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Abstract. Topography plays an important role in land sur-
face processes through its influence on atmospheric forc-
ing, soil and vegetation properties, and river network topol-
ogy and drainage area. Land surface models with a spatial
structure that captures spatial heterogeneity, which is directly
affected by topography, may improve the representation of
land surface processes. Previous studies found that land sur-
face modeling, using subbasins instead of structured grids
as computational units, improves the scalability of simulated
runoff and streamflow processes. In this study, new land sur-
face spatial structures are explored by further dividing sub-
basins into subgrid structures based on topographic proper-
ties, including surface elevation, slope and aspect. Two meth-
ods (local and global) of watershed discretization are applied
to derive two types of subgrid structures (geo-located and
non-geo-located) over the topographically diverse Columbia
River basin in the northwestern United States. In the global
method, a fixed elevation classification scheme is used to dis-
cretize subbasins. The local method utilizes concepts of hyp-
sometric analysis to discretize each subbasin, using different
elevation ranges that also naturally account for slope vari-
ations. The relative merits of the two methods and subgrid
structures are investigated for their ability to capture topo-
graphic heterogeneity and the implications of this on rep-
resentations of atmospheric forcing and land cover spatial
patterns. Results showed that the local method reduces the
standard deviation (SD) of subgrid surface elevation in the
study domain by 17 to 19 % compared to the global method,
highlighting the relative advantages of the local method for
capturing subgrid topographic variations. The comparison
between the two types of subgrid structures showed that
the non-geo-located subgrid structures are more consistent
across different area threshold values than the geo-located

subgrid structures. Overall the local method and non-geo-
located subgrid structures effectively and robustly capture
topographic, climatic and vegetation variability, which is im-
portant for land surface modeling.

1 Introduction

Topography plays an important role in land surface processes
through its influence on atmospheric forcing, soil and vege-
tation properties, and river network topology and drainage
area. Consequently, accurate climate and land surface simu-
lations in mountainous regions cannot be achieved without
considering the effects of topographic heterogeneity (Leung
and Ghan, 1998, 1995; Ghan et al., 2006). Mountain water
resources are particularly sensitive to global warming (e.g.,
Leung and Ghan, 1999; Ghan and Shippert, 2006; Mote et
al., 2007; Kapnick and Hall, 2012). The amplified warming
at high elevation due to the lapse-rate effect and snow albedo
feedback has a large impact on snowpack accumulation and
melt, with consequential effects on runoff and water supply
(Leung et al., 2004; McCabe and Clark, 2005; Rasmussen et
al., 2011).

Topography has major influence on the spatial pattern
of atmospheric forcing, including surface temperature, pre-
cipitation, and incoming and reflected solar radiation. Re-
gions characterized by heterogeneous topography generally
exhibit diverse hydroclimatic conditions. For example, stable
moisture-rich air lifted by the mountains can produce oro-
graphic precipitation that dominates the spatial distribution
of cold season precipitation in the western United States (Le-
ung et al., 2003). In mid- and high-latitude regions, topogra-
phy also influences the partitioning of precipitation into snow
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and rainfall. In addition, incoming and reflected solar radi-
ation is highly dependent on the orientation of landscapes,
which can also have significant impacts on surface hydrol-
ogy through the effects of radiation on cloud, precipitation,
and snow processes (Lee et al., 2015).

Topography is an important factor in soil formation, exert-
ing dominant control on the spatial patterns of soil properties
over watersheds, e.g., soil depth (Tesfa et al., 2009, and ref-
erences there in). Soils are generally deeper and finer in tex-
ture over valleys compared to the shallower and coarser tex-
ture over ridges of watersheds. Through its influence on di-
rect and diffuse solar radiation and consequent effects on soil
moisture and evapotranspiration, topography affects the spa-
tial pattern of vegetation on a landscape. Different vegetation
types grow on different parts of a landscape depending on
their water demand and resistance to water stress. In semiarid
regions, vegetation types that have high water demand or less
resistant to moisture stress grow near streams, while vegeta-
tion types resistant to moisture stress can grow further from
streams (Tesfa et al., 2011). Topography also determines
the topology of river network and drainage areas, which
in turn control surface and subsurface flows (Beven, 1997,
Chen and Kumar, 2001). Overall, catchment ecohydrology
is strongly affected by the topography-mediated interactions
among vegetation, soil and river networks (Thompson et al.,
2011). Improving representations of land—atmosphere and
surface—subsurface interactions affected by fine-scale topog-
raphy and vegetation have been identified as a grand chal-
lenge, motivating the need for hyper-resolution land surface
modeling (Wood et al., 2011). While hyper-resolution mod-
eling approaches are being tested at regional (Singh et al.,
2015) and continental scales (Maxwell et al., 2015), improv-
ing the spatial structures of land surface models to capture the
effects of topographic heterogeneity could be crucial to ad-
vancing modeling of land—atmosphere interactions in Earth
system models. Tesfa et al. (2014a, b) demonstrated im-
proved scalability of simulated runoff and streamflow pro-
cesses when subbasins instead of structured grids are used
as computational units in the Community Land Model. The
improvements of the subbasin-based land surface modeling
in scalability come from its important conceptual advantages
in capturing atmospheric forcing and runoff generation pro-
cesses, both strongly affected by a topography that defines
the boundaries of the subbasins.

