

Supplement of

LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description

Sibyll Schaphoff et al.

Correspondence to: Sibyll Schaphoff (sibyll.schaphoff@pik-potsdam.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

S1 Supplementary informations to the description of the LPJmL4 model

Fig. S1 gives a schematic overview of the model structure represented in LPJmL4. Fig. S2 to S4 provides further information about implemented processes in LPJmL4. Global time series of some key parameters estimated by LPJmL4 are given in Fig. S5. These time series of carbon stocks and fluxes and water fluxes show the high dynamics of the different parameters between the years. Furthermore, we provide a list of applications which have used the LPJmL model (Table S1). This represents not a complete list of all references with LPJmL applications, but it illustrates the range of fields for topical, spatial and temporal use of the model. Table S2 gives an overview of input variables and their references used by LPJmL4. In addition, we give a list of output variables (see Table S3) computed by LPJmL4 and provided via the Online-Database: http://pmd.gfz-potsdam.de/portal/ see: http://doi.org/10.5880/pik.2017.009. Complementary to the associated Schaphoff et al. (under Revision) we give a comprehensive list of parameters (Tables S4 to S14) used by the model and are described in Schaphoff et al. (under Revision). Additionally, we provide a list of equations (Table S15), which are described in detail by the associated manuscript.

Figure S2. Irrigation water flows in LPJmL4 from plant-specific net irrigation requirement to actual field application. Variables represented in grey-shaded boxes depend on system-specific parameters that are presented in Table 2, adopted from Jägermeyr et al. (2015).

Figure S3. Seasonality types for sowing date calculated by LPJmL4.

Figure S4. Leaf carbon (x-axis) that is remaining after harvest (solid line) and being harvested (between solid and dashed lines).

Figure S5. Time series of global carbon stocks and fluxes and global water fluxes computed by LPJmL4.

Table S1: Reference table of application using LPJmL since 2007.

/stem Carbon V sses cycle c	Phenology Albedo Photosynthesis Respiration Fire emissions Soil carbon Atmospheric composition Atmospheric composition Atmospheric composition			x x x x x						x x x x x				x x					x		
Ecosystem	Vegetation dynamics Permafrost Fire Phenology	r et al. (2007) x x x x	ten et al. (2007) x x	Iler and Lucht (2007)	ller et al. (2007)	ten et al. (2008a) x x	rten et al. (2008b)	ıg et al. (2008)	ze-Campen et al. (2008)	o et al. (2008) x x x	st et al. (2008)	mans et al. (2009)	pola et al. (2009)	man et al. (2009) x x x	ulter et al. (2009)	st et al. (2009)	g et al. (2010)	1 Bloh et al. (2010)	er et al. (2010)	npenberger et al. (2010) x	Tra Comman at al (2010)

Neumann et al. (2010)		 													X		_		<u> </u>	~					х	. —
Poulter et al. (2010a)	x	 			х			Х	Х								 			×	×	×			Х	. —
Poulter et al. (2010b)	x	 Х					Х	Х	Х	Х										×	×				Х	. —
Rammig et al. (2010)	x	 							Х											×	×				Х	. —
Strengers et al. (2010)	x		х	Х	Х	Х	Х	Х		Х	x	×			X	×		×		~			×	Х	Х	. —
Thonicke et al. (2010)		 X					Х	Х															×	Х	Х	. —
Beringer et al. (2011)		 															X		<u> </u>	×	×		х	х	х	
Biemans et al. (2011)		 											х	х				×	×	~	×		x	х	х	
Fader et al. (2011)												×		×	X	x				~					Х	. —
Franck et al. (2011)		 													Х		 			~	~				Х	. —
Gerten et al. (2011)		 										×	х	×	x	x				×					х	. —
Haberl et al. (2011)		 			х	Х									X					×	×				Х	
Haddeland et al. (2011)		 										x	Х						×	ζ	X			X		
Heyder et al. (2011)	x	 				Х	Х		Х	x		×	X							×	~				x	. —
Neumann et al. (2011)		 											Х	x						^					х	. —
Popp et al. (2011a)		 													x		X			^ ×					x	. —
Popp et al. (2011b)																	X			×					Х	. —
Poulter et al. (2011)								х											~	~	~				х	
Jiang et al. (2012)	x	 																		X	×				Х	. —
Boisier et al. (2012)	x	 		Х											x	x					×				x	. —
de Noblet-Ducoudré et al. (2012)	x		×	Х											x	x				_	×				х	
Dietrich et al. (2012)															X					^	~				Х	
Souty et al. (2012)		 													x				~	~	~				×	
Waha et al. (2012)															X				~	^	×		x	x		
Asseng et al. (2013)		 													Х		 		~			X			Х	
Biemans et al. (2013)		 										х	Х	х	X		_		X	x				Х	Х	
Dass et al. (2013)		 						Х							x		 x		×	x y	X				Х	
Fader et al. (2013)		 												х	X	x	 		<u> </u>	x v	×				Х	
Gerten et al. (2013b)	x				x	×			x	x		×	×	Х			 _			×	×				×	

Gerten et al. (2013a)									×	~				×		x			-	<u>^</u>	×
Konzmann et al. (2013)								-		x				×	х	x				×	×
Langerwisch et al. (2013)									×						x		x		×	~ ~	×
Ostberg et al. (2013)	x			x	×	×	х	×	×						×	x				<u>~</u>	×
Schaphoff et al. (2013)	x				x		x												×	×	×
Schierhorn et al. (2013)	x									×				×			x			~	×
Siderius et al. (2013)									×					×				X		~	×
Waha et al. (2013a)										×				×	x		х			<u>^</u>	×
Waha et al. (2013b)										×				×	Х		x		×	~	×
Bassu et al. (2014)										×				×	х			X		~	×
Elliott et al. (2014)									×	×				×	x	×				~	×
Forkel et al. (2014)	x	X	х			x								x		x			×	×	
Jägermeyr et al. (2014)				X		x	х							x		x			×	×	
Kummu et al. (2014)										x	×		 x			x				~	×
Müller and Robertson (2014)										×	×		 	×	x	х				~ 	×
Müller et al. (2014)			Х						×	×				×	х		x			~	×
Piontek et al. (2014)	x x x				x				x	×				х	Х	х				~	×
Rosenzweig et al. (2014)										×				x	Х	x				~	×
Sakschewski et al. (2014)										×	x			x	х	x				~	×
Zscheischler et al. (2014a)					X											Х				×	
Zscheischler et al. (2014b)					X			_								Х				×	
Asseng et al. (2015)										×								Х		~	×
Fader et al. (2015)							X			X		x					X		x	x v	×
Forkel et al. (2015)	x	X												X		X				x v	×
Jägermeyr et al. (2015)								x	x	X				Х		X			x	x v	×
Kollas et al. (2015)										X				Х				Х		~	×
Martre et al. (2015)										X				Х				Х		۲ 	×
Müller et al. (2015)										X				Х	Х	X				۲ ۲	x
Ostberg et al. (2015)	x			X	X	×	Х	X	x				 X	X		Х				~	×

Pirttioja et al. (2015)												X			X	X		X			x
Weindl et al. (2015)												x x			×	x x					×
Cammarano et al. (2016)									х			X			X			X		x	×
Deryng et al. (2016)												x				X					×
Forkel et al. (2016)	X		X			X		X												x	x
Jägermeyr et al. (2016)											X	x x				x x					x
Liu et al. (2016)												X			X	x x		X			×
Müller et al. (2016)	X	x	X	X	X	X	x x					X X	Х		X	x x			x		x
Porkka et al. (2016)											X	X		X		X					x
Pugh et al. (2016)												X			X	x x					x
Ruane et al. (2016)												X			X	X		Х			x
Durand et al. (2017)			X							Х		X				X	X				x
Maiorano et al. (2017)												X				X		Х	x	x	x
Müller et al. (2017)			X							Х		X		X			X				x
Jägermeyr et al. (2017)									х	х	x	x			x	X			x	x	x

 Table S2. Model specific inputs applied by LPJmL4.

Input variables	Description	References
Precipitation	GPCC Full Data Reanalysis Version 7.0	Becker et al. (2013)
Temperature	CRU TS version 3.23	Harris et al. (2014); University of East Anglia
		Climatic Research Unit; Harris (2015)
Net downward long-wave radiation	ERA-Interim	Dee et al. (2011)
Shortwave downward radiation	ERA-Interim	Dee et al. (2011)
Number of wet days per months	synthetically derived	New et al. (2000)
Wind speed	NCEP re-analysis data	NOAA-CIRES Climate Diagnostics Center,
		Kalnay et al. (1996))
Landuse	MIRCA2000+ (see Fader et al. (2010))	Portmann et al. (2010); Monfreda et al. (2008);
		Siebert et al. (2015); Monfreda et al. (2008)
Soil texture	Harmonized World Soil Database	FAO/IIASA/ISRIC/ISSCAS/JRC (2012);
	(HWSD)	Nachtergaele et al. (2009)
Drainage direction map	Topological Network (STN-30)	Vorosmarty and Fekete (2011)
Water reservoirs	GRanD database	Lehner et al. (2011)
Lakes	natural lakes	Lehner and Döll (2004)
Atmospheric CO ₂ concentrations	NOAA/ESRL	Tans and Keeling (2015)

 Table S3. Standard outputs computed by LPJmL4.

	Variable	Units
	Soil carbon	$gC m^{-1}$
Carbon pools	Litter carbon	gCm^{-1}
Carbon pools	Vegetation carbon	gCm^{-1}
	Above ground biomass	gCm^{-1}
	Monthly net primary production	$gCm^{-1}month^{-1}$
Carbon fluxes	Monthly gross primary production	$gC m^{-1} month^{-1}$
Carbon nuxes	Monthly soil respiration	$gCm^{-1}month^{-1}$
	Annual fire carbon emissions	$gCm^{-1}a^{-1}$
	Monthly interception	$mmmonth^{-1}$
	Monthly transpiration	$mm month^{-1}$
Water fluxes	Monthly evaporation	$mm month^{-1}$
	Monthly runoff	$mm month^{-1}$
	Monthly discharge	$hm^{-3} day^{-1}$
	Monthly grid cell albedo	-
	Monthly fraction of absorbed PAR	-
	Foliage projected cover	-
	Crop yields	$ gC m^{-1} a^{-1}$
	Sowing dates	day of the year

PFT	$T_{c,\min}$	$T_{c,\max}$	$T_{mort,min}$	GDD_{\min}
	(°C)	(°C)	(°C)	(°C)
TrBE	15.5	-	-	-
TrBR	15.5	-	-	-
TeNE	-2.0	22	-	900
TeBE	3.0	18.8	-	1200
TeBS	-17.7	15.5	-	1200
BoNE	-32.5	-2.0	23	600
BoBS	-	-2.0	23	350
BoNS	-46.5	-5.4	23	350
TrH	7.0	-	-	-
TeH	-39.0	15.5	-	-
PoH	-	-2.6	-	-

Table S4. Model PFT-specific bioclimatic limits similar as in Sitch et al. (2003).

Table S5. PFT-specific albedo and light extinction values.

PFT	β_{leaf}	$\beta_{\rm stems}$	$\beta_{ m litter}$	k	α_a
TrBE	0.14	0.10	0.10	0.5	0.4
TrBR	0.13	0.07	0.06	0.5	0.4
TeNE	0.137	0.04	0.10	0.4	0.4
TeBE	0.15	0.04	0.10	0.5	0.4
TeBS	0.15	0.04	0.10	0.6	0.4
BoNE	0.13	0.10	0.10	0.5	0.4
BoBS	0.18	0.10	0.10	0.5	0.4
BoNS	0.12	0.05	0.01	0.6	0.4
TrH	0.21	-	0.10	0.4	0.4
TeH	0.20	-	0.10	0.5	0.4
РоН	0.21	-	0.10	0.5	0.4
BTrT	0.13	0.04	0.10	0.6	0.8
BTeT	0.14	0.04	0.10	0.6	0.8
BGrC4	0.21	-	0.10	0.6	0.8
All crops	0.18	-	0.06	0.5	1.0

 $\beta_{\rm leaf}$ is leaf albedo, $\beta_{\rm stems}$ is the albedo of stems, $\beta_{\rm litter}$ is albedo of litter, k is the light extinction coefficient in Lambert-Beer relationship, α_a is a scaling factor from leaf to ecosystem level (Haxeltine and Prentice, 1996). $\beta_{\rm leaf}$ as suggested by Strugnell et al. (2001), $\beta_{\rm stems}$ and $\beta_{\rm litter}$ parameters are determined by a tuning process described by Forkel et al. (2014).

