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Abstract. The shallow water equations provide a useful
analogue of the fully compressible Euler equations since
they have similar characteristics: conservation laws, inertia-
gravity and Rossby waves, and a (quasi-) balanced state. In
order to obtain realistic simulation results, it is desirable that
numerical models have discrete analogues of these proper-
ties. Two prototypical examples of such schemes are the
1981 Arakawa and Lamb (AL81) C-grid total energy and po-
tential enstrophy conserving scheme, and the 2007 Salmon
(S07) Z-grid total energy and potential enstrophy conserv-
ing scheme. Unfortunately, the AL81 scheme is restricted
to logically square, orthogonal grids, and the S07 scheme
is restricted to uniform square grids. The current work ex-
tends the AL81 scheme to arbitrary non-orthogonal polygo-
nal grids and the S07 scheme to arbitrary orthogonal spher-
ical polygonal grids in a manner that allows for both to-
tal energy and potential enstrophy conservation, by combin-
ing Hamiltonian methods (work done by Salmon, Gassmann,
Dubos, and others) and discrete exterior calculus (Thuburn,
Cotter, Dubos, Ringler, Skamarock, Klemp, and others). De-
tailed results of the schemes applied to standard test cases are
deferred to part 2 of this series of papers.

1 Introduction

Consider the motion of a (multi-component) fluid on a ro-
tating spheroid under the influence of gravity and radiation.
This is the fundamental subject of inquiry for geophysical
fluid dynamics, covering fields such as weather prediction,

climate dynamics, and planetary atmospheres. Central to our
current understanding of these subjects is the use of numeri-
cal models to solve the otherwise intractable equations (such
as the fully compressible Euler equations) that result. As a
first step towards developing a numerical model for simulat-
ing geophysical fluid dynamics, schemes are usually devel-
oped for the rotating shallow water equations (RSWs). The
RSWs provide a useful analogue of the fully compressible
Euler equations since they have similar conservation laws,
many of the same types of waves, and a similar (quasi-) bal-
anced state. It is desirable that a numerical model possesses
at least some these same properties (see Fig. 1, and the dis-
cussion in Staniforth and Thuburn, 2012).

In fact, there exists some evidence (Dubinkina and Frank,
2007) that schemes without the appropriate conservation
properties can fail to correctly capture long-term statistical
behavior, at least for simplified models without any dissipa-
tive effects. However, questions remain as to the relative im-
portance of various conservation properties for a full atmo-
spheric model, especially in the presence of forcing and dissi-
pation (Thuburn, 2008). This subject deserves further study,
but a key first step is the development of a numerical scheme
that possesses the relevant conserved quantities, and is capa-
ble of being run at realistic resolutions on the types of grids
that are used in operational weather and climate models.

A pioneering scheme developed over 30 years ago pos-
sesses many of these properties (including both total energy
and potential enstrophy conservation): the 1981 Arakawa and
Lamb scheme (AL81, Arakawa and Lamb, 1981). Unfortu-
nately, this scheme is restricted to logically square, orthog-
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onal grids (an orthogonal grid has a dual grid with edges
orthogonal to the primal grid edges) such as the latitude–
longitude (lat.–long.) or conformal cubed-sphere grid. These
grids are not quasi-uniform under refinement of resolution,
and this leads to clustering at typical target resolutions for
next generation weather and climate models (such as 2–3 km
for weather; and 10–15 km for climate). Such clustering will
introduce strong CFL limits, and in the case of the lat.–long.
grid requires polar filtering (which is not scalable on cur-
rent computational architectures) in order to take practical
time steps. For these reasons, it is desirable to be able to
use quasi-uniform grids such as the icosahedral grid (orthog-
onal but non-square) or gnomic cubed sphere (square but
non-orthogonal). In addition to the restriction to logically
square, orthogonal grids, the AL81 scheme also suffers from
poor wave dispersion properties when the Rossby radius is
under-resolved (Randall, 1994). In fact, the unavoidable av-
eraging required for the Coriolis term in a C-grid scheme is
expected to lead to poor wave dispersion properties for an
under-resolved Rossby radius regardless of the specific dis-
cretization employed.