Discretization of the subbasins to capture spatial hetero-
geneity affected by topography may further improve the rep-
resentation of land surface processes. Ke et al. (2013) eval-
uated several classification methods to account for subgrid
variability of surface elevation and vegetation cover for land
surface models with structured grids. To the best of our
knowledge, development of subgrid structures for subbasin-
based land surface modeling has not been attempted. The
purpose of this paper is to explore subgrid structures that
capture topographic heterogeneity and its influences on land
surface processes for land surface modeling. Such subgrid

Geosci. Model Dev., 10, 873-888, 2017

spatial structures may provide a more realistic spatial dis-
tribution of surface properties and their influence on cli-
matic variability, with more reasonable computational re-
quirements compared to discretizing the domain into fine-
resolution grid-based representations that are reported in the
literature (e.g., Singh et al., 2015).

Motivated by the significant influences of topographic
heterogeneity on land surface processes, we explore new
topography-based spatial structures by further dividing sub-
basins into subgrid structures or subgrid units (also here-
after denoted as SUs) to take advantage of the emergent pat-
terns and scaling properties of atmospheric, hydrologic and
vegetation processes in land surface models. For this pur-
pose, two methods (global and local) of subbasin discretiza-
tion are applied to derive two types of SUs (geo-located and
non-geo-located) over the topographically diverse regions
of the northwestern United States. In the global method,
the subbasins are discretized into multiple SUs, following
the surface elevation classification scheme employed in Le-
ung and Ghan (1998, 1995), combined with classifications
of topographic slope and aspect. The local method utilizes
concepts of hypsometric analysis (Willgoose and Hancock,
1998; Sinha-Roy, 2002) combined with the classification of
topographic aspect to discretize each subbasin into multiple
SUs. We evaluate the two discretization methods and spatial
structures for their ability to capture topographic heterogene-
ity and the implications of this on representations of atmo-
spheric forcing and land cover spatial patterns. For Earth sys-
tem modeling, the atmospheric model will adopt the subgrid
topographic precipitation scheme of Leung and Ghan (1998)
and Ghan et al. (2006), which provides subgrid atmospheric
forcing for coupling with the topographic SUs of land surface
models, representing topographic effects on atmospheric and
land surface processes and land—atmosphere interactions.

The remainder of the paper is organized as follows: Sect. 2
describes the study area. Development of new subgrid struc-
tures is discussed in Sect. 3. The strategy used to evaluate
the methods of subbasin discretization and the subgrid struc-
tures are discussed in Sect. 4. Section 5 presents the results
and discussion, and Sect. 6 closes with conclusions and rec-
ommendations.

2 Study area

To investigate the importance of various watershed dis-
cretization methods, the Columbia River basin (located in
the US Pacific Northwest) is used as a case study. Figure 1
shows the topographic patterns, subbasins with an average
size equivalent of 1/8th degree grid, elevation ranges of
the subbasins and two subbasins representing extreme topo-
graphic properties. The Columbia River basin encompasses
both mountainous and low-lying regions. Climatically, the
mountainous regions are characterized by low temperature
and higher precipitation dominated by snowfall, whereas the
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Figure 1. The topographic distribution (left) and subbasin delineation (right) of the study area (Columbia River basin). Two subbasins
selected to represent the extreme classes of elevation ranges are shown on the far right.

low-lying regions have warmer temperatures and lower pre-
cipitation, which is mainly in the form of rainfall. The basin
encompasses the largest river in the Pacific Northwest re-
gion of North America, and is the fourth largest river in the
United States by discharge volume. Water resources in the
basin are dominantly controlled by the high precipitation and
snow cover in the mountainous areas.

3 Development of new SUs for land surface modeling

Two methods of subbasin discretization are implemented to
develop land surface subgrid structures that capture the spa-
tial heterogeneity affected by topography. Both methods are
applied to derive two types of SUs: geo-located and non-geo-
located. The following subsections describe the input data,
the two discretization methods and the two types of SUs.

3.1 Input data

To derive the subgrid units, the study domain is first delin-
eated into subbasins. We utilize the subbasins equivalent to
1/8th degree grids delineated in Tesfa et al. (2014a, b) using
the ArcSWAT (Soil and Water Assessment Tool; Neitsch et
al., 2005) with the 90 m digital elevation model (DEM) and
the 15 arcsec river network from the Hydrological data and
maps based on Shuttle Elevation Derivatives (HydroSHEDS;
Lehner et al., 2008). Although DEMs at resolutions of 30 m
or finer are available from the United States Geological Sur-
vey (USGS), we use the DEM from a global database (i.e.,
HydroSHEDS) because the main goal of this study is to de-
velop subgrid structures for global land surface models and
Earth system models. Along with the delineation of the sub-
basins, topographic attributes, such as slope and aspect, are
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derived for the study domain to be used as inputs for the sub-
basin discretization methods.

3.2 Global method

In the global method, the study domain is first discretized
into 12 elevation classes based on surface elevation extracted
from the 90 m HydroSHEDS’ DEM, following the surface el-
evation classification scheme employed in Leung and Ghan
(1998, 1995), which uses class intervals of 100m for sur-
face elevation below 500 m and gradually increases to in-
tervals of 500 and 1000 m for high surface elevations, re-
sulting in 12 elevation classes (see Fig. 2). This method is
global because the same elevation classification scheme is
used to discretize all subbasins regardless of the elevation
spanned by individual subbasins, which can vary substan-
tially. Since topography influences atmospheric and land sur-
face processes through surface elevation, slope and aspect,
the global method combines topographic slope and aspect
with the elevation classes. For this purpose, the study do-
main is also partitioned into two classes of topographic slope
where slope values less than or equal to 20° are grouped as
gentle to moderately steep areas, and slope values greater
than 20° are grouped as steep to very steep areas follow-
ing definitions of slope classes by the Natural Resources
Conservation Service of the United States Department of
Agriculture. Similarly, the study domain is partitioned into
two classes of topographic aspect, where areas facing north,
northwest, northeast and east are assigned to one class and
areas facing south, southwest, west and southeast belong to a
separate class. For each subbasin, classes of elevation, slope
and aspect are extracted following the subbasin boundary and
converted from raster to polygon shapes, resulting in three
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Figure 2. The study area classified into elevation bands used in the global method, following the approach described in Leung and Ghan

