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Abstract. The efficient simulation of non-hydrostatic atmo-
spheric dynamics requires time integration methods capable
of overcoming the explicit stability constraints on time step
size arising from acoustic waves. In this work, we investi-
gate various implicit–explicit (IMEX) additive Runge–Kutta
(ARK) methods for evolving acoustic waves implicitly to en-
able larger time step sizes in a global non-hydrostatic atmo-
spheric model. The IMEX formulations considered include
horizontally explicit – vertically implicit (HEVI) approaches
as well as splittings that treat some horizontal dynamics im-
plicitly. In each case, the impact of solving nonlinear systems
in each implicit ARK stage in a linearly implicit fashion is
also explored.

The accuracy and efficiency of the IMEX splittings, ARK
methods, and solver options are evaluated on a gravity wave
and baroclinic wave test case. HEVI splittings that treat some
vertical dynamics explicitly do not show a benefit in solu-
tion quality or run time over the most implicit HEVI for-
mulation. While splittings that implicitly evolve some hor-
izontal dynamics increase the maximum stable step size of a
method, the gains are insufficient to overcome the additional
cost of solving a globally coupled system. Solving implicit
stage systems in a linearly implicit manner limits the solver
cost but this is offset by a reduction in step size to achieve the
desired accuracy for some methods. Overall, the third-order
ARS343 and ARK324 methods performed the best, followed
by the second-order ARS232 and ARK232 methods.

1 Introduction

Present-day global climate simulations typically use an at-
mospheric model configured with a horizontal resolution
greater than 10 km. At these scales, the equations governing
atmospheric motion can utilize the hydrostatic approxima-
tion, which assumes a balance between the gravitational and
vertical pressure gradient forces and neglects terms related to
vertical acceleration and transport of vertical momentum. As
a consequence of this simplification, vertically propagating
sound waves, which are of little significance in climate stud-
ies, are eliminated from the model. This practice is advan-
tageous for computational efficiency with fully explicit time
stepping methods, as vertical sound waves impose a stricter
stability limit on step size than horizontal sound waves due to
the high horizontal to vertical aspect ratio of the mesh. With
the most significant constraint on step size removed, explicit
approaches are an attractive option despite their step size lim-
itations from horizontal sound waves. Explicit approaches
are employed because of their ease of implementation, the
locality of computations, and minimal parallel communica-
tion. However, in the near future, increased computational
power will enable global climate simulations at scales be-
yond the hydrostatic limit where vertical acceleration cannot
be ignored. At these high resolutions, new model formula-
tions and numerical methods are needed in order to overcome
the computational limitations arising from the fastest waves
in the atmosphere.
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Accurately modeling atmospheric phenomena at horizon-
tal resolutions below 10 km necessitates moving to a non-
hydrostatic formulation of the governing equations. The step
size constraints from sound waves can be addressed either by
removing the fast waves in the model with a soundproof for-
mulation of the equations or using a numerical method that
can stably step over the fastest waves. The latter approach
includes split-explicit (e.g., Klemp et al., 2007), implicit–
explicit (IMEX) (e.g., Ullrich and Jablonowski, 2012), and
fully implicit (e.g., Yang and Cai, 2014; Yang et al., 2016)
time stepping methods. Fully implicit methods enable time
steps sizes dictated by the timescales of the processes of
interest rather than the stability of the fastest propagating
waves. However, achieving good scalability with these meth-
ods can be quite challenging as they require optimized non-
linear solvers and preconditioners to efficiently compute the
solution of globally coupled nonlinear systems. As such,
split-explicit and IMEX approaches present a potentially
simpler alternative as only a subset of the dynamics is treated
implicitly. These approaches allow for specialized solvers
that can exploit properties of the implicit system at the cost
of being stability limited by the fastest waves in the explicit
portion of the splitting.

Split-explicit methods typically divide the dynamics into
three groups: fast vertical waves that are treated implicitly,
fast horizontal waves that are substepped relative to the other
dynamics with an explicit method, and slow dynamics that
are updated with an explicit method using a long time step
(e.g., Klemp et al., 2007). Similarly, IMEX methods parti-
tion the dynamics into two parts: non-stiff terms that are ex-
plicitly updated and stiff terms that are implicitly solved. In a
horizontally explicit – vertically implicit (HEVI) IMEX ap-
proach, all horizontal motion is treated explicitly and vertical
dynamics are updated implicitly. By solving only the vertical
dynamics implicitly, both split-explicit and HEVI methods
take advantage of the two-dimensional horizontal domain de-
composition of atmospheric models to avoid communication
between parallel processes. Since each process owns a sub-
set of the vertical columns in the global domain, no message
passing is necessary during the vertically implicit solves.
Split-explicit approaches are able to gain some additional ef-
ficiency by substepping the fast horizontal terms while step
sizes with HEVI methods are limited by the fastest horizontal
dynamics. This restriction can be overcome by incorporating
some horizontal terms into the implicit partition at the cost
of solving a larger, globally coupled system requiring inter-
processor communication during the implicit solve. If the in-
crease in stable step size is sufficiently large, these methods
may be able to overcome the additional expense from parallel
communication with an efficient nonlinear solver.

With the push toward exascale computing, there has been
increasing interest in evaluating the potential of IMEX meth-
ods for efficiently simulating atmospheric dynamics at high
resolution. Ullrich and Jablonowski (2012) presented re-
sults using a Runge–Kutta–Rosenbrock and Strang carry-

over IMEX approach for integrating a non-hydrostatic model
in Cartesian geometry. A new second-order Runge–Kutta
IMEX method is presented in Giraldo et al. (2013) and
compared with Runge–Kutta and multistep IMEX integra-
tion schemes from the literature in the non-hydrostatic uni-
fied model of the atmosphere (NUMA). Using NUMA, the
accuracy and efficiency of the integration methods were
evaluated with a one-dimensional linear HEVI splitting and
three-dimensional linear IMEX splitting by simulating a
two-dimensional rising thermal bubble and inertia–gravity
waves in three-dimensional Cartesian and spherical domains.
Weller et al. (2013) examined the stability properties of 12
Runge–Kutta IMEX methods and compared the accuracy of
the methods with two HEVI splittings against a semi-implicit
approach using the two-dimensional compressible Boussi-
nesq equations. The work of Lock et al. (2014) performs a
detailed analysis of the same IMEX methods from Weller
et al. (2013) on linear scalar and two-dimensional wave equa-
tions.

In this work, we investigate the performance of 21 Runge–
Kutta IMEX methods from the literature, including many
of those tested in Ullrich and Jablonowski (2012), Giraldo
et al. (2013), Weller et al. (2013), and Lock et al. (2014),
on a non-hydrostatic atmospheric dynamical core using dif-
ferent implicit–explicit splittings of the governing equations
and approaches for solving the nonlinear systems. Methods
tested in Weller et al. (2013) and Lock et al. (2014) are evalu-
ated with a three-dimensional fully compressible set of gov-
erning equations that differs from those considered in Gi-
raldo et al. (2013) in terms of formulation, discretization,
and approach to implicit–explicit splitting. The Runge–Kutta
methods tested in Giraldo et al. (2013) are also included in
this study along with additional methods from the literature
not considered in the previously cited works. The linearly im-
plicit Runge–Kutta–Rosenbrock approach utilized in Ullrich
and Jablonowski (2012) is also compared against a Newton
iteration for solving the nonlinear systems that arise in each
implicit Runge–Kutta stage.

The choices of IMEX partitioning, integration method,
and implicit solver are evaluated in terms of accuracy and
efficiency using the Tempest non-hydrostatic dynamical core
(Ullrich, 2014) to determine the optimal combination. Tem-
pest is a flexible global modeling framework for evaluating
numerical methods for next-generation, high-resolution cli-
mate simulations on high-performance computing systems.
To ease the exploration of a wide variety of splitting choices
and integration schemes, we have interfaced Tempest with
the ARKode package of additive Runge–Kutta (ARK) meth-
ods (Reynolds et al., 2018) from the SUNDIALS library
(Hindmarsh et al., 2005; SUNDIALS, 2017) of algebraic and
differential equations solvers. ARKode is an adaptive-step
time integration package for solving initial value problems
with fully explicit, fully implicit, or IMEX Runge–Kutta
methods. The software framework was designed to be eas-
ily incorporated into existing applications and allows signifi-
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cant freedom over the choice of methods and implicit solvers.
The versions of Tempest with ARKode interfaces used in this
work are archived at Gardner et al. (2017).