	Symbol	Value	Units	Description
	$c_{\rm water}$	4.2×10^{6}	$J m^{-3} K^{-1}$	heat capacity of water
Energy balance	c_{\min}	1.9259×10^6	$ m Jm^{-3}K^{-1}$	heat capacity of mineral soil (De Vries, 1963)
	$c_{\rm ice}$	2.1×10^6	$J { m m}^{-3} { m K}^{-1}$	heat capacity of ice
	$k_{\rm allom1}$	100		Parameter for allometric relation ship Eq. 50
	$k_{\rm allom2}$	40		Parameter for allometric relation ship Eq. 49
Vegetation	$k_{ m allom 3}$	0.67		Parameter for allometric relation ship Eq. 49
structure	$k_{\text{la:sa}}$	4000		leaf area to sapwood area Eq. 47
	WD	20000	$\mathrm{gC}\mathrm{m}^{-3}$	wood density Eq. 51
	$k_{ m rp}$	1.6		Reineke parameter Eq. 50
	$[O_2]$	20900	Pa	O ₂ partial pressure
	$K_{O_{25}}$	30000	Pa	Michaelis constant for O ₂ at 25°C
	$K_{C_{25}}$	30	Pa	Michaelis constant for CO ₂ at 25°C
	$ au_{25}$	2600		au at 25°C
Dhotosynthesis	$Q_{10_{K_{O}}}$	1.2		Q_{10} for temperature-sensitive parameter K_O
Fliotosynthesis	$Q_{10_{K_C}}$	2.1		Q_{10} for temperature-sensitive parameter K_C
	$Q_{10_{\tau}}$	0.57		Q_{10} for temperature-sensitive parameter $ au$
	α_{C_3}	0.08		intrinsic quantum efficiencies for CO ₂ uptake in
	Ũ			C ₃ plants
	α_{C_4}	0.053		same for C_4 plants
	θ	0.7		Co-limitation (shape) parameter
	$\lambda_{\max_{C_2}}$	0.8		maximum ratio of intercellular to ambient CO ₂ for
	- 3			C ₃ plants
	$\lambda_{\max_{C_4}}$	0.4		same for C ₄ plants
	b_{C_3}	0.015	rate per day	leaf respiration as fraction of V_m for C ₃ plants
	b_{C_4}	0.035	rate per day	leaf respiration as fraction of V_m for C ₄ plants
Diant regnization	$\mathrm{CN}_{\mathrm{sapwood}}$	330		C:N ratios for above-ground tissue
Fiant respiration	$\mathrm{CN}_{\mathrm{root}}$	30		C:N ratios below-ground tissue
	$r_{ m gr}$	0.25		share of growth respiration
	k	0.0548	rate per day	respiration coefficient Eq. 42 (Sprugel et al., 1995)
	$k_{ m est}$	0.12	saplings m^{-2}	establishment rate
Establishment	$k_{ m mort1}$	0.03	a^{-1}	asymptotic maximum mortality rate
and mortality	$k_{ m mort2}$	0.2		coefficient of growth efficiency for mortality
	$tw_{\rm PFT}$	400	°C	Parameter for heat damage function
	$ au_{10_{ m root,litter}}$	0.3	a^{-1}	mean residence time of roots in litter Eq. 91
Soil and litter	$ au_{10_{ m root,fastSoil}}$	0.03	a^{-1}	mean residence time of roots
decomposition				in fast soil carbon pool Eq. 91
	$\tau_{10_{\rm root,slowSoil}}$	0.001	a^{-1}	mean residence time of roots
	,			in slow soil carbon pool Eq. 91

Table S6. Global parameters and constants similar as in Sitch et al. (2003) and Schaphoff et al. (2013).

PFT	$\tau_{10_{\text{leaf,litter}}}$	$ au_{10_{\mathrm{wood,litter}}}$	$Q_{10_{\text{wood,litter}}}$	$k_{ m soc}$
	(a ⁻¹)	(a^{-1})	(-)	(-)
TrBE	0.93	0.039	2.75	0.38009
TrBR	1.17	0.039	2.75	0.51395
TeNE	0.70	0.041	1.97	0.32198
TeBE	0.86	0.104	1.37	0.43740
TeBS	0.95	0.104	1.37	0.28880
BoNE	0.76	0.041	1.97	0.28670
BoBS	0.94	0.104	1.37	0.28670
BoNS	0.76	0.041	1.97	0.28670
TrH	0.97	-	-	0.46513
TeH	1.20	-	-	0.38184
PoH	1.20	-	-	0.38184
BTrT	0.93	0.039	2.75	0.38009
BTeT	0.95	0.104	1.37	0.28880
BGrC4	0.97	-	-	0.46513
All crops	0.97	-	-	0.40428

Table S7. PFT-specific parameters of litter turnover rates suggested by Brovkin et al. (2012) and shape factor for vertical distribution of soil organic matter (Schaphoff et al., 2013).

Table S8. PFT-specific parameters.

PFT	$\beta_{ m root}$	g_{\min}	α_{leaf}	$ au_{\mathrm{leaf}}$	$ au_{\mathrm{root}}$	$ au_{ m sapwood}$	$r_{\rm PFT}$	$\mathrm{lr}_{\mathrm{max}}$
		$(mm s^{-1})$	(a)	(a)	(a)	(a)	$gC gN^{-1}$	1
							day ⁻¹	
TrBE	0.962	0.5	1.60	2.0	2.0	20.0	0.2	1.0
TrBR	0.961	0.5	0.50	1.0	1.0	20.0	0.2	1.0
TeNE	0.976	0.5	4.00	4.0	4.0	20.0	1.2	1.0
TeBE	0.964	0.5	1.60	1.0	1.0	20.0	1.2	1.0
TeBS	0.966	0.5	0.45	1.0	1.0	20.0	1.2	1.0
BoNE	0.943	0.3	4.00	4.0	4.0	20.0	1.2	1.0
BoBS	0.943	0.5	0.50	1.0	1.0	20.0	1.2	1.0
BoNS	0.943	0.5	0.65	1.0	1.0	20.0	1.2	1.0
TrH	0.972	0.5	0.40	1.0	2.0	-	0.2	0.60
TeH	0.943	0.5	0.35	1.0	2.0	-	1.2	0.60
PoH	0.943	0.5	0.35	1.0	2.0	-	1.2	0.60

 $\beta_{\rm root}$ is the root distribution slope parameter for water availability, g_{\min} is the minimum canopy conductance, $\alpha_{\rm leaf}$ is the leaf longevity, $\tau_{\rm leaf,root,sapwood}$ is the compartment specific turnover times, $r_{\rm PFT}$ is the respiration coefficient for maintenance respiration of sapwood and root, \ln_{\max} is the maximum leaf-to-root mass ratio

Table S9. PFT-specific parameters for the SPITFIRE module.

PFT	α_p	$ ho_b$	m_e	Φ_w	scorch height	crown	$r_{\rm CK}$	p
						length		
TrBE	0.0000334	25	0.3	0.4	0.1487	0.3334	1.0	3.00
TrBR	0.0000334	13	0.3	0.4	0.0610	0.1000	0.05	3.00
TeNE	0.0000667	25	0.3	0.4	0.1000	0.3334	1.00	3.75
TeBE	0.0000334	22	0.3	0.4	0.3710	0.3334	0.95	3.00
TeBS	0.0000667	22	0.3	0.4	0.0940	0.3334	1.0	3.00
BoNE	0.0000667	25	0.3	0.4	0.1100	0.3334	1.0	3.00
BoBS	0.0000667	22	0.3	0.4	0.0940	0.3334	1.0	3.00
BoNS	0.0000667	22	0.3	0.4	0.0940	0.3334	1.0	3.00
TrH	0.0000667	2	0.3	0.6	-	-	-	-
TeH	0.0000667	4	0.3	0.6	-	-	-	-
РоН	0.0000667	4	0.3	0.6	-	-	-	-

 α_p defines the slope of the probability risk function, ρ_b is the fuel bulk density, m_e is the moisture of extinction, Φ_w is the windspeed dampening , $r_{\rm CK}$ is the resistance factor, p is the crown damage parameter

		•					E	E	,	E	E	E
CFT	representative crop	crops represented	$PHU_{w_{low}}$	$PHU_{w_{high}}$	PHU_{slow}	PHU_{shigh}	$T_{\mathrm{base}_{\mathrm{low}}}$	T_{basehigh}	pt	$T_{\rm fall}$	$T_{\rm spring}$	$T_{\rm vern}$
temperate cereals	wheat	wheat, rye, barley	1700	2876.9	1000	2648.4	0.0	0.0	200	12	S	12
rice	rice	paddy rice	NA	NA	1600	1800	10	10	167	NA	18	NA
maize	maize	maize for food	NA	NA	1600	1600	5	15	167	NA	14	NA
tropical cereals	millet	millet, sorghum	NA	NA	1500	1500	10	10	167	NA	12	NA
pulses	field pea	pulses	NA	NA	2000	2000	1.0	1.0	167	NA	10	NA
temperate roots	sugar beet	sugar beet	NA	NA	2700	2700	3.0	3.0	167	NA	×	NA
tropical roots	cassava	cassava	NA	NA	2000	2000	15	15	167	NA	22	NA
sunflower	sunflower	sunflower	NA	NA	1000	1600	6.0	6.0	167	NA	13	NA
soybean	soybean	soybean	NA	NA	1000	1000	10	10	167	ΝA	13	ΝA
groundnuts	groundnuts	groundnuts	NA	NA	1500	1500	14	14	167	NA	15	NA
rapeseed	rapeseed	rapeseed	2100	3279.7	1000	2648.4	0.0	0.0	200	17	S	12
sugarcane	sugarcane	sugarcane	NA	NA	2000	4000	11	15	167	NA	14	NA

parameters.
day
sowing
and
variety
of
computation
the
for
CFTs
annual
for
Parameters
10.
e S
[q]

CFT	$\beta_{ m root}$	fPHU_c	$fLAI_{max_c}$	fPHU_k	fLAI_{\max_k}	$\mathrm{fPHU}_{\mathrm{sen}}$	ssn	$\mathrm{fLAI}_{\mathrm{max}_h}$	α_{leaf}	$\mathrm{HI}_{\mathrm{opt}}$
temperate cereals	0.9690	0.05	0.05	0.45	0.95	0.7	2.0	0.0	0.5	0.5
rice	0.9690	0.1	0.05	0.5	0.95	0.8	2.0	0.0	0.5	0.5
maize	0.9690	0.1	0.05	0.5	0.95	0.75	2.0	0.0	0.5	0.5
tropical cereals	0.9690	0.15	0.01	0.5	0.95	0.85	2.0	0.0	0.5	0.25
pulses	0.9690	0.15	0.01	0.5	0.95	0.90	2.0	0.0	0.5	0.45
temperate roots	0.9690	0.15	0.05	0.5	0.95	0.75	0.5	0.75	0.5	3.5
tropical roots	0.9690	0.15	0.05	0.5	0.95	0.75	0.5	0.75	0.5	2.0
sunflower	0.9690	0.15	0.01	0.5	0.95	0.7	2.0	0.0	0.5	0.4
soybean	0.9690	0.15	0.05	0.5	0.95	0.7	0.5	0.0	0.5	0.4
groundnuts	0.9690	0.15	0.01	0.5	0.95	0.75	0.5	0.0	0.5	0.4
rapeseed	0.9690	0.05	0.01	0.5	0.95	0.85	2.0	0.0	0.5	0.3
sugarcane	0.9690	0.01	0.01	0.4	0.95	0.95	2.0	0.5	0.5	0.8

Table S11. Parameters for annual CFTs for the computation of LAI development and biomass allocation.

 Table S12. Model parameters describing biomass plantation management.