Recently, there has been an effort to extend the AL81
scheme to more general grids, using tools from discrete ex-
terior calculus (commonly referred to as the TRiSK scheme;
Thuburn et al., 2009; Ringler et al., 2010; Thuburn and Cot-
ter, 2012; Weller, 2014; Thuburn et al., 2014). This has lead
to the development of a family of schemes on general non-
orthogonal (spherical) polygonal meshes that possess all of
the desirable properties of AL81 except for extra modes
branches on non-quadrilateral meshes, which are unavoid-
able for C-grid schemes, and lack of either total energy or
potential enstrophy conservation. It is possible to obtain one
or the other, but not both at the same time. Along different
lines, Salmon (2004) showed that AL81 and other doubly
conservative schemes (such as Takano and Wurtele, 1982)
are all members of another family of schemes on logically
square, orthogonal meshes. This was done using tools from
Hamiltonian methods, which are an area of active research in
atmospheric model development.

Rather than using finite differences, it is also possible to
extend the AL81 scheme to arbitrary grids by using compat-
ible finite elements (see McRae and Cotter, 2014 and Cotter
and Thuburn, 2014). Methods based on compatible finite el-
ements are capable of achieving most of the properties listed
in Fig. 1, and with the appropriate selection of spaces and
careful mass lumping can have good linear properties as well
(see Cotter and Shipton, 2012, Staniforth et al., 2013, and
Melvin et al., 2014). However, these methods require the so-
lution of elliptic problems at every time step, and so it is still
useful to investigate a finite difference-based approach.

As an alternative to the AL81 scheme, which preserves
many of its valuable mimetic properties, but has good wave
dispersion properties independent of Rossby radius, Randall
(1994) introduced a scheme for uniform square grids based
on the vorticity–divergence formulation (termed the Z grid)

of the continuous equations. Subsequently, this approach
was extended to arbitrary (spherical) orthogonal polygonal
grids with a triangular dual in Heikes and Randall (1995a,
b), which included the important case of an icosahedral–
hexagonal grid. Although this scheme possesses many of
the desirable properties from AL81, it does not conserve to-
tal energy or potential enstrophy. However, a similar Z grid
scheme based on a Helmholtz decomposition of the momen-
tum instead of the wind, which does conserve both total
energy and potential enstrophy, was developed by Salmon
(2005, 2007) using techniques from Hamiltonian mechan-
ics (specifically, Nambu brackets). The idea of using Hamil-
tonian mechanics to derive conservative models for atmo-
spheric dynamical cores has seen a great deal of interest and
progress in the past 10 years (see Gassmann and Herzog,
2008; Gassmann, 2013; Sommer and Névir, 2009; Nevir and
Sommer, 2009; Dubos and Tort, 2014; Dubos et al., 2015;
Tort et al., 2015; Salmon, 1988; Shepherd, 2003). With the
recent development of Hamiltonian formulations for essen-
tially all of the equation sets and vertical coordinates used
in atmospheric dynamics, it seems likely that this approach
will continue to be employed in the future. Unfortunately,
the scheme in S07 is defined only for planar grids, and in the
key case of general polygonal grids no expression for dis-
crete Hamiltonian or Casimirs was given. This precludes its
further development for implementation into an operational
dynamical core.

This work combines the discrete exterior calculus ap-
proach from Thuburn and Cotter (2012) and the Hamilto-
nian approach from Salmon (2004) to extend AL81 to gen-
eral non-orthogonal (spherical) polygonal grids in a manner
that conserves both total energy and potential enstrophy, and
to extend S07 to arbitrary (spherical) orthogonal polygonal
grids. The extension of AL81 is done through the develop-
ment of a new Q (the discretization of qk̂×, which is also
known as the nonlinear potential vorticity flux) operator, us-
ing tools from Hamiltonian methods. S07 is extended by
combining the Nambu bracket-based approach from Salmon
(2007) with the discrete exterior calculus tools introduced in
Thuburn and Cotter (2012). It should be noted that this work
deals only with spatially conservative discretization. Conser-
vation errors introduced due to time discretization are typ-
ically much smaller than those due to space discretization.
However, the extension of this approach to fully conserva-
tive discretization would be a useful contribution.

The remainder of this paper is structured as follows:
Sect. 2 introduces the rotating shallow water equations in
both their familiar vector-invariant form and the less famil-
iar Hamiltonian forms. Section 3 presents a family of C-
grid numerical schemes that possess many of the desirable
properties, and discusses the specific member of this fam-
ily introduced here. Section 4 introduces the new operator
Q that enables the conservation of both total energy and po-
tential enstrophy in the C-grid scheme. Section 5 presents
the Z grid scheme and discusses its key mimetic and con-

Geosci. Model Dev., 10, 791–810, 2017 www.geosci-model-dev.net/10/791/2017/



C. Eldred and D. Randall: Derivation of schemes 793

servation properties. Section 6 discusses an implementation
of these schemes, and shows some limited results. Finally,
some conclusions (Sect. 7) are drawn. The appendices dis-
cuss various ancillary topics such as the computational grid
used (Appendix A), the specific discrete operators employed
(Appendices B, C, and D), and the discrete variables used in
the C- and Z grid schemes (Appendices E and F).