In the following section, we present the formulation
of non-hydrostatic equations implemented in Tempest, fol-
lowed by a discussion of the spatial and temporal discretiza-
tions and splitting approaches in Sect. 3. The nonlinear and
linear solver strategies used with the IMEX methods are cov-
ered in Sect. 4. Numerical experiments and the correspond-
ing results are given in Sect. 5. A summary of the numerical
results, concluding remarks, and directions for future work
are given in Sect. 6.

2 Non-hydrostatic equations

The non-hydrostatic dry-atmosphere/shallow-atmosphere
equations in the Tempest θ formulation are in terms of co-
variant horizontal velocities uα and uβ , covariant vertical ve-
locity uξ , potential temperature θ , and density ρ in an arbi-
trary coordinate system (α,β,ξ):

∂uα

∂t
=−

∂

∂α
(K +8)− θ

∂5

∂α
(1)

+ Juβ(f r−1
ξ + ζ

ξ )− Juξ ζ β ,

∂uβ

∂t
=−

∂

∂β
(K +8)− θ

∂5

∂β
(2)

− Juα(f r−1
ξ + ζ

ξ )+ Juξ ζα,

∂uξ

∂t
=−

∂

∂ξ
(K +8)− θ

∂5

∂ξ
+ J

(
uαζ β − uβζα

)
, (3)

∂θ

∂t
=− uα

∂θ

∂α
− uβ

∂θ

∂β
− uξ

∂θ

∂ξ
, (4)

∂ρ

∂t
=−

1
J

∂

∂α

(
Jρuα

)
−

1
J

∂

∂β

(
Jρuβ

)
(5)

−
1
J

∂

∂ξ

(
Jρuξ

)
.

We refer to the system defined by Eqs. (1)–(5) as the θ for-
mulation of the non-hydrostatic equations since the thermo-
dynamic equation (Eq. 4) is expressed in terms of the poten-
tial temperature. The conversion between contravariant and
covariant velocity components is given as

ui = giαu
α
+ giβu

β
+ giξu

ξ (6)

ui = giαuα + g
iβuβ + g

iξuξ , (7)

where gij and gij are the covariant and contravariant metric
tensors specified in terrain-following Cartesian or spherical
coordinates and J is the metric Jacobian defined as

J =
√

detgij . (8)

8 is the product of the gravity constant and elevation r ,
rξ = (∂r/∂ξ) is the vertical coordinate transform, and f =

2�sinϕ is the Coriolis parameter. K is the specific kinetic
energy, defined as

K =
1
2

(
uαu

α
+ uβu

β
+ uξu

ξ
)
.

and 5 is the Exner pressure function defined as

5= cp

(
p0

p

)Rd/cp

= cp

(
Rdρθ

p0

)Rd/cv

,

where Rd, cp, and p0 are the gas constant for dry air, specific
heat at constant pressure, and the reference pressure (here
chosen to be 105 Pa), respectively. The relative vorticity vec-
tor is

ζ =
1
J

[(
∂uξ

∂β
−
∂uβ

∂ξ

)
gα +

(
∂uα

∂ξ
−
∂uξ

∂α

)
gβ (9)

+

(
∂uβ

∂α
−
∂uα

∂β

)
gξ

]
.

3 Discretization

The non-hydrostatic equations are discretized using a method
of lines approach. First, the terms on the right-hand sides of
Eqs. (1)–(5) are discretized in space, and then the resulting
system of coupled ordinary differential equations is advanced
in time with a numerical integration scheme. This two-step
process is detailed in the following sections.

3.1 Spatial discretization

The spatial discretization of Eqs. (1)–(5) follows Guerra and
Ullrich (2016), where a fourth-order spectral element method
is used for horizontal derivatives in α and β, and the stag-
gered finite element method is used in ξ . Unless otherwise
stated, test cases in this work will be configured with Lorenz
vertical staggering (vertical velocity computed and stored at
interfaces including model boundaries) and regular grid dis-
tribution in each column.

In Tempest, hyperviscosity is employed in the horizontal
directions by default. The operators are fourth-order deriva-
tives with nominal coefficients of 1.0× 1015 m2 s−1 follow-
ing Guerra and Ullrich (2016) and Ullrich (2014). In partic-
ular, the use of hyperviscosity corrects dispersive errors and
ringing associated with computational modes due to accu-
mulation of energy near the grid truncation scale. The use
of hyperviscosity is necessary since the spectral element dis-
cretization implicitly conserves energy (Taylor and Fournier,
2010) and hence provides no mechanism for implicit diffu-
sion of energy at short wavelengths. It is important to note
that hyperviscosity is applied at the end of each time step as
a separate forward Euler update. As such, it is not part of
the additive Runge–Kutta method used to integrate the equa-
tions. Additionally, vertical upwinding is applied to the hori-
zontal velocities, potential temperature, and density.
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3.2 Temporal discretization

There are numerous approaches for integrating the system
of ordinary differentia equations (ODEs) resulting from the
spatial discretization of Eqs. (1)–(5), including multistep or
multistage methods that treat the system in a fully explicit,
fully implicit, or split implicit–explicit manner. This work
focuses on the application of multistage IMEX integrators
defined by ARK methods that split the right-hand side into
two parts: an explicit (non-stiff) and an implicit (stiff) part.
Section 3.2.1 presents the general formulation of ARK meth-
ods. The various options explored for partitioning terms in
the non-hydrostatic equations into implicit and explicit parts
are presented in Sect. 3.2.2 and 3.2.3.

3.2.1 Additive Runge–Kutta methods

The spatially discretized non-hydrostatic equations can be
written as a general initial value problem with the right-hand
side additively split into two parts:

dy
dt
= f E(t,y)+f I(t,y), y(t0)= y0. (10)

The model state vector is y = (uα,uβ ,w,θ,ρ)T in the θ for-
mulation. Under this notation, f E and f I correspond to the
spatial terms that will be integrated explicitly and implicitly,
respectively, and y0 is the initial state at time t0. The sys-
tem (Eq. 10) is evolved from time tn−1 to time tn using ARK
methods of the form

zi =yn−1+hn

i−1∑
j=1

aE
i,jf

E(tEn,j ,zj ) (11)

+hn

i∑
j=1

aI
i,jf

I(t In,j ,zj ), i = 1, . . ., s,

yn =yn−1+hn

s∑
i=1

(
bE
i f

E(tEn,i,zi)+ b
I
if

I(t In,i,zi)
)
, (12)

where yn is an approximation of y(tn), zi is an intermedi-
ate stage solution in an ARK method with s stages, hn =
tn− tn−1 is the time step size, and tEn,i = tn−1+ c

E
i hn and

t In,i = tn−1+c
I
ihn are intermediate stage times. Several of the

methods we examine include an embedded solution,

ỹn = yn−1+hn

s∑
i=1

(̃
bE
i f

E(tEn,i,zi)+ b̃
I
if

I(t In,i,zi)
)
, (13)

for estimating the local truncation error to adapt the time step
size. The numerical studies that follow use a fixed time step
size and thus do not utilize a local error estimate. However,
methods with embeddings are of particular interest, as we
will explore leveraging variable time step sizes in subsequent
work.

A particular ARK method is defined by a combination of
an explicit and a diagonally implicit pair of Butcher tableaux:

cE AE

bE

b̃
E
=

0 0 0 0 · · · 0
cE

2 aE
2,1 0 0 · · · 0

cE
3 aE

3,1 aE
3,2 0 · · · 0

...
...

. . . 0
cE
s aE

s,1 aE
s,2 · · · aE

s,s−1 0
bE

1 bE
2 · · · bE

s−1 bE
s

b̃E
1 b̃E

2 · · · b̃E
s−1 b̃E

s

, (14)

cI AI

bI

b̃
I
=

cI
1 aI

1,1 0 0 · · · 0
cI

2 aI
2,1 aI

2,2 0 · · · 0
cI

3 aI
3,1 aI

3,2 aI
3,3 · · · 0

...
...

. . . 0
cI
s aI

s,1 aI
s,2 · · · aI

s,s−1 aI
s,s

bI
1 bI

2 · · · bI
s−1 bI

s

b̃I
1 b̃I

2 · · · b̃I
s−1 b̃I

s

.

When aI
i,i 6= 0, computing the stage value zi requires solv-

ing a (non)linear system of equations. This system and ap-
proaches for computing the stage solutions are discussed in
Sect. 4.

While Eqs. (11)–(13) define an ARK method in terms of
a linear combination of right-hand side evaluations at inter-
nal stage values, we note that it is customary in the climate
modeling community to cast ARK schemes as linear com-
binations of states produced from explicit and implicit Eu-
ler steps. There, the objective is to store state vectors only
and make single explicit/implicit function evaluations at a
given stage. Since the stage coefficient matrices in Eq. (14)
are lower triangular (strictly so for the explicit coefficients),
then any preceding function evaluations may be written in
terms of preceding state vectors and substituted into a cur-
rent stage. While the two approaches are entirely equivalent,
we present all ARK methods and their corresponding tables
in standard form in Eqs. (11)–(14), both to connect with the
literature defining each method, and since we use this form
in computing our results.