(1995, 1998).

sets of SUs derived based on elevation, slope and aspect sep-
arately. The SUs derived from elevation, slope and aspect are
then intersected to generate SUs based on the combination of
topographic elevation, slope and aspect, resulting in a large
number of SUs for each subbasin. Since many of the SUs
are extremely small in size, and our goal is to capture to-
pographic heterogeneity with only a reasonable number of
SUs for computational efficiency, an area threshold value is
used to merge SUs with an area smaller than the threshold to
their neighboring SUs with a size larger than or equal to the
threshold value. The area threshold is defined based on the
percentage of the area of each subbasin. Subgrid units that
are smaller than the area threshold are merged to their neigh-
boring larger subgrid units. To enable discretization of each
subbasin into a reasonable number of subgrid units, a value
of normalized area (SUy;,) is calculated for each subgrid unit
following Eq. (1) and compared to the area threshold value.

SU,

SUpg = —— .
"7 Sub,

100, (1)
where SU, and Sub, are areas of subgrid unit and subbasin,
respectively. The global method has been implemented in
Python and utilizes ArcGIS functionalities. In this effort, the
global method is applied to derive both geo-located and non-
geo-located SUs.
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3.3 Local method

In the local method of subbasin discretization, the subbasins
for the study domain are first classified into five groups based
on values of elevation range using the natural breaks (Jenks)
classification method in ArcGIS. As an example, to derive
the hypsometric curves, the two contrasting subbasins shown
in Fig. 1 are discretized into 100 elevation contours using el-
evation data extracted from the 90 m resolution DEM from
HydroSHEDS. The relative elevation (RH) and relative area
(RA) are calculated for each contour, where relative eleva-
tion (RH) is defined as the ratio of the height of the given
contour (k) from the base plane of the subbasin to the maxi-
mum height of the subbasin (H), whereas relative area (RA)
refers to the ratio of the area above a particular contour (a)
to the total area of the subbasin (A).

RA = 2

RH = 3)

T ==l

The hypsometric curves are derived by plotting the relative
area (RA) along the abscissa and the relative elevation (RH)
on the ordinate axes. In geomorphology, a hypsometric curve
is used to characterize the distribution of elevation within
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Figure 3. Hypsometric curves of two subbasins with extreme con-
trast of elevation variability discretized into three parts following
Willgoose and Hancock (1998) and Sinha-Roy (2002): the head,
body and toe, as used in the local method.

a basin. Following Willgoose and Hancock (1998), three
parts of the hypsometric curve are identified as the head,
body and toe of the subbasin and defined as (1) the upward-
concave part of the curve in the upper left-hand side, (2) the
downward-concave part of the curve on the right-hand side
and (3) the upward-concave region in the center of the curve
between the head and toe. As shown in Fig. 3, relative area
values of 0.2 and 0.8 are used to discretize the hypsomet-
ric curve into the three parts, following Sinha-Roy (2002).
Furthermore, the body part of the subbasins is divided at a
relative area value of 0.5 for a more homogenous topography
within each class. As a result, each subbasin is initially dis-
cretized into four elevation bands with elevation class break
values at the minimum and maximum elevation, and at rela-
tive areas of 0.2, 0.5 and 0.8. Elevation ranges are calculated
between each consecutive class break values. For each ele-
vation band/class, the elevation range is compared to an ele-
vation threshold value of 100 m; any elevation class with an
elevation range less than 100 m is merged with the neighbor-
ing elevation class. The values of elevation range and eleva-
tion class break are then updated accordingly and the updated
elevation ranges are further compared to the elevation thresh-
old value recursively until the final values of elevation class
break and ranges are determined. The final values of eleva-
tion class break are then utilized to derive the elevation-based
SUs for each subbasin (see algorithms in Tables 1S and 2S in
the Supplement). This method is local as the elevation ranges
used to discretize the subbasins vary depending on the topo-
graphic variations within each subbasin.

Similar to the global method, classes of topographic as-
pect are extracted for each subbasin and intersected with
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the corresponding elevation classes to discretize the subbasin
into multiple SUs, with some extremely small in size. Since
discretizing the subbasins using a hypsometric curve is ex-
pected to capture slope variation implicitly, a topographic
slope is not used in the local method. With the main goal
being to capture topographic heterogeneity with only a rea-
sonable number of SUs for computational efficiency, similar
to the global method, area threshold is utilized to merge the
SUs with an area smaller than the threshold to their neigh-
boring SUs with a size larger than or equal to the threshold
to develop the final SUs. This method has also been imple-
mented in Python and utilizes ArcGIS functionalities. The
local method is also applied to derive both geo-located and
non-geo-located SUs. In this method, the actual number of
SUs of each subbasin depends on the variability of surface
elevation and topographic aspect within the subbasin bound-

ary.
3.4 Types of subgrid units

Two types of SUs are derived using both the global and local
methods: geo-located and non-geo-located. The geo-located
SUs are derived by discretizing the subbasins into spatially
contiguous structures. They are characterized with explicit
geographical location and a single boundary. In this case,
SUs with the same topographic characteristics at different
locations of the subbasin are treated as separate units. The
non-geo-located SUs are developed by discretizing the sub-
basins into spatially non-contiguous structures. In this case,
SUs with the same topographic properties at different loca-
tions of the subbasin are treated as a single unit resulting gen-
erally in reduced number of SUs compared to the geo-located
SUs.

