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Abstract. The synthesis of model and observational informa-
tion using data assimilation can improve our understanding
of the terrestrial carbon cycle, a key component of the Earth’s
climate–carbon system. Here we provide a data assimila-
tion framework for combining observations of solar-induced
chlorophyll fluorescence (SIF) and a process-based model to
improve estimates of terrestrial carbon uptake or gross pri-
mary production (GPP). We then quantify and assess the con-
straint SIF provides on the uncertainty in global GPP through
model process parameters in an error propagation study. By
incorporating 1 year of SIF observations from the GOSAT
satellite, we find that the parametric uncertainty in global an-
nual GPP is reduced by 73 % from ±19.0 to ±5.2 PgCyr−1.
This improvement is achieved through strong constraint of
leaf growth processes and weak to moderate constraint of
physiological parameters. We also find that the inclusion of
uncertainty in shortwave down-radiation forcing has a net-
zero effect on uncertainty in GPP when incorporated into
the SIF assimilation framework. This study demonstrates the
powerful capacity of SIF to reduce uncertainties in process-
based model estimates of GPP and the potential for improv-
ing our predictive capability of this uncertain carbon flux.

1 Introduction

The productivity of the terrestrial biosphere forms a key com-
ponent of Earth’s climate–carbon system. Estimates show
that the terrestrial biosphere has removed about one quarter
of all anthropogenic CO2 emissions, thus preventing addi-
tional climate warming (Ciais et al., 2013). Much of the inter-
annual variability in atmospheric CO2 concentration is also
driven by terrestrial productivity. Despite this significance,
an understanding of the underlying mechanisms of terrestrial
productivity is still lacking. This results in large uncertainties
in predictions of terrestrial productivity and thus predictions
of future atmospheric CO2 and temperature (Friedlingstein
et al., 2006).

A key challenge is disaggregating the observable net CO2
flux into its component fluxes: gross primary production and
ecosystem respiration. Gross primary production (GPP) is
the rate of CO2 uptake through plant photosynthesis and the
largest natural surface-to-atmosphere flux of carbon on Earth
(Ciais et al., 2013). Estimating spatiotemporal patterns of
GPP at the scales required for global change and modelling
studies has proven difficult. This is primarily for two rea-
sons: the complexity of the processes involved and the dif-
ficulty in observing those processes (Baldocchi et al., 2016;
Schimel et al., 2015). Remote-sensing observations of solar-
induced chlorophyll fluorescence (SIF) offer a novel con-
straint on GPP and the potential to partly address these two
issues (Schimel et al., 2015).

At the leaf scale chlorophyll fluorescence is emitted from
photosystems I and II during the light reactions of photosyn-
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thesis. These photosystems are pigment–protein complexes
that form the reaction centres for converting light energy
into chemical energy. It is in photosystem II (PSII) where
photochemistry, the process initiating photosynthetic elec-
tron transport and leading to CO2 fixation, is initiated. The
link between chlorophyll fluorescence and photochemistry is
confounded by a third key process, however: heat dissipa-
tion, also termed non-photochemical quenching (NPQ). Both
photochemistry and NPQ are regulated processes, respond-
ing to changing physiological and environmental conditions
(Porcar-Castell et al., 2014). Changes in the rates of photo-
chemistry and NPQ, and electron sinks other than CO2 fixa-
tion, lead to a non-trivial but direct link between chlorophyll
fluorescence and photosynthetic rate (Flexas et al., 1999;
Magney et al., 2017). Because chlorophyll fluorescence is
tied in with these physiological processes, it has become a
highly useful indicator of the physiological state of leaves
(see reviews by Baker, 2008; Porcar-Castell et al., 2014).

At the canopy scale and beyond, the link appears simpler,
exhibiting ecosystem-dependent linear relationships (Guan-
ter et al., 2013). The slope of this linear relationship can
change as the light-use efficiency of either SIF or GPP
changes, for example due to water stress (Daumard et al.,
2010) or changing light conditions (Yang et al., 2015). SIF
also seems to outperform traditional remote-sensing meth-
ods, such as the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI), which use
reflectance to derive vegetation indices, in tracking changes
in GPP at this scale (Yang et al., 2015; Walther et al.,
2016). This is in part because the SIF emission originates
exclusively from plants; thus, the retrieval is not contami-
nated by background materials like soil or snow. It is ex-
pected, however, that complicating factors such as the re-
trieval wavelength, temporal scaling, chlorophyll content,
three-dimensional canopy structure, and stress will also play
a role in the GPP–SIF link (Damm et al., 2015; Guanter et al.,
2012; Rossini et al., 2015; Zhang et al., 2016). Using high-
resolution spectrometers onboard satellites, global maps of
SIF have been produced. A number of existing (GOME-2,
GOSAT, OCO-2, TROPOMI, SCHIAMACHY) and planned
(FLEX, GEOCARB) satellite missions are capable of mea-
suring SIF. Utilizing these remotely sensed SIF observations
directly to track changes in GPP has already proven useful
even without the addition of ancillary data or model infor-
mation (Lee et al., 2013; Parazoo et al., 2013; Walther et al.,
2016; Yang et al., 2015).

Data assimilation enables the use of observations and
model information together to produce a best estimate of the
state and function of the system. In the case of mechanistic
models this is done by constraining the simulated processes
and their parameters. Such an approach has been applied to
terrestrial biosphere models to optimize model parameters
and constrain the uncertainty in carbon flux estimates in a
number of studies (see Kaminski et al., 2013; Koffi et al.,
2013; Macbean et al., 2016; Peylin et al., 2016). The Car-

bon Cycle Data Assimilation System (CCDAS) is one such
system, and it has incorporated observations such as atmo-
spheric CO2 concentration and/or the fraction of absorbed
photosynthetically active radiation (FAPAR), demonstrating
the benefit of combining model and observations in a regu-
larized approach (Rayner et al., 2005; Kaminski et al., 2012).
The use of SIF observations within a data assimilation frame-
work may provide a highly useful, complementary constraint
on GPP. While one study by Parazoo et al. (2014) utilized
SIF in a data assimilation system to redistribute multiple
model estimates of GPP, no optimization of model process
parameters was performed. Koffi et al. (2015) incorporated a
mechanistic model for SIF into the CCDAS system and then
conducted sensitivity tests and compared model-simulated
SIF and observed SIF from GOSAT, demonstrating that the
model is capable of incorporating the data. However, SIF has
not yet been used on a global scale in a data assimilation sys-
tem to optimize process parameters.

In this paper, we assess the ability of satellite SIF obser-
vations to constrain the parametric uncertainty in simulated
GPP in a terrestrial biosphere model within a data assimila-
tion system. This is termed an error propagation study and is
similar in concept to an observing system simulation exper-
iment or quantitative network design study (Hungershoefer
et al., 2010; Kaminski et al., 2010; Koffi et al., 2013). Pa-
rameters and simulated GPP are therefore optimized only for
their uncertainty and not for their absolute quantities. Con-
sidering that SIF is a novel observational constraint, this is an
important first step toward a full assimilation of the data as it
allows us to test whether an assimilation of SIF data will be
beneficial for reducing uncertainty in GPP. This is performed
by estimating the constraint that SIF provides on the uncer-
tainty in model parameters and the parametric uncertainty in
model-simulated GPP.

2 Methods

Under the linear Gaussian assumption, the uncertainty in a
target quantity (here, GPP) following the assimilation of the
measured data (here, SIF) is conditional only on the prior
uncertainty, the uncertainty in the measured data and the sen-
sitivity of simulated quantities (SIF and GPP) to changes in
the parameters (Tarantola, 2005). Given that we apply this as-
sumption to estimate posterior uncertainties, this linear prob-
lem can be performed independently of the optimization of
the parameter values. The model used for determining the
sensitivity of simulated observations to changes in the pa-
rameters is run at a relatively low spatial resolution which
provides high computational efficiency. We note that subse-
quent work to assimilate the data should be performed at a
higher spatial resolution in order to better represent the het-
erogeneity of the land surface.

We formulate this error propagation study in two stages:
(i) optimization of parameter uncertainties and (ii) projec-
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tion of the parameter uncertainties onto uncertainty in diag-
nostic GPP. Here, we outline the model used to simulate the
observation (SIF) and the target quantity (GPP). We also out-
line the model parameter set describing these processes, the
uncertainty in the observations and model forcing, and the
general experimental set-up.

2.1 Model description

In order to incorporate an observation into a data assimila-
tion system, we require a model or “observation operator”
that can simulate SIF, ideally providing a process-based re-
lationship between SIF and GPP. There are a few ways one
might formulate the observation operator. Evidence shows a
strong linear relationship between SIF and GPP at large spa-
tial scales and relatively long temporal scales (Frankenberg
et al., 2011b; Guanter et al., 2012), suggesting relatively sim-
ple scaling between GPP and SIF. However, it is known that
the link is more complex than this, and it is expected to dif-
fer at finer spatial and temporal scales due to, for example,
land surface heterogeneity or the time of day of the measure-
ments. To ensure the model has these capabilities, we have
opted for a process-based observation operator.

In this section we describe the newly developed terrestrial
biosphere model for simulating and assimilating SIF. The
model is an integration of the existing models BETHY (Bio-
sphere Energy Transfer HYdrology) (Rayner et al., 2005;
Knorr et al., 2010) and SCOPE (Soil Canopy Observation,
Photosynthesis and Energy fluxes) (van der Tol et al., 2009)
and builds upon the developments of Koffi et al. (2015).
The coupling of BETHY and SCOPE enables spatially ex-
plicit, plant-type-dependent, global simulations of GPP and
SIF. This model may be run on a computationally efficient,
low spatial-resolution grid of 7.5◦× 10◦ or a high spatial-
resolution grid of 2◦× 2◦.

BETHY is a process-based terrestrial biosphere model at
the core of the Carbon Cycle Data Assimilation System (CC-
DAS) (Rayner et al., 2005; Scholze et al., 2007). Full model
description details can be found elsewhere (e.g. Rayner et al.,
2005; Scholze et al., 2007; Knorr et al., 2010). Briefly,
BETHY simulates carbon assimilation and plant and soil res-
piration within a full energy and water balance. The version
used here also incorporates a leaf area dynamics module for
prognostic leaf area index (LAI) as described in Knorr et al.
(2010). This module includes parameters for leaf develop-
ment, phenology, and senescence processes (hereby collec-
tively termed leaf growth) to determine LAI in a scheme
that incorporates temperature, water, and light limitations on
growth and is capable of representing the major global phe-
nology types (Knorr et al., 2010). This scheme also enables
the representation of subgrid variability in leaf growth, rep-
resenting the likely variability in growth triggers across a
grid cell and the necessary mathematical form for differen-
tiability between process parameters and state variables. The
full BETHY model consists of four key modules: (i) energy

Table 1. PFTs defined in BETHY and their abbreviations.

