ||V J (x)||, and RMSE
are given as the ratio to their respective starting values. Results of
the two experiment cases are the values after 70 iterations.

Case 1
Reduction in L-BFGS-B Lanczos-CG
J(x) 223x 1073 472x1074
VI 20x1072  17x1073
RMSE 8.01x 1072 4.19x1072
Case 2
Reduction in L-BFGS-B Lanczos-CG
J(x) 331x 1073 7.76 x 1074
I1VJ @) 484%x1073 1.32x1073
RMSE 1.09x 1071 543 x 1072

the state vector for optimization. When WRF-CO2 4D-Var is
applied with real observations, uncertainties of lateral bound-
ary conditions need to be appropriately treated. To use either
approach used in Lauvaux et al. (2008) or in Lauvaux et al.
(2012), the adjoint code for tracer lateral boundary condi-
tions would need to be developed for the WRF-CO2 4D-Var
system.

In the WRF-Chem dynamical core, chemistry mixing ra-
tios are updated at each time step by the advection and diffu-
sion tendencies. Then, chemistry mixing ratios at the lateral
boundaries are updated with the chemistry boundary condi-
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tion using the flow-dependent method, which uses the hor-
izontal wind direction to determine whether the chemistry
mixing ratio at a boundary grid point should be updated by
the lateral boundary. If the horizontal wind direction indi-
cates tracer inflow at a boundary grid, Eq. (9) will be applied
to the grid point:

902 =9qb + 4.1 AL, ®

where ¢, represents CO, mixing ratio at a lateral boundary
grid, gp and ¢ ; are the CO, mixing ratio and tendency at
the corresponding lateral boundary. To develop the lateral-
boundary-related tangent linear and adjoint code, Eq. (9) is
replaced by Eq. (10) in WRF-CO2 4D-Var:

9co2 = keo2(qp + g1 A1), (10)

where k.o represents the CO; lateral boundary scaling fac-
tor. Please note that in Egs. (9) and (10), the time dependence
has been dropped for the sake of simplicity. The correspond-
ing tangent linear and adjoint variables of Eq. (10) are given
in Egs. (11) and (12):

8. Gcor = 8_kcor(qp + qp,1 At) an
a_keor =a_keoyp + a_q.o (qh + Qb,tAt), (12)

where g_g.,, and a_gq,, are the tangent linear and adjoint
variables of q.,, and g_k¢o2 and a_k¢q2 are the tangent lin-
ear and adjoint variables of k¢q).

Most code development for tracer lateral boundary con-
ditions is in the input_chem_data module of the chemistry
directory, along with some additional code modification to
enable the lateral boundary condition variables to be passed
forward (k.o» and g_kco2) and backward (a_k¢y2) in time.
The two optimization schemes of WRF-CO2 4D-Var have
also been implemented to allow for flexibilities in state vector
specification. The user can choose to include lateral bound-
ary conditions in the state vector to be optimized, which is a
similar approach to that in Lauvaux et al. (2008) (but using
a 4D-Var optimization). Alternatively, the user can choose to
correct the lateral boundary (using the adjoint model) before
the inversion and not to include lateral boundary in the state
vector (Lauvaux et al., 2012).

When applied with real observations, whether and how to
aggregate lateral boundary scaling factors is not trivial (Lau-
vaux et al., 2008, 2012). On the one hand, including lat-
eral boundary scaling factors without spatial aggregation will
greatly increase the state vector size, likely causing the inver-
sion to be underconstrained. On the other hand, aggregating
lateral boundary scaling factors may cause aggregation error
(Kaminski et al., 2001). While the actual treatment of lat-
eral boundary scaling factor aggregation is beyond the scope
of this work, a mapping mechanism has been implemented
in WRF-CO2 4D-Var to facilitate the aggregation. In WRF-
CO2 4D-Var, q.y, 8_qc0n- and a_q.., are defined on the
model grid, but ko2, g_kcoz, and a_kgyy are defined as 1-D
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variables in the state vector. The mapping mechanism im-
plemented in procedure da_cv_to_wrf and its adjoint coun-
terpart allows for many-to-one mappings from the 3-D grid
variables to the 1-D state vector. This mapping mechanism
allows the user flexibility in determining whether and how to
aggregate the lateral boundary condition.

5 Summary and outlook

WRF-CO?2 4D-Var was developed as a data assimilation sys-
tem designed to constrain surface CO; fluxes by combining
an online atmospheric chemistry transport model and ob-
servation data in a Bayesian framework. Two optimization
schemes were implemented for cost function minimization.
The first is based on L-BFGS-B, and the second is an incre-
mental optimization using Lanczos-CG. The cost function
and its gradient required by the optimization schemes are
calculated by WRF-CO2 4D-Var’s three component models:
forward, tangent linear, and adjoint models, all developed on
top of the WRFPLUS system. While WRFPLUS’s forward
model is WRF, WRF-Chem was used as WRF-CO2 4D-Var’s
forward model to include CO» in the system, and the tangent
linear and adjoint models were modified to keep their con-
sistency with the forward model. Like most other CO; in-
verse modeling systems, WRF 4D-Var ignores the possible
impacts of atmospheric CO, variation on the meteorology.
This simplification enables the use of the same full physical
parameterizations in the forward, tangent linear, and adjoint
models. This configuration reduces linearization error while
allowing the WRF system’s large number of physical param-
eterizations to be used in WRF-CO2 4D-Var without requir-
ing a large amount of new code development.