We investigate a number of ARK methods from the litera-
ture with a variety of numerical properties:

– classical second- (ARS232, ARS222, and ARS233) and
third-order (ARS343 and ARS443) methods from As-
cher et al. (1997);

– the third- (ARK324), fourth- (ARK436), and fifth-
order (ARK548) methods from Kennedy and Carpenter
(2003);

– the second-order ARK232 method derived for the
NUMA model and presented in Giraldo et al. (2013);

– second- (SSP2(222), SSP2(332)a, and SSP3(332)) and
third-order (SSP3(433)) strong stability preserving
methods from Pareschi and Russo (2005);
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– second-order strong stability preserving method
SSP2(332)b from Higueras (2006); the opti-
mized second-order methods SSP2(332)lpm1,
SSP2(332)lpm2, SSP2(332)lpum, and SSP2(332)lspum
from Higueras et al. (2014); and the third-order method
SSP3(333)a from Higueras (2009); and

– third-order strong stability preserving methods
SSP3(333)b and SSP3(333)c from Conde et al. (2017).

The ARK232, ARS232, ARS233, ARS443, SSP2(222),
SSP2(332)a, SSP3(332), and SSP3(433) methods were pre-
viously examined by Weller et al. (2013) with different split-
tings on two vertical slice cases of the compressible Boussi-
nesq equations. In these tests, the ARK232 method pre-
sented in Giraldo et al. (2013) had the best overall perfor-
mance. Giraldo et al. (2013) also compared ARK232 with
ARK324 and ARK436 with different splittings on a 2-D ris-
ing thermal bubble test in Cartesian coordinates and 3-D
inertia–gravity wave tests in Cartesian coordinates and on
the sphere. The ARK324 and ARK436 methods were most
efficient when high accuracy was required and ARK232 had
greater efficiency when less accuracy was required. In addi-
tion to the methods tested in Weller et al. (2013) and Giraldo
et al. (2013), we include the ARS222, ARS343, ARK548,
and strong stability preserving (SSP) methods from Higueras
(2006), Higueras (2009), Higueras et al. (2014), and Conde
et al. (2017).

With the exception of ARS233 and SSP3(333)a, b, and c,
all of the above methods are constructed with an L stable
implicit method. Thus, the implicit portion of the method is
accurate in the limit of the stiff term becoming infinitely fast,
meaning that slow dynamics are resolved while fast modes,
e.g., acoustic waves, are damped. Two methods, ARS233 and
SSP2(222), are B stable which is a nonlinear stability indi-
cating that the difference between two numerical solutions
does not increase with time. Several methods are SSP and are
designed to maintain the total variation diminishing (TVD)
property of a spatial discretization. The optimized SSP meth-
ods from Higueras et al. (2014) consider additional proper-
ties beyond optimizing the region of absolute monotonicity
in SSP schemes. A total of 10 of the methods considered
are stiffly accurate; that is, aI

s,i = b
I
i , and two of those meth-

ods, ARS222 and ARS443, also have aE
s,i = b

E
i . Ascher et al.

(1997) notes that having the both aI
s,i = b

I
i and aE

s,i = b
E
i so

that zs = yn is useful for very stiff problems. However, it is
unclear why this property is beneficial and the two methods
with this property do not outperform other methods in the
two test cases considered. All methods, except ARS222 and
ARS443, have the same bi values for the explicit and im-
plicit methods so that the f E and f I functions are weighted
equally at the same stage solution. As noted in Kennedy and
Carpenter (2003) and Giraldo et al. (2013), ARK methods
with bE

= bI have the desirable property of preserving lin-
ear invariants of the problem to machine precision. Many of

the methods considered also have the same explicit and im-
plicit stage times. All of the non-SSP methods and the SSP
methods of Conde et al. (2017) have cE

= cI, but the other
SSP methods tested have different explicit and implicit stage
times. Finally, the methods of Kennedy and Carpenter (2003)
and Giraldo et al. (2013) have implicit methods with second-
order stage accuracy to limit order reduction when applied to
stiff systems. Appendix A contains a summary of different
properties of the ARK methods considered in this work.

3.2.2 Horizontally explicit – vertically implicit
splittings

In this section, we present four HEVI formulations of the
non-hydrostatic equations (Eqs. 1–5) in which the horizontal
terms are evaluated explicitly and some of the vertical terms
are solved implicitly. The partitioning of terms into the ex-
plicit or implicit right-hand sides is given by

∂uα

∂t
=−

∂

∂α
(K +8)− θ

∂5

∂α
(15)

+ Juβ(f r−1
ξ + ζ

ξ )− Juξ ζ β ,

∂uβ

∂t
=−

∂

∂β
(K +8)− θ

∂5

∂β
(16)

− Juα(f r−1
ξ + ζ

ξ )+ Juξ ζα,

∂uξ

∂t
=−

∂K

∂ξ
+ uα

∂uα

∂ξ
+ uβ

∂uβ

∂ξ︸ ︷︷ ︸
imp (A, C) / exp (B, D)

−
∂8

∂ξ
− θ

∂5

∂ξ︸ ︷︷ ︸
imp (A, B, C, D)

(17)

− uα
∂uξ

∂α
− uβ

∂uξ

∂β
,

∂θ

∂t
=− uα

∂θ

∂α
− uβ

∂θ

∂β
−uξ

∂θ

∂ξ︸ ︷︷ ︸
imp (A, B) / exp (C, D)

, (18)

∂ρ

∂t
=−

1
J

∂

∂α

(
Jρuα

)
−

1
J

∂

∂β

(
Jρuβ

)
(19)

−
1
J

∂

∂ξ

(
Jρuξ

)
︸ ︷︷ ︸

imp (A, B, C, D)

.

The choice of an explicit or implicit treatment of these
terms is guided by two core requirements. First, we require
that the terms responsible for vertically propagating sound
waves (namely, the buoyancy term, − ∂8

∂ξ
− θ ∂5

∂ξ
, in the ver-

tical velocity equation, Eq. 17, and the vertical flux term,
−

1
J
∂
∂ξ

(
Jρuξ

)
, in the density equation, Eq. 19) be handled

implicitly. Treating these terms explicitly would leave us
bound to the Courant–Friedrichs–Lewy (CFL) condition for
vertically propagating sound waves (around 2 s for the sim-
ulations in this paper) and thus would not lead to a compu-
tationally competitive scheme. Second, all terms associated
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with vertical momentum transport (the first three terms in
Eq. 17) must be handled together. In practice, these terms
cancel each other nearly exactly and so splitting them can
dramatically impact model stability. These terms can be han-
dled either implicitly or explicitly, as they are associated with
the vertical advective speed, and hence an explicit treatment
does not impact model stability. Whereas an explicit treat-
ment of these terms is generally simpler, in combination with
the last term in Eq. (19) they are together responsible for
vertical kinetic energy transport. Consequently, it could be
argued that these terms should be handled using the same
discretization as the vertical mass transport term in order to
ensure energy conservation by the vertically implicit update.
In this study, the impact of an explicit and implicit treatment
of the vertical transport of θ is also explored (the last term
in Eq. 18). Although sound waves are not expressed in the θ
field, there is a substantial difference in model stability that
emerges from whether this term is treated implicitly or ex-
plicitly.

Based on the principles above, terms in Eqs. (15)–(19)
without underbraces are always evaluated explicitly and
those with underbraces are treated either implicitly or explic-
itly depending on the particular HEVI formulation. In order
from most implicit to least implicit, we consider

1. HEVI-A, where all vertical dynamics except vertical ad-
vection of horizontal velocity in Eqs. (15) and (16) are
treated implicitly;

2. HEVI-B, where vertical velocity advection in Eq. (17)
is treated explicitly;

3. HEVI-C, where thermodynamic advection in Eq. (18) is
treated explicitly; and

4. HEVI-D, where vertical velocity advection in Eq. (17)
and thermodynamic advection in Eq. (18) are treated ex-
plicitly.