2 Rotating shallow water equations

The RSWs for both planar and spherical domains are pre-
sented below in several forms: the vector-invariant formu-
lation, the vorticity–divergence formulation, the symplectic
Hamiltonian formulation based on the vector-invariant form
and both Poisson bracket, and Nambu bracket formulations
based on the vorticity–divergence formulations. Although all
of these formulations are equivalent in the continuous case,
they lead to very different discretizations.

2.1 Vector-invariant formulation

The mass continuity equation for the RSWs is expressed in
vector-invariant form as

∂h

∂t
+∇ · (F )= 0, (1)

where h is the fluid height and u is the fluid velocity. Simi-
larly, the momentum equation is expressed as

∂u

∂t
+ qk× (F )+∇8= 0, (2)

where F = hu is the mass flux, q = η
h

is the potential vor-
ticity, η = ζ +f is the absolute vorticity, ζ = k̂ ·∇×u is the
relative vorticity, f is the Coriolis force, 8= gh+K + ghs
is the Bernoulli function, hs is the topography height, and g
is gravity and K = u·u

2 is the kinetic energy.

2.2 Poisson bracket formulation (vector invariant)

As discussed in Salmon (2004), let the Hamiltonian H be
given by

H=
∫
�

1
2

(
h|u|2

)
+

1
2
gh(h+ 2hs)d� (3)

and let x = (h,u). Note that � denotes the entire domain of
interest, which is restricted here to either a doubly periodic
plane or the sphere. Therefore, there are no boundary condi-
tion to consider. The Hamiltonian formulation can be used in
the presence of boundaries, but it becomes more complicated
and is not treated here. The time evolution of an arbitrary
functional F can be written as

dF
dt
= {F ,H}, (4)

where the Poisson bracket {F ,H} (which is a bilinear, anti-
symmetric operator that satisfies the Jacobian identity) is

{F ,H} = (5)∫
�

d�
(
δH
δu
·∇
δF
δh
−
δF
δu
·∇
δH
δh
+ qk̂ ·

(
δH
δu
×
δF
δu

))
.

It is useful to split this into two separate brackets as

{F ,H} = {F ,H}R +{F ,H}Q, (6)

where

{F ,H}R =
∫
�

d�
(
δH
δu
·∇
δF
δh
−
δF
δu
·∇
δH
δh

)
(7)

=

∫
�

d�
(
δH
δh

(
∇ ·

δF
δu

)
−
δF
δh

(
∇ ·

δH
δu

))

encompasses the gradient and divergence terms and

{F ,H}Q =
∫
�

d�
(
qk̂ ·

(
δH
δu
×
δF
δu

))
(8)

encompasses the nonlinear potential vorticity (PV) flux term.
The functional derivatives δH

δx
of the Hamiltonian are given

by

δH
δx
=

(
8

F

)
. (9)

This formulation is useful for development of a scheme that
possesses discrete conservation properties, as discussed be-
low. A functional derivative of some functional F[x] is de-
fined as

δF
δx
= lim
ε→0

F[x+ εφ] −F[x]
ε

. (10)

2.3 Conserved quantities

Since the rotating shallow water equations form a (non-
canonical) Hamiltonian system, we know from Noether’s
theorem and other considerations (such as the singular nature
of the symplectic operator) that there are at least two cate-
gories of conserved quantities: Hamiltonian and Casimirs.

2.3.1 Energy (Hamiltonian)

The first is simply the Hamiltonian itself. In this case, the
Hamiltonian is the total energy of the system. Conservation
of the Hamiltonian arises due to the skew-symmetric nature
of the Poisson bracket. In particular, using Eq. (4) the evolu-
tion of H is given by

dH
dt
= {H,H} = −{H,H} = 0 (11)
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Figure 1. A diagram of some desirable model properties for the shallow water equations, organized thematically into groups. Similar con-
siderations apply for the Euler, hydrostatic primitive, and other equation sets used in atmospheric models. There is vigorous discussion in the
literature and between model designers about the importance of various properties for different applications (such as weather forecasting or
long-term climate prediction). The schemes presented here satisfy all of these properties, with the exception of accuracy. There are additional
desirable model properties, such as consistent physics–dynamics coupling, compatible and accurate tracer advection, and tractable treatment
of acoustic waves that are not presented.

since {, } is skew symmetric. For the rotating shallow water
equations, the Hamiltonian is the total energy of the system.
The elegant derivation of energy conservation and its sim-
plicity (relying ONLY on the skew symmetry of {, }) moti-
vates the use of the Hamiltonian formulation for development
of numerical schemes that conserve energy.