BFT	Corresponding biomass crop	Harvest interval	Plant density (ha^{-1})
BTrT	Poplar, Willow	8 years	8000
BTeT	Eucalyptus	8 years	5000
BGrC4	Miscanthus, Switchgrass	(Multiple) annual harvest	n.a.

Table S13. Overview of BFT parameter values and constants in model equations.

Parameter	Description	BTrT	BTeT	BGrC4
g_{\min}	Minimum canopy conductance	0.2	0.2	0.5
LAI_{sapl}	Leaf area index of saplings (-)	1.6	1.6	0.001
α_a	fraction of PAR absorbed at ecosys-	0.8	0.8	0.8
	tem level, relative to leaf level (-)			
$T_{\rm lim,CO2}$	lower and upper temperature limit	24,55	-4.0, 38.0	4, 55
	for CO_2 (°C)			
$T_{\rm lim,opt,photo}$	lower and upper limit of temper-	25, 38	15, 30	15, 45
	ature optimum for photosynthesis			
	(°C)			
$T_{\rm lim, cold, month}$	lower and upper coldest monthly	7, -	-30, 8	-40, -
	mean temperature (°C)			
$\tau_{\rm leaf,root,sapwood}$	Turnover leaf, root, sapwood	2, 2, 10	1, 1, 10	1,2,-
CA_{max}	Tree maximum crown area (m ²)	2	1.5	-
$C_{\rm sapwood, sapling}$	sapling carbon (gC m $^{-2}$)	2.2	2.5	-
$k_{\rm allom1}$	Allometry parameter 1	110	110	-
$k_{ m allom2}$	Allometry parameter 2	35	35	-
$k_{ m allom 3}$	Allometry parameter 3	0.75	0.75	-
$k_{ m est}$	Saplings per m ²	0.5	0.8	-

¹ open canal co	Drip	Sprinkler	Surface	2		system	Irrigation
onveyance efficie	0.05	0.55	1.15		scalar	uniformity	Distribution
ncy depends on soi	pipe. 0.75	nine: 0.05	loam 0.75, clay 0.8	open canal: sand 0.7,		efficiency ¹	Conveyance
I hydraulic conductivity (K_s)	soil evap. of irr. water reduced by 60%		unrestricted			evaporation	Soil
$K_s > 20$	no	yes	no			ception	Inter-
: sand, $10 \leq K_s \leq 20$: lo	none, only indirect precip. leaching	lateral, percolation	percolation	surface, lateral.			Runoff
am, $K_s < 10$; clay; 50%		C ₃ (Pr \ge 900): 0.9 Rice: 1.0	C ₄ : 0.7 C ₃ (Pr <900): 0.8			$threshold^2$	Irrigation
of	none		1 mm		amount	irrig.	Minimal

conveyance losses are assumed to evaporate, for loam and clay (higher K_s) and open canal conveyance the fraction is 60% and 75%, resp. ²depending on crop type, see Jägermeyr et al. (2015) for details.

Schaphoff et al.: SI-LPJmL4 – Part 1: Model description

L4 model.
[II]
Ľ,
еI
th
п.
processes represented
ne different
甘
lescribing
ě
tab
uation 1
Еg
ŝ
$\overline{\mathbf{S}}$
Table

Parameter/Variable	abbreviation	unit	Equation
	Ε	nergy balance	
Photosynthetic active radiation conversion factor from J to mol for solar radiation	PAR c_q	mol m ⁻² day ⁻¹	$\begin{aligned} \text{PAR} &= 0.5 \cdot c_q \cdot R_{s_{\text{day}}} \\ c_q &= 4.6 \cdot 10^{-6} \end{aligned}$
at 550 nm daily incoming solar irradiance	$R_{s_{ m day}}$	${ m J}~{ m m}^{-2}~{ m day}^{-1}$	$R_{s_{\text{day}}} = (c + d \cdot \operatorname{ni}) \cdot Q_0 \cdot (\sin(\operatorname{lat}) \cdot \sin(\delta) \cdot h_{1/2} + \cos(\operatorname{lat}) \cdot$
potential evapotranspiration	PET	$mm day^{-1}$	$\cos(\delta) \cdot h_{1/2})$ PET = PT $\cdot E_{eq}$
equilibrium evapotranspiration	$E_{ m eq}$	$mm day^{-1}$	$E_{ m eq} = rac{s}{s+1} \cdot rac{R_n_{ m day}}{1}$
daily surface net radiation	$R_{n_{ m dav}}$	${ m J}~{ m m}^{-2}~{ m day}^{-1}$	× (.+¢
latent heat of vaporization	λ ^{uny}	$J kg^{-1}$	$\lambda = 2.495 imes 10^6 + 2380 \cdot T_{ m air}$
slope of the saturation vapour pressure curve	s	${ m Pa}~{ m K}^{-1}$	$s = 2.502 \times 10^{6} \cdot \exp[17.269 \cdot T_{\rm air}/(237.3 + (237.3 + 0.77$
psychrometric constant	7	${ m Pa}~{ m K}^{-1}$	t_{air} //// (201.0 \pm t_{air}) $\gamma = 65.05 \pm 0.064 \cdot T_{air}$
Priestley-Taylor coefficient net surface radiation	\Pr_{R_n}	${ m W}~{ m m}^{-2}$	
incoming solar irradiance (downward) at the sur-	R_s	${ m W}~{ m m}^{-2}$	$R_s = (c + d \cdot \mathrm{ni}) \cdot Q_0 \cdot \cos(z)$ or as input
ute outgoing (upward positive) net long-wave radia- tion flux at the surface	R_l	${ m W}~{ m m}^{-2}$	$R_l = (b + (1 - b) \cdot \mathrm{ni}) \cdot (A - T_{\mathrm{air}})$ or as input
albedo	β		$\beta = \sum_{PFT=1}^{n_{PFT}} \beta_{PFT} \cdot FPC_{PFT} + F_{\text{bare}} \cdot (F_{\text{snow}} \cdot \beta_{\text{snow}} + \beta_{\text{snow}})$
albedo bare soil	$eta_{ m soil}$		$(1 - r_{ m snow}) \cdot p_{ m soil})$
albedo snow	$eta_{ ext{snow}}$		
plant compartments specific albedo coverage of bare soil	$eta_{ m PFT} F_{ m hare}$		
coverage of snow	$F_{ m snow}$		
empirical constant	b		see Prentice et al. (1993)
empirical constant	A		see Prentice et al. (1993)
mean daily air temperature	$T_{ m air}$	°C •	r - - -
net outgoing daytime long-wave flux	$K_{l_{ m nday}}$	$J m^{-4} day^{-1}$	$R_{ m I_{day}} = R_l \cdot m day m length \cdot 3600$
angular distance between the sun's rays and the	\$		
10cal Verucai monortion of hright sky			ni — 1 — rlnudiness
empirical constant	c III		see Prentice et al. (1993)

Parameter/Variable	abbreviation	unit	Equation
empirical constant	d		see Prentice et al. (1993)
solar constant	Q_0	${ m W}~{ m m}^{-2}$	$Q_0 = Q_{00} \cdot (1 + 2 \cdot 0.01675 \cdot \cos(2 \cdot \pi \cdot i/365))$
solar zenith angle	\$		$\cos(z) = \sin(\operatorname{lat}) \cdot \sin(\delta) + \cos(\operatorname{lat}) \cdot \cos(\delta) \cdot \cos(h)$
latitude	lat	radians	
hour angle	h		
solar declination	δ	radians	$\delta = -23.4 \cdot \pi / 180 \cdot \cos(2 \cdot \pi \cdot (i+10)/365)$
half-day length	$h_{1/2}$	angular units	$h_{1/2} = \arccos(-(\sin(\operatorname{lat}) \cdot \sin(\delta))/(\cos(\operatorname{lat}) \cdot \cos(\delta)))$
duration of sunshine of a single day	daylength	hours	daylength = $24 \cdot \frac{h_{1/2}}{\pi}$
Soil temperatures	$T_{ m soil}$	°C S	$rac{\partial T_{ m soil}}{\partial t} = lpha \cdot rac{\partial^2 T_{soil}}{\partial z_s}$
thermal diffusivity	$\alpha = \lambda/c$	${ m m}^2~{ m s}^{-1}$	0°
thermal conductivity	Υ	${\rm W}~{\rm m}^{-1}~{\rm K}^{-1}$	
soil layer	1		
time step	t		
stability criterion	r		$r = rac{lpha \Delta t}{(\Delta z)^2}$
Heat capacity	c	${ m J}~{ m K}^{-1}~{ m m}^{-3}$	$c = c_{\min} \cdot m_{\min} + c_{\mathrm{water}} \cdot m_{\mathrm{water}} + c_{\mathrm{ice}} \cdot m_{\mathrm{ice}}$
soil minerals	c_{\min}		
soil water content	c_{water}		
soil ice content	$c_{ m ice}$		
corresponding shares of c_{\min} , c_{water} , c_{ice}	m	m ³	
	PI	ant physiology	

		$ APAR_{PFT} = PAR \cdot FAPAR_{PFT} \cdot \alpha_{apFT}$	$\begin{array}{l} \left[\text{FAPAR}_{\text{PFT}} = \text{FPC}_{\text{PFT}} \cdot \left(\left(\text{phen}_{\text{FT}} - \text{F}_{\text{SnowGC}} \right) \cdot \left(1 - \beta_{\text{leaf},\text{PFT}} \right) - \left(\left(1 - \text{phen}_{\text{FT}} \right) \cdot c_{\text{fstem}} \cdot \beta_{\text{stem},\text{PFT}} \right) \right) \end{array}$	`		עמה ע גע	$FFCpFT = CA_{ind} \cdot F \cdot FC_{ind}$		$A_{\rm gd} = \left(J_E + J_C - \sqrt{(J_E + J_C)^2 - 4 \cdot \theta \cdot J_E \cdot J_C}\right) / (2 \cdot I_E) + \frac{1}{2} \left(J_E + J_E\right) $	$ \theta \rangle \cdot daylength$	$\left { m ~} J_E = C_1 \cdot {{ m APAR}\over{ m daylength}} ight $	$\left \ C_1 = lpha_{C_3} \cdot T_{ ext{stress}} \cdot \left(rac{p_i - \Gamma_*}{p_i + 2 \cdot \Gamma_*} ight) ight.$
III	lant physiology	mol m ⁻² day ⁻¹							${ m gC}~{ m m}^{-2}~{ m day}^{-1}$		mol C m ⁻² hour	
1116	P	APAR	$FAPAR_{PFT}$	$lpha_{ m apFT}$	$phen_{FT}$	$F_{ m SnowGC}$	F P C PFT Cfstem		$A_{ m gd}$		J_E	
courcepointing sum as or cmin, cwater, cice		absorbed photosynthetically active radiation	fractional absorbed photosynthetically active radiation	scaling factor to scale leaf-level photosynthesis in LPJmL4 to biome level	daily phenological status	fraction of snow in the green canopy	nonage projective cover of the respective PF1 masking of the ground by stems and branches	without leaves	gross photosynthesis rate		light-limited photosynthesis rate	for C ₃ -Photosynthesis