3.2.3 IMEX splittings with horizontally implicit terms

In addition to the HEVI options, we also consider IMEX
splittings that solve various parts of horizontal dynamics im-
plicitly. These formulations contain the same vertically im-
plicit terms as HEVI-A but add some of the horizontal terms
into the implicit function:

∂uα

∂t
=−

∂

∂α
(K +8) −θ

∂5

∂α︸ ︷︷ ︸
imp(B) / exp(A)

(20)

+ Juβ(f r−1
ξ + ζ

ξ )− Juξ ζ β ,

∂uβ

∂t
=−

∂

∂β
(K +8) −θ

∂5

∂β︸ ︷︷ ︸
imp(B) / exp(A)

(21)

− Juα(f r−1
ξ + ζ

ξ )+ Juξ ζα,

∂uξ

∂t
=−

∂

∂ξ
(K +8)− θ

∂5

∂ξ
+ uα

∂uα

∂ξ
+ uβ

∂uβ

∂ξ︸ ︷︷ ︸
imp(A, B)

(22)

− uα
∂uξ

∂α
− uβ

∂uξ

∂β
,

∂θ

∂t
=−uα

∂θ

∂α
− uβ

∂θ

∂β︸ ︷︷ ︸
imp(B) / exp(A)

−uξ
∂θ

∂ξ︸ ︷︷ ︸
imp

, (23)

∂ρ

∂t
=−

1
J

∂

∂α

(
Jρuα

)
−

1
J

∂

∂β

(
Jρuβ

)
−

1
J

∂

∂ξ

(
Jρuξ

)
︸ ︷︷ ︸

imp(A, B)

.

(24)

As before, terms without underbraces in Eqs. (20)–(24) are
treated explicitly. We examine two configurations with hori-
zontally implicit terms:

1. IMEX-A, where the density equation (Eq. 24) is fully
implicit, and

2. IMEX-B, where the density (Eq. 24), thermodynamics
(Eq. 23), and Exner pressure in Eqs. (20) and (21) are
solved implicitly.

The IMEX-A option treats the density equation with a sin-
gle consistent scheme, while IMEX-B is motivated by semi-
implicit splittings (e.g., Weller et al., 2013) and treats the
pressure gradient fully implicitly. By incorporating some of
the fast horizontal dynamics into the implicit portion of the
splitting, these IMEX formulations may enable larger stable
step sizes than are possible with the HEVI options. However,
treating horizontal dynamics implicitly also introduces cou-
pling between vertical columns in the implicit solves, and
this increased coupling in turn increases the linear solution
expense. In the numerical experiments below, we will test if
the increased steps sizes are enough to offset the additional
solver cost.

4 Solvers

An s-stage ARK method defined by Eqs. (11)–(13) requires
the solution of at most s nonlinear systems of the form

G(zi)≡ zi −hna
I
i,if

I(t In,i,zi)− d i = 0, i = 1, . . ., s, (25)

to compute the stage solutions, zi , where

d i ≡ yn−1+hn

i−1∑
j=1

[
aE
i,jf

E(tEn,j ,zj )+ a
I
i,jf

I(t In,j ,zj )
]

(26)

are known data from previous stage values. The structure
of Eq. (25) is highly dependent on the underlying splitting,
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which determines the size of the system and the spatial cou-
pling between the algebraic equations in this system. There-
fore, efficient solution strategies that take full advantage of
the structure of the nonlinear system resulting from the split-
ting are highly desirable. This topic is addressed in the fol-
lowing subsections where we present the solver approaches
considered in this work.

4.1 Nonlinear solvers

Newton’s method finds the solution of Eq. (25) using an iter-
ative approach:

z
(m+1)
i = z

(m)
i + δ

(m+1), (27)

where m≥ 0 is the iteration index and the update δ(m+1) is
the solution of the linear system

A
(
z
(m)
i

)
δ(m+1)

=−G
(
z
(m)
i

)
, (28)

obtained from a linearization of Eq. (25),

A
(
z
(m)
i

)
≡ I−hnaI

i,iJ
(
z
(m)
i

)
, (29)

in which J is the Jacobian matrix of f I evaluated at the cur-
rent iteration. Following the ODE literature, we consider the
iteration converged when

Ri‖δ
(m+1)
‖< ε, (30)

whereRi is an estimate of the linear convergence rate, ‖·‖ is a
weighted root mean square (WRMS) norm, and ε is the non-
linear tolerance (Hindmarsh et al., 2005). The convergence
rate estimate Ri is initialized to 1 and for m> 0 is updated
as

Ri =max

(
0.3Ri,

‖δ(m+1)
‖

‖δ(m)‖

)
. (31)

For a vector v with length N , the WRMS is norm defined as

‖v‖ =

(
1
N

N∑
i=1
(wivi)

2

)1/2

, with wi =
1

εr|vi | + εa
, (32)

where εa and εr are the absolute and relative tolerances for
the time-evolved solution, respectively. With this choice of
weighting, a WRMS norm of 1 is considered small for any
error-like quantities since 1/wi represents a tolerance on the
components of the solution vector. To keep error in the non-
linear solve from interfering with the time integration error,
we use the ARKode default nonlinear tolerance ε = 10−1 in
Eq. (30).

Newton’s method can be quite expensive, especially when
many iterations are needed to achieve convergence, since
each iteration involves computing or approximating the Ja-
cobian matrix and performing a linear solve. As an alterna-
tive, we also consider treating Eq. (25) as a linearly implicit

system. This Rosenbrock-like approach, used in Ullrich and
Jablonowski (2012) and Guerra and Ullrich (2016), consists
of performing a single iteration of Newton’s method, thus
limiting the cost of the nonlinear solver. However, this ap-
proach may produce a lower quality solution when one New-
ton iteration does not sufficiently solve the original nonlinear
problem.

In both solver approaches, the solution value yn−1 is uti-
lized as the initial iterate, z0

i (i.e., the trivial predictor) in the
nonlinear solves. While alternative predictor methods are not
explored in this work, their impact on the speed and robust-
ness of the nonlinear solve is a topic of future investigation.

4.2 Linear solvers

Finding the solution of the nonlinear system (Eq. 25) using
one or several Newton iterations requires solving the linear
system (Eq. 28) for the iteration update. Since the HEVI
splittings treat all the horizontal terms explicitly, Eq. (28)
does not contain any coupling between the degrees of free-
dom in different vertical columns of the atmosphere. That
is, the coupling introduced by the implicit terms only acts
in the vertical direction, and the linear solve is therefore de-
composable into a series of independent column-wise solves.
The linear solves in each column are performed with the di-
rect banded solver dgbsv from the Linear Algebra PACK-
age (LAPACK) (Anderson et al., 1999) without any need
for interprocessor communication since the domain is par-
titioned by vertical columns across parallel processes. More-
over, when combined with the Rosenbrock-like approach, no
communication is necessary in the nonlinear solve, and nei-
ther a nonlinear nor a linear tolerance needs to be set.

The inclusion of horizontal dynamics in the implicit func-
tion introduces coupling between degrees of freedom located
in different columns, and a linear solve over the full domain
is necessary to compute the Newton update. In this case, we
employ a Newton–Krylov approach for the nonlinear solve
where an approximate solution of Eq. (28) is found using
the generalized minimal residual (GMRES) method (Saad
and Schultz, 1986). Krylov methods require only the action
of a matrix on a vector, and this operation is approximated
through a finite difference computation:

A
(
z
(m)
i

)
v ≈

G
(
z
(m)
i + σv

)
−G

(
z
(m)
i

)
σ

, (33)

where the increment σ = 1/‖v‖ to ensure ‖σv‖ = 1. Hence,
constructing the full Jacobian matrix is unnecessary. We ad-
ditionally precondition the GMRES solver on the right, using
the HEVI-based column-wise direct solves described above.
Since the HEVI methods treat only vertical dynamics im-
plicitly, the horizontal dynamics in the IMEX splittings re-
main unpreconditioned. As GMRES is iterative, we consider
the linear solution to be converged when the preconditioned
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residual vector r satisfies

‖r‖ ≤ 0.1εLε, (34)

where ‖·‖ is the WRMS norm. Like with the nonlinear solver
error, the error in the linear solve must also be controlled to
not interfere with the integration error; we therefore utilize
the ARKode default value of εL = 0.05.

5 Numerical results

We evaluate the accuracy and computational efficiency of
the various implicit–explicit splittings, ARK methods, and
solver options on two test cases. Section 5.1 presents re-
sults for the propagation of gravity waves on a sphere on a
reduced-radius planet, and Sect. 5.2 focuses on the devel-
opment of a baroclinic wave. Simulations are performed on
the Cab Linux computing cluster at Lawrence Livermore Na-
tional Laboratory. Each Cab node consists of two Intel Xeon
eight-core Sandy Bridge processors with 32 GB of memory
per node. All tests are run on six compute nodes using 96
MPI tasks. The absolute and relative tolerances in the numer-
ical experiments are εa = εr = 10−4. These tolerances were
chosen to produce results with ARKode that matched the so-
lutions obtained with the native Tempest implementation of
ARS232. The maximum number of Newton iterations is set
to 10, and the maximum number of GMRES iterations is set
to 50, although these maximum values were only attained in
one combination of splitting and solver as noted below.