4 Evaluation strategy
4.1 Analysis using SUs based only on elevation

Because topographic slope is not explicitly used in the local
method, it is logical to ask whether discretizing subbasins
using the hypsometric curve is capable of implicitly captur-
ing the variability of topographic slope within the subbasins.
To investigate this, geo-located SUs are derived using both
global and local methods based on elevation classification
only. The number of SUs for each subbasin from both meth-
ods is compared to the average values of topographic slope of
the subbasins in the study area to determine how topographic
slope influences the number of SUs needed to capture sub-
grid topographic variability in each method. In addition, the
spatial pattern of the number of SUs for each subbasin de-
rived using each method is compared to the spatial pattern of
topographic slope and elevation range within the subbasins
for the study region. An effective subgrid method would al-
low more SUs in subbasins with complex terrain to cap-
ture the subgrid topographic variability and use fewer SUs
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in subbasins with small variations of topography. Finally,
the relative capability of the two methods in capturing to-
pographic heterogeneity and their sensitivity to the values of
area threshold are evaluated, respectively, based on the stan-
dard deviation (SD) of the 90 m resolution elevation within
the SUs and the variation of statistical metrics (the total num-
ber of SUs, mean SU size and SD in SU size) calculated for
the study domain across different values of area threshold (1,
2, 3,4 and 5 %). Methods that are less sensitive to the values
of area threshold can provide more robust SUs for represent-
ing subgrid topographic heterogeneity.

4.2 Analysis using SUs based on elevation, slope and
aspect

The two types of SUs are expected to differ in their abil-
ity to capture topographic heterogeneity, i.e., the number of
SUs, which has important implications to the overall compu-
tational burden, and their sensitivity to area threshold values,
which is important for defining robust SUs for land surface
modeling. Thus, to evaluate the two types of SUs with respect
to their applications in land surface modeling, geo-located
and non-geo-located SUs for the study area are derived based
on elevation, slope and aspect using both global and local
discretization methods at different values of area threshold
(1, 2, 3, 4 and 5 %). The geo-located and non-geo-located
SUs of each method are then compared for their sensitivity
across values of area threshold using statistical metrics (to-
tal number of SUs, average size of SUs and SD in SU size)
calculated over the study domain at different values of area
threshold.

The global and local methods are further investigated for
their capability in capturing topographic heterogeneity and
consistency across different values of area threshold when
using the non-geo-located SUs. The relative capability of the
non-geo-located SUs from both methods in capturing topo-
graphic heterogeneity is evaluated based on the values of SD
in surface elevation calculated at each SU across different
values of area threshold. In addition, sensitivity of the two
methods (global and local) to the values of area threshold
when used to derive non-geo-located SUs is evaluated using
statistical metrics calculated over the study domain such as
total number of SUs, average size of SUs and SD in SU size.

4.3 Implications to representation of land surface
processes

Since the main goal of this study is to derive land surface
structures capable of improving representation of land sur-
face processes in land surface modeling, it is logical to ask
how the new structures impact the representation of land sur-
face parameters. For this purpose, the two methods are first
evaluated for their relative capability of capturing climatic
and land cover variability over the study area using the non-
geo-located SUs derived at different values of area threshold.
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The capability of capturing climatic variation is investigated
by comparing values of SD in precipitation and surface tem-
perature within the SUs derived using the two methods. In
this case, the precipitation and surface temperature datasets
for the study area are extracted from the 30-year normal an-
nual precipitation and mean annual surface temperature ob-
tained from the PRISM climate datasets (800 m spatial res-
olution) (http://www.prism.oregonstate.edu/). Similarly, us-
ing the normalized difference vegetation index (NDVI) data
as a proxy for land cover, the relative capability of the two
methods in capturing land cover pattern over the study do-
main is investigated by comparing values of SD in NDVI
calculated within the SUs from the two methods. For this
purpose, the NDVI datasets for the study area are obtained
from the enhanced Moderate Resolution Imaging Spectro-
radiometer (eMODIS) data (250 m spatial resolution) portal
(http://earthexplorer.usgs.gov/) at the Earth Observation and
Modeling Facility (EOMF). Furthermore, to evaluate the rel-
ative advantages of the non-geo-located SUs derived using
the local method in capturing climatic variability in the study
domain as compared to those of the subbasin-based represen-
tation, the spatial distributions of precipitation and tempera-
ture mapped to the subbasins and the non-geo-located SUs
from the local method are compared to the spatial distribu-
tions of precipitation and temperature from the original high-
resolution PRISM grid-based representation. The subbasin-
based representation used in this comparison comes from our
previous studies (Tesfa et al., 2014a, b), which evaluated the
benefits of land surface modeling using the subbasin-based
approach against the standard regular grid-based land surface
modeling approach, where significant advantages in simula-
tions of hydrologic and streamflow were demonstrated by the
subbasin-based approach.

5 Results and discussion

5.1 Global versus local methods using elevation-based
SUs

Since the main differences between global and local meth-
ods are in the way subbasins are discretized into elevation
classes and whether topographic slope is included explicitly,
the relative capability of the two methods in capturing topo-
graphic heterogeneity is investigated using elevation-based
SUs. Figure 4 compares how well the global and local sub-
basin discretization methods capture the topographic slope
using elevation-based geo-located SUs derived based on el-
evation at 1 % area threshold. For this purpose, the numbers
of SUs per subbasin resulted from both methods are com-
pared to the average topographic slope calculated over the
subbasins. The results show the number of SUs per subbasin
from the local method is directly related to the average sub-
basin slope (r2 = 0.47); therefore, the steep subbasins are
generally discretized into more SUs than the flat subbasins.
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Figure 4. The number of elevation-based geo-located SUs (LUs) plotted against the average topographic slope for each subbasin derived

using the global (a) and local (b) methods with 1 % area threshold.