PFT PFT name Abbreviation
no.

1 Tropical broadleaved evergreen tree TrEv
2 Tropical broadleaved deciduous tree TrDec
3 Temperate broadleaved evergreen tree TmpEv
4 Temperate broadleaved deciduous tree TmpDec
5 Evergreen coniferous tree EvCn
6 Deciduous coniferous tree DecCn
7 Evergreen shrub EvShr
8 Deciduous shrub DecShr
9 C3 grass C3Gr
10 C4 grass C4Gr
11 Tundra vegetation Tund
12 Swamp vegetation Wetl
13 Crops Crop

and water balance; (ii) photosynthesis; (iii) leaf growth; and
(iv) carbon balance. It represents variability in physiology
and leaf growth of plant classes by 13 plant functional types
(PFTs) (see Table 1) originally based on classifications by
Wilson and Henderson-Sellers (1985). Each model grid cell
may consist of up to three PFTs as defined by their grid cell
fractional coverage.

SCOPE is a vertical (1-D) integrated radiative transfer
and energy balance model with modules for photosynthesis
and chlorophyll fluorescence (van der Tol et al., 2009). At
present it is the only process-based model capable of simu-
lating canopy-scale chlorophyll fluorescence. SCOPE incor-
porates the current understanding of chlorophyll fluorescence
processes including canopy radiative transfer, reabsorption of
fluorescence within the canopy, and the non-linear relation-
ship between chlorophyll fluorescence quantum yield and
other quenching processes (van der Tol et al., 2009, 2014).
Leaf level chlorophyll fluorescence is coupled to the com-
monly used Farquhar and Collatz models for C3 and C4 pho-
tosynthesis, respectively (van der Tol et al., 2009). A current
limitation of SCOPE is that there is no link between leaf level
biochemistry and soil moisture. This is partly compensated
for by changes in LAI due to soil moisture as simulated by
BETHY.

The canopy radiative transfer and photosynthesis schemes
of BETHY have been replaced by the corresponding schemes
in SCOPE, including the components required for the calcu-
lation of chlorophyll fluorescence at leaf and canopy scales.
The spatial resolution, vegetation (PFT) characteristics, leaf
growth, and carbon balance are handled by BETHY. SCOPE
therefore takes in climate forcing (meteorological and radia-
tion data) and LAI from BETHY and returns GPP. BETHY
calculates the canopy water balance, leaf growth, and net car-
bon fluxes, which will prove useful in future when assimilat-
ing other data streams (e.g. atmospheric CO2 concentration).
Importantly, SCOPE provides a process-based link between
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SIF and GPP allowing the transfer of information from obser-
vations of SIF to simulated GPP. Subsequently, information
from SIF may also be transferred to carbon fluxes resulting
from GPP such as net ecosystem productivity.

2.2 Model process parameters

In this error propagation study, information from the SIF ob-
servations is used to constrain the uncertainty in the model
process parameters. Parameters can either be global or dif-
ferentiated by PFT. Global parameters apply to plants or soils
everywhere, while PFT-dependent parameters enable differ-
entiation between physiological and leaf growth traits. Some
key parameters for this study such as the maximum carboxy-
lation capacity (Vcmax) and chlorophyll a/b content (Cab) are
considered PFT-dependent. From an ecophysiological per-
spective, there are other parameters specific to SCOPE that
may be considered PFT-dependent such as the vegetation
height and leaf angle distribution parameters. However, we
have assumed them to be global to simplify the problem.
GPP is relatively insensitive to these parameters, so this is
not expected to impact the GPP uncertainty reduction results.
Despite this, in a full assimilation with the SIF data, it may
be necessary to make these PFT-dependent to improve the
model-observed fit.

We expose 53 parameters from BETHY-SCOPE to the er-
ror propagation system (see Table A1). Each parameter is
represented by a probability density function (PDF) which
is assumed to be Gaussian. The mean and standard deviation
for the prior parameters are shown in Table A1. The choice of
the prior mean and uncertainty for parameters follows those
used in previous studies (Kaminski et al., 2012; Knorr et al.,
2010; Koffi et al., 2015). For new parameters that are not
well characterized (e.g. SCOPE parameters), we assign rela-
tively large prior uncertainties and mean values in line with
the default SCOPE parameters and with Koffi et al. (2015).
The choice of the prior may be considered important here,
considering that we are using a linear approximation of the
model around the prior and that the model is known to be
non-linear. Therefore, sensitivities can differ depending upon
the choice of the prior parameter values (Koffi et al., 2015).

There are 12 SCOPE parameters exposed, two of which
are PFT-dependent (Cab and Vcmax). These parameters were
chosen due to their importance in simulating SIF or GPP
and due to sensitivity tests such as those performed by Ver-
relst et al. (2015). They include Cab, leaf dry matter con-
tent (Cdm), leaf senescent material fraction (Cs), two leaf
distribution function parameters (LIDFa , LIDFb), vegetation
height (hc), and leaf width. Leaf physiological parameters in-
clude Vcmax, Michaelis–Menten kinetic coefficients for CO2
(KC) and O2 (KO), the ratio of the Rubisco oxygenation rate
to Vcmax (αVo,Vc ), and the ratio of day respiration to Vcmax
(αRd,Vc ).

2.3 Uncertainty calculations

To calculate the uncertainty in parameter values following
the constraint provided by the observational information of
SIF (i.e. the posterior uncertainty), we propagate uncertainty
from the observations onto the parameters. In order to per-
form this, we utilize a probabilistic framework where the
state of information on parameters and observations is ex-
pressed by their corresponding PDFs (see Tarantola, 2005).
The probability density of the errors in these quantities is
assumed to be Gaussian; thus, they are describable by their
mean and uncertainty. The prior information on parameters
is quantified by a PDF in parameter space and the obser-
vational information by a PDF in observational space. The
mean values for the parameters and observations are denoted
by x and d, respectively. The uncertainty covariance matri-
ces in parameter space and observational space are denoted
by Cx and Cd, respectively.

For linear and weakly non-linear problems we can as-
sume that Gaussian probability densities propagate forward
through to Gaussian distributed simulated quantities (Taran-
tola, 2005). This permits linear error propagation from the
input parameters to the model outputs. As mentioned earlier,
estimating posterior uncertainties of the parameters for these
types of problems can therefore be performed independently
of the parameter estimation, in other words without the need
to constrain the mean values of the parameters (Kaminski
et al., 2010, 2012). This requires a matrix of partial deriva-
tives of a target quantity with respect to its variables, also
called a Jacobian matrix (H). This matrix represents the sen-
sitivity of a simulated quantity (e.g. SIF, GPP) to the param-
eters. With the linear approximation, H is calculated around
the prior parameter values (x0). This simplification of the
model sensitivity brings limitations to the accuracy of the
method. However, with the aggregation of subgrid variabil-
ity across a model grid cell, sudden shifts in model sensitiv-
ity (e.g. step functions) are less likely or realistic; the present
model accounts for these effects (Knorr et al., 2010). Addi-
tionally, because the parameter space can be very large, the
use of prior knowledge on x0 helps to limit the effect of this
problem as H at x0 likely provides a decent approximation
of the true H that would occur at the global optimum (Taran-
tola, 2005). The simplification is also useful considering the
high computational cost of calculating H.

To calculate the posterior parameter covariance matrix
(Cxpost ) following constraint by observational information,
Cd, we use Eq. (1) (Tarantola, 2005).

C−1
xpost
= C−1

x0
+HTC−1

d H, (1)

where H expresses the Jacobian for SIF and HT the Jaco-
bian transposed. Comparing parameter uncertainties in the
prior (Cx0 ) and the posterior (Cxpost ) allows us to quantify
the improvement in parameter precision following the ob-
servational constraint. The parameter uncertainties in Cx0
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and Cxpost may be expressed as standard deviations (σ ) by
calculating the square root of their diagonal elements. We
therefore assess the relative uncertainty reduction in param-
eters following SIF constraint, or “effective constraint”, with
1− (σposterior/σprior). This quantifies the effective constraint
of the prior uncertainty and may be represented as a percent-
age decrease in σ uncertainty.

Formally, Cd represents the errors in the measurements
and in the model-simulated counterpart (i.e. model er-
ror) (Scholze et al., 2016). As described further below in
Sect. 2.4, we only consider the contribution of measurement
errors to Cd in calculating posterior probabilities. However,
to see if the assumptions that we have made about uncertain-
ties are consistent with the model–data mismatch, we assess
the reduced χ2 statistic (χ2

r ) similar to a method employed by
Kuppel et al. (2013). While more formal approaches to opti-
mally estimate covariance parameters exist (Michalak et al.,
2005), this metric can highlight whether we are neglect-
ing a significant source of error in Cd, for example, model
structural error. It also provides an indication of whether the
model is capable of reproducing the measurements, given the
assumed uncertainties. This is calculated by

χ2
r =

1
N
(M(x0)− d)

(
HCx0HT

+Cd
)−1

(M(x0)− d), (2)

where N is the number of degrees of freedom (equal to the
number of observations in this case), M(x0) is the forward
model-simulated SIF for the prior case, and d is the SIF ob-
servations. A χ2

r greater than 1 would indicate that our as-
sumptions around uncertainties may not be valid given the
model–data mismatch and that the model cannot simulate the
measurements (Michalak et al., 2005). Conversely, a χ2

r of
less than 1 indicates overconfidence in the assumed uncer-
tainties. A value of approximately 1 is most desirable as it
would indicate that our overall assumptions of uncertainties
are valid. At the low resolution applied in the information
content analysis, representation errors will be relatively large
and may dominate other sources of error in Eq. (2) and there-
fore mask the actual ability of the model to simulate the mea-
surements. For an assimilation of the data, the model would
not be used at such a low resolution given the heterogeneity
of the land surface and would instead be run at a higher spa-
tial resolution. To help reduce the representation error, we
utilize unpublished work that compares the forward model
at a higher resolution (2◦× 2◦) and with SIF observations
from the OCO-2 (Orbiting Carbon Observatory-2) satellite
for 2015. While this uses a slightly different parameteriza-
tion, it is more credible and helps minimize the effects of
representation error in determining whether the model can
simulate the measurements. The error propagation analysis,
however, benefits from using the low resolution as it greatly
improves computational efficiency considering the computa-
tional demand of the model simulations and subsequent cal-
culations.