Parameter/Variable	abbreviation	unit	Equation
for C_4 -Photosynthesis			$C_1 = lpha_{C_d} \cdot T_{ m stress} \cdot \left(rac{\lambda}{1-\lambda} ight)$
		¢	$\nabla = \frac{1}{2} = $
internal partial pressure of CO ₂ ambient partial pressure of CO ₂ parameter describing the ratio of the intercellular	$p_i \ p_a$	Fa Pa	$p_i = \lambda \cdot p_a$
to the ambient CO_2 concentration	<		
PFT-specific temperature inhibition function intrinsic quantum efficiencies for CO ₂ uptake in	$T_{ m stress}$ $lpha_{C_3}$		
C ₃ plants			
intrinsic quantum efficiencies for CO_2 uptake in C_4 plants	α_{C_4}		
CO ₂ compensation point	Γ.		$\Gamma_* = \frac{[O_2]}{2\cdot T}$
specificity factor	Τ		$ au = rac{V_c \cdot K_C}{V_m \cdot K_O}$
Michaelis-Menten constant of CO_2	K_C		
Michaelis-Menten constant of O_2	$\stackrel{Ko}{\circ}$	ſ	
partial pressure of U ₂	U2 1	$rac{1}{r}$ mol r mol r mol r	$\Lambda = $
nuoisco-muneu puotosyntuesis tate mavimum Rubisco canacity	DC DC	$m C m^{-2} d_{av} -1$	$egin{aligned} egin{aligned} egin{aligned} eta C &= C2 \cdot Vm \ V &= rac{1}{2} \cdot rac{C_1}{C_1} \left(\left(9 \cdot heta - 1 ight) \cdot s - \left(3 \cdot heta \cdot s - heta ight) \cdot \sigma ight) \cdot \sigma ight) \cdot \Delta \mathrm{P} \Delta \mathrm{R} \end{aligned}$
	- m	go III uuy	$Vm = \frac{b - C_2}{1 - C_2} \left(\frac{(2 - b - 1)}{2} - \frac{(2 - b - 3)}{2} - \frac{(2 - b - 3)}{2$
	Q		$\sigma = \sqrt{1 - \frac{C_2 - \theta_S}{C_2 - \theta_S}}$
	${\mathcal S}$		$s = 24/\mathrm{daylength} \cdot b$
	C_2		$C_2 = rac{p_{i-1} *}{p_i + K_C \left(1 + rac{ O_2 }{ V_2 } ight)}$
leaf respiration	$R_{ m leaf}$	${ m gC}~{ m m}^{-2}~{ m day}~^{-1}$	$R_{\text{leaf}} = V_m \cdot b$
daily net photosynthesis	$A_{ m nd}$	$gC m^{-2} day^{-1}$	
dark respiration	R_d	$gC m^{-2} day^{-1}$	$R_d = (1 - \mathrm{daylength}/24) \cdot R_{\mathrm{leaf}}$
daily net daytime photosynthesis	$A_{ m dt}$	$gC m^{-2} day^{-1}$	$A_{ m dt} = A_{ m nd} + R_d$
canopy conductance	g_c	mm s ⁻¹	$g_c = g_{\min} + \frac{1.02A_{dt}}{p_a(1-\lambda)}$
PFT-specific minimum canopy conductance	g_{\min}	$\mathrm{mm}\mathrm{s}^{-1}$	د د د
daily phenology status	p_{f}		$phenpFT = f_{cold} \cdot f_{light} \cdot f_{water} \cdot f_{heat}$
united by cold temperatures relation to light	f_{cold}		
relation to ugue	$f_{f_{max}}$		
limited by heat stress	$f_{ m heat}$		
inflection point of the respective logistic function	b_x		
slope of the respective logistic function	sl_x		
change rate parameter	$ au_x$		
CN ratio of above-ground tissue	$\mathrm{CN}_{\mathrm{sapwood}}$		
CN ratio of below-ground tissue	CNroot	(
Temperature	$T \left(T_{\mathrm{air}}, T_{\mathrm{soil}} \right)$	\mathcal{D}_{\circ}	

Parameter/Variable	abbreviation	unit	Equation
phenology	phenper		
autotrophic respiration aboveground tissue	$R_{ m sapwood}$	${ m gC}~{ m m}^{-2}~{ m day}^{-1}$	$R_{ ext{sapwood}} = P \cdot r_{ ext{PFT}} \cdot k \cdot rac{C_{ ext{sapwood}, ext{ind}}}{CNNNNNOd} \cdot g(T_{ ext{air}})$
autotrophic respiration belowground tissue	$R_{ m root}$	${ m gC}~{ m m}^{-2}~{ m day}^{-1}$	$R_{ ext{root}} = P \cdot r_{ ext{PFT}} \cdot k \cdot rac{C_{ ext{root}, ext{ind}}}{CN \dots t} \cdot g(T_{ ext{soil}}) \cdot ext{phenpFT}$
respiration rate	$r_{\rm PFT}$	$gC gN^{-1} day \ ^{-1}$	
temperature function	g(T)		$g(T) = \exp\left 308.56 \cdot \left(\frac{1}{56.02} - \frac{1}{(T+46.02)}\right)\right $
leaf respiration	$R_{ m leaf}$		$R_{\text{leaf}} = V_m \cdot b$
static parameter	p	- C	
daily net primary production	NPP	$gC m^{-2} day^{-1}$	$NPP = 0.75 \cdot (GPP - R_{leaf} - R_{sapwood} - R_{root})$
	Plant fu	nctional types (PFT)	
leaf mass	$C_{\rm leaf.ind}$	$gC \cdot ind^{-1}$	
fine root mass	$C_{\mathrm{root,ind}}$	$gC \cdot ind^{-1}$	
sapwood mass	$C_{ m sapwood,ind}$	$gC \cdot ind^{-1}$	
heartwood mass	$C_{ m heartwood,ind}$	g_{C} ind $^{-1}$	
average individual leaf area	${\sf LA}_{ m ind}$	$m^2 \cdot ind^{-1}$	$LA_{ind} = k_{la:sa} \cdot SA_{ind}$
ratio of leaf to sapwood area	$k_{ m la:sa}$		
sapwood cross-sectional area	${ m SA}_{ m ind}$	c	
grass leaf biomass	C_{leaf}	gCm^{-2}	$C_{\text{leaf}} = \ln_{\max} \cdot \omega \cdot C_{\text{roots}}$
leaf-to-root mass ratio	lr		$\mathrm{lr} = \mathrm{lr}_p \cdot W_{\mathrm{supply}}/W_{\mathrm{demand}}$
maximum leaf-to-root mass ratio	lr_{max}		
tree height	Н	ш	$H = k_{ m allom2} \cdot D^{k_{ m allom3}}$
stem diameter	D	, m	
crown area	CA_{ind}	$m^2 \cdot ind^{-1}$	$\operatorname{CA}_{\operatorname{ind}} = k_{\operatorname{allom1}} \cdot D^{k_{\operatorname{rp}}}$
constant wood density	MD	${ m gC}{ m m}^{-2}$	$H = rac{\mathrm{Csapwood,ind}\cdot \mathrm{Klarsa}}{\mathrm{WD}\cdot\mathrm{Cleaf,ind}\cdot\mathrm{SLA}}$
individual leaf area index	$\mathrm{LAI}_{\mathrm{ind}}$		$\mathrm{LAI}_{\mathrm{ind}} = rac{C_{\mathrm{leaf}},\mathrm{ind}\cdot\mathrm{SLA}}{C\mathrm{A}_{\mathrm{ind}}}$
specific leaf area	SLA	${ m m}^2~{ m gC}^{-1}$	$\mathrm{SLA} = rac{2 imes 10^{-4}}{DM_C} \cdot rac{10}{10} (eta_0 - eta_1 \cdot \log(lpha_\mathrm{leaf}) / \log(10)$
leaf longevity	$lpha_{ m leaf}$	months	
parameter for SLA calculation	eta_0		Kattge et al. (2011)
parameter for SLA calculation	eta_1		Kattge et al. (2011)
dry matter carbon content of leaves	DM_C		Kattge et al. (2011)
foliar projective cover	${ m FPC}_{ m ind}$	c	$FPC_{ind} = 1 - exp(-k \cdot LAI_{ind})$
mean number of individuals per unit area	Ь.	m^{-2}	
establishment rate	$k_{ m est}$	saplings $m^{-2} a^{-1}$	
background mortality rate	mortgreff	ind $m^{-2} a^{-1}$	$\operatorname{mort}_{\operatorname{greff}} = P \cdot \frac{\kappa_{\operatorname{mort1}}}{1 + k_{\operatorname{mort2}} \cdot \operatorname{greff}}$
yearly growth efficiency	greff		
asymptotic maximum mortality rate	$k_{ m mort1}$		

Parameter/Variable	abbreviation	unit	Equation
parameter governing the slope of the relationship	$k_{ m mort2}$		
between mortainly and growin children.	$\mathrm{mort}_{\mathrm{heat}}$	ind $m^{-2} a^{-1}$	$\operatorname{mort}_{\operatorname{heat}} = P \cdot \frac{\operatorname{gdd}_{\operatorname{tw}}}{\operatorname{two-two}}$
parameter value of the heat damage function	$\mathrm{tw}_{\mathrm{PFT}}$		Lidawa
temperatures above threshold (accumulated)	$\mathrm{gdd}_{\mathrm{tw}}$	°C	;
Nesterov index	$NI(N_d)$		$\mathrm{NI}(N_d) = \sum_{ifP(d) < 3\mathrm{mm}} T_{\mathrm{max}}(d) \cdot \left(T_{\mathrm{max}}(d) - T_{\mathrm{dew}}(d)\right)$
daily maximum temperature	$T_{ m max}$	D°	
dew-point temperature	$T_{ m dew}$	°,	
positive temperature day	d		
probability of fire spread	$P_{ m spread}$		$P_{ m spread} = \left\{ egin{array}{cc} 1 - rac{\omega_{\Omega}}{m_{e}}, & \omega_{0} \leq m_{e} \ m_{e} & m_{o} > m_{o} \end{array} ight.$
litter moisture	ω_0		
moisture of extinction	m_e		
fire danger index	FDI		$FDI = \max\left\{0, 1 - \frac{1}{m} \cdot \exp\left(-NI \cdot \sum_{n=1}^{n} \frac{\alpha_n}{n}\right)\right\}$
slope of the probability risk function	α_p		
Human-caused ignitions	$n_{h,\mathrm{ig}}$	c	$n_{h,\mathrm{ig}} = P_D \cdot k(P_D) \cdot a(N_D) / \underline{100}$
population density	P_D	ind $\rm km^{-2}$	$k(P_D) = 30.0 \cdot \exp(-0.5 \cdot \sqrt{P_D})$
propensity of people to produce ignition events	$a(N_D)$	ignitions individual ⁻¹ d ⁻¹	$a(N_D) = rac{N_{h, m obs}}{t_{ m obs}. m LFS \cdot P_D}$
average number of human-caused fires	$N_{h, \mathrm{obs}}$		
observation years	$t_{ m obs}$		
grid cell area	A	m^2	$A_b = \min_{\pi}(E(n_{ m ig}) \cdot { m FDI} \cdot A_f, A)$
mean fire area	a_f	ha	$\overline{a_f} = \frac{4.L_B}{10000} \cdot D\tilde{T}$
independent estimates of the numbers of lightning	$n_{l,\mathrm{ig}}$		00001
human-caused ignition events	$n_{h,\mathrm{ig}}$		
forward rate of spread	$\mathrm{ROS}_{f,\mathrm{surface}}$	${ m m}~{ m min}^{-1}$	$\text{ROS}_{f,\text{surface}} = \frac{I_R. \dot{\epsilon} \cdot (1 + \Phi_w)}{\rho_b. \epsilon \cdot Q_{1v}}$
reaction intensity	I_R	$kJ m^{-2} min^{-1}$	0
propagating flux ratio	ç		
multiplier that accounts for the effect of wind	Φ_w	¢	
fuel bulk density	ρ_b	$\mathrm{kg}\mathrm{m}^{-3}$	
effective heating number	E		
heat of pre-ignition	$Q_{ m ig}$	kJ kg ⁻¹	
fire duration	$t_{ m fire}$	min	$t_{\rm fire} = \frac{241}{1+240 \cdot \exp(-11.06 \cdot { m FDI})}$
length to breadth ratio of elliptical fire	L_B		
length of major axis	D_T	m	$D_T = \mathrm{ROS}_{f,\mathrm{surface}} \cdot t_{\mathrm{fire}} + \mathrm{ROS}_{b,\mathrm{surface}} \cdot t_{\mathrm{fire}}$
surface as the backward rate of spread	ROS_b		
crown damage	CK		$P_m(\mathrm{CK}) = r_{\mathrm{CK}} \cdot \mathrm{CK}^p$