5.1 Gravity wave

The gravity wave test as defined in Ullrich et al. (2012) be-
gins with an initially balanced atmosphere on a reduced-
radius Earth (1/125 in size). A small potential temperature
perturbation is added to the initial state causing the devel-
opment of gravity waves. The domain is discretized using
2400 elements and 10 vertical levels. The test is simulated
for 1 h with time steps of 0.01, 0.1, 0.5, 1, 2, 4, and 8 s
with each of the different splittings, methods, and solvers de-
scribed above. To compare the accuracy and efficiency of the
different options, the root mean square error (RMSE) of the
state vector with respect to a reference solution is computed
at the final time. The reference solution is computed using a
step size of 0.001 s with a fully explicit third-order five-stage
Runge–Kutta method (KGU35) derived by Ullrich and im-
plemented in Tempest (Guerra and Ullrich, 2016). This par-
ticular explicit method was created using the stability opti-
mization presented in Kinnmark and Gray (1984) to maxi-
mize the stability region along the imaginary axis.

Accuracy and efficiency plots are shown in Figs. 1–6 for
the gravity wave test. With the exception of the IMEX-B
splitting, as noted below, the choice between a Rosenbrock-
like approach or a full Newton iteration to solve the stage
systems does not impact the maximum stable time step size

of a given splitting or method, and both solver approaches
produce nearly identical errors for this test case. Thus, using
only a single Newton iteration provides a sufficiently accu-
rate solution to the nonlinear stage systems in each time step.
The Newton solver also consistently increases computational
cost by approximately 20 to 50 % over the Rosenbrock-like
results with HEVI splittings and adds an additional cost of at
least 10 % with the IMEX options. Since there is not a signif-
icant benefit from a Newton solver in this test case, Figs. 1–6
focus only on results with a Rosenbrock-like approach. The
choice of nonlinear solver is more important in the baroclinic
wave test case and will be discussed further in the following
section. Additionally, treating the vertical velocity or ther-
modynamic advection explicitly has a negligible impact on
the solution error and integrator efficiency, so results with
HEVI-B, C, and D are indistinguishable from those of HEVI-
A. As such, Figs. 1–6 present only HEVI-A, IMEX-A, and
IMEX-B results, and any conclusions on the behavior or per-
formance of HEVI-A also apply to HEVI-B, C, and D.

The second-order ARK methods can be divided into two
groups based on accuracy regardless of the splitting choice.
The more accurate group of methods consists of the lpm1,
lpm2, lpum, and lspum optimized variants of SSP2(332)
from Higueras et al. (2014), and the remaining second-order
schemes comprise the second group with slightly less accu-
racy.

The approximate largest stable step size is consistent
across the HEVI splittings. The ARK232, ARS232, and
SSP3(332) methods are stable with hn = 2 s, the SSP2(332)
methods are stable with hn = 1s , and the remaining two
methods are stable with hn = 0.5 s. With the IMEX-A op-
tion, all of the methods are able to achieve a step size of
2 s, and including more implicit terms in IMEX-B increases
the maximum step size to 8 s for all of the methods with the
Rosenbrock-like approach. The IMEX-B splitting is the only
case where integrator behavior differs when using the New-
ton solver rather than the Rosenbrock-like approach. In this
instance, the maximum stable time step is smaller, approxi-
mately one-fourth the step size or smaller depending on the
method, with the Newton iteration as it is unable to converge
to the given tolerance with larger step sizes. Such behav-
ior may be due to using the trivial predictor, and more so-
phisticated approaches could improve convergence with the
Newton solver. Given the high cost of the IMEX-B splitting
with Rosenbrock-like approach compared to the HEVI meth-
ods, the evaluation of alternative predictors with the Newton
solver is left to future work.

The relative efficiency of the different ARK methods is
also consistent across the splitting options. Despite requiring
three implicit solves per time step, the optimized SSP2(332)
methods from Higueras et al. (2014) are the most computa-
tionally efficient second-order approaches when higher so-
lution accuracy is desired. Because of the larger maximum
stable step size, ARK232, ARS232, and SSP3(332) provide
slightly faster solution times with the HEVI splittings but
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Figure 1. Accuracy (a) and efficiency (b) for the second-order methods using the Rosenbrock-like approach with the HEVI-A splitting. The
dashed line represents second-order convergence. The ARK methods fall into two groups with similar accuracy. Results using multiple New-
ton iterations to compute the stage solutions give nearly identical error values to the Rosenbrock-like results but increase the computational
cost by 20–50 %.
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Figure 2. Accuracy (a) and efficiency (b) for the third-, fourth-, and fifth-order methods using the Rosenbrock-like approach with the HEVI-
A splitting. The dashed line represents third-order convergence. Results using multiple Newton iterations to compute the stage solutions give
nearly identical error values to the Rosenbrock-like results but increase the computational cost by 20–50 %.

with larger error values. Because of the increased stability
in the IMEX-A and IMEX-B tests, many of the second-order
methods become competitive with the Higueras et al. (2014)
SSP2(332) methods at hn = 2 s, but as with the HEVI split-
tings the optimized SSP2(332) methods are more efficient
when greater accuracy is required. Making more terms ex-
plicit in the non-hydrostatic equations does not cause a sig-

nificant difference in run times between the HEVI options.
The inclusion of horizontally implicit terms and the addi-
tional communication necessary in each implicit solve with
the IMEX-A and IMEX-B options increases the simulation
time by approximately 25–60 % over the HEVI results.

Across the splitting options, the majority of the third-
order ARK methods produce solutions with approximately
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Figure 3. Accuracy (a) and efficiency (b) for the second-order methods using the Rosenbrock-like approach with the IMEX-A splitting. The
ARK methods fall into two groups with similar accuracy. The dashed line represents second-order convergence. Results using multiple New-
ton iterations to compute the stage solutions give nearly identical error values to the Rosenbrock-like results but increase the computational
cost by at least 10 %.
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Figure 4. Accuracy (a) and efficiency (b) for the third-, fourth-, and fifth-order methods using the Rosenbrock-like approach with the IMEX-
A splitting. The dashed line represents second-order convergence. Results using multiple Newton iterations to compute the stage solutions
give nearly identical error values to the Rosenbrock-like results but increase the computational cost by at least 10 %.

the same level of accuracy, with the exception of SSP3(433),
which is generally more accurate, and ARS233, SSP3(333)b,
and SSP3(333)c, which are less accurate. The fourth-order
accurate ARK436 has smaller errors than all second- and
third-order methods, and the fifth-order ARK548 method
generally has the lowest error overall. The fifth-order
ARK548 does not achieve the expected convergence rate,

and with the IMEX-A splitting all of the methods drop to
second-order convergence. Since the IMEX-B and HEVI-A
methods show no such deterioration in accuracy, and they
match IMEX-A but have more/fewer implicit terms, respec-
tively, we believe that IMEX-A suffers from order reduction
in the coupling terms. Specifically, it is likely that IMEX-A
splits two large and opposite terms into explicit and implicit
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Figure 5. Accuracy (a) and efficiency (b) for the second-order methods using the Rosenbrock-like approach with the IMEX-B splitting. The
ARK methods fall into two groups with similar accuracy. The dashed line represents second-order convergence. Results using multiple New-
ton iterations to compute the stage solutions give nearly identical error values to the Rosenbrock-like results but increase the computational
cost by at least 10 %.
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Figure 6. Accuracy (a) and efficiency (b) for the third-, fourth-, and fifth-order methods using the Rosenbrock-like approach with the IMEX-
B splitting. The dashed line represents third-order convergence. Results using multiple Newton iterations to compute the stage solutions give
nearly identical error values to the Rosenbrock-like results but increase the computational cost by at least 10 %.

components, whereas IMEX-B and HEVI-A treat both terms
consistently. As a result, partial derivatives of f E and f I in
the IMEX-A splitting may have large magnitudes, resulting
in increased stiffness, causing the order reduction.