The observational constraint introduces correlations into
the posterior parameter distributions; thus, posterior param-
eter uncertainties are not wholly independent. Strong corre-
lations in Cxpost indicate parameters that cannot be resolved
independently in an assimilation; however, their linear com-
binations can be. We calculate correlations in parameters by
expressing the covariances as correlations as in Eq. (3) (see
Tarantola, 2005, p. 71) by

Ri,j =
Ci,j√

Ci,i
√
Cj,j

, (3)

where diagonal elements have a correlation equal to 1, while
off-diagonals elements can range between −1 and 1. If large
enough, these correlations can contribute significantly to the
overall constraint of the target quantity (Bodman, 2013).

Using the parameter covariance matrix we can assess how
parameter uncertainties propagate forward through the model
onto uncertainty in GPP using the Jacobian rule of probabil-
ities, the same method outlined in Rayner et al. (2005). This
is the second stage of our error propagation study. Using Cx0

we estimate the prior uncertainty in a vector of simulated tar-
get quantities (i.e. GPP). Similarly, using Cxpost we estimate
the posterior uncertainty in a vector of simulated target quan-
tities. We calculate the uncertainty covariance of GPP (CGPP)
using Eq. (4).

CGPP =HGPPCxHT
GPP, (4)

where HGPP is the Jacobian matrix of GPP with respect to
the parameters. With this we can quantify the improvement
in precision of simulated GPP by using either Cx0 or Cxpost

in Eq. (4). Therefore, using the forward model, a statistical
estimation scheme and a set of observational uncertainties,
we can assess the information content of the SIF observations
in the context of the model, its parameter set, and simulated
GPP taking explicit consideration of uncertainties.

2.4 Uncertainty in observations and model forcing
variables

The uncertainty in the measured data (hereafter, data) is a
critical component in assessing the potential impact of an ob-
serving system on the estimation of carbon fluxes. Data un-
certainties in SIF used here are calculated from the GOSAT
satellite observations for 2010. These data are obtained from
the ACOS (Atmospheric CO2 Observations from Space)
project at a grid resolution of 3◦× 3◦ (Frankenberg, 2018).
As the model simulations are performed on a low-resolution
grid (7.5◦× 10◦), we aggregate these uncertainties to this
resolution using Eq. (5) as described below in a way that
conserves the information content from the original 3◦× 3◦

observations.
We assume that the observations are independent and have

uncorrelated errors, that is, they are distributed randomly.
Assuming uncorrelated errors is, however, likely to overes-
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timate the information content, particularly if using the stan-
dard error as the uncertainty. Although it has been used in
recent studies with satellite SIF (e.g. Parazoo et al., 2014),
the standard error under an assumption of uncorrelated er-
rors is likely to be an overly optimistic approximation of the
information content. For this study, we take a slightly conser-
vative approach, scaling the calculated standard error by the
square root of 2 as shown in Eq. (5). This effectively dou-
bles the variance in an independent dimension and reduces
the information content to compensate for the assumption of
uncorrelated errors.

Through the aggregation of GOSAT grid cells to the model
grid resolution, the number of independent measurements is
reduced. To account for this and preserve the information
content of the original GOSAT observations, the uncertainty
in a given model grid cell is, approximately, divided by the
square root of the number of GOSAT grid cells with SIF data
that fall within that model grid cell (N ). More precisely, we
apply an area-weighting term in the equation (see Eq. A1 in
the Appendix). This has the effect of scaling the uncertainty
by the 1/

√
N law but takes into account the fact that SIF is

in physical units per unit area (i.e. W m−2 µm−1 sr−1) and
that grid cells have different areas over different latitudes. A
full description of this calculation and a detailed example is
shown in the Appendix.

Therefore, the calculation of the SIF data uncertainties
used here is approximated by Eq. (5) (for further details see
Sect. A2 in the Appendix). For a given model grid cell, the
variance (σ 2) is approximately equal to the sum of the stan-
dard error of each individual GOSAT grid cell (σi) squared
and then scaled by the number of individual GOSAT grid
cells with data and the square root of 2.

σ 2
=
√

2

[
1
√
N

∑
i

σ 2
i

]
(5)

The resulting annual observational uncertainties, shown in
Fig. 3, appear to be much smaller than the uncertainties in
individual GOSAT grid cells. In part this is due to the aggre-
gation of multiple independent observations. Regions with
more soundings across the year (e.g. the tropics) will also
have smaller annual uncertainties.

Uncertainty in SIF observations may also have a system-
atic component. A known, potential systematic error in SIF
stems from the zero-level offset calculated during the re-
trieval. Any error in the calculated zero-level offset will add
to the measurement error. This radiometric correction is done
to prevent biases in the SIF retrieval (Frankenberg et al.,
2011a; Guanter et al., 2012), and this is performed monthly
in the present GOSAT retrieval of SIF. In this case, it is sys-
tematic in the sense that it applies to multiple measurements.
This type of error is distinguished from a bias, which is a
systematic error with a precisely known magnitude and sign
that should be corrected for. A bias cannot be incorporated
into the present error propagation framework, whereas an er-

ror in the zero-level offset can be, provided it is Gaussian. To
clarify, a retrieved measurement (d) of a quantity (e.g. SIF)
at index point i can be given by

di = d
t
i + εi + εz, (6)

where d t
i is the true value at index point i, εi is a random

variable with a variance of σ 2 at index point i, and εz is a
random variable that has some variance and is constant for
a subset of the measurements (e.g. across a particular region
or time). Based on previous analyses of the instruments, the
error in zero-level offset in the SIF retrieval may be con-
sidered small (Frankenberg et al., 2011a, 2014). Here, we
provide a more detailed assessment and characterization of
the in-orbit systematic error. This is performed by assessing
zero-level offset-corrected GOSAT SIF soundings over the
non-fluorescent regions of Antarctica and central Greenland
during January and July, respectively (see Fig. A2), in order
to sample the error distribution of εz. These systematic errors
appear quite small (±0.06 W m−2 µm−1 sr−1) and may vary
seasonally due to factors such as atmospheric conditions or
instrument-related causes (Guanter et al., 2012). We there-
fore assess the effect of a conservative systematic random
error of size ±0.1 W m−2 µm−1 sr−1 in the zero-level offset
seasonally. Practically, this means adding four (one for each
season) extra uncertainty terms to Cx , corresponding to the
estimated error, and adding four extra terms in H, which are
scaling terms (equal to 1) applied to the corresponding sea-
son. Including these terms provides a sensitivity test to indi-
cate how an error in the zero-level offset propagates through
to uncertainty in GPP.

An additional source of uncertainty in model estimates of
GPP is climate forcing. As mentioned by Koffi et al. (2015),
while uncertainty in forcing such as incoming radiation is
not considered in the current CCDAS set-up, it is considered
to be an important variable in driving SIF (Verrelst et al.,
2015) and GPP (Farquhar et al., 1980). Without a consider-
ation of uncertainties in forcing variables, the uncertainty in
GPP may be underestimated. Studies that use process-based
models or empirically derived relationships do not explicitly
consider such uncertainties (e.g. Beer et al., 2010). One such
forcing variable is downward shortwave radiation (SWRad).
Monthly means of SWRad are suggested to have a random
error of 12 W m−2 (6 % of the mean) due mostly to uncer-
tainty in clouds and aerosols (Kato et al., 2012). We therefore
investigate how this random error in SWRad may be consid-
ered in GPP estimates. Furthermore, as SIF responds strongly
to SWRad, there is the potential to utilize SIF observations
as a constraint on the uncertainty in the forcing. We there-
fore conduct an additional experiment that incorporates the
uncertainty in SWRad in the error propagation system. For
this experiment an additional parameter representing SWRad
is added to the inversion, which acts as a scaling factor for
SWRad globally. We investigate the level of constraint SIF
provides on this scaling factor and the subsequent effects of
incorporating uncertainty in SWRad on uncertainty in GPP.
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2.5 Model and data set-up

In this study BETHY-SCOPE is run for the year 2010
on the computationally efficient, low-resolution spatial grid
(7.5◦× 10◦). As the dynamical equations are the same for ei-
ther low-resolution or high-resolution scales, the use of the
low-resolution set-up is appropriate for an error propagation
study as long as careful consideration is taken with observa-
tional uncertainties. Climate forcing in the form of daily me-
teorological input fields for running the model (precipitation,
minimum and maximum temperatures, and incoming solar
radiation) were obtained from the WATCH/ERA Interim data
set (WFDEI; Weedon et al., 2014). Photosynthesis and fluo-
rescence are simulated at an hourly time step but forced by
the respective monthly mean diurnal cycle. Leaf growth and
hydrology are simulated daily.

SIF is simulated at 755 nm, the wavelength correspond-
ing to the GOSAT retrieval frequency and near the OCO-2
retrieval frequency (757 nm). We focus upon the constraint
by SIF measurements at 13:00 local time as it closely cor-
responds to the local overpass time of the SIF-observing
satellites GOSAT and OCO-2. However, we also investi-
gate the effect of using alternative SIF-observing times (e.g.
the GOME-2 satellite overpass time) and multiple observing
times simultaneously on the constraint of GPP.

3 Results

3.1 Prior mismatch

First, we present the results from Eq. (2) that determines
whether the assumed uncertainties allow for coverage of ob-
served SIF. As described in the methods, in this case we
use a model forward run using the high-resolution version
of the model and compare this with SIF observations from
the OCO-2 satellite. We find that χ2

r = 0.97 in this high-
resolution case, close to the optimal value of 1.

3.2 Parameter uncertainties

As described in the “Methods” section, a key metric for as-
sessing the relative uncertainty reduction, or effective con-
straint, is defined as 1− (σposterior/σprior). The effective con-
straint for all 53 parameters following constraint by SIF is
shown in Fig. 1 and in Table A1. We define weak, moder-
ate, and strong effective constraint as the relative uncertainty
reduction from 1 to 10, 10 to 50, and > 50 %, respectively.

Parameters describing leaf composition (Cab, Cdm, Csm)
generally achieve strong effective constraint from SIF. For
11 of the 13 Cab parameters the uncertainty is strongly con-
strained, between 50 and 84 %. SIF is highly sensitive toCab,
and we assign a relatively large prior uncertainty to these pa-
rameters, so considerable constraint is expected. For the trop-
ical broadleaved evergreen tree PFT, however, the effective
constraint on Cab is much lower at 7 %. For other leaf com-

Figure 1. Effective constraint of BETHY-SCOPE model process
parameters from SIF observations. Only the parameter numbers are
given; for the corresponding descriptions, see Table A1.

position parameters Cdm and Csm, SIF effectively constrains
the uncertainty by 1 and < 1 %, respectively.