On the other hand, the number of SUs per subbasin from the
global method is not related (r> = 0.07) to the average topo-
graphic slope of the subbasins. From this comparison, it is
clear that discretizing subbasins following the local method
(see algorithms in Tables 1S and 2S in the Supplement) us-
ing the hypsometric curve characterization within each sub-
basin is able to capture topographic slope implicitly, making
the local method superior to the global method. To investi-
gate how the performance of the global method can be im-
proved when the effect of slope is considered, the number of
geo-located SUs per subbasin derived using a combination
of topographic elevation and slope is compared to the aver-
age topographic slope calculated over the subbasins (Fig. 1s
in the Supplement). The results show significant improve-
ment of the capability of the global method in capturing topo-
graphic slope (2 = 0.44) as compared to the global method
using topographic elevation only (r> = 0.07); however, the
performance is still not as good as that of the local method
(r? = 0.47).

The Columbia River basin encompasses diverse topogra-
phy ranging from flat to steep mountainous areas making it
an ideal study area for evaluating the relative capability of
the two subbasin discretization methods in capturing the spa-
tial pattern of topographic properties. The spatial pattern of
the numbers of elevation-based geo-located SUs per subbasin
derived using both methods with a 3 % area threshold are
compared to the spatial pattern of the average topographic
slope and elevation ranges of the subbasins classified based
on the natural breaks (Jenks) classification method in Ar-
cGIS (Fig. 5). The results suggest that the spatial pattern of
the number of SUs per subbasin for the SUs from the lo-
cal method follows the topographic pattern in the study area
better than those of the global method, confirming further
the advantages of discretizing the subbasins using the local
method. To quantify the correspondence between the pattern
of the surface topography and the pattern of the number of
SUs, correlation coefficients are calculated between values of
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surface elevation range within the subbasins and the number
of SUs per subbasin. The correlation coefficients are 0.66 and
0.47 for the local and global methods, respectively. Hence,
the number of SUs per subbasin from the local method mim-
ics the topographic pattern better than the global method, as
more SUs per subbasin are defined over mountainous areas
and fewer SUs per subbasin are defined over relatively flat ar-
eas of the basin. This enables the model to capture the topo-
graphic heterogeneity with a minimum number of SUs over
the study domain, which is essential for computational effi-
ciency in land surface modeling.

Figure 6 shows the relative capability of the two meth-
ods in capturing subgrid topographic heterogeneity across
different values of area threshold using elevation-based geo-
located SUs. For this purpose, values of SD in elevation
within the geo-located SUs derived using different values of
area threshold (1, 2, 3, 4 and 5 %) from both methods are
compared. The results again clearly show that the SUs from
the local method are able to capture topographic heterogene-
ity, which is reflected in the smaller SD of topography within
each SU across different values of area threshold, better than
those of the global method. In addition, the results also show
that the local method can capture topographic heterogeneity
more consistently across different values of area threshold
than the global method, suggesting that the SUs derived us-
ing the local method are more robust.

Using the same SUs, the two methods are further investi-
gated for their sensitivity to values of area threshold using the
variability of statistical metrics (total number of SUs, mean
SU size and SD in SU size) calculated over the whole study
domain for different values of area threshold. The results in
Fig. 7 show that SUs derived using local method remain more
consistent across different values of area threshold than those
of the global method, making the local method more robust
than the global method for land surface modeling.
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Figure 5. Spatial patterns of the number of elevation-based geo-located SUs per subbasin derived using the global (¢) and local (d) methods

compared to the spatial pattern of the topographic slope (a) and elevation ranges of the subbasins in the study area.

5.2 Geo-located versus non-geo-located SUs

To evaluate the robustness of the two types of SUs (geo-
located and non-geo-located) for land surface modeling, we
compare their sensitivity to values of area threshold. For this
purpose, geo-located and non-geo-located SUs are derived
based on elevation, slope and aspect using both methods at
different values of area threshold. The geo-located SUs from
each method are then compared to the corresponding non-
geo-located SUs derived using the same method based on
the statistical metrics calculated over the whole study area.
Shown in Fig. 8 are comparisons of the variability of the to-
tal number of SUs, average SU size and SD in SU size cal-
culated for the geo-located SUs against those of the non-geo-
located SUs for both the global (Fig. 8a, b and c¢) and the local
(Fig. 8d, e and f) methods. In both methods, the results gener-
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ally suggest that the non-geo-located SUs are more consistent
across different values of area threshold than the correspond-
ing geo-located SUs. Thus, in subsequent sections, the two
methods of subbasin discretization are evaluated using the
non-geo-located SUs only.

5.3 Global versus local methods using non-geo-located
SUs

Following the evaluation of the two methods using elevation-
based geo-located SUs, it is important to investigate whether
the advantages of the local method over the global method
shown in previous results still apply when the two methods
are used to derive non-geo-located SUs based on the com-
bination of multiple topographic properties. Shown in Fig. 9
are comparisons of sensitivity of the global and local meth-
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Figure 6. The standard deviation (SD) in elevation within the
elevation-based geo-located SUs derived using different values of
area threshold. On each box, the central mark (notch) is the median
(g2), the edges of the box plot are the 25th (¢ 1) and 75th (¢3) per-
centiles, and the whiskers extend to the most extreme data points
(g3 + 1.5x interquartile range (g3 — ¢ 1) and g1 — 1.5x interquartile
range (¢3 — g1); outliers are not considered).

ods to values of area threshold when the two methods are ap-
plied to derive non-geo-located SUs using the variability of
the statistical metrics (total number of SUs, average SU size
and SD in SU sizes) calculated over the whole study domain
at different values of area threshold. Note that the results in
Fig. 9 are intended to evaluate how sensitive the two methods
are to the values of area threshold and, unlike the compari-
son in Fig. 7, the SUs in this comparison are non-geo-located,
derived based on a combined classification of elevation and
topographic slope and aspect in the global method and ele-
vation and topographic aspect in the local method. Similar
to the comparisons in Fig. 7, the results suggest that the SUs
from the local method are less sensitive to the values of area
threshold, yielding more consistent values of the total num-
ber of SUs, average SU size and SD in SU sizes over the
study domain than those of the global method.