Like the second-order methods, the choice of HEVI
splitting does not effect the approximate maximum step
size of a given third-order method. ARS233, ARS443, and

SSP3(333)a, b, and c all have a maximum steps size of 1 s,
and ARS343, SSP3(433), ARK324, ARK436, and ARK548
allow steps of up to 2 s. SSP3(333)a is the only method
to show a doubling in the maximum step size, going from
1 to 2 s, due to the additional implicitness in IMEX-A. In
the IMEX-B tests, all of the methods, with the exception of
SSP3(333)a which does not gain stability, have an increase
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Table 1. Approximate largest stable step size (in seconds) for a 30-day run of the baroclinic wave test. Second-order methods are shown in
the top section of the table and higher-order methods in the bottom section. For entries separated by “/”, the left value is the step size for the
Rosenbrock-like approach and the right value is the step size for the Newton solver. When a single step size is given, the Rosenbrock-like
and Newton solvers were stable at the same step size. As in the gravity wave tests, the choice of a Rosenbrock-like or Newton solver does
not generally impact the maximum stable step size, except in the case of IMEX-B which fails to converge. While the methods are able to
complete a 30-day run at the step sizes listed below, the solutions produced are not sufficiently accurate in all cases and depend on the solver
choice. Table 2 shows the approximate largest step sizes that give acceptable solutions.

Method HEVI-A HEVI-B HEVI-C HEVI-D IMEX-A IMEX-B

ARK232 200 200 135 135 480 480
ARS222 160 160 100/–∗ 100/–∗ 360 360
ARS232 200 200 135 135 480 540
SSP2(222) 160 160 160 160 360 540
SSP2(332)lpm1 225 225 –∗ –∗ 400 540
SSP2(332)lpm2 225 225 –∗ –∗ 400 540
SSP2(332)lpum 225 225 –∗ –∗ 400 540
SSP2(332)lspum 300 300 108/100 108/100 450 540
SSP2(332)a 225 225 225 225 400 540
SSP2(332)b 225 225 225 225 400 540
SSP3(332) 320 320 320 320 540 540

ARK324 400 400 400 400 300 540
ARS233 –∗/320 –∗/320 –∗ –∗ –∗/180 –∗

ARS343 450 450 384 384 320 540
ARS443 300 300 300 300 320 540
SSP3(333)a –∗ –∗ –∗ –∗ –∗ –∗

SSP3(333)b –∗/320 –∗/320 –∗ –∗ –∗/180 –∗

SSP3(333)c –∗/320 –∗/320 –∗ –∗ –∗/180 –∗

SSP3(433) 200/216 200/216 135/150 135/150 480 540
ARK436 400 400 –∗ –∗ 450 540
ARK548 300 300 –∗ –∗ 432/450 432

∗ The method was not stable for 30 days with hn ≥ 100 s.

in maximum step size to 8 s. As with second-order methods,
the IMEX-B splitting is the only option where the choice of
a Rosenbrock-like approach alters the integrator results by
reducing the maximum step size due to lack of solver con-
vergence.

Among the third-order methods, SSP3(443) is the most ef-
ficient method, except at the smallest step sizes where con-
vergence begins to slow, and SSP3(333)a becomes faster
for the same accuracy. Likewise, the fourth- and fifth-order
methods are more cost effective until the convergence slows
at the smallest time step sizes. SSP3(333)a is the best ap-
proach for lower accuracy levels in IMEX-B and is the best
scheme in IMEX-A. For higher accuracy with IMEX-B, the
faster convergence of ARK436 and ARK548 makes these ap-
proaches more efficient until convergence begins to slow at
small step sizes. As with the second-order methods, HEVI-
B, C, and D do not present an advantage over HEVI-A in run
time, and the additional communication required by the hor-
izontal terms in the implicit portion of the IMEX methods is
not offset by sufficient gains in step size.

With both the second- and higher-order integration meth-
ods, HEVI-A with the Rosenbrock-like approach is the best

combination in this test case. For the most part, third-order
methods outperform the second-order methods in terms of
accuracy at a given step size. Since the third-order meth-
ods do not increase the maximum stable step size over
that achieved by the second-order methods, the second-order
schemes are more efficient at looser error requirements, and
higher-order methods are best when more accuracy is neces-
sary.

5.2 Baroclinic wave

The second test case simulates the development of a baro-
clinic wave over the course of approximately 10 days as de-
scribed in Ullrich et al. (2014). For this test case, we focus
on how the methods, splittings, and solvers perform near the
maximum stable time step size in a 30-day simulation. The
domain is discretized with 2400 elements and 30 vertical lev-
els. Starting from a step size of 100 s, hn is increased, using
steps that evenly divide 1 day, until the method is unable
to simulate 30 days without a solver failure. Table 1 lists
the approximate largest step sizes for each of the methods.
As with the results in the gravity wave test, the choice of a
Rosenbrock-like or Newton solver does not generally impact
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Figure 7. The maximum vertical velocity with ARS343 using the Rosenbrock-like approach (solid lines) and the Newton solver (dashed
line) for various time step sizes. The light red region defines the 99 % confidence interval from the explicit simulations with perturbed initial
conditions, and the light purple region is 10 % of the maximum deviation in the 99 % confidence interval.

the largest stable step size for a given splitting or method with
the exception of six methods (ARS222, SSP2(332)lspum,
ARS233, SSP3(333)b, SSP3(333)c, and SSP3(433)). How-
ever, the solver selected does affect the quality of the solu-
tion produced at large time step sizes, and in many cases a
smaller step size may be necessary to compute a sufficiently
accurate solution with the Rosenbrock-like approach.

Since this problem produces a strong instability, compar-
isons against a highly resolved reference solution, as was
used in the gravity wave test, do not yield a good metric for
quality of a numerical solution. To define an acceptable nu-
merical solution generated by the methods at any given time
step, the results of the implicit–explicit simulations (HEVI or
IMEX) are compared against the range of maximum vertical
velocities produced by five explicit simulations with initial
conditions perturbed by random noise. For a state variable x,
the perturbed initial value is x = x+max(κ|x|,κ), where κ is
a normally distributed random number with mean 0, standard
deviation ε×1011, and ε is machine epsilon. The factor 1011

was selected to produce a max absolute difference (compared
to the unperturbed explicit solution) in the vertical veloc-
ity after 1 day that is approximately an order of magnitude
smaller than the maximum absolute difference observed with
the ARS232 scheme using a step size of 200 s. The explicit
simulations utilize a Rayleigh sponge layer to damp prob-
lematic acoustic transients as, unlike with the ARK meth-
ods, there is not an implicit mechanism for dissipating these
modes. The sponge layer is 8 km thick with a maximum
strength of 0.5 and is applied after the Runge–Kutta (RK) up-
date, by way of a backward Euler step, to relax all prognostic
fields to the initial state continuously through the depth of the

layer. The explicit simulations are advanced in time with the
KGU35 method in Tempest using hn = 2 s which is approx-
imately the CFL step size for the simulation. The absolute
maximum vertical velocity over the domain is computed at
1-day intervals for each test and a 99 % confidence interval
for the mean maximum vertical velocity is computed for each
day using the t distribution (Devore, 2008) to provide an up-
per bound on what is considered an acceptable solution. Fig-
ure 7 shows the 99 % confidence interval for the maximum
vertical velocity (the light red region) and the maximum ver-
tical velocities for the HEVI-A splitting with ARS343 using
various time step sizes. In the first few days of simulation, the
velocities are slightly larger in the HEVI and IMEX formula-
tions due to the presence of transients that are damped out by
the presence of a Rayleigh sponge in our explicit simulations.
Nonetheless, these transients are small and the vertical veloc-
ity is very similar to our reference range. The purple region
is defined as 10 % of the maximum deviation and the differ-
ences due to transients early in time fall within this region.
To account for momentary large deviations from the confi-
dence interval, the maximum vertical velocity of a method
should fall in the reference range. The predictability of the
solution breaks down over the last 15 days, and thus small,
brief excursions outside of the reference range should not be
considered anomalous. In the example in Fig. 7, ARS343 is
stable with step sizes up to 450 s. However, the results with
the Rosenbrock-like approach (solid lines) produce excep-
tionally large vertical velocities that decrease with step size,
and an acceptable solution is produced once the step size is
below 300 s. The solution using multiple Newton iterations
(dashed line) is able to more accurately solve the nonlin-
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ear stage systems and yields an acceptable solution with a
step size of 450 s. The maximum acceptable time step sizes
for the different splittings and integration methods using this
methodology for defining an acceptable solution are given in
Table 2. The corresponding normalized run times for the step
sizes given in Table 2 are listed in Table 3.