Varied effective constraint is seen for the leaf growth pa-
rameters (parameters 18–34 in Table A1) that control phenol-
ogy and leaf area. Four out of the seventeen leaf growth pa-
rameters exhibit strong uncertainty reductions. These param-
eters describe a variety of processes including the tempera-
ture at leaf onset, day length at leaf shedding, leaf longevity,
and the expected length of dry spell before leaf shedding
(τW ) (see Table A1). The parameter τW is important in con-
trolling leaf area, and it sees strong effective constraint from
SIF, from 38 to 65 % depending upon which class of PFT
it pertains to. For the parameters that are PFT-specific, there
is generally a larger constraint seen when they relate to the
C3Gr, C4Gr, and crops. For example, uncertainty in τW for
grasses and crops

(
τGr
W

)
is effectively constrained by 65 %.

Leaf physiological parameters (parameters 1–17 in Ta-
ble A1) see a weak to moderate level of effective constraint.
Of particular importance for simulating GPP is the PFT-
specific parameter Vcmax. Effective constraint on Vcmax varies
from< 1 up to 31 % depending upon the PFT of interest. Five
PFTs that, combined, represent about 65 % of the land sur-
face have their Vcmax parameters constrained by> 10 %. The
global physiological parameters include the ratio of the max-
imum rate of oxygenation (Vomax) to Vcmax (aVo,Vc ), the ratio
of dark respiration (Rd) to Vcmax (aRd,Vc ), and the Michaelis–
Menten enzyme kinetic constants of Rubisco for CO2 (KC)
and O2 (KO). These all see very weak effective constraint
from SIF (< 1 %). Across all PFT-specific parameters, those
that pertain to more dominant PFTs in terms of land surface
coverage (e.g. C3 grass) tend to see stronger uncertainty re-
ductions. This is largely due to them being exposed to more
SIF observations.

Global canopy structure parameters (parameters 50–53 in
Table A1) also see a weak to moderate constraint from SIF.
In particular, the structural parameters LIDFa and LIDFb see
their uncertainty reduced by 22 and 9 %, respectively. The
parameters for vegetation height and leaf width, which are
used to calculate the fluorescence “hot-spot” variable (see
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Figure 2. Correlation coefficients (r value) between parameters in the posterior parameter covariance matrix (Cxpost ). This shows the mag-
nitude and sign of correlations in posterior parameter uncertainties following constraint with SIF data. The axis labels show the parameter
symbol and number as defined in Table A1. Only parameters with an absolute correlation coefficient > 0.25 with one or more other parame-
ters are shown. Values above and below the diagonal are identical; therefore, those above are coloured grey.

van der Tol et al., 2009), are effectively constrained by 7 and
< 1 %, respectively.

With the observational constraint, correlations are intro-
duced into the posterior parameter distributions. We assess
these correlations using Eq. (3), shown in Fig. 2. We find
strong (R ≥ 0.5) positive correlations between nine of the
PFT-specific Cab parameters. These are also negatively cor-
related with the leaf angle distribution parameter LIDFa .
Thus, during a full assimilation with SIF data, only the sum
of Cab and LIDFa can be resolved, not their individual val-
ues. Two leaf growth parameters are also strongly correlated:
Tφ with Tr. Smaller correlations are also present between the
subset of parameters shown in Fig. 2.

To assess the effect of incorporating a systematic error
from the observations into this analysis, we apply a seasonal
σ error of 0.1 W m−2 µm−1 sr−1 (equivalent to εz in Eq. 6).
This is incorporated as four additional parameters, one for

each season, that scale the SIF signal across the globe. We
find that the inclusion of this systematic error has a negligi-
ble effect on posterior uncertainties of the parameters. The
difference in effective constraint between this sensitivity test
case and the standard case above is < 1 % for any given pa-
rameter.

3.3 Uncertainty in GPP

To assess the constraint imposed by SIF on simulated GPP,
we compare the prior and posterior uncertainty in GPP as
calculated using Eq. (4). Similar to the assessment of param-
eter uncertainty reductions, to assess the effective constraint
of SIF on GPP, we use a metric that measures the relative
uncertainty reduction in σ from the prior to the posterior.

Global GPP from the prior model is approximately
164 PgCyr−1 with a prior uncertainty (σ ) of 19.0 PgCyr−1.
Utilizing SIF observations at 13:00 results in a 73 % re-
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Figure 3. Annual observational uncertainty in SIF interpolated from
GOSAT observations for 2010.

Figure 4. Prior parametric uncertainty in annual GPP.

duction in the prior uncertainty, giving a posterior of
5.2 PgCyr−1. Spatially, the prior uncertainty in GPP varies
across the globe, with particularly large uncertainties in re-
gions with high productivity (Fig. 4). This is to be expected,
considering GPP uncertainty will typically correlate with
GPP. In the posterior, it is clear that uncertainty in GPP is
strongly reduced across the globe (Fig. 5). The relative uncer-
tainty reduction (Fig. 6) appears to show smaller constraint of
uncertainty in the boreal regions, likely due to the relatively
large SIF uncertainty (Fig. 3) and low prior uncertainty in
GPP (Fig. 4).

To assess which parameters contribute to the uncertainty
in GPP for the prior and posterior, we can conduct a linear
analysis of the uncertainty contributions. Typically this tech-
nique can only be used for the prior as the correlations in
posterior parameter uncertainties, excluded from the linear
analysis, also contribute toward the overall constraint. How-
ever, we can assess the contribution of these correlations to
the constraint of GPP by setting the off-diagonal elements in
Cxpost to zero and using it in Eq. (4); the difference between
this and the standard case that uses the full Cxpost equates to
the contribution of correlations. We find that the contribu-
tion of these correlations to the constraint of GPP is small

Figure 5. Posterior parametric uncertainty in annual GPP.

Figure 6. Relative uncertainty reduction (i.e. effective constraint)
of parametric uncertainty in annual GPP from prior to posterior.

(0.16 PgCyr−1 or < 1 %); thus, we can assume that the lin-
ear analysis technique holds for the posterior as well. This
finding is supported by the correlation analysis in posterior
parameter uncertainties which showed few significant corre-
lations in parameters relevant for GPP. This result is encour-
aging as it indicates that the parameters in a SIF assimilation
system contributing most to the constraint of GPP are capa-
ble of being resolved independently.

Using a linear analysis of the uncertainty, we find that
uncertainty in global annual GPP in the prior and posterior
stems from different processes. For the prior we find that the
uncertainty in GPP is dominated, at 89 %, by parameters de-
scribing leaf growth processes. Of these, a single parameter,
τW , for C3 grass, C4 grass, and crops

(
τGr
W

)
makes up 74 % of

the uncertainty in global annual GPP. Parameters represent-
ing physiological processes account for about 9 % of prior
uncertainty, most of which stems from the Vcmax parameters.
Parameters for Cab only account for 2.5 % of the prior uncer-
tainty.

For the posterior, which has a lower overall uncertainty
in GPP, uncertainty is dominated by parameters representing
physiological processes. Physiological parameters account
for 67 % of the uncertainty in posterior annual GPP, with
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Vcmax parameters accounting for 32 % and the Michaelis–
Menten constant of Rubisco for CO2 (KC) accounting for
30 %. The relative contribution by leaf growth parameters is
reduced to 33 %, and for τGr

W , it is 15 %. For Cab the rela-
tive contribution is smaller than the prior at < 1 %. This shift
in which parameters contribute to the relative uncertainty in
GPP between the prior and the posterior demonstrates how
effectively SIF constrains leaf growth processes. Uncertain-
ties in physiological parameters are constrained less than the
leaf growth parameters, which results in them contributing
more in relative terms to the posterior uncertainty in GPP.

Regionally, we split the land into three regions, the Boreal
region (above 45◦ N), the Temperate North (30 to 45◦ N), and
the Tropics (30◦ S to 30◦ N). SIF constraint on annual GPP
varies substantially across different regions of the globe, with
a relative uncertainty reduction in of 48, 82, and 79 % for the
Boreal, Temperate North, and Tropics regions, respectively.
In Fig. 7 we show the contribution of parameter classes (leaf
physiology, leaf growth, leaf composition, and canopy struc-
ture; see Table A1 for details) to the parametric uncertainty
in GPP across the year for each of these regions. From Fig. 7
it can be seen that the Boreal and Temperate North regions
exhibit seasonal differences in GPP uncertainty, mostly due
to the seasonal cycle in GPP, and in the constraint SIF pro-
vides. This is caused by seasonal dependencies in the sensi-
tivity of SIF and GPP to certain processes (e.g. leaf develop-
ment versus leaf senescence) as well as seasonal differences
in the density of observations in these regions. There are far
fewer GOSAT satellite observations during Boreal autumn
and winter; thus, there are fewer observations to constrain
processes controlling GPP during this time.

During the start of the growing season leaf physiology,
in particular photosynthetic rate constants (Vcmax), plays a
larger role in GPP uncertainty, whereas later in the grow-
ing season during the warmest months leaf growth, via water
limitation on leaf area

(
τGr
W

)
of grasses, plays a larger role.

Therefore in the Boreal region, where the strongest season-
ality in constraint is seen, from July through to January SIF
constrains GPP by > 60 %. Uncertainty in GPP during these
months is dominated by the leaf growth parameters τGr

W and
kL along with Cab (for EvCn), all of which receive consider-
able constraint from SIF. From February to June however,
SIF constrains GPP by less than 50 %, as a large propor-
tion of the uncertainty arises from the less constrained Vcmax
parameters. Following SIF constraint, uncertainty in Boreal
GPP stems mostly from uncertainty in leaf physiology, par-
ticularly for the EvCn PFT. Similar differences between sea-
sonal constraint are seen for the Temperate North, although
with a smaller seasonal variation in SIF constraint that ranges
between 74 and 87 % across the year.