Parameter/Variable	abbreviation	unit	Equation
resistance factor	$r_{ m CK}$	0-1	
	Crop fu	nctional types (CFT)	
phenological heat unit	DHU		$\left \begin{array}{c} \text{PHU} = -0.1081 \cdot (\text{sdate} - \text{keyday})^2 + 3.1633 \cdot (\text{sdate} - \text{keyday}) + \text{PHU}_{\text{ave}} \cdot $
harvest indices heat units	HI _{opt} HU		
heat units accumulated phenological development stage	HU _{sum} fPHU		$HU_{sum} = \sum_{t'=sdate}^{t} HU_{t'} \cdot v_{rf} \cdot p_{rf}$ fPHU = HU _{sum} /PHU
reduction factor for vernalization reduction factor for photoperiod	$v_{ m rf}$ $p_{ m rf}$		$\begin{aligned} v_{\mathrm{rf}} &= (\mathrm{vdsum}_{-1} 10.0) / (\mathrm{PVD} - 10.0) \\ p_{\mathrm{rf}} &= (1 - p_{\mathrm{sens}}) \cdot \min(1, \max(0, (\mathrm{daylength} - p_b) / (p_s - p_b)) \end{aligned}$
day of solstice minimum base temperature for the accumulation	$\underset{T_{\mathrm{base_{low}}}}{\mathrm{keyday}}$		$p_b(p_b) = p_{sens}$
or near unit 20-year moving average annual temperature CFT-specific scaling factor Vernalization requirements	${ m atemp}_{20} { m pf}_{ m CFT} { m PVD}$		$\label{eq:PVD} \begin{split} PVD = vern_{date20} - sdate - pPVD_{CFT}, 0 \leq PVD \leq 0 \end{split}$
CFT-specific vernalization factor julian day of the year of sowing multi-annual average of the first day of the year when temperatures rise above a CFT-specific ver-	pPVD _{CFT} sdate vern _{date20}		8
effective number of vernalizing days	vdsum		
parametrized sensitivity to photoperiod duration of daylight (sunrise to sunset)	$p_{ m sens}$ daylength	hours	
base photoperiod	p_b	hours	
aun auon puotoperioo maximum leaf area index	$p_s \ { m LAI}_{ m max}$	SIDUL	
fraction of total biomass that is allocated to the	f_{root}		$f_{\rm root} = \frac{0.4 - (0.3.{\rm fPHU}) \cdot {\rm wdf}}{{\rm wdf} + {\rm exp}(6.13 - 0.0883 \cdot {\rm wdf})}$
roots ratio between accumulated daily transpiration and accumulated daily water demand	wdf		
onset of senescence turning points in the phenological development	$\inf_{c, c, c}$		
	fPHU_k		

Parameter/Variable	abbreviation	unit.	Equation
corresponding fraction of the maximum green LAI onset of senescence as point in the phenological development	${ m fLAI}_{{ m max}_{c}}, { m fLAI}_{{ m max}_{k}}, { m fPHU}_{{ m sen}}$		$\text{fLAI}_{\max} = \frac{\text{fPHU}_{e-\text{fPHU}_{e}}}{\text{fPHU}_{+c\cdot(\frac{e}{k})} \frac{\text{fPHU}_{e-\text{fPHU}_{e}}}{\text{fPHU}_{e} - \text{fPHU}_{c}}}$
daily increment maximum green LAI LAI	${ m LAI}_{ m inc,t}$ fLAI $_{ m max}$ LAI LAI LAI		$\begin{split} \mathrm{LAI}_{\mathrm{inc},t} &= (\mathrm{fLAI}_{\mathrm{max}t} - \mathrm{fLAI}_{\mathrm{max}t-1}) \cdot \mathrm{LAI}_{\mathrm{max}} \\ \mathrm{LAI}_t &= \sum_{t'=\mathrm{sdate}}^{t} \mathrm{LAI}_{\mathrm{inc}_{t'}} \cdot \omega & \vdots &$
harvest index storage organ	HI ${ m fHI}_{ m opt}$	gC m ⁻²	$\begin{split} \mathrm{HI} &= \begin{cases} \mathrm{ItH}_{\mathrm{opt}} \cdot \mathrm{HL}_{\mathrm{opt}} &, & \mathrm{II} \mathrm{ItH}_{\mathrm{opt}} \geq 1 \\ \mathrm{fHI}_{\mathrm{opt}} \cdot (\mathrm{HI}_{\mathrm{opt}} - 1.0) + 1.0, & \mathrm{otherwise} \\ \mathrm{fHI}_{\mathrm{opt}} &= 100 \cdot \mathrm{fPHU} / (100 \cdot \mathrm{fPHU} + \mathrm{exp}(11.1 - 10.0 \cdot \mathrm{fPHU})) \\ \mathrm{fPHU}) \\ C_{\mathrm{so}} &= \mathrm{HI} \cdot (C_{\mathrm{leaf}} + C_{\mathrm{so}} + C_{\mathrm{pool}}) \end{cases}$
	Soil and	عالم المعالم ال	
heterotrophic respiration carbon pool size of soil or litter per layer decomposition rates for litter	$egin{array}{c} R_h \ C_l \ k \end{array}$	$gC m^{-2} day^{-1}$ $gC m^{-2} layer^{-1}$ $a^{-1} layer^{-1}$	$\begin{split} R_h &= R_{h,\text{litter}} + R_{h,\text{fastSoil}} + R_{h,\text{slowSoil}} \\ \frac{dC_{(1)}}{dt} &= -k_{(1)} \cdot C_{(1)} \\ k_{(1,p)} &= \frac{1}{T_{0(1,2)}} \cdot g(T_{\text{soil}}) \cdot f(\theta) \end{split}$
mean residence time soil volume fraction of the layer fraction of soil organic carbon per layer relative share of the layer <i>l</i> soil layer depth	$egin{array}{c} au_{10} \ heta \ $	a mm	$\operatorname{Cf}_{(l)} = 10^{k_{\operatorname{soc}} \cdot \log_{10}(d_{(l)})}$
total amount of soil carbon mean annual decomposition rate mean decomposition rate for each PFT	$C_{ m stotal}$ $k_{ m mean}$ $k_{ m meanp_{FT}}$	$gC gC a^{-1}$	$egin{aligned} C_{(l)} &= \sum_{\mathrm{PFT}=1}^{n_{\mathrm{PFT}}} d_{(l)}^{k_{\mathrm{soc}\mathrm{CPFT}}} \cdot C_{\mathrm{stotal}} \ k_{\mathrm{mean}_{\mathrm{FT}}} &= \sum_{l=1}^{n_{\mathrm{soll}}} (k_{\mathrm{mean}_{(l)}} \cdot \mathrm{Cf}_{(l,\mathrm{PFT})}) \end{aligned}$
annual carbon shift rates infiltration rate of rain water into the soil	$C_{ m shift}$ infil	a ⁻¹ mm	$C_{ m shift}_{(l, m PFT)} = rac{Cf_{l, m PFT}, \kappa_{ m mean}(l)}{\kappa_{ m mean}} \sum_{k=0}^{N} \frac{V_{l, m PFT}, k_{ m mean}(l)}{(l)}$ infil = $ m Pr \cdot \sqrt{1 - rac{SW_{(l)} - WPW_{(l)}}{W_{ m sat}_{(0)} - WPW_{(l)}}}$
		Vater balance	
soil water content at saturation soil water content at wilting point total actual soil water content	$W_{ m pwp}$	um mm	

Parameter/Variable	abbreviation	unit	Equation
daily precipitation soil water content between saturation and field ca-	Pr FW	mm	routed in 4 mm portion in the infiltration equation
pacity soil layer	1		
travel time through the soil layer	\mathbf{TT}	hours	$TT_{(l)} = \frac{FW_{(l)}}{HC_{(l)}}$
hydraulic conductivity	HC	${ m mm}~{ m h}^{-1}$	$ ext{HC}_{(l)} = K_{s_{(l)}} \cdot \left(rac{ ext{SW}_{(l)}}{W_{ ext{sat}_{(l)}}} ight)^{eta_{(l)}}$
saturated conductivity	K_s	${ m mm}~{ m h}^{-1}$	
percolation	perc	mm day $^{-1}$	$ ext{perc}_{(l)} = ext{FW}_{(t,l)} \cdot \left[1 - ext{exp}\left(rac{-\Delta t}{ ext{TT}_{(t,l)}} ight) ight]$
Interception	Ι	mm day^{-1}	$I = \sum_{\text{pFT}=1}^{n_{\text{PFT}}} I_{\text{PFT}} \left[L_{\text{PFT}} + LAI_{\text{PFT}} + Pr$
PFT-specific interception storage parameter PFT-specific leaf area per unit of prid cell area	I _{PFT} LAIden		
daily precipitation	Pr	$mm day^{-1}$	
Soil evaporation	E_s	mm day^{-1}	
vegetation cover	f_v	%	
evaporation-available soil water	w_{evap}		
plant transpiration	E_T	mm day ^{-1}	$E_T = \min(S, D) \cdot f_v$
daily water stress	3		
Soil water supply	S E		$S = E_{\max} \cdot w_r \cdot \text{phenpFT}$
PFI-specific maximum water transport capacity	E_{\max}	mm day 🗄	- - - - -
water accessible for plants	w_r		$w_r = \sum_{l=1}^{n_{soli}-1} w_l \cdot \text{rootdist}_l$
relative water content at field capacity	m		:
fraction of roots from surface to z	rootdist		$rootdist = 1 - \beta_{root}^z$
	2 5		
root distribution parameter fraction of water that corresponds to their foliage	$eta_{ m PerT}$		$S_{ m PFT} = S \cdot { m FPC}_{ m PFT}$
projected cover			
root biomass	$\mathrm{bm_{root}}$	${ m gC}{ m m}^{-2}$	
Atmospheric demand	D	1	$D = (1.0 - \text{wet}) \cdot E_{\text{eq}} \cdot \alpha_m / (1 + g_m / g_c)$
maximum Priestley-Taylor coefficient	α_m		•
conductance scaling factor	g_m		
fraction of $E_{\rm eq}$ that was used to vaporize inter-	wet		
cepted water from the canopy			
homogeneous segments of length	L		
outflow of a linear reservoir cascade	$Q_{ m out}$		$Q_{\mathrm{out}}(t) = Q_{\mathrm{in}} \cdot rac{1}{K \cdot \Gamma(n)} \left(rac{t}{K} ight)^{n-1} \cdot \exp(-t/K)$
instantaneous inflow	$Q_{ m in}$		