Unlike the gravity wave test, treating the thermodynamic
advection explicitly (HEVI-C and D) reduces the maximum
stable and acceptable step size for some of the integration
schemes. As a result, the increased number of time steps with
HEVI-C and D can lead to longer run times than with HEVI-
A or B depending on the ARK method. Treating only the
vertical velocity advection explicitly (HEVI-B) does not im-
pact the maximum stable or acceptable step size, nor does
it offer a significant advantage in run time over the HEVI-A
setup. Handling more terms implicitly in IMEX-A and B can
greatly increase the maximum stable step size but, in gen-
eral, this does not translate into faster run times due to the in-
creased solve cost and the smaller step sizes need to produce
a sufficiently accurate solution. However, in a few cases with
the Rosenbrock-like approach (ARK232, ARS222, ARS232,
SSP2(332)lpm1, and SSP2(332)lpum), IMEX-A runs are
faster than results with HEVI-C and D because of the larger
acceptable time step size with the IMEX-A splitting and the
minimal increase in solver cost due to the effectiveness of the
vertical solve as a preconditioner (only two to four linear iter-
ations are required per Newton iteration). The preconditioner
is less effective in the IMEX-B splitting as more dynamics
are included that are not treated by the preconditioner, so 16
to 25 linear iterations are needed per Newton iteration. As
in the gravity wave test, the Newton solver does not perform
well with the IMEX-B splitting and is unable to converge at
step sizes for which the Rosenbrock-like approach gives an
acceptable answer.

In this test, the increased accuracy and larger stability re-
gions of the higher-order methods enable bigger time step
sizes than the second-order methods with HEVI splittings
and are somewhat less affected by the choice of HEVI split-
ting. The gains in step size are large enough to offset the
third implicit stage solve required for ARK324 and ARS343,
which consistently perform well. The ARS343 method is
the fastest method across the HEVI splittings. ARS233,
SSP3(333)b, and SSP3(333)c are less robust to the choice
of splitting and solver but, when they produce an accept-
able solution (HEVI-A and B with the Newton solver), are
the second fastest methods, as they only require two implicit
solves per step and have relatively large acceptable step size.
ARS324 is more robust to the choice of spitting and solver,
and is the third fastest method with HEVI-A and B, and
the second fastest method with HEVI-C and D. The second-
order ARK232 and ARS232 methods give nearly identical
performance and tie for fourth fastest method with the HEVI-
A and B splittings.

The ARK324 and ARS343 methods also highlight the po-
tential advantage of the Newton solver over the Rosenbrock-

like approach. With the exception of the second-order SSP
methods (discussed below), the second-order methods stud-
ied produce acceptable solutions at their largest stable step
size for HEVI splittings with either a Newton or Rosenbrock-
like approach. As a result, there is no benefit from us-
ing the Newton solver for second-order methods and the
Rosenbrock-like approach is always more efficient. At the
larger stable step sizes enabled by higher-order methods, a
Rosenbrock-like approach does not always give a sufficiently
accurate answer, and a smaller step size is necessary to pro-
duce a good solution. Iterating to a converged stage value
leads to better results at larger step sizes and, since only a
few nonlinear iterations are necessary (on average two itera-
tions per stage solve), a HEVI splitting with a Newton solver
can outperform the Rosenbrock-like approach when the step
size gain is sufficiently large.

While the other higher-order schemes are also able to
take larger time steps than the second-order methods, they
require more function evaluations or implicit solves than
ARK324 or ARS343, and the step size gains are not enough
to overcome the additional costs. Four of the third-order
methods (ARS233, SSP3(333)b, and SSP3(333)c with the
Rosenbrock-like solver, and SSP3(333)a with either solver)
are not stable for 30 days at step sizes of at least 100 s with
any of the splittings. These failures are likely because the im-
plicit parts are not L stable (or even A stable for SSP3(333)a),
and the fastest dynamics of the system are not sufficiently
damped. These methods did perform well in the gravity wave
test case, which might have been due to the reduced domain
size altering the eigenvalues of the system.

However, L stability does not guarantee that a method will
produce a good solution. All of the SSP methods tested, with
the exception of SSP3(333)a, b, and c, are L stable but only
SSP2(332)a consistently gives acceptable results with the
HEVI splittings. The other SSP methods are generally stable
but give vertical velocities an order of magnitude larger than
the mean solution value with step sizes above 100 s. Excep-
tions to this behavior include SSP2(332)b, which underesti-
mates the vertical velocities, and SSP3(333)b and c, which
have acceptable solutions at their maximum stable step size
when using the Newton solver with the HEVI-A or B split-
tings. The better performance of SSP3(333)b and c may be
attributable to having the same c values for both the implicit
and explicit methods, as they are the only SSP methods tested
with this property. While having identical c values is not nec-
essary for producing acceptable solutions (e.g., SSP2(332)a),
having the stage values aligned in time appears beneficial.
Acceptable solutions with the other SSP methods are pro-
duced with the IMEX-A and B splittings, suggesting that the
inaccuracy with SSP methods may be related to the splitting
error in the schemes. Comparing with the gravity wave re-
sults where the SSP methods were both accurate and efficient
suggests that again the reduced domain size may have played
a role in the quality of the results by altering the eigenvalues
of the system, since the stability region of the explicit por-
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Table 2. Approximate largest step size (in seconds) for a 30-day run of the baroclinic wave test that produces acceptable maximum vertical
velocities over time. Second-order methods are shown in the top section of the table and higher-order methods in the bottom section. For
entries separated by “/”, the left value is the step size for the Rosenbrock-like approach and the right value is the step size for the Newton
solver. When a single step size is given, the Rosenbrock-like and Newton solvers gave acceptable solutions at the same step size.

Method HEVI-A HEVI-B HEVI-C HEVI-D IMEX-A IMEX-B

ARK232 200 200 128 128 320/480 320
ARS222 160 160 100/–a 100/–a 360 320
ARS232 200 200 128 128 360/480 360
SSP2(222) –b –b –b –b –b 360
SSP2(332)lpm1 –b –b –a –a 400/200 400
SSP2(332)lpm2 –b –b –a –a 100/150 450
SSP2(332)lpum –b –b –a –a 360/108 450
SSP2(332)lspum –b –b –b –b 120/450 450
SSP2(332)a 225 225 225 225 300/400 320
SSP2(332)b –b –b –b –b 270/400 320
SSP3(332) –b –b –b –b –b 384

ARK324 300/400 300/400 300/400 300/400 300 320
ARS233 –a/320 –a/320 –a –a –a/180 –a

ARS343 288/450 300/450 300/384 300/384 300/320 300
ARS443 300 300 270/300 270/300 300/320 320
SSP3(333)a –a –a –a –a –a –a

SSP3(333)b –a/320 –a/320 –a –a –a/180 –a

SSP3(333)c –a/320 –a/320 –a –a –a/180 –a

SSP3(433) –b –b –b –b 480 480
ARK436 400 400 –a –a 384/450 384
ARK548 300 300 –a –a 400/450 384

a The method was not stable for 30 days with hn ≥ 100 s. b The method was unable to produce an acceptable solution
with hn ≥ 100 s.

tion of many of the SSP methods does not include part of the
imaginary axis.

6 Conclusions

Considering the results of the gravity wave and baroclinic
wave test cases, the HEVI-A and B approaches are the most
accurate and efficient of the implicit–explicit splittings con-
sidered. Treating some of the vertical dynamics of HEVI-
A explicitly does not provide a noticeable gain in efficiency
from simpler implicit systems and, in the case of HEVI-C
and D, can lead to reduced step sizes in the baroclinic wave
test. Adding horizontally implicit terms to the HEVI-A for-
mulation does increase the maximum stable step size, but the
gains are not large enough to overcome the added cost of a
globally implicit solve.

While SSP methods are the most accurate and efficient
approaches in the gravity wave test case, they generally do
not preform well in the baroclinic wave test (with some no-
table exceptions), possibly due to error from the choice of
implicit–explicit splitting. The reduced domain size seemed
to skew the gravity wave test results in favor of these meth-
ods while the other ARK schemes perform well in both test
cases. Additionally, the gravity wave test case does not show

a benefit, in terms of maximum stable step size, with higher-
order methods, although it does highlight their greater effi-
ciency when higher accuracy is required. Again, these re-
sults are likely due to the reduced domain size altering the
eigenvalues of the system. In the baroclinic wave test on a
full-size Earth, higher-order methods produce accurate solu-
tions at step sizes large enough to have faster run times than
second-order schemes involving fewer implicit solves.

At the larger time step sizes enabled by higher-order
methods in the baroclinic wave tests, the choice of non-
linear solver approach becomes an important consideration.
A Rosenbrock-like approach limits the cost associated with
multiple Newton iterations but may require a reduced step
size to obtain an accurate solution. Taking larger steps is pos-
sible by iterating stage solutions to convergence with New-
ton’s method. The additional cost is minimal and can be off-
set by the larger step size. The choice of predictor values
was not considered in this work but could lead to more effi-
cient nonlinear solves with Newton’s method or more accu-
rate Rosenbrock-like schemes.