For the Tropics uncertainty reduction in GPP is about 80 %
across the year. Uncertainty in the prior is dominated by the
leaf growth parameters and in particular the τW parameters
controlling water-limited leaf area. SIF constraint is primar-
ily propagated through the τW parameters to GPP result-

Figure 7. Contribution of parameter classes to parametric uncer-
tainty in monthly GPP for three regions (see Table A1 for details
on these parameter classes). For each month, the bar on the left is
the prior and the bar on the right is the posterior. Uncertainties are
represented as variances; thus, the units are in PgCyr−1 squared,
and, for clarity, the y axes are on a quadratic-transformed scale.

ing in a well-constrained posterior with a σ uncertainty of
1.6 Pg C yr−1 in the annual GPP of the Tropics. Although
moderate constraint is seen in the key PFT-specific param-
eter Vcmax for the dominant tropical PFTs (see Fig. 1), in the
posterior these parameters contribute to roughly 35 % of the
uncertainty in annual GPP.

3.4 Diurnal SIF constraint

With this set-up it is possible to test how the SIF constraint
on GPP might change with alternative observational times.
Considering this, we test how the constraint on GPP changes
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Figure 8. Effective constraint on global annual GPP for different
observing times and the two diurnal cycle configurations. Values at
the top of the bars correspond to the posterior uncertainty (σ ) in
global annual GPP.

when assimilating observations of SIF from alternative times
of the day, assuming the same number of observations and
the same observational uncertainty as used above. From this
we see that different observing times yield differences in
the posterior uncertainty and the effective constraint of GPP
(see Fig. 8). The constraint on global annual GPP when us-
ing SIF-observing times between 09:00 and 15:00 is quite
similar, with the posterior uncertainty in global annual GPP
ranging from 5.0 PgCyr−1 (effective constraint of 74 %) to
6.0 PgCyr−1 (effective constraint of 68 %). The most signif-
icant constraint on GPP is obtained when using SIF observa-
tions at between 11:00 and 13:00, nearest to the peak in the
diurnal cycle of both GPP and SIF.

We also test the effect of utilizing SIF measurements at
multiple times of the day simultaneously. We select the times
08:00, 12 noon, and 16:00, replicating a theoretical geosta-
tionary satellite. For this experiment we first test the effect of
increasing the number of observations by a factor of 3, as-
suming the same uncertainty for the three observation times.
Second, we also increase the number of observations by a
factor of 3, but scale the variance of these observations by
one third. Using this second test we can assess whether dif-
ferences in parameter sensitivities of SIF and GPP at the dif-
ferent times of the day add value in the overall constraint.

Using a diurnal cycle of observations results in a poste-
rior uncertainty of 4.6 PgCyr−1 or an effective constraint of
76 % as in Fig. 8. This is an extra 2 % constraint on the un-
certainty in GPP compared with observations at 12:00 noon
alone. If we use a diurnal cycle of observations with scaled
uncertainties, we see a slightly reduced constraint on GPP
where the posterior uncertainty is 5.9 PgCyr−1, equivalent
to an effective constraint of 69 % (Fig. 8).

Table 2. Parametric uncertainty and effective constraint of global
annual GPP for each of the SWDown experiments. Prior and pos-
terior values shown are the 1 standard deviation (σ ) uncertainty in
global annual GPP.

Experiment Prior GPP Posterior GPP Effective
(PgCyr−1) (PgCyr−1) constraint

Control 19.01 5.15 72.9 %
Control+SWRad 19.04 5.29 72.2 %
With SIF constraint 19.04 5.15 72.9 %

3.5 Incorporating uncertainty in radiation

In order to assess the effects of incorporating uncertainty in
SWRad, we conduct three experiments. First is a control run,
equivalent to using SIF at 13:00 as before. The second in-
cludes uncertainty in SWRad by adding it into the posterior
uncertainty calculation; this might be done normally when
accounting for uncertainty in forcing. The third experiment
incorporates uncertainty in SWRad into the error propaga-
tion system with SIF, such that the uncertainty in SWRad
may be constrained. This third experiment effectively treats
SWRad as a model parameter by adding an extra row and
column to Cx .

Including the uncertainty in SWRad in the calculation
of posterior uncertainty in GPP results in an additional
0.03 PgCyr−1 to the prior uncertainty in global annual GPP.
This is a small effect relative to the parametric uncertain-
ties. Moreover, if we incorporate SWRad uncertainty into the
error propagation system, we see that this additional uncer-
tainty is mitigated by the SIF constraint. With SWRad uncer-
tainty included, the posterior uncertainty in GPP remains at
5.15 PgCyr−1, equivalent to the case without accounting for
uncertainty in SWRad, in both cases resulting in a relative re-
duction in the GPP uncertainty by 72.9 %. This mitigation of
the additional uncertainty from SWRad is possible because
both SIF and GPP are strongly sensitive to it; thus, any con-
straint on SWRad from SIF is also propagated through to
GPP.

By assessing the prior and posterior uncertainty in SWRad
in Cx0 and Cxpost , respectively, we can assess the effective
constraint following the use of SIF in the error propagation
system. We find that SIF constrains the SWRad uncertainty
by about 29 %. This gain in information on SWRad naturally
results in less information being available for other parame-
ters. The relative uncertainty reduction for most parameters
decreases by a few percent. For example most Cab parame-
ters see a decrease in effective constraint of around 1 % and
Vcmax parameters up to 3 %. With GPP exhibiting low sen-
sitivity to Cab parameters and strong sensitivity to SWRad,
the transfer of information from Cab to SWRad results in an
overall mitigated effect of SWRad uncertainty on GPP.

www.geosci-model-dev.net/11/1517/2018/ Geosci. Model Dev., 11, 1517–1536, 2018



1528 A. J. Norton et al.: Information content of SIF in a terrestrial biosphere model

4 Discussion

The results presented show that with 1 year of satellite SIF
data observed at the GOSAT and OCO-2 satellite overpass
time and SIF retrieval wavelength, we can constrain a large
portion of the BETHY-SCOPE parameter space and ulti-
mately yield a parametric uncertainty in global annual GPP
of ±5.2 PgCyr−1. The parametric uncertainty in the prior is
approximately 12 % of the global annual GPP. Following the
addition of SIF information, this is reduced to about 3 % of
global annual GPP. This constitutes a reduction in paramet-
ric uncertainty of 73 % relative to the prior. Although this
data-driven constraint is model dependent, it is an improve-
ment on the often reported uncertainty of ±8 PgCyr−1 from
the empirical-model-based upscaled product of Beer et al.
(2010).

We note that this analysis is likely to underestimate the
constraint that SIF could provide on GPP as it is performed
with uncertainties calculated from the GOSAT SIF 3◦× 3◦

spatial-resolution observations. With the use of higher-
resolution observations such as those from OCO-2, the con-
straint will get stronger. Similarly, with a longer time series
of data, there will be stronger constraint. This occurs because
the number of independent observations increases while the
number of parameters remain constant.

This error propagation analysis does not assess how model
SIF compares with observed SIF. However, our finding that
the χ2

r is near the optimal value of 1 provides evidence that
the range of possible model SIF realizations, given our as-
sumptions of parameter and data uncertainties, can provide
coverage of the observed SIF. While this is not evidence that
each specific uncertainty (e.g. parameters, model, measure-
ment) is optimal (Michalak et al., 2005), it does suggest that
overall the assumptions are valid and that we are not overcon-
fident in or underestimating covariances. We reiterate that the
χ2
r test is performed using a higher spatial-resolution model

and measured data because this is the resolution that would
be applied in an assimilation of the data and this reduces the
effects of representation errors. The error propagation analy-
sis, however, benefits from using a low resolution as it greatly
improves computational efficiency considering the simula-
tions, and calculations are computationally demanding.

We also find that the effect of incorporating the error in the
zero-level offset correction in the SIF observations is negligi-
ble on posterior parametric uncertainties. This may be negli-
gible because, for a given season, this systematic uncertainty
applies across all data points; thus, it scales all of the SIF
values and therefore the sensitivities as well. In any case,
the systematic error in the zero-level offset-corrected data as-
sessed here (Fig. A2) appears small.

The constraint on global GPP is similar when assimilating
SIF at any time between 09:00 and 15:00. Assimilating ob-
servations at the daily maximum of SIF and GPP provides the
strongest constraint as both quantities exhibit the strongest
parameter sensitivities at these times. Depending upon the

state of the vegetation and the environmental stress condi-
tions, maximum SIF and GPP may occur anywhere between
mid-morning and early afternoon. Therefore, we expect that
the effective use of different satellite-retrieved SIF observa-
tions for assimilation studies will depend not so much on
their observing time but more on the spatiotemporal reso-
lution, measurement precision, and subsequent uncertainty.

A confounding factor in this expectation is the uncertain
role of physiological stress on the diurnal cycle of SIF and
GPP and on modelling capabilities of these processes. Mul-
tiple studies have shown that various forms of environmental
stress result in the downregulation of PSII and changes in
the fluorescence yield, particularly evident across the diur-
nal cycle (Carter et al., 2004; Daumard et al., 2010; Flexas
et al., 1999, 2000, 2002; Freedman et al., 2002). By incor-
porating SIF observations at multiple times of the day, we
hypothesized that there could be improvements in the over-
all constraint on GPP as the SIF observations would capture
the vegetation in different states of stress. We saw only mi-
nor improvements in the constraint and less constraint if we
assumed no additional information in the observations (i.e.
with scaled uncertainty). Thus, the difference in model pa-
rameter sensitivities of SIF and GPP at other times across the
diurnal cycle was not sufficient to add value to the constraint.
Additionally, the constraint is worse with these scaled obser-
vational uncertainties as we are effectively removing some
useful observational information at midday, the time that
provides the highest sensitivities, and getting extra obser-
vational information at the lower-sensitivity times of 08:00
and 16:00. This may be due to limitations of the model. Al-
though BETHY-SCOPE simulates light-induced downregu-
lation of PSII, there is no mechanism present to simulate
other forms of stress that might be expected to emerge across
the diurnal cycle. However, even with a perfect model, the
spatial footprint and spatiotemporal averaging of satellite ob-
servations may smooth over stress signals. Considering these
confounding factors, incorporating individual SIF soundings
could help remedy this problem, and there is no technical
reason other than the high computational requirements that
would prevent a data assimilation system from doing so.

The constraint of SIF on GPP occurs via multiple pro-
cesses including leaf growth, leaf composition, physiology,
and canopy structure. For the prior, uncertainty in global
GPP is dominated by leaf growth processes. There is a
clear and direct link between leaf growth processes and
GPP (Baldocchi, 2008) as the dynamics of leaf area influ-
ences canopy absorbed photosynthetically active radiation
(APAR), which in turn strongly influences GPP. Leaf growth
parameter uncertainties are relatively large in the prior, with
coefficients of variation up to 50 %. It is perhaps no surprise
then that these parameters project a large uncertainty onto
GPP. Regardless, both GPP and SIF respond similarly to the
leaf growth parameters, so information from observations of
SIF can provide a direct constraint on GPP in this way. Many
leaf growth parameters, particularly for grasses, crops, and
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deciduous trees and shrubs, receive a constraint of > 40 %
from SIF; thus, the overall contribution of leaf growth pa-
rameters in the posterior is considerably reduced.