Shown in Fig. 10 are values of SD in elevation within
the non-geo-located SUs derived using the global and local
methods at different values of area threshold, comparing the
capability of the two methods in capturing topographic het-
erogeneity when used for non-geo-located SUs. Similar to
the results shown in Fig. 6, there is a clear difference in the
capability of the two methods in capturing topographic het-
erogeneity across different values of area threshold. The non-
geo-located SUs from the local method are able to capture to-
pographic heterogeneity much better than those of the global
method across different values of area threshold. The results
in Table 1 show that the local method reduces the SD of sub-
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Table 1. Comparing the local and global methods in capturing to-
pographic heterogeneity when using non-geo-located SUs.

Average standard deviation (SD) in elevation

Area Global Local Difference
threshold (%) method method (%)
1 80.81 66.82 17.30
2 92.10 75.77 17.73
3 100.03 81.60 18.43
4 106.55 86.20 19.10
5 112.14 90.48 19.32

grid surface elevation over the study domain by 17 to 19 %
across different values of area threshold compared to those
of the global method, highlighting the relative advantages of
the local method over the global method in capturing topo-
graphic heterogeneity. The improved capability of the local
method shown in this comparison comes from the advantage
of performing elevation discretization based on hypsometric
curve characterization in the local method (see Figs. 6 and
3). The local method has been designed to minimize com-
putational demand by discretizing mountainous areas into
more subgrid units and flat areas into fewer subgrid units;
therefore, its advantages are expected to be more pronounced
when it is applied over topographically heterogeneous re-
gions as opposed to regions characterized by homogenous
topography. Furthermore, the results from Fig. 9a show that
the area threshold value resulting in the same number of non-
geo-located subgrid units from the two methods lies between
1 and 2 %. Hence, the results from Fig. 10 implicitly sug-
gest that the local method still performs better even when
we compare the two methods that produce the same num-
ber of SUs. The results also suggest that the capability of
the non-geo-located SUs from the local method in capturing
topographic heterogeneity remains more consistent at differ-
ent values of area threshold than those of the global method,
confirming the superior advantages of the local method.

From the results shown so far, relative to the global
method, the SUs from the local method are superior in cap-
turing topographic heterogeneity yielding more SUs per sub-
basin over mountainous areas and fewer SUs per subbasin
over flat areas, which is essential for more realistic represen-
tations of the spatial distributions of precipitation and snow
cover in mountainous areas and computational efficiency in
land surface modeling. Furthermore, the SUs from the local
method are more consistent across different values of area
threshold than those of the global method. Subsequently, it
is important to examine whether similar advantages exist for
the local method in capturing climatic and land cover vari-
ability as compared to the global method. The following sec-
tion focuses on the implications of the non-geo-located SUs
in the representations of climatological and land cover vari-
ability in the study area.
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5.4 Implications to the representation of land surface
processes

Topography can influence land surface processes through
its impact on atmospheric forcing and vegetation variabil-
ity. Consequently, it is essential to examine the implications
of the new SUs on representations of climatic and vegeta-
tion variability. This is particularly important as our goal is to

Geosci. Model Dev., 10, 873-888, 2017

couple land surface and atmosphere models both with topo-
graphic subgrid units to provide the largest improvement for
capturing subgrid variability of land surface processes. As an
example, the subgrid orographic precipitation scheme of Le-
ung and Ghan (1995, 1998) has been shown to improve sim-
ulations of surface temperature, precipitation and snowpack
in mountainous areas by representing the impact of subgrid
topography on airflow and cloud processes. Shown in Fig. 11
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Figure 10. Similar to Fig. 6, but for the capability of the global
and local methods to capture topographic heterogeneity based on
the standard deviation in elevation, within the non-geo-located SUs
derived based on elevation, slope and aspect using different values
of area threshold.

are values of SD of the 30-year normal annual precipitation
(Fig. 11a) and mean annual surface temperature (Fig. 11b)
obtained from the high-resolution PRISM dataset calculated
within the non-geo-located SUs derived using the global and
local methods at different values of area threshold. This com-
parison is intended to evaluate the capability of the two meth-
ods to reduce climatic variability within the SU boundaries.
The results show generally lower values of SD in both pre-
cipitation and temperature for the SUs derived using the local
method than those of global method across all values of area
threshold. Consistent with the comparison to the capability
of capturing topographic heterogeneity shown in Figs. 6 and
10, these differences reflect the dominant control of topogra-
phy and the impact of spatial structure on precipitation and
surface temperature, suggesting improved capability of cap-
turing climatic variability for the local method.