The HEVI-A and B configurations produced nearly iden-
tical results, while the HEVI-C and D options were prob-
lematic for some methods in the baroclinic wave test. Since
HEVI-A employs the same discretization for kinetic energy

www.geosci-model-dev.net/11/1497/2018/ Geosci. Model Dev., 11, 1497–1515, 2018



1512 D. J. Gardner et al.: IMEX Runge–Kutta

Table 3. The corresponding run times for the approximate largest acceptable step sizes in Table 2. Second-order methods are shown in the top
section of the table and higher-order methods in the bottom section. The times have been normalized by the fastest simulation time, HEVI-B
using ARS343 with the Newton solver (1372.483 s). The value on the left of the “/” divider is the time for the Rosenbrock-like approach and
the value on the right is the time for the Newton solver.

Method HEVI-A HEVI-B HEVI-C HEVI-D IMEX-A IMEX-B

ARK232 1.19/1.61 1.19/1.61 1.81/2.47 1.82/2.43 1.77/2.04 6.84
ARS222 1.48/2.01 1.48/2.02 2.30/–a 2.31/–a 1.56/2.31 6.67
ARS232 1.19/1.61 1.20/1.60 1.83/2.46 1.81/2.43 1.53/2.02 6.49
SSP2(222) –b –b –b –b –b 6.47
SSP2(332)lpm1 –b –b –a –a 1.74/4.76 6.86
SSP2(332)lpm2 –b –b –a –a 5.44/6.01 6.62
SSP2(332)lpum –b –b –b –b 1.89/7.35 6.60
SSP2(332)lspum –b –b –b –b 4.79/2.84 6.69
SSP2(332)a 1.27/1.83 1.25/1.79 1.24/1.92 1.24/1.86 2.29/3.02 9.48
SSP2(332)b –b –b –b –b 2.50/3.01 8.90
SSP3(332) –b –b –b –b –b 9.36

ARK324 1.06/1.14 1.07/1.13 1.06/1.23 1.05/1.21 2.93/4.41 13.28
ARS233 –a/1.03 –a/1.02 –a –a –a/4.38 –a

ARS343 1.10/1.02 1.09/1.00 1.07/1.21 1.05/1.19 2.86/4.08 13.21
ARS443 1.34/1.90 1.32/1.90 1.46/1.88 1.45/1.84 3.82/5.48 19.26
SSP3(333)a –a –a –a –a –a –a

SSP3(333)b –a/1.04 –a/1.02 –a –a –a/4.50 –a

SSP3(333)c –a/1.03 –a/1.02 –a –a –a/4.64 –a

SSP3(433) –b –b –b –b 2.27/3.97 10.19
ARK436 1.21/1.76 1.20/1.74 –a –a 3.28/4.65 14.14
ARK548 2.14/3.16 2.15/3.11 –a –a 3.96/5.75 17.31

a The method was not stable for 30 days with hn ≥ 100 s. b The method was unable to produce an acceptable solution with
hn ≥ 100 s.

transport as vertical mass transport without a significant dif-
ference in computational cost, it is preferred over the HEVI-
B option. Overall, the third-order ARS343 method shows
excellent performance across the splitting and solver op-
tions. ARS233, SSP3(333)b, and SSP3(333)c are also effi-
cient third-order methods but their performance depends on
the appropriate choice of splitting and solver. A more robust
runner-up method is the third-order ARK324 method which
follows closely behind ARS343 in run times. The second-
order ARS232 and ARK232 methods highlighted in Weller
et al. (2013) and Giraldo et al. (2013) using the Rosenbrock-
like were also very efficient options.

The ARK324 and ARK232 are of particular interest as
both include an embedded method which will be leveraged
for future studies on temporal adaptivity in atmospheric sim-
ulations using ARKode. Varying the time step size can en-
able greater efficiency by placing temporal accuracy where
is it needed most to capture dynamics of interest. Addition-
ally, we plan on further evaluating the methods in this study
on the 2016 dynamical core model intercomparison project
(DCMIP2016) test cases to better understand the impacts of
coupling with simplified physics on performance of implicit–
explicit splittings and integration methods.

Code availability. Tempest is available through the Git repository
at https://github.com/paullric/tempestmodel, and ARKode is avail-
able as part of the SUNDIALS library of solvers downloadable from
http://computation.llnl.gov/projects/sundials. The version of Tem-
pest that includes ARKode interfaces used for this work and split-
tings with horizontally implicit terms is available in the Git reposi-
tory at https://github.com/gardner48/tempestmodel. The versions of
Tempest with ARKode interfaces used in this work are archived at
https://doi.org/10.5281/zenodo.1162309.
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Appendix A: ARK method properties

In Table A1, we provide a variety of theoretical properties of
each of the ARK methods used in this paper. While we do
not reproduce each Butcher table here, references for each
method are provided in Sect. 3.2. For each method, we pro-
vide the following information:

– number of implicit solves per step (f I column) – the
number of nonzero entries on the diagonal of AI;

– number of explicit stages (f E column) – the total num-
ber of RK stages that involve calls to f E;

– order – theoretical order of accuracy of the explicit
Runge–Kutta (ERK) method, the diagonally implicit
Runge–Kutta (DIRK) method, and the overall ARK
method (including coupling conditions);

– stage order – theoretical order of accuracy of stages
(relevant for order reduction on stiff problems), again
for the ERK stages, DIRK stages, and the overall ARK
stages;

– stability – A, L, and B stability for the DIRK portion of
each method;

Table A1. Properties for each of the ARK methods used in this paper. The column headings are described in the above text.

Method f I f E Order Stage order Stability S.A. S.A.
b c Max exp

E I A E I A A L B DIRK ERK

ARK232 2 3 2 2 2 1 2 1 X X X X X X X ∼ 1.73
ARS222 2 3 2 2 2 1 1 1 X X X X X X X 0
ARS232 2 3 2 2 2 1 1 1 X X X X X X X ∼ 1.73
SSP2(222) 2 2 2 2 2 1 1 0 X X X X X X X 0
SSP2(332)lpm1 3 3 2 2 2 1 1 0 X X X X X X X 0
SSP2(332)lpm2 3 3 2 2 2 1 1 0 X X X X X X X 0
SSP2(332)lpum 3 3 2 2 2 1 1 0 X X X X X X X 0
SSP2(332)lspum 3 3 2 2 2 1 1 0 X X X X X X X ∼ 1.2
SSP2(332)a 3 3 2 2 2 1 1 0 X X X X X X X 0
SSP2(332)b 3 3 2 2 2 1 1 0 X X X X X X X 0
SSP3(332) 3 3 3 2 2 1 1 0 X X X X X X X ∼ 1.73

ARK324 3 4 3 3 3 1 2 1 X X X X X X X ∼ 2.48
ARS233 2 3 3 4 3 1 1 1 X X X X X X X ∼ 1.73
ARS343 3 4 3 3 3 1 1 1 X X X X X X X ∼ 2.83
ARS443 4 4 3 3 3 1 1 1 X X X X X X X ∼ 1.57
SSP3(333)a 2 3 3 3 3 1 1 1 X X X X X X X ∼ 1.73
SSP3(333)b 2 3 3 3 3 1 1 1 X X X X X X X ∼ 1.73
SSP3(333)c 2 3 3 3 3 1 1 1 X X X X X X X ∼ 1.73
SSP3(433) 4 3 3 3 3 1 1 0 X X X X X X X ∼ 1.73
ARK436 5 6 4 4 4 1 2 1 X X X X X X X ∼ 4.00
ARK548 7 8 5 5 5 1 2 1 X X X X X X X ∼ 0.79

– S.A. DIRK – if the DIRK method is stiffly accurate (i.e.,
the last row of AI is the same as the bI);

– S.A. ERK – if the ERK method is “stiffly accurate” (i.e.,
the last row of AE is the same as the bE);

– same solution weights (b column) – if the ERK and
DIRK methods have the same weights to compute yn
(i.e., bE

= bI) and will preserve linear invariants of the
problem to machine precision;

– same abscissa (c column) – if the stages in the ERK and
DIRK methods are evaluated at the same stage times
(i.e., cE

= cI); and

– maximum stable explicit step along the imaginary axis –
as this application has purely imaginary eigenvalues, we
numerically compute the largest ymax ∈ R such that the
ERK portion of the method is stable for all λ= iy, 0≤
y ≤ ymax, using a bisection method with tolerance 10−6.
If the method is analytically unstable for any nonzero
values along the imaginary axis, we list “0”.
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