Of particular importance is the parameter describing wa-
ter limitation on leaf growth (τW ), which accounts for about
80 % of the prior uncertainty in global GPP. Model SIF and
GPP are highly sensitive to this parameter; hence, there are
large values in H and HGPP pertaining to τW . This relates
to the model formulation as many of the leaf growth param-
eters determine phenological processes such as temperature
or light-dependent growth triggers (i.e. temporal evolution of
leaf area), while τW is the only process parameter controlling
leaf area other than intrinsic maximum LAI (3̃) (Knorr et al.,
2010). Additionally, as we assume little prior knowledge for
τW (i.e. it is highly uncertain) it projects a relatively large
uncertainty onto GPP.

At the global scale, τW for crops, C3 grasses, and C4
grasses

(
τGr
W

)
is particularly important. Combined, these

three PFTs cover about 47 % of the land surface and account
for just over 50 % of global annual GPP in the present model
set-up. Although this contribution to global GPP may seem
high, it is based on the prior estimate. In a recent study by
Scholze et al. (2016), where atmospheric CO2 concentration
and SMOS (Soil Moisture and Ocean Salinity) soil moisture
were assimilated into BETHY, the posterior value for τGr

W

shifted approximately 3 standard deviations away from the
prior, the result of which would have been a large change
in the GPP of these PFTs. This exposes a limitation of the
present study as we can predict and quantify how SIF will
constrain the uncertainty in process parameters and GPP, but
we cannot predict how their values will change.

The constraint SIF provides on leaf growth processes is
also perhaps achievable from other remote-sensing products
such as FAPAR (e.g. Kaminski et al., 2012). A direct com-
parative study would be required to assess the advantages
and disadvantages of each observational constraint. Never-
theless, issues arise with these alternative observations when
observing dense canopies (Yang et al., 2015) or vegetation
with high photosynthetic rates such as crops (Guanter et al.,
2014). Information on maximum potential LAI (3̃) and pa-
rameters pertaining to understorey shrubs and grasses are
therefore also limited (Knorr et al., 2010). A strong benefit
of SIF is that it shows minimal saturation effects (e.g. Yang
et al., 2015), especially beyond 700 nm, where most current
satellite SIF measurements are made.

The strong constraint SIF provides on leaf growth pro-
cesses indicates that it is likely to provide improved moni-
toring of key phenological processes such as the timing of
leaf onset, leaf senescence, and growing season length as also
suggested by Joiner et al. (2014). This will be highly useful
in interpreting results from a full assimilation with SIF as the
posterior process parameter values can be compared with in-
dependent ecophysiological data, taking spatial scale issues
into consideration.

Beyond observing LAI dynamics SIF can also provide
critical insights into physiological processes (e.g. Walther
et al., 2016). We see here that SIF provides a weak to mod-
erate constraint on a range of physiological parameters, in-
cluding up to 30 % constraint on Vcmax parameters. The lim-
ited constraint on these parameters results in the posterior
being dominated by uncertainty in the parameters represent-
ing physiological processes. This is in line with Koffi et al.
(2015), who found limited sensitivity of simulated SIF to
Vcmax. We note that under certain conditions, where other key
variables are well known, SIF can be used to retrieve Vcmax
(Zhang et al., 2014). The ability of SIF to provide informa-
tion on physiological processes at all will provide researchers
with a powerful new insight into the spatiotemporal patterns
of GPP. As was shown by Walther et al. (2016) and Yang
et al. (2015), this is particularly important for evergreen veg-
etation as changes in photosynthetic activity are not always
reflected by changes in traditional vegetation indices.

Chlorophyll content here constitutes a classic nuisance
variable. A nuisance variable is one that is not perfectly
known and impacts the observations we wish to use but
not the target variable (Rayner et al., 2005). However, ex-
ploiting the well-documented correlation between leaf nitro-
gen content, Vcmax, and Cab may help curtail this problem
(Evans, 1989; Kattge et al., 2009). Houborg et al. (2013)
demonstrated that by including a semi-mechanistic relation-
ship between these variables in the Community Land Model
and using satellite-based estimates of chlorophyll to derive
Vcmax, there is significant improvement in predictions of
carbon fluxes over a field site. Implementing such a semi-
mechanistic link in a data assimilation system would enable
the strong constraint that SIF provides on Cab to feed more
directly into GPP. However, in this study it is assumed Cab
and Vcmax can be resolved independently, which may not
be the case considering that ecophysiological studies have
shown that the two parameters are commonly correlated.

Almost all terrestrial carbon cycle models use down-
welling radiation at the Earth’s surface as an input variable.
Any uncertainty in this forcing will translate into uncertainty
in carbon fluxes including GPP, and few studies consider
such uncertainties. A known systematic error (i.e. bias) in
forcing variables (e.g. Boilley and Wald, 2015) cannot be
considered in the present error propagation system; however,
in such a case a correction to the data should be performed
as it will bias carbon flux estimates. For random errors that
cannot be removed, however, they may be considered in the
uncertainty in carbon flux estimates using error propagation.
At the global scale, Kato et al. (2012) used a perturbation
study, along with modelled irradiance and remotely sensed
measurements to compute a random error (σ ) of 12 W m−2

for monthly gridded downward shortwave radiation over the
land. We considered this uncertainty by incorporating it into
the error propagation system with SIF. While including this
forcing uncertainty in the prior increases the prior uncertainty
in GPP, incorporating the former into the error propagation
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analysis with the SIF observations mitigates the downstream
effect on GPP. SIF can therefore provide useful information
on the SWRad forcing via a data assimilation system. The
consideration of uncertainties in forcing variables such as
SWRad on terrestrial carbon fluxes is important when esti-
mating the uncertainty in GPP. However, the effect on uncer-
tainty in GPP may be strongly reduced by using SIF obser-
vations.

The results presented here demonstrate how SIF obser-
vations may be utilized to optimize a process-based terres-
trial biosphere model and constrain uncertainty in simulated
GPP. These results are, however, model dependent. The as-
sumption is that the model simulates the most important
processes driving SIF and GPP. Some key, remaining un-
knowns include how processes such as environmental stress,
three-dimensional canopy structure effects, or nitrogen cy-
cling may affect the SIF signal. As better understanding is
developed of the role that these processes play, modelling ca-
pabilities will also be improved. Additionally, a different set
of prior parameter values will alter the results due to changes
in H. The use of prior knowledge, based on ecophysiologi-
cal data and its probable range, is critical to curtailing this
problem. The choice of how to spatially differentiate the pa-
rameters will also affect results (Ziehn et al., 2011). Select-
ing an optimal parameter set that has the fewest degrees of
freedom yet provides the best fit to the observational data is
outside the scope of this study, however. The implementation
of a parameter estimation scheme in a full data assimilation
system with SIF and other observational data will help ad-
dress these challenges. Earlier work by Koffi et al. (2015)
demonstrated that the model can simulate the patterns of ob-
served satellite SIF quite well, indicating that the model can
incorporate the data. Further work will be needed to assess
how well the model can simulate patterns of SIF with an op-
timized, realistic parameter set.

5 Conclusions

We assessed the ability of satellite SIF observations to con-
strain uncertainty in model parameters and uncertainty in
spatiotemporal patterns of simulated GPP using a process-
based terrestrial biosphere model. The results show that there
is a strong constraint of parametric uncertainties across a
wide range of processes including leaf growth dynamics and
leaf physiology when assimilating just 1 year of SIF observa-
tions. Combined, the SIF constraint on parametric uncertain-
ties propagates through to a strong reduction in uncertainty
in GPP. The prior uncertainty in global annual GPP is re-
duced by 73 % from 19.0 to 5.2 PgCyr−1. Although model
dependent, this result demonstrates the potential of SIF ob-
servations to improve our understanding of GPP. We also
showed that a data assimilation framework with error prop-
agation such as this allows us to account for uncertainty in
model forcing such as SWRad. Surprisingly, by including it
into this framework with SIF observations, there is a net-zero
effect on uncertainty in GPP due to the sensitivity of both SIF
and GPP to radiation. This study is a crucial first step toward
assimilating satellite SIF data to estimate spatiotemporal pat-
terns of GPP. With the addition of other observational con-
straints such as atmospheric CO2 concentration or soil mois-
ture there is also the possibility of accurately disaggregat-
ing the net carbon flux into its component fluxes – GPP and
ecosystem respiration. Indeed, with these additional, comple-
mentary observations of the terrestrial biosphere further con-
straint could be gained as other regions of parameter space
can be resolved (Scholze et al., 2016).

Code and data availability. The BETHY-SCOPE model code is
available upon request from the authors. The GOSAT satellite SIF
data used in this paper are from the ACOS project (version B3.5)
(Frankenberg, 2018).
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Appendix A

A1 Model process parameters

Table A1. BETHY-SCOPE process parameters along with their prior and optimized uncertainties following SIF constraint, represented as
1 standard deviation. Relative uncertainty reduction (i.e. effective constraint) is reported for the error propagation with low-resolution and
high-resolution SIF observations. Units are as follows: Vcmax – µmol(CO2)m−2 s−1; aVo,Vc , and aRd,Vc – dimensionless ratios; KC and
KO – bar; 3̃ – m2 m−2; Tφ – ◦C; Tr – ◦C; tc – hours; tr – hours; ξ – d−1; kL – d−1; τW – days; Cab – µgcm−2; Cdm – gcm−2; Csm –
dimensionless fraction; hc – m; leaf width – m.