Furthermore, shown in Fig. 12 are values of SD of NDVI
calculated at the non-geo-located SUs from both global and
local methods at different values of area threshold. In this
comparison, the NDVI is used as a proxy for land cover in-
formation during spring (Fig. 12a) and summer (Fig. 12b)
extracted from the eMODIS dataset, showing the relative ca-
pability of the two methods in capturing land cover variabil-
ity in the study area. The results generally show lower val-
ues of SD for the SUs derived using the local method than
those of the global method across all values of area threshold,
suggesting that the SUs from the local method have a better
capability of capturing land cover variation in the study do-
main, which is essential to representation of land cover in
land surface modeling.
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Figure 11. Similar to Fig. 5, but for the capability of the global
and local methods to capture climatic variability based on SD of
the PRISM 30-year normal precipitation (a) and surface tempera-
ture (b), within the non-geo-located SUs derived based on elevation,
slope and aspect across different values of area threshold.

In all the results shown so far, the SUs from the local
method have demonstrated clear advantages in capturing to-
pographic heterogeneity and climatic and land cover varia-
tion compared to those of the global method over the study
domain. Therefore, we further examined how representa-
tion of climatological forcing improves when using the non-
geo-located SUs derived using the local method at 3 % area
threshold value compared to the subbasin-based representa-
tion. This comparison is intended to evaluate the improve-
ment in representing the spatial pattern of precipitation and
temperature from the high-resolution PRISM datasets when
using the non-geo-located SUs from the local method as
compared to those of the subbasins without a subgrid clas-
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Figure 12. Similar to Fig. 6, but for the capability of the global
and local methods to capture land cover variation based on standard
deviation values of eMODIS NDVI during spring (a) and summer
(b), within the non-geo-located SUs based on elevation, slope and
aspect across different values of area threshold.

sification. Figure 13 compares the spatial pattern of the 30-
year mean precipitation represented based on subbasins at
roughly 1/8th degree resolution (Fig. 13a), non-geo-located
SUs within the subbasins (Fig. 13b) and the original grid
representation from the PRISM dataset at 800 m resolution
(Fig. 13c). Note that the Canadian part of the study domain
is missing from the map because the PRISM data are only
available for the United States. The results show that the SU-
based representation yields a similar spatial pattern of precip-
itation to that of the original PRISM grids with no visually
discernible difference. The spatial pattern of precipitation for
the subbasin-based representation has noticeable differences
from those of the SUs and original PRISM grid representa-
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tions, especially over the mountainous areas. With the ability
to better capture the spatial heterogeneity of precipitation,
land surface models that use the SU-based representation
are expected to produce more realistic distribution of snow
cover over the mountains compared to the subbasin-based
representation, and it is considerably more efficient computa-
tionally compared to modeling land surface processes using
hyper-resolution such as the PRISM grids. Further compari-
son of the three representations of precipitation using statis-
tical metrics (average and SD values) reveals that both the
mean and SD values from the SU-based representation are
much closer to those of the original PRISM grids as com-
pared to the subbasin-based representation (Table 2).

Similar comparisons are also shown in Fig. 14 for surface
temperature. Similar to the results for precipitation, there is
no visually noticeable difference in the spatial pattern of tem-
perature between the SU-based and original PRISM grid-
based representations, whereas the subbasin-based represen-
tation misses important variability indicated in the PRISM
data. The advantage of the SU-based representation in cap-
turing the spatial pattern of temperature is more pronounced
over the mountainous areas. Comparison using statistical
metrics of temperature (Table 2) confirms the advantages
of the new SUs representation. Further comparison of sta-
tistical metrics of NDVI for spring and summer are shown
in Table 3, comparing NDVI representations using the non-
geo-located SUs from the local method generated at 3 %
area threshold and the subbasins against those of the orig-
inal high-resolution NDVI grid representation. The results
show some improvement for the SU-based representation in
the SD values, whereas the mean values of the SUs are gener-
ally higher than those of the subbasin and original grid repre-
sentations. The latter is caused by the fact that mountainous
areas are generally characterized by higher values of NDVI
and they are discretized into more numbers of SUs compared
to flat areas that generally have lower values of NDVI, so the
mean value calculated over the study domain with the SUs is
generally higher. Similar behavior is also observed in Table 2
where the average value of precipitation from the SUs calcu-
lated over the study domain is higher than that of the PRISM
grid representation.

The advantages demonstrated for the SUs derived using
the local method in representing topographic features are ex-
pected to be significant for land surface modeling in moun-
tainous areas such as the Columbia River basin, where to-
pography has dominant control on precipitation and temper-
ature characteristics that translate to differences in runoff and
streamflow characteristics (Tesfa et al., 2014a, b).

Also shown in the Supplement are similar comparisons of
the non-geo-located SU-based representation from the global
method against the subbasin-based representation of meteo-
rological forcing and NDVI (Tables 3s and 4s and Figs. 2s
and 3s). The results show general improvements from the
use of non-geo-located SUs as compared to those of the
subbasin-based representation.

www.geosci-model-dev.net/10/873/2017/



T. K. Tesfa and L.-Y. R. Leung: Exploring new topography-based subgrid spatial structures 885

Table 2. Comparing the SUs generated using 3 % area threshold from the local method and subbasin representations against the original
PRISM grid representation using statistical summary of mean annual precipitation and surface temperature calculated over the study domain.

Representation Precipitation (mm) Temperature (°C)
Average  Standard Average  Standard
deviation deviation
Subbasin 669.036  459.479 7.179 2.525
Non-geo-located subgrid units 739.05 506.83 6.78 2.66
using the local method
Original PRISM Grid 717.021 519.523 6.935 2.681

Table 3. Comparing the SUs generated using 3 % area threshold from the local method and Subbasin representations against the original
NDVI grid representations using statistical summary of spring and summer NDVI values calculated over the study domain.