gamma function $\Gamma(n)$ K gamma functionstorage parameter K storage parameter K linear reservoir segment of length L linear reservoir segment of length L flow velocity v mount of water required in the upper 50 cm soil NIR amount of water w_a anount of water w_a frozen soil water w_a frozen soil water w_a water at field capacity E_c water at field capacity E_c mm W_{fe} mm w_a frozen soil water w_a water at field capacity E_c muce efficiency E_c application requirements E_c gross irrigation requirements E_c storage buffer w_a water distribution uniformity scalar w_{fw} water distribution uniformity scalar w_{fw} anual variation coefficients for precipitation CV_{prec}	$ \begin{array}{c c} \Gamma(n) \\ K \\ L \\ L \\ w \\ w \\ m \ m \ s^{-1} \\ m \ s^{-1} \\ m \ m \ M \ M \ M \ M \ M \ M \ M \ M \$
gamma function $\Gamma(n)$ K storage parameter K K incar reservoir segment of length L km flow velocity L km flow velocity v w flow velocity w w^{-1} flow velocity w w^{-1} flow velocity w w^{-1} flow velocity w w^{-1} flow velocity w^{-1} ms^{-1} flow velocity w^{-1} ms^{-1} flow velocity w^{-1} ms^{-1} amount of water required in the upper 50 cm soil NIR amount of water w_{a} mm frozen soil water w_{a} mm storage buffer w_{a} mm storage buffer w_{a} mm <t< td=""><td>$\begin{array}{c c} \Gamma(n) \\ K \\ L \\ L \\ w \\ m \ s^{-1} \\ m \ s^{-1} \\ n \ m \ s^{-1} \end{array} \begin{array}{c c} K = \frac{L}{v} \\ K = \frac{L}{v} \\ m \ m \ s^{-1} \\ it \\ n \ mn \end{array} \begin{array}{c c} N \ m \ m \ s^{-1} \\ N \ m \ mn \ N \ m \ m \ s^{-1} \\ N \ m \ m \ s^{-1} \\ N \ m \ s^{-1} \ m \ s^{-1} \\ N \ m \ s^{-1} \ m$</td></t<>	$ \begin{array}{c c} \Gamma(n) \\ K \\ L \\ L \\ w \\ m \ s^{-1} \\ m \ s^{-1} \\ n \ m \ s^{-1} \end{array} \begin{array}{c c} K = \frac{L}{v} \\ K = \frac{L}{v} \\ m \ m \ s^{-1} \\ it \\ n \ mn \end{array} \begin{array}{c c} N \ m \ m \ s^{-1} \\ N \ m \ mn \ N \ m \ m \ s^{-1} \\ N \ m \ m \ s^{-1} \\ N \ m \ s^{-1} \ m \ s^{-1} \\ N \ m \ s^{-1} \ m $
storage parameter K linear reservoir segment of length L kmlinear reservoir segment of length L kmflow velocity v w flow velocity w m flow velocity w w CFT-specific irrigation thresholditamount of water required in the upper 50 cm soilNIRamount of water w_a frozen soil water w_a storage buffer w_a water distribution uniformity scalar w_a <t< td=""><td>$\begin{array}{c c} K \\ L \\ L \\ w \\ w \\ \text{it} \\ \text{nm} \\ \text{nm} \\ \text{NIR} = W_{\text{fc}} - w_a - w_{\text{ice}}, \text{NIR} \ge 0 \\ \end{array}$</td></t<>	$ \begin{array}{c c} K \\ L \\ L \\ w \\ w \\ \text{it} \\ \text{nm} \\ \text{nm} \\ \text{NIR} = W_{\text{fc}} - w_a - w_{\text{ice}}, \text{NIR} \ge 0 \\ \end{array} $
linear reservoir segment of lengthLkm $K = \frac{1}{2}$ flow velocity v w $m s^{-1}$ $K = \frac{1}{2}$ flow velocity v $m s^{-1}$ $m s^{-1}$ $K = \frac{1}{2}$ CFT-specific irrigation thresholdit $m m$ $M s^{-1}$ amount of water required in the upper 50 cm soilNIR $m m$ $M m$ available soil water w_a $m m$ $m m$ frozen soil water w_a $m m$ $M m$ gross irrigation requirementsfrozenfrozenstorage buffer w_a $m m$ $m m$ storage buffer w_a $m m$ $m m$ <	$ \begin{array}{c ccc} L & \mbox{km} & K = \frac{L}{v} \\ v & \mbox{m} s^{-1} & \m$
flow velocity v $m s^{-1}$ CFT-specific irrigation thresholdit $m s^{-1}$ amount of water required in the upper 50 cm soilNIR $m m$ awailable soil water w_a $m m$ available soil water w_{ice} $m m$ frozen soil water w_{ice} $m m$ application requirements GIR $m m$ storage bufferstorage buffer w_{iw} water distribution uniformity scalar w_{iw} $m m$ annual variation coefficients for precipitation CV_{prec}	v $m s^{-1}$ v ititNIR = $W_{\rm fc} - w_a - w_{\rm ice},$ NIRmmNIR = $W_{\rm fc} - w_a - w_{\rm ice},$
CFT-specific irrigation thresholditamount of water required in the upper 50 cm soilNIRamount of water required in the upper 50 cm soilNIRavailable soil water w_a frozen soil water w_{ac} frozen soil water w_{ac} mm w_{re} application requirements E_c gross irrigation requirements GIR storage buffer w_{re} water distribution uniformity scalar d_u annual variation coefficients for precipitation CV_{prec}	if MIR mm $NIR = W_{fc} - w_a - w_{ice}$, $MIR \ge 0$
amount of water required in the upper 50 cm soilNIRmmNIR =available soil water w_a mmmmfrozen soil water w_a mmmmfrozen soil water w_{ice} mmmmwater at field capacity W_{ic} mm M_{ic} water at field capacity W_{ic} mm M_{ic} conveyance efficiency E_c mm AR application requirements AR mm AR =gross irrigation requirements GIR mm GIR =storage bufferstorage buffer w_{fw} mmwater distribution uniformity scalar w_{fw} mm GIR =annual variation coefficients for precipitation CV_{prec} CV_{prec}	oil NIR mm $\operatorname{NIR} = W_{\mathrm{fc}} - w_a - w_{\mathrm{ice}}, \mathrm{NIR} \ge 0$
available soil water w_a mmfrozen soil water w_{ice} mmfrozen soil water w_{ice} mmwater at field capacity W_{fc} mmwater at field capacity E_c mmconveyance efficiency E_c mmapplication requirements AR mmgross irrigation requirements GIR mmstorage bufferStore w_{tw} water distribution uniformity scalar w_{tw} mmanual variation coefficients for precipitation CV_{prec}	
frozen soil water $w_{\rm ice}$ mmwater at field capacity $W_{\rm fc}$ mmwater at field capacity $W_{\rm fc}$ mmconveyance efficiency E_c mmapplication requirements AR mmgross irrigation requirements GIR mmstorage bufferStore d_u water distribution uniformity scalar d_u mmannual variation coefficients for precipitation $CV_{\rm prec}$	w_a mm
water at field capacity $W_{\rm fc}$ mmconveyance efficiency E_c mmconveyance efficiency E_c mmapplication requirements AR mmgross irrigation requirements GIR mmgross irrigation requirements GIR mmstorage buffer $Store$ win water distribution uniformity scalar $u_u^{\rm fw}$ annual variation coefficients for precipitation $CV_{\rm prec}$	w _{ice} mm
conveyance efficiency E_c AR mm $AR =$ application requirements AR mm AR gross irrigation requirements GIR mm GIR storage buffer $Store$ mm GIR water distribution uniformity scalar d_u mm available free water w_{fw} mm annual variation coefficients for precipitation CV_{prec}	W _{fc} mm
application requirementsARmmAR=gross irrigation requirementsGIRmmGIR =storage bufferStoreStoreGIRwater distribution uniformity scalar d_u mmGIR =available free water $w_{\rm fw}$ mmannual variation coefficients for precipitation $CV_{\rm prec}$ mm	Ec
gross irrigation requirementsGIRmmGIR =storage bufferstorage bufferStore d_u GIR =water distribution uniformity scalar d_u mm mm available free water w_{fw} mm mmannual variation coefficients for precipitation CV_{prec} mm	AR AR AR $AR = W_{sat} - W_{fc} - W_{pwp}) \cdot d_u - w_{fw}, AR \ge 0$
storage bufferStorewater distribution uniformity scalar d_u available free water w_{fw} annual variation coefficients for precipitation CV_{prec}	GIR mm $\operatorname{GIR} = \frac{\operatorname{NIR} + \operatorname{AR} - \operatorname{Store}}{E_{a}}$
water distribution uniformity scalar d_u available free water $w_{\rm fw}$ mm annual variation coefficients for precipitation ${\rm CV}_{\rm prec}$	Store
available free water $w_{\rm fw}$ mm annual variation coefficients for precipitation $CV_{\rm prec}$	d_u
annual variation coefficients for precipitation CV _{prec}	w _{fw} mm
	CV _{prec}
annual variation coefficients for temperature CV _{temp}	CV_{temp}
biomass after the last harvest event MC_{leaf} gCm^{-2}	MC_{leaf} gCm^{-2}

References

- Asseng, S., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Kumar, S. N., Nendel, C., Leary, G. O., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., Williams, J. R., and Wolf, J.: Uncertainty in simulating wheat yields under climate change Supplementary Information, Nature Climate Change, doi:10.1038/NCLIMATE1916, 2013.
- Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A.-K., Muller, C., Naresh Kumar, S., Nendel, C., O/'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y.: Rising temperatures reduce global wheat production, Nature Clim. Change, 5, 143–147, doi:10.1038/nclimate2470, 2015.
- Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, M., Baron, C., Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A. R., Kersebaum, K. C., Kim, S.-H., Kumar, N. S., Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M. V., Sau, F., Shcherbak, I., Tao, F., Teixeira, E., Timlin, D., and Waha, K.: How do various maize crop models vary in their responses to climate change factors?, Global change biology, doi:10.1111/gcb.12520, 2014.
- Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth System Science Data, 5, 71–99, doi:10.5194/essd-5-71-2013, http://www. earth-syst-sci-data.net/5/71/2013/, 2013.
- Beer, C., Lucht, W., Gerten, D., Thonicke, K., and Schmullius, C.: Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), Global Biogeochem. Cycles, 21, GB1012, doi:10.1029/2006GB002760, 2007.
- Beringer, T., Lucht, W., and Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299–312, doi:10.1111/j.1757-1707.2010.01088.x, 2011.
- Biemans, H., Hutjes, R. W. a., Kabat, P., Strengers, B. J., Gerten, D., and Rost, S.: Effects of Precipitation Uncertainty on Discharge Calculations for Main River Basins, Journal of Hydrometeorology, 10, 1011–1025, doi:10.1175/2008JHM1067.1, 2009.

- Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. a., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resources Research, 47, W03 509, doi:10.1029/2009WR008929, 2011.
- Biemans, H., Speelman, L., Ludwig, F., Moors, E., Wiltshire, A., Kumar, P., Gerten, D., and Kabat, P.: Future water resources for food production in five South Asian river basins and potential for adaptation — A modeling study, Changing water resources availability in Northern India with respect to Himalayan glacier retreat and changing monsoon patterns: consequences and adaptation, 468–469, Supplement, S117–S131, doi:10.1016/j.scitotenv.2013.05.092, 2013.
- Boisier, J., de Noblet-Ducoudré, N., Pitman, A., Cruz, F., Delire, C., van den Hurk, B., van der Molen, M., Müller, C., and Voldoire, A.: Attributing the biogeophysical impacts of Land-Use induced Land-Cover Changes on surface climate to specific causes. Results from the first LUCID set of simulations, J. Geophys. Res, 117, D12 116, doi:10.1029/2011JD017106, 2012.
- Brovkin, V., van Bodegom, P. M., Kleinen, T., Wirth, C., Cornwell, W. K., Cornelissen, J. H. C., and Kattge, J.: Plant-driven variation in decomposition rates improves projections of global litter stock distribution, Biogeosciences, 9, 565–576, doi:10.5194/bg-9-565-2012, 2012.
- Cammarano, D., Rötter, R. P., Asseng, S., Ewert, F., Wallach, D., Martre, P., Hatfield, J. L., Jones, J. W., Rosenzweig, C., and Ruane, A. C.: Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO 2, Field Crops Research, 198, 80–92, doi:10.1016/j.fcr.2016.08.015, 2016.
- Dass, P., Müller, C., Brovkin, V., and Cramer, W.: Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes?, Earth System Dynamics, 4, 409– 424, doi:10.5194/esd-4-409-2013, 2013.
- de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B., Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Strengers, B. J., and Voldoire, A.: Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments, Journal of Climate, 25, 3261–3281, doi:10.1175/JCLI-D-11-00338.1, 2012.
- De Vries, D.: The physics of plant environments, Environmental control of plant growth, pp. 5–22, 1963.
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597, doi:10.1002/qj.828, http: //dx.doi.org/10.1002/qj.828, 2011.
- Deryng, D., Elliott, J., Folberth, C., Muller, C., Pugh, T. A. M., Boote, K. J., Conway, D., Ruane, A. C., Gerten, D., Jones, J. W., Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H., and Rosenzweig, C.: Regional disparities in the benefi-

cial effects of rising CO_2 concentrations on crop water productivity, Nature Clim. Change, advance online publication, doi:10.1038/nclimate2995, 2016.