Class No. Description Parameter Prior Prior Effective
mean uncertainty constraint (%)

L
ea

fp
hy

si
ol

og
y

1

Maximum carboxylation rate at 25 ◦C

Vcmax (TrEv) 60 12 19.4
2 Vcmax (TrDec) 90 18 12.4
3 Vcmax (TmpEv) 41 8.2 0.3
4 Vcmax (TmpDec) 35 7 < 0.1
5 Vcmax (EvCn) 29 5.8 0.3
6 Vcmax (DecCn) 53 10.6 < 0.1
7 Vcmax (EvShr) 52 10.4 21.3
8 Vcmax (DecShr) 160 32 0.2
9 Vcmax (C3Gr) 42 8.4 30.7
10 Vcmax (C4Gr) 8 1.6 28.5
11 Vcmax (Tund) 20 4 0.5
12 Vcmax (Wetl) 20 4 < 0.1
13 Vcmax (Crop) 117 23.4 6.0
14 Ratio of Vomax to Vcmax aVo,Vc 0.22 0.0022 < 0.1
15 Ratio of Rd to Vcmax aRd,Vc 0.015 0.0015 < 0.1
16 Michaelis–Menten constant of Rubisco

for CO2

KC 350× 10−6 23× 10−6 0.9

17 Michaelis–Menten constant of Rubisco
for O2

KO 0.45 0.0165 < 0.1

L
ea

fg
ro

w
th

18 Max. leaf area index 3̃ 5 0.25 7.0
19

Temperature at leaf onset

Tφ (4) 10 0.5 8.9
20 Tφ (5,6,11) 10 0.5 16.6
21 Tφ (8) 8 0.5 2.3
22 Tφ (9,10,12) 2 0.5 46.8
23 Tφ (13) 15 1 49.6
24

Spatial range (1σ ) of Tφ
Tr (4,8,13) 2 0.1 1.9

25 Tr (5,6,11) 2 0.1 0.8
26 Tr (9,10,12) 0.5 0.1 9.6
27 Day length at leaf shedding tc (4–6,8,11) 10.5 0.5 32.1
28 Spatial range (1σ ) of tc tr (4–6,8,11) 0.5 0.1 1.4
29 Initial linear leaf growth ξ 0.5 0.1 20.0
30

Inverse of leaf longevity
kL (2,4,6,8,9,10, 12,13) 0.1 0.05 58.5

31 kL (5,11) 3× 10−3 0.5× 10−3 11.2
32

Length of dry spell before leaf shedding
τW (1,3,7) 180 60 56.9

33 τW (2) 90 30 37.9
34 τW (9,10,12,13) 30 15 64.6

L
ea

fc
om

po
si

tio
n 35

Chlorophyll ab content

Cab (TrEv) 40 20 7.4
36 Cab (TrDec) 15 20 60.7
37 Cab (TmpEv) 15 20 31.3
38 Cab (TmpDec) 10 20 69.7
39 Cab (EvCn) 10 20 73.8
40 Cab (DecCn) 10 20 66.9
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Table A1. Continued.

L
ea

fc
om

po
si

tio
n

41

Chlorophyll ab content

Cab (EvShr) 10 20 72.5
42 Cab (DecShr) 10 20 66.3
43 Cab (C3Gr) 10 20 73.9
44 Cab (C4Gr) 5 20 83.6
45 Cab (Tund) 10 20 72.9
46 Cab (Wetl) 10 20 49.6
47 Cab (Crop) 20 20 54.6
48 Dry matter content Cdm 0.012 0.002 1.3
49 Senescent material content Csm 0 0.01 0.2

C
an

op
y

St
ru

ct
ur

e

50
Leaf inclination distribution function parameters

LIDFa −0.35 0.1 21.5
51 LIDFb −0.15 0.1 9.0
52 Vegetation height hc 1 0.5 6.8
53 leaf width 0.1 0.01 0.3

A2 GOSAT SIF uncertainty calculations

To obtain the variance of a target grid cell at the model grid
resolution (ylat, xlon), we first determine the area-weighted
variance of each GOSAT grid cell (ilat, jlon) within that
target grid cell. The area weighting per GOSAT grid cell
(Âreailat, jlon ) is calculated as the area divided by the total area
of the target grid cell. This enables us to account for different

Figure A1. An example of the GOSAT SIF data and uncertainty calculations over a low-resolution model grid cell centred over the Amazon
forest at 3.75◦ S and 65◦W. Grey lines show individual 3◦× 3◦ GOSAT grid cells. Black lines show the aggregated data for the 7.5◦× 10◦

model grid cell. Panel (d) shows the calculated uncertainty (standard deviation) at the model grid resolution in black, blue, and green. The
black line is the standard error calculated using Eq. (5); the blue line is the standard error calculated using Eq. (A1); the green line is the
same as the blue but scaled by

√
2 to account for correlated errors which are used in this study.

grid cell sizes considering that SIF is in physical units per
unit area. We then sum the area-weighted variances and scale
this uncertainty by the square root of 2 (see Eq. 5). Scaling
the uncertainty in this way effectively doubles the variance
in an independent dimension.

σ 2
ylat, xlon

=
√

2
∑

(Ârea
2
ilat, jlon

· σ 2
ilat, jlon

) (A1)
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A3 Systematic error in GOSAT SIF observations

Figure A2. Analysis of systematic errors in the GOSAT SIF ob-
servations. We assess the zero-level offset-corrected GOSAT SIF
soundings over two ice-covered and therefore non-fluorescent re-
gions. The first is Antarctica in January, between latitudes 70 and
80◦ S and longitudes 75◦W to 155◦ E. The second is central Green-
land in July, between latitudes 73 to 80◦ N and longitudes 30 to
52◦W. With no systematic error, the mean (µ) value of the distribu-
tion should be on 0. As is shown, µ is non-zero and varies in sign
and magnitude between January and July. This test samples the er-
ror distribution in the zero-level offset (i.e. εz in Eq. 6).

www.geosci-model-dev.net/11/1517/2018/ Geosci. Model Dev., 11, 1517–1536, 2018



1534 A. J. Norton et al.: Information content of SIF in a terrestrial biosphere model

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Alexander Norton was partly supported by
an Australian Postgraduate Award provided by the Australian
Government and a CSIRO OCE Scholarship. The research was
funded, in part, by the ARC Centre of Excellence for Climate
System Science (grant CE110001028).

Edited by: Tomomichi Kato
Reviewed by: Sylvain Kuppel and one anonymous referee

References

Baker, N. R.: Chlorophyll fluorescence: a probe of photo-
synthesis in vivo, Annu. Rev. Plant Biol., 59, 89–113,
https://doi.org/10.1146/annurev.arplant.59.032607.092759,
2008.

Baldocchi, D., Ryu, Y., and Keenan, T.: Terrestrial Car-
bon Cycle Variability, F1000 Research, 5, 2371,
https://doi.org/10.12688/f1000research.8962.1, 2016.

Baldocchi, D. D.: “Breathing” of the terrestrial biosphere:
lessons learned from a global network of carbon diox-
ide flux measurement systems, Aust. J. Bot., 56, 1–26,
https://doi.org/10.1071/BT07151, 2008.

Beer, C., Reichstein, M., Tomelleri, E., and Ciais, P.: Ter-
restrial gross carbon dioxide uptake: global distribution
and covariation with climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984, 2010.

Bodman, R. W.: Uncertainty in temperature projections reduced us-
ing carbon cycle and climate observations, Nat. Clim. Change, 3,
725–729, https://doi.org/10.1038/nclimate1903, 2013.

Boilley, A. and Wald, L.: Comparison between meteorological re-
analyses from ERA-Interim and MERRA and measurements of
daily solar irradiation at surface, Renew. Energ., 75, 135–143,
https://doi.org/10.1016/j.renene.2014.09.042, 2015.

Carter, G. A., Freedman, A., Kebabian, P. L., and Scott, H. E.: Use
of a prototype instrument to detect short-term changes in solar-
excited leaf fluorescence, Int. J. Remote Sens., 25, 1779–1784,
https://doi.org/10.1080/01431160310001619544, 2004.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon
and Other Biogeochemical Cycles, in: Climate Change 2013:
The Physical Science Bases, Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., Cambridge University Press, Cam-
bridge, 465–570, 2013.

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C.,
Hueni, A., Buchmann, N., Eugster, W., Ammann, C., and
Schaepman, M.: Far-red sun-induced chlorophyll fluores-
cence shows ecosystem-specific relationships to gross pri-
mary production: An assessment based on observational and
modeling approaches, Remote Sens. Environ., 166, 91–105,
https://doi.org/10.1016/j.rse.2015.06.004, 2015.

Daumard, F., Champagne, S., Fournier, A., Goulas, Y.,
Ounis, A., Hanocq, J.-F., and Moya, I.: A Field Plat-
form for Continuous Measurement of Canopy Fluores-
cence, IEEE T. Geosci. Remote Sens., 48, 3358–3368,
https://doi.org/10.1109/TGRS.2010.2046420, 2010.

Evans, J. R.: Photosynthesis and nitrogen relationships in leaves of
C3 plants, Oecologia, 78, 9–19, 1989.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochem-
ical model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 90, 78–90, 1980.

Flexas, J., Escalona, J. M., and Medrano, H.: Water stress in-
duces different levels of photosynthesis and electron transport
rate regulation in grapevines, Plant Cell Environ., 22, 39–48,
https://doi.org/10.1046/j.1365-3040.1999.00371.x, 1999.

Flexas, J., Briantais, J.-M., Cerovic, Z., Medrano, H., and Moya,
I.: Steady-State and Maximum Chlorophyll Fluorescence Re-
sponses to Water Stress in Grapevine Leaves: A New Re-
mote Sensing System, Remote Sens. Environ., 73, 283–297,
https://doi.org/10.1016/S0034-4257(00)00104-8, 2000.

Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond,
C. B., and Medrano, H.: Steady-state chlorophyll fluorescence
(Fs) measurements as a tool to follow variations of net CO2 as-
similation and stomatal conductance during water-stress in C3
plants, Physiol. Plantarum, 114, 231–240, 2002.

Frankenberg, C.: GOSAT gridded fluorescence ACOS B3.5,
https://doi.org/10.22002/D1.921, 2018.

Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chloro-
phyll fluorescence from atmospheric scattering effects in O2
A-band spectra of reflected sun-light, Geophys. Res. Lett., 38,
L03801, https://doi.org/10.1029/2010GL045896, 2011a.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi,
S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A.,
and Yokota, T.: New global observations of the terrestrial car-
bon cycle from GOSAT: Patterns of plant fluorescence with
gross primary productivity, Geophys. Res. Lett., 38, L17706,
https://doi.org/10.1029/2011GL048738, 2011b.

Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J.,
Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for
chlorophyll fluorescence remote sensing from the Orbiting
Carbon Observatory-2, Remote Sens. Environ., 147, 1–12,
https://doi.org/10.1016/j.rse.2014.02.007, 2014.