WRF-CO2 4D-Var’s tangent linear and adjoint models
were tested by comparing their sensitivities’ spatial patterns
with the dominant wind patterns. The results make physi-
cal sense given the meteorological transport. The accuracy of
tangent linear and adjoint models was evaluated by compar-
ing their sensitivity against finite difference sensitivity cal-
culated by the forward model. The results show that both
tangent linear and adjoint sensitivities agree well with fi-
nite difference sensitivity. Finally, the system was tested in
inverse modeling with pseudo-observations, and the results
show that both optimization schemes successfully recovered
the true values with reasonable accuracy and computation
cost.

While Lanczos-CG performs better than L-BFGS-B in the
inverse modeling tests, it must be pointed out that the tests
are very limited. Although a comprehensive comparison be-
tween the two optimization schemes is beyond the scope of
the present paper, it is important to point out some of their
differences as implemented in WRF-CO2 4D-Var. First, the
Lanczos-CG calls the tangent linear model in each inner loop
iteration, while L-BFGS-B calls the forward model. For a
tracer transport system like WRF-CO2 4D-Var, the tangent
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linear model can skip some of the costly physics parameteri-
zations, such as the radiation scheme. This difference means
that typically the tangent linear model is faster than the for-
ward model, and as a result Lanczos-CG runs faster than L-
BFGS-B. In our inversion modeling experiments (24 h sim-
ulation with Ar = 120s, 30-processor core), it takes about
10 min wall time to complete one inner loop of Lanczos-CG.
L-BFGS-B takes about 10 % more wall time to complete one
iteration.

Second, provided with the cost function and its gradient,
each iteration of L-BFGS-B calculates an updated state vec-
tor from its previous iteration. In WRF-CO2 4D-Var, this cal-
culation is carried out on only the root core and broadcasted
to the other process cores. In comparison, Lanczos-CG cal-
culates the state vector increment based on the cost function
gradient alone (without the need for J(x)). The calculation
is carried out on each processor core. The above difference
has implications for memory requirements. The main mem-
ory allocation for L-BFGS-B is its workspace array, which is
about (2 x k +4) x n, where n is the size of the state vector
(x), and k is the number of corrections used in the limited
memory matrix. This memory allocation is only needed on
the root core. The value of k is set by the user, and the recom-
mended value is between 3 and 20. In comparison, Lanczos-
CG requires a memory size of about m x n on each processor
core, where m is the maximal inner loop iteration allowed.
Although it is possible to reduce the per processor core a
memory allocation from m x n to n by deactivating the mod-
ified Gram—Schmidt orthonormalization step, it is typically
not recommended.

Another consideration for memory requirements is related
to I/O time cost. WRFPLUS saves its entire trajectory in
memory to avoid expensive I/O operations. This is not a prac-
tical solution for WRF-CO2 4D-Var, which is designed to
run a longer simulation than the typical 6 h run intended for
WRFDA. GH15/17 implemented a second-order checkpoint
mechanism to overcome the memory limit. This approach
breaks the whole simulation period into sections and saves
restart files at the end of each section by the forward model.
This approach requires extra calls of the forward model to
recalculate the trajectory for each section during backward
integration (see Fig. 3 of GH15). In WRF-CO2 4D-Var, a
different approach was implemented to overcome this mem-
ory limit: the forward model saves the trajectory at each time
step in memory, as WRFPLUS does. After a number of in-
tegration steps, the memory on each task processor core is
dumped to an external file, and the memory is then reused.
Each external file is marked with its starting time stamp and
the processor core it belongs to. For instance, a 24 h simu-
lation with 120s time step will have a total of 720 steps. If
the system saves its trajectory to external files each 30 time
steps, memory allocation on each task processor core is only
needed for 30 steps instead of 720 steps. This will result in
24 (720/30) trajectory files on each task processor core, and
the total number of trajectory files depends on the number
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of processor cores used. These trajectory files are read by
both tangent linear and adjoint models in a similar way to
standard WRF auxiliary files. In the above example, they are
read in at each 30 time steps, substantially reducing I/O time
compared with reading in at each step. These trajectory files
are different from standard WREF auxiliary files in that each
file belongs to an individual processor core, rather than being
shared among all processor cores. This means all model runs
in an inverse experiment must use the same domain patch
configuration, which is the most common practice.

In future development, we plan to implement observation
operators for real observations, including those from towers,
satellites, and airborne instruments. This is required for ap-
plying WRF-CO2 4D-Var with real observations. As a re-
gional inverse system, the correct treatment of tracer lateral
boundary conditions is important. We plan to test the lat-
eral boundary condition adjoint code (Sect. 4) in a follow-up
study. In addition, future applications of WRF-CO2 4D-Var
with real observations must use proper treatment of observa-
tion and background error covariance, which was not tackled
in the pseudo-observation tests in the present paper.

In addition, we also plan to periodically update the WRF-
CO2 4D-Var system to keep up with WRF system updates.
Such updates will mainly consist of replacing the forward
model with the updated WRF code and developing the tan-
gent linear and adjoint code for the relevant updated proce-
dures. As the variable dependence analysis (Sect. 2.4.1) indi-
cates that the tangent linear and adjoint code is only needed
for a portion of WRF procedures, the amount of work re-
quired for updating WRF-CO2 4D-Var is manageable. In ad-
dition, future development of WRF-CO2 4D-Var will also be
dependent on updates to WRFPLUS, which has always been
updated along with WRF.

Code and data availability. WRF-CO2 4D-Var source code can be
retrieved via https://doi.org/10.5281/zenodo.1220407 (Zheng et al.,
2018).
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online at: https://doi.org/10.5194/gmd-11-1725-2018-supplement.
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