- Dietrich, J. P., Schmitz, C., Müller, C., Fader, M., Lotze-Campen, H., and Popp, A.: Measuring agricultural land-use intensity – A global analysis using a modelassisted approach, Ecological Modelling, 232, 109–118, doi:10.1016/j.ecolmodel.2012.03.002, 2012.
- Durand, J.-L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H. J., Ruane, A. C., Rosenzweig, C., Jones, J., Ahuja, L., Anapalli, S., Basso, B., Baron, C., Bertuzzi, P., Biernath, C., Deryng, D., Ewert, F., Gaiser, T., Gayler, S., Heinlein, F., Kersebaum, K. C., Kim, S.-H., and M\, C.: How accurately do maize crop models simulate the interactions of atmospheric CO₂ concentration levels with limited water supply on water use and yield?, European Journal of Agronomy, pp. –, doi:https://doi.org/10.1016/j.eja.2017.01.002, 2017.
- Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production under climate change, Proceedings of the National Academy of Sciences, 111, 3239–3244, doi:10.1073/pnas.1222474110, http: //www.pnas.org/content/111/9/3239.abstract, 2014.
- Fader, M., Rost, S., Müller, C., Bondeau, A., and Gerten, D.: Virtual water content of temperate cereals and maize: Present and potential future patterns, Journal of Hydrology, 384, 218–231, doi:10.1016/j.jhydrol.2009.12.011, 2010.
- Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrology and Earth System Sciences Discussions, 8, 483–527, doi:10.5194/hessd-8-483-2011, 2011.
- Fader, M., Gerten, D., Krause, M., Lucht, W., and Cramer, W.: Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints, Environmental Research Letters, 8, 014 046, doi:10.1088/1748-9326/8/1/014046, 2013.
- Fader, M., von Bloh, W., Shi, S., Bondeau, A., and Cramer, W.: Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model, Geoscientific Model Development, 8, 3545–3561, doi:10.5194/gmd-8-3545-2015, 2015.
- FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.2)., http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/, 2012.
- Forkel, M., Carvalhais, N., Schaphoff, S., v. Bloh, W., Migliavacca, M., Thurner, M., and Thonicke, K.: Identifying environmental controls on vegetation greenness phenology through model–data integration, Biogeosciences, 11, 7025–7050, doi:10.5194/bg-11-7025-2014, http://www.biogeosciences.net/11/7025/2014/, 2014.
- Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., and Carvalhais, N.: Codominant water control on global interannual variability and trends in land

surface phenology and greenness, Global Change Biology, 21, 3414–3435, doi:10.1111/gcb.12950, 2015.

- Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., and Reichstein, M.: Enhanced seasonal CO₂ exchange caused by amplified plant productivity in northern ecosystems, Science, 351, 696, doi:10.1126/science.aac4971, http://science.sciencemag.org/content/351/6274/696.abstract, 2016.
- Franck, S., von Bloh, W., Müller, C., Bondeau, A., and Sakschewski, B.: Harvesting the sun: New estimations of the maximum population of planet Earth, Ecological Modelling, 222, 2019–2026, doi:10.1016/j.ecolmodel.2011.03.030, 2011.
- Gerten, D., Schaphoff, S., and Lucht, W.: Potential future changes in water limitations of the terrestrial biosphere, Climatic Change, 80, 277–299, doi:10.1007/s10584-006-9104-8, 2007.
- Gerten, D., Luo, Y., Le Maire, G., Parton, W. J., Keough, C., Weng, E., Beier, C., Ciais, P., Cramer, W., and Dukes, J. S.: Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14, 2365– 2379, doi:10.1111/j.1365-2486.2008.01651.x, 2008a.
- Gerten, D., Rost, S., von Bloh, W., and Lucht, W.: Causes of change in 20th century global river discharge, Geophysical Research Letters, 35, 1–5, doi:10.1029/2008GL035258, 2008b.
- Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M., and Waha, K.: Global water availability and requirements for future food production, Journal of Hydrometeorology, p. 110531121709055, doi:10.1175/2011JHM1328.1, 2011.
- Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., and Pastor, A. V.: Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements, Current Opinion in Environmental Sustainability, 5, 551– 558, doi:10.1016/j.cosust.2013.11.001, 2013a.
- Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z. W., Rastgooy, J., Warren, R., and Schellnhuber, H. J.: Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems, Environmental Research Letters, 8, 034 032, doi:10.1088/1748-9326/8/3/034032, 2013b.
- Gumpenberger, M., Vohland, K., Heyder, U., Poulter, B., Macey, K., Anja Rammig, Popp, A., and Cramer, W.: Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD, Environmental Research Letters, 5, 014 013, doi:10.1088/1748-9326/5/1/014013, 2010.
- Haberl, H., Erb, K.-H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., Plutzar, C., and Steinberger, J. K.: Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields, Biomass and bioenergy, 35, 4753–4769, doi:10.1016/j.biombioe.2011.04.035, 2011.
- Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S. N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G. P., and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results, Journal of Hydrometeorology, 12, 869–884, doi:10.1175/2011JHM1324.1, 2011.
- Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated highresolution grids of monthly climatic observations – the CRU

Schaphoff et al.: SI-LPJmL4 – Part 1: Model description

TS3.10 Dataset, International Journal of Climatology, 34, 623–642, doi:10.1002/joc.3711, 2014.

- Haxeltine, A. and Prentice, I. C.: A General Model for the Light-Use Efficiency of Primary Production, Functional Ecology, 10, 551–561, doi:10.2307/2390165, 1996.
- Heyder, U., Schaphoff, S., Gerten, D., and Lucht, W.: Risk of severe climate change impact on the terrestrial biosphere, Environmental Research Letters, 6, 034 036, doi:10.1088/1748-9326/6/3/034036, http://stacks.iop.org/1748-9326/6/i=3/a= 034036, 2011.
- Jägermeyr, J., Gerten, D., Lucht, W., Hostert, P., Migliavacca, M., and Nemani, R.: A high-resolution approach to estimating ecosystem respiration at continental scales using operational satellite data, Global change biology, 20, 1191–1210, doi:10.1111/gcb.12443, 2014.
- Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrology and Earth System Sciences, 19, 3073–3091, doi:10.5194/hess-19-3073-2015, 2015.
- Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and Rockström, J.: Integrated crop water management might sustainably halve the global food gap, Environmental Research Letters, 11, 025 002, doi:10.1088/1748-9326/11/2/025002, 2016.
- Jägermeyr, J., Pastor, A., Biemans, h., and Gerten, D.: Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation, Nature Communications, 8, doi:10.1038/ncomms15900, 2017.
- Jiang, Y., Zhuang, Q., Schaphoff, S., Sitch, S., Sokolov, A., Kicklighter, D., and Melillo, J.: Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model, Ecology and Evolution, 2, 593–614, doi:10.1002/ece3.85, 2012.
- Jung, M., Verstraete, M., Gobron, N., Reichstein, M., Papale, D., Bondeau, A., Robustelli, M., and Pinty, B.: Diagnostic assessment of European gross primary production, Global Change Biology, 14, 2349–2364, doi:10.1111/j.1365-2486.2008.01647.x, 2008.
- Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., and De Jeu, R.: Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954, doi:10.1038/nature09396, 2010.
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bulletin of the American Meteorological Society, 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, https://doi.org/10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2, 1996.
- Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van BODEGOM, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-

Bares, J., Chambers, J. Q., Chapin Iii, F. S., Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, Ü., Nöllert, S., Nüske, A., Ogava, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J.-F., Swaine, E., Swenson, N., Thompson, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E., and Wirth, C.: TRY - a global database of plant traits, Global Change Biology, 17, 2905-2935, doi:10.1111/j.1365-2486.2011.02451.x, 2011.

- Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., Armas-Herrera, C. M., Beaudoin, N., Bindi, M., Charfeddine, M., Conradt, T., Constantin, J., Eitzinger, J., Ewert, F., Ferrise, R., Gaiser, T., Cortazar-Atauri, I. G. d., Giglio, L., Hlavinka, P., Hoffmann, H., Hoffmann, M. P., Launay, M., Manderscheid, R., Mary, B., Mirschel, W., Moriondo, M., Olesen, J. E., Öztürk, I., Pacholski, A., Ripoche-Wachter, D., Roggero, P. P., Roncossek, S., Rötter, R. P., Ruget, F., Sharif, B., Trnka, M., Ventrella, D., Waha, K., Wegehenkel, M., Weigel, H.-J., and Wu, L.: Crop rotation modelling—A European model intercomparison, European Journal of Agronomy, 70, 98–111, doi:10.1016/j.eja.2015.06.007, 2015.
- Konzmann, M., Gerten, D., and Heinke, J.: Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model, Hydrological Sciences Journal, 58, 88–105, doi:10.1080/02626667.2013.746495, 2013.
- Kummu, M., Gerten, D., Heinke, J., Konzmann, M., and Varis, O.: Climate-driven interannual variability of water scarcity in food production potential: a global analysis, Hydrology and Earth System Sciences, 18, 447–461, doi:10.5194/hess-18-447-2014, 2014.
- Langerwisch, F., Rost, S., Gerten, D., Poulter, B., Rammig, A., and Cramer, W.: Potential effects of climate change on inundation patterns in the Amazon Basin, Hydrol. Earth Syst. Sci., 17, 2247– 2262, doi:10.5194/hess-17-2247-2013, 2013.
- Lapola, D. M., Oyama, M. D., and Nobre, C. A.: Exploring the range of climate biome projections for tropical South America: The role of CO2 fertilization and seasonality, Global Biogeochem. Cycles, 23, GB3003, doi:10.1029/2008GB003357, 2009.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, Journal of Hydrology, 296, 1 – 22, doi:http://dx.doi.org/10.1016/j.jhydrol.2004.03.028, http://www.sciencedirect.com/science/article/pii/ S0022169404001404, 2004.

Schaphoff et al.: SI-LPJmL4 – Part 1: Model description

- Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., and Magome, J.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Frontiers in Ecology and the Environment, 9, 494–502, doi:10.1890/100125, 2011.
- Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., Martre, P., Ruane, A. C., Wallach, D., and Jones, J. W.: Similar estimates of temperature impacts on global wheat yield by three independent methods, Nature Climate Change, doi:10.1038/nclimate3115, 2016.
- Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and Lucht, W.: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach, Agricultural Economics, 39, 325–338, doi:10.1111/j.1574-0862.2008.00336.x, 2008.
- Lotze-Campen, H., Popp, A., Beringer, T., Müller, C., Bondeau, A., Rost, S., and Lucht, W.: Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade, Model-based Systems to Support Impact Assessment - Methods, Tools and Applications, 221, 2188–2196, doi:10.1016/j.ecolmodel.2009.10.002, 2010.
- Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W., Dukes, J. S., Emmett, B., Hanson, P. J., Knapp, A., Linder, S., Nepstad, D., and Rustad, L.: Modeled interactive effects of precipitation, temperature, and CO₂ on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14, 1986–1999, doi:10.1111/j.1365-2486.2008.01629.x, 2008.
- Maiorano, A., Martre, P., Asseng, S., Ewert, F., Müller, C., Rötter, R. P., Ruane, A. C., Semenov, M. A., Wallach, D., and Wang, E.: Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles, Field Crops Research, 202, 5–20, doi:10.1016/j.fcr.2016.05.001, 2017.
- Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., Boote, K. J., Ruane, A. C., Thorburn, P. J., and Cammarano, D.: Multimodel ensembles of wheat growth: many models are better than one, Global change biology, 21, 911–925, doi:10.1111/gcb.12768, 2015.
- Monfreda, C., Ramankutty, N., and Foley, J. a.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles, 22, 1–19, doi:10.1029/2007GB002947, 2008.
- Müller, C. and Lucht, W.: Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution, Journal of Geophysical Research: Atmospheres, 112, D06 105, doi:10.1029/2006JD007875, 2007.
- Müller, C. and Robertson, R. D.: Projecting future crop productivity for global economic modeling, Agricultural Economics, 45, 37– 50, doi:10.1111/agec.12088, 2014.
- Müller, C., Eickhout, B., Zaehle, S., Bondeau, A., Cramer, W., and Lucht, W.: Effects of changes in CO₂, climate, and land use on the carbon balance of the land biosphere during the 21st century, Journal of Geophysical Research: Biogeosciences, 112, doi:10.1029/2006JG000388, 2007.
- Müller, C., Elliott, J., and Levermann, A.: Food security: Fertilizing hidden hunger, Nature Clim. Change, 4, 540–541, doi:10.1038/nclimate2290, 2014.