Freedman, A., Cavender-Bares, J., Kebabian, P., Bhaskar, R., Scott,
H., and Bazzaz, F.: Remote sensing of solar-excited plant fluores-
cence as a measure of photosynthetic rate, Photosynthetica, 40,
127–132, https://doi.org/10.1023/A:1020131332107, 2002.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,
Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala,
G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M.,
Knorr, W., Lindsay, K., Matthews, H., Raddatz, T., Rayner,
P., Reick, C., Roeckner, E., Schnitzler, K., Schnur, R.,
Strassmann, K., Weaver, A., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the
C 4 MIP Model Intercomparison, J. Climate, 19, 3337–3353,
https://doi.org/10.1175/JCLI3800.1, 2006.

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-
Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and
global assessment of terrestrial chlorophyll fluorescence from
GOSAT space measurements, Remote Sens. Environ., 121, 236–
251, https://doi.org/10.1016/j.rse.2012.02.006, 2012.

Geosci. Model Dev., 11, 1517–1536, 2018 www.geosci-model-dev.net/11/1517/2018/

https://doi.org/10.1146/annurev.arplant.59.032607.092759
https://doi.org/10.12688/f1000research.8962.1
https://doi.org/10.1071/BT07151
https://doi.org/10.1126/science.1184984
https://doi.org/10.1038/nclimate1903
https://doi.org/10.1016/j.renene.2014.09.042
https://doi.org/10.1080/01431160310001619544
https://doi.org/10.1016/j.rse.2015.06.004
https://doi.org/10.1109/TGRS.2010.2046420
https://doi.org/10.1046/j.1365-3040.1999.00371.x
https://doi.org/10.1016/S0034-4257(00)00104-8
https://doi.org/10.22002/D1.921
https://doi.org/10.1029/2010GL045896
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1016/j.rse.2014.02.007
https://doi.org/10.1023/A:1020131332107
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.1016/j.rse.2012.02.006


A. J. Norton et al.: Information content of SIF in a terrestrial biosphere model 1535

Guanter, L., Rossini, M., Colombo, R., Meroni, M., Franken-
berg, C., Lee, J.-E., and Joiner, J.: Using field spec-
troscopy to assess the potential of statistical approaches for
the retrieval of sun-induced chlorophyll fluorescence from
ground and space, Remote Sens. Environ., 133, 52–61,
https://doi.org/10.1016/j.rse.2013.01.017, 2013.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry,
J. a., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee,
J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-
Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti,
A., Baker, J. M., and Griffis, T. J.: Global and time-
resolved monitoring of crop photosynthesis with chlorophyll
fluorescenc, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.

Houborg, R., Cescatti, A., Migliavacca, M., and Kustas, W.: Satel-
lite retrievals of leaf chlorophyll and photosynthetic capacity for
improved modeling of GPP, Agr. Forest Meteorol., 177, 10–23,
https://doi.org/10.1016/j.agrformet.2013.04.006, 2013.

Hungershoefer, K., Breon, F.-M., Peylin, P., Chevallier, F., Rayner,
P., Klonecki, A., Houweling, S., and Marshall, J.: Evalua-
tion of various observing systems for the global monitoring of
CO2 surface fluxes, Atmos. Chem. Phys., 10, 10503–10520,
https://doi.org/10.5194/acp-10-10503-2010, 2010.

Joiner, J., Yoshida, Y., Vasilkov, A. P., Schaefer, K., Jung, M.,
Guanter, L., Zhang, Y., Garrity, S., Middleton, E. M., Huemm-
rich, K. F., Gu, L., and Marchesini, L. B.: The seasonal
cycle of satellite chlorophyll fluorescence observations and
its relationship to vegetation phenology and ecosystem atmo-
sphere carbon exchange, Remote Sens. Environ., 152, 375–391,
https://doi.org/10.1016/j.rse.2014.06.022, 2014.

Kaminski, T., Scholze, M., and Houweling, S.: Quantifying the
benefit of A-SCOPE data for reducing uncertainties in ter-
restrial carbon fluxes in CCDAS, Tellus B, 62, 784–796,
https://doi.org/10.1111/j.1600-0889.2010.00483.x, 2010.

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Consistent assimilation of MERIS
FAPAR and atmospheric CO2 into a terrestrial vegetation model
and interactive mission benefit analysis, Biogeosciences, 9,
3173–3184, https://doi.org/10.5194/bg-9-3173-2012, 2012.

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner,
P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Gier-
ing, R., Gobron, N., Grant, J. P., Heimann, M., Houwel-
ing, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi,
E. N., Köstler, C., Mathieu, P., Pinty, B., Reick, C. H., Rö-
denbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T.,
Van, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.: The
BETHY/JSBACH Carbon Cycle Data Assimilation System : ex-
periences and challenges, J. Geophys. Res.-Biogeo., 118, 1–13,
https://doi.org/10.1002/jgrg.20118, 2013.

Kato, S., Loeb, N. G., Rutan, D. A., Rose, F. G., Sun-Mack, S.,
Miller, W. F., and Chen, Y.: Uncertainty Estimate of Surface Ir-
radiances Computed with MODIS-, CALIPSO-, and CloudSat-
Derived Cloud and Aerosol Properties, Surv. Geophys., 33, 395–
412, https://doi.org/10.1007/s10712-012-9179-x, 2012.

Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying pho-
tosynthetic capacity and its relationship to leaf nitrogen content
for global scale terrestrial biosphere models, Glob. Change Biol.,
15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x,
2009.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Carbon cycle data assimilation with
a generic phenology model, J. Geophys. Res., 115, G04017,
https://doi.org/10.1029/2009JG001119, 2010.

Koffi, E. N., Rayner, P. J., Scholze, M., Chevallier, F., and Kamin-
ski, T.: Quantifying the constraint of biospheric process pa-
rameters by CO2 concentration and flux measurement networks
through a carbon cycle data assimilation system, Atmos. Chem.
Phys., 13, 10555–10572, https://doi.org/10.5194/acp-13-10555-
2013, 2013.

Koffi, E. N., Rayner, P. J., Norton, A. J., Frankenberg, C., and
Scholze, M.: Investigating the usefulness of satellite-derived flu-
orescence data in inferring gross primary productivity within
the carbon cycle data assimilation system, Biogeosciences, 12,
4067–4084, https://doi.org/10.5194/bg-12-4067-2015, 2015.

Kuppel, S., Chevallier, F., and Peylin, P.: Quantifying the model
structural error in carbon cycle data assimilation systems,
Geosci. Model Dev., 6, 45–55, https://doi.org/10.5194/gmd-6-
45-2013, 2013.

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guan-
ter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R.,
Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and
water stress in Amazonia: observations from GOSAT chloro-
phyll fluorescence, P. Roy. Soc. B-Biol. Sci., 280, 20130171,
https://doi.org/10.1098/rspb.2013.0171, 2013.

MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schür-
mann, G.: Consistent assimilation of multiple data streams in a
carbon cycle data assimilation system, Geosci. Model Dev., 9,
3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, 2016

Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B.,
Davis, T. S., Kornfeld, A., and Siebke, K.: Connecting active to
passive fluorescence with photosynthesis: a method for evaluat-
ing remote sensing measurements of Chl fluorescence, New Phy-
tol., 215, 1594–1608, https://doi.org/10.1111/nph.14662, 2017.

Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R.,
Peters, W., and Tans, P. P.: Maximum likelihood estima-
tion of covariance parameters for Bayesian atmospheric trace
gas surface flux inversions, J. Geophys. Res., 110, D24107,
https://doi.org/10.1029/2005JD005970, 2005.

Parazoo, N. C., Bowman, K., Frankenberg, C., Lee, J.-E., Fisher,
J. B., Worden, J., Jones, D. B. a., Berry, J., Collatz, G. J., Baker,
I. T., Jung, M., Liu, J., Osterman, G., O’Dell, C., Sparks, A.,
Butz, A., Guerlet, S., Yoshida, Y., Chen, H., and Gerbig, C.: In-
terpreting seasonal changes in the carbon balance of southern
Amazonia using measurements of XCO2 and chlorophyll flu-
orescence from GOSAT, Geophys. Res. Lett., 40, 2829–2833,
https://doi.org/10.1002/grl.50452, 2013.

Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones,
D. B. A., Cescatti, A., Perez-Priego, O., Wohlfahrt, G., and Mon-
tagnani, L.: Terrestrial gross primary production inferred from
satellite fluorescence and vegetation models, Glob. Change Biol.,
20, 3103–3121, https://doi.org/10.1111/gcb.12652, 2014.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kup-
pel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P.,
and Prunet, P.: A new stepwise carbon cycle data assimilation
system using multiple data streams to constrain the simulated
land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346,
https://doi.org/10.5194/gmd-9-3321-2016, 2016.

www.geosci-model-dev.net/11/1517/2018/ Geosci. Model Dev., 11, 1517–1536, 2018

https://doi.org/10.1016/j.rse.2013.01.017
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1016/j.agrformet.2013.04.006
https://doi.org/10.5194/acp-10-10503-2010
https://doi.org/10.1016/j.rse.2014.06.022
https://doi.org/10.1111/j.1600-0889.2010.00483.x
https://doi.org/10.5194/bg-9-3173-2012
https://doi.org/10.1002/jgrg.20118
https://doi.org/10.1007/s10712-012-9179-x
https://doi.org/10.1111/j.1365-2486.2008.01744.x
https://doi.org/10.1029/2009JG001119
https://doi.org/10.5194/acp-13-10555-2013
https://doi.org/10.5194/acp-13-10555-2013
https://doi.org/10.5194/bg-12-4067-2015
https://doi.org/10.5194/gmd-6-45-2013
https://doi.org/10.5194/gmd-6-45-2013
https://doi.org/10.1098/rspb.2013.0171
https://doi.org/10.5194/gmd-9-3569-2016
https://doi.org/10.1111/nph.14662
https://doi.org/10.1029/2005JD005970
https://doi.org/10.1002/grl.50452
https://doi.org/10.1111/gcb.12652
https://doi.org/10.5194/gmd-9-3321-2016


1536 A. J. Norton et al.: Information content of SIF in a terrestrial biosphere model

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C.,
Flexas, J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry,
J. A.: Linking chlorophyll a fluorescence to photosynthesis for
remote sensing applications: mechanisms and challenges, J. Exp.
Bot., 65, 4065–95, https://doi.org/10.1093/jxb/eru191, 2014.

Rayner, P., Scholze, M., Knorr, W., and Kaminski, T.: Two decades
of terrestrial carbon fluxes from a carbon cycle data assimila-
tion system (CCDAS), Global Biogeochem. Cy., 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005.

Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart,
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