Representation NDVI values (spring) NDVI values (summer)

Average Standard ~ Average Standard

deviation deviation

Subbasin 5804.00 1735.03  5128.87 1967.29

Non-geo-located subgrid units ~ 5924.33 1883.90  5389.01 2109.81
using the local method

Original NDVI Grid 5810.02 2159.39  5207.00 2342.65

Precipitation (mm)
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Figure 13. PRISM 30-year normal precipitation represented using the subbasins (a) and non-geo-located SUs from the local method using
3 % area threshold (b) compared to those of the original PRISM grids (¢). The Canadian territory of the study area is not represented in the

PRISM dataset.

6 Summary and conclusions

Topography exerts a major control on land surface processes
through its influence on atmospheric forcing, soil and vege-
tation properties, network topology and drainage area. Thus,
the spatial structure of land surface models that captures spa-
tial heterogeneity affected by topography may improve mod-
eling of terrestrial water cycle and land—atmosphere interac-
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tions. In both land surface and atmospheric modeling, such
spatial structures are very much needed for accurate sim-
ulations of land surface processes in Earth system models.
While there are similar efforts to improve representation of
the impacts of topography in atmospheric models, this study
focuses exclusively on the development of new land surface
spatial structures to improve representation of land surface
processes in land surface models by further discretizing sub-
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Figure 14. Same as Fig. 13, but for temperature.

basins into subgrid units (SUs) based on their topographic
attributes (e.g., elevation, topographic slope and aspect).
Two methods of watershed discretization (local and global)
have been developed and applied over the Columbia River
basin in northwestern United States to derive two types of
topography-based subgrid structures (geo-located and non-
geo-located). In addition, the two methods have been evalu-
ated for their consistency, capability of capturing topographic
heterogeneity and climatic and land cover variability of the
study domain using both types of subgrid structures.

In the global method, the study domain is initially dis-
cretized into 12 elevation classes following the surface ele-
vation classification scheme employed in Leung and Ghan
(1998, 1995). Then, following the subbasin boundary, the el-
evation classes are intersected with classes of topographic
slope and aspect, discretizing each subbasin into multiple
subgrid units. The local method utilizes concepts of hypso-
metric analysis to first discretize each subbasin into elevation
classes using algorithms developed in this study, which are
then merged with classes of topographic aspect to divide the
subbasin into multiple subgrid units. In both methods, val-
ues of area threshold are used to merge small subgrid units
into the neighboring large subgrid units, yielding a reason-
able number of subgrid units per subbasin. Both methods
are applied to derive two types of subgrid structures: geo-
located (spatially contiguous) and non-geo-located (spatially
non-contiguous). Furthermore, using both types of SUs, the
two methods of subbasin discretization are investigated for
their capability of capturing topographic heterogeneity, their
implications on representations of climatic and vegetation
variability in the study area, as well as their sensitivity to
the area threshold values.

Using elevation-based geo-located subgrid units, compar-
ison of the two methods showed that the local method is able
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to capture the topographic variability better than the global
method. Taking advantage of hypsometric analysis, the local
method can capture slope variability implicitly, and therefore
it generally requires fewer SUs to represent subgrid topo-
graphic variability. The local method more effectively cap-
tures the topographic pattern across the region than the global
method by discretizing steep subbasins into more subgrid
units and flat subbasins into fewer subgrid units. Using the
local method, the SD of surface elevation within the subgrid
units is noticeably smaller and less sensitive to the values
of area threshold than the global method. Hence, the local
method is clearly more effective and robust for representing
subgrid elevation variability for land surface modeling.
Comparing the two types of subgrid structures derived
using the global and local methods revealed that the non-
geo-located SUs are more consistent than the geo-located
SUs across different area threshold values. Further investi-
gation of the relative capability of the two methods, with
non-geo-located subgrid units representing multiple topo-
graphic features (elevation, slope and aspect) based on the
SD in surface elevation within the subgrid units and statisti-
cal metrics calculated over the whole study domain, further
demonstrated superior capability and consistency for the lo-
cal method compared to the global method. Similarly, inves-
tigation of the relative capability of the two methods in cap-
turing climatic and land cover variability based on the high-
resolution PRISM precipitation and surface temperature and
NDVI data, respectively, reveals that the local method is gen-
erally better than the global method. Finally, comparing the
precipitation and surface temperature over the study area
when represented using non-geo-located SUs from the lo-
cal method against those of the subbasin-based and original
PRISM grid-based generally showed the spatial pattern and
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statistical values of the subgrid units are much closer to those
of the original PRISM grids than those of the subbasins.

In summary, this study demonstrated that adopting the
hypsometric curve characterization for discretizing sub-
basins yields improved capability of capturing topographic
heterogeneity and consistency across different values of area
threshold. This resulted in improved representation of cli-
matic and land cover variability in land surface modeling.
The improved capability of capturing subgrid variability
of atmospheric forcing, surface topography and vegetation
cover with a nominal increase in computational requirement
is essential for improving simulations of land surface mod-
eling in mountainous regions. The focus in this paper is the
development and evaluation of the methods and new spatial
structures. Future efforts will implement the non-geo-located
SUs from the local method in a land surface model based
on the Community Land Model subgrid structure to inves-
tigate how the addition of topographic subgrid units to the
subgrid hierarchical structure may translate to improved sim-
ulations of evapotranspiration, soil moisture, snowpack, and
runoff and streamflow. Coupling land surface models with
the non-geo-located SUs to an atmosphere model with a sub-
grid parameterization of orographic precipitation may further
improve modeling of land—atmosphere interactions in topo-
graphically diverse regions.

7 Code availability

The code developed to generate the subgrid structures is
available upon request. Please contact Teklu K. Tesfa at
teklu.tesfa@pnnl.gov.

The Supplement related to this article is available online
at doi:10.5194/gmd-10-873-2017-supplement.
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