- Müller, C., Elliott, J., Chryssanthacopoulos, J., Deryng, D., Folberth, C., Pugh, T. A., and Schmid, E.: Implications of climate mitigation for future agricultural production, Environmental Research Letters, 10, 125 004, doi:10.1088/1748-9326/10/12/125004, 2015.
- Müller, C., Stehfest, E., Minnen, J. G. v., Strengers, B., Bloh, W. v., Beusen, A. H. W., Schaphoff, S., Kram, T., and Lucht, W.: Drivers and patterns of land biosphere carbon balance reversal, Environmental Research Letters, 11, 044 002, doi:10.1088/1748-9326/11/4/044002, 2016.
- Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geoscientific Model Development, 10, 1403–1422, doi:10.5194/gmd-10-1403-2017, 2017.
- Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., van Engelen, V., Fischer, G., Jones, A., Montanarella, L., and Petri, M.: Harmonized world soil database, Food and Agriculture Organization of the United Nations, http:// www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/ harmonized-world-soil-database-v12/en/, 2009.
- Neumann, K., Verburg, P. H., Stehfest, E., and Müller, C.: The yield gap of global grain production: A spatial analysis, Agricultural Systems, 103, 316–326, doi:10.1016/j.agsy.2010.02.004, 2010.
- Neumann, K., Stehfest, E., Verburg, P., Siebert, S., Müller, C., and Veldkamp, T.: Exploring global irrigation patterns: A multilevel modelling approach, Agricultural Systems, 104, 703–713, doi:10.1016/j.agsy.2011.08.004, 2011.
- New, M., Hulme, M., and Jones, P.: Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate, Journal of Climate, 13, 2217–2238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2, 2000.
- Ostberg, S., Lucht, W., Schaphoff, S., and Gerten, D.: Critical impacts of global warming on land ecosystems, Earth System Dynamics, 4, 347–357, doi:10.5194/esd-4-347-2013, 2013.
- Ostberg, S., Schaphoff, S., Lucht, W., and Gerten, D.: Three centuries of dual pressure from land use and climate change on the biosphere, Environmental Research Letters, 10, 44011, doi:10.1088/1748-9326/10/4/044011, 2015.
- Piontek, F., Müller, C., Pugh, T. A. M., Clark, D. B., Deryng, D., Elliott, J., González, F. d. J. C., Flörke, M., Folberth, C., Franssen, W., Frieler, K., Friend, A. D., Gosling, S. N., Hemming, D., Khabarov, N., Kim, H., Lomas, M. R., Masaki, Y., Mengel, M., Morse, A., Neumann, K., Nishina, K., Ostberg, S., Pavlick, R., Ruane, A. C., Schewe, J., Schmid, E., Stacke, T., Tang, Q., Tessler, Z. D., Tompkins, A. M., Warszawski, L., Wisser, D., and Schellnhuber, H. J.: Multisectoral climate impact hotspots in a warming world, Proceedings of the National Academy of Sciences, 111, 3233–3238, doi:10.1073/pnas.1222471110, 2014.
- Pirttioja, N., Carter, T. R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski, P., Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain, M.-F., Dumont, B., Ewert, F., Ferrise, R., Francois, L., Gaiser, T., Hlavinka, P., Jacquemin,

Schaphoff et al.: SI-LPJmL4 – Part 1: Model description

I., Kersebaum, K. C., Kollas, C., Krzyszczak, J., Lorite, I. J., Minet, J., Minguez, M. I., Montesino, M., Moriondo, M., Müller, C., Nendel, C., Öztürk, I., Perego, A., Rodriguez, A., Ruane, A. C., Ruget, F., Sanna, M., Semenov, M. A., Slawinski, C., Stratonovitch, P., Supit, I., Waha, K., Wang, E., Wu, L., Zhao, Z., and Rötter, R. P.: Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces, doi:10.3354/cr01322, 2015.

- Pitman, A., de Noblet-Ducoudré, N., Cruz, F., Davin, E., Bonan, G., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., and Gayler, V.: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study, Geophysical Research Letters, 36, doi:10.1029/2009GL039076, 2009.
- Popp, A., Dietrich, J., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., and Edenhofer, O.: The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system, Environmental Research Letters, 6, 034 017, doi:10.1088/1748-9326/6/3/034017, 2011a.
- Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer, N., and Bodirsky, B.: On sustainability of bioenergy production: integrating co-emissions from agricultural intensification, Biomass & Bioenergy, 35, 4770–4780, doi:10.1016/j.biombioe.2010.06.014, 2011b.
- Porkka, M., Gerten, D., Schaphoff, S., Siebert, S., and Kummu, M.: Causes and trends of water scarcity in food production, Environmental Research Letters, 11, 015 001, doi:10.1088/1748-9326/11/1/015001, 2016.
- Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24, 1–24, doi:10.1029/2008GB003435, 2010.
- Poulter, B., Heyder, U., and Cramer, W.: Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests, Ecosystems, 12, 517–533, doi:10.1007/s10021-009-9238-4, 2009.
- Poulter, B., Aragão, L., Heyder, U., Gumpenberger, M., Heinke, J., Langerwisch, F., Rammig, A., Thonicke, K., and Cramer, W.: Net biome production of the Amazon Basin in the 21st century, Global Change Biology, 16, 2062–2075, doi:10.1111/j.1365-2486.2009.02064.x, 2010a.
- Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., and Cramer, W.: Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters, Global Change Biology, in press, doi:10.1111/j.1365-2486.2009.02157.x, 2010b.
- Poulter, B., Frank, D., Hodson, E., and Zimmermann, N.: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO₂ airborne fraction, Biogeosciences, 8, 2027–2036, doi:10.5194/bg-8-2027-2011, 2011.
- Prentice, C. I., Sykes, M. T., and Cramer, W.: A simulation model for the transient effects of climate change on forest landscapes, Ecological Modelling, 65, 51–70, doi:10.1016/0304-3800(93)90126-D, 1993.
- Pugh, T., Müller, C., Elliott, J., Deryng, D., Folberth, C., Olin, S., Schmid, E., and Arneth, A.: Climate analogues suggest limited potential for intensification of production on current crop-

lands under climate change, Nature Communications, 7, 12608, doi:10.1038/ncomms12608, 2016.

- Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W., Cramer, W., and Cox, P.: Estimating the risk of Amazonian forest dieback, New Phytologist, 187, 694–706, doi:10.1111/j.1469-8137.2010.03318.x, 2010.
- Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., and Khabarov, N.: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison, Proceedings of the National Academy of Sciences, 111, 3268–3273, doi:10.1073/pnas.1222463110, 2014.
- Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09 405, doi:10.1029/2007WR006331, 2008.
- Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockström, J.: Global potential to increase crop production through water management in rainfed agriculture, Environmental Research Letters, 4, 044 002, doi:10.1088/1748-9326/4/4/044002, 2009.
- Ruane, A. C., Hudson, N. I., Asseng, S., Camarrano, D., Ewert, F., Martre, P., Boote, K. J., Thorburn, P. J., Aggarwal, P. K., and Angulo, C.: Multi-wheat-model ensemble responses to interannual climate variability, Environmental Modelling & Software, 81, 86–101, doi:10.1016/j.envsoft.2016.03.008, 2016.
- Sakschewski, B., von Bloh, W., Huber, V., Müller, C., and Bondeau, A.: Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?, Ecological Modelling, 288, 103–111, doi:10.1016/j.ecolmodel.2014.05.019, 2014.
- Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., and Lucht, W.: Contribution of permafrost soils to the global carbon budget, Environmental Research Letters, 8, 014 026, doi:10.1088/1748-9326/8/1/014026, 2013.
- Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Forkel, M., Biemans, H., Gerten, D., Heinke, J., Jägermyer, J., Knauer, J., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: The LPJmL4 Dynamic Global Vegetation Model with managed Land: Part I - Description of a consistently calculated vegetation, hydrology and agricultural global model, Geoscientific Model Development, under Revision.
- Schierhorn, F., Muller, D., Beringer, T., Prishchepov, A. V., Kuemmerle, T., and Balmann, A.: Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus, Global Biogeochemical Cycles, 27, 1175–1185, doi:10.1002/2013gb004654, 2013.
- Siderius, C., Biemans, H., Wiltshire, A., Rao, S., Franssen, W. H. P., Kumar, P., Gosain, A. K., van Vliet, M. T. H., and Collins, D. N.: Snowmelt contributions to discharge of the Ganges, Science of the Total Environment, 468, S93–S101, doi:10.1016/j.scitotenv.2013.05.084, 2013.
- Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated land from 1900 to 2005, Hydrology and Earth System Sciences, 19, 1521–1545, doi:10.13019/M20599, 2015.
- Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynam-

ics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, 9, 161– 185, doi:10.1046/j.1365-2486.2003.00569.x, 2003.

- Souty, F., Brunelle, T., Dumas, P., Dorin, B., Ciais, P., Crassous, R., Müller, C., and Bondeau, A.: The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use, Geoscientific Model Development, 5, 1297–1322, doi:10.5194/gmd-5-1297-2012, 2012.
- Sprugel, D. G., Ryan, M. G., Brooks, J. R., Vogt, K. A., and Martin, T. A.: Respiration from the organ level to the stand, Resource physiology of conifers, pp. 255–299, https://books.google.de/ books?hl=de&lr=&id=KJl1zNzgJzYC&oi=fnd&pg=PA255& dq=Respiration+from+the+organ+level+to+the+stand&ots= lihnaKEehl&sig=UrtmXN4v0OKHK7WkE65hf_F3m3M, 1995.
- Strengers, B. J., Müller, C., Schaeffer, M., Haarsma, R. J., Severijns, C., Gerten, D., Schaphoff, S., van den Houdt, R., and Oostenrijk, R.: Assessing 20th century climate-vegetation feedbacks of landuse change and natural vegetation dynamics in a fully coupled vegetation-climate model, International Journal of Climatology, 30, 2055–2065, doi:10.1002/joc.2132, 2010.
- Strugnell, N. C., Lucht, W., and Schaaf, C.: A global albedo data set derived from AVHRR data for use in climate simulations, Geophysical Research Letters, 28, 191–194, doi:10.1029/2000GL011580, 2001.
- Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide, National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), http://www.esrl.noaa.gov/ gmd/ccgg/trends, 2015.
- Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, doi:10.5194/bg-7-1991-2010, http:// www.biogeosciences.net/7/1991/2010/, 2010.
- University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P. .: CRU TS3.23: Climatic Research Unit (CRU) Time-Series (TS) Version 3.23 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec. 2014)., Centre for Environmental Data Analysis, http://dx.doi. org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5, 2015.
- Von Bloh, W., Rost, S., Gerten, D., and Lucht, W.: Efficient parallelization of a dynamic global vegetation model with river routing, Environmental Modelling & Software, 25, 685–690, doi:10.1016/j.envsoft.2009.11.012, 2010.
- Vorosmarty, C. and Fekete, B.: ISLSCP II River Routing Data (STN-30p), in: ISLSCP Initiative II Collection. Data set., edited by Hall, F. G., Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., and Landis, D., ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1005, 2011.
- Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven simulation of global crop sowing dates, Global Ecology and Biogeography, 21, 247–259, doi:10.1111/j.1466-8238.2011.00678.x, 2012.
- Waha, K., Müller, C., Bondeau, a., Dietrich, J., Kurukulasuriya, P., Heinke, J., and Lotze-Campen, H.: Adaptation to climate change through the choice of cropping system and sowing date in sub-

Saharan Africa, Global Environmental Change, 23, 130–143, doi:10.1016/j.gloenvcha.2012.11.001, 2013a.

- Waha, K., Müller, C., and Rolinski, S.: Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century, Global and Planetary Change, 106, 1–12, doi:10.1016/j.gloplacha.2013.02.009, 2013b.
- Weindl, I., Lotze-Campen, H., Popp, A., Müller, C., Havlík, P., Herrero, M., Schmitz, C., and Rolinski, S.: Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture, Environmental Research Letters, 10, 094 021, doi:10.1088/1748-9326/10/9/094021, 2015.
- Zscheischler, J., Mahecha, M., Von Buttlar, J., Harmeling, S., Jung, M., Rammig, A., Randerson, J. T., Schöllkopf, B., Seneviratne, S. I., Tomelleri, E., Zaehle, S., and Reichstein, M.: Few extreme events dominate global interannual variability in gross primary production, Environmental Research Letters, 9, 035 001, doi:10.1088/1748-9326/9/3/035001, 2014a.
- Zscheischler, J., Reichstein, M., Harmeling, S., Rammig, A., Tomelleri, E., and Mahecha, M.: Extreme events in gross primary production: a characterization across continents, Biogeosciences, 11, 2909–2924, doi:10.5194/bg-11-2909-2014, 2014b.