2.3.2 Casimirs

The second category of conserved quantities consists of
Casimir invariants. Since the rotating shallow water equa-
tions are a non-canonical Hamiltonian system, the Poisson
bracket {, } is singular and thus it possesses Casimir invari-
ants C that satisfy

{F ,C} = 0 (12)

for any functional F . Note that from above, this implies that

dC
dt
= 0. (13)

For the rotating shallow water equations, the Casimirs take
the form

C =
∫
�

hF(q)d�, (14)

where F(q) is an arbitrary function of the potential vorticity
and

δC
δx
=

(
F(q)− qF ′(q)

∇⊥F ′(q)

)
, (15)

where ∇⊥ is the skew-gradient operator. On the plane it is
k×∇, and it has a coordinate-independent definition on more
general manifolds such as the sphere. Important cases for
F include F = 1 (mass conservation), F = q (circulation or
mass-weighted potential vorticity), and F = q2

2 (potential en-
strophy).

2.4 Vorticity–divergence formulation

By taking the divergence (∇·) and curl (∇⊥·) of Eq. (2), we
obtain the vorticity–divergence form of the equations

∂ζ

∂t
=−∇ · (ηu)=−∇ · (hqu), (16)

∂µ

∂t
=∇

⊥
· (ηu)−∇28=∇

⊥
· (hqu)−∇28, (17)

where µ=∇ ·u is the divergence. The mass flux can then
be split into rotational and divergent components (i.e., a
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Helmholtz decomposition) as

hu= (hu)div+ (hu)rot =∇χ +∇
⊥ψ, (18)

where (hu)div =∇χ and (hu)rot =∇⊥ψ . The stream func-
tion ψ and velocity potential χ can be related to the vorticity
and divergence as

ζ = η− f =∇ · (h−1
∇ψ)+ J (h−1χ), (19)

µ=∇ · (h−1
∇χ)+ J (ψ,h−1), (20)

where J (a,b)=∇·(a∇Tb)=∇T
·(a∇b) is the Jacobian op-

erator. The Helmholtz decomposition connects the vorticity–
divergence formulation and the vector-invariant formula-
tions. In the preceding, we have neglected the possibility of a
harmonic component (a component A for which ∇2A= 0),
which works because the harmonic component on the sphere
is zero. On the doubly periodic plane, it would be possible
to have a constant harmonic component. Finally, Eqs. (1)
and (2) can be re-written in terms of χ and ψ directly as

∂h

∂t
=−∇

2χ, (21)

∂ζ

∂t
= J (q,ψ)−∇ · (q∇χ), (22)

∂µ

∂t
= J (q,χ)+∇ · (q∇ψ)−∇28. (23)

2.5 Poisson bracket formulation (vorticity–divergence)

As shown in Salmon (2007), the preceding equations
(Eqs. 21, 22, and 23) can be also be written in terms of a
Poisson bracket. Let x = (h,ζ,µ) and define the Hamilto-
nian

H= (24)∫
�

1
2h

(
|∇χ |2+ |∇ψ |2+ 2J (χ,ψ)

)
+

1
2
gh(h+ 2hs)d�.

Note that

δH=
∫
�

d�(−ψδζ −χδµ+8δh), (25)

where

8=K+gh=
|∇χ |2+ |∇ψ |2+ 2J (χ,ψ)

2h2 +gh+ghs, (26)

which gives

δH
δx
=

 8

−ψ

−χ

 (27)

(this is the functional derivative of the Hamiltonian with re-
spect to x), and define a Poisson bracket (which is bilinear,
anti-symmetric and satisfies the Jacobian identity) as

{A,B} = {A,B}µµ+{A,B}ζ ζ +{A,B}µζh, (28)

where

{A,B}ζ ζ =
∫
�

d�qJ(Aζ ,Bζ ), (29)

{A,B}µµ =
∫
�

d�qJ(Aµ,Bµ), (30)

{A,B}ζµh =
∫
�

d�q(∇Aµ ·∇Bζ −∇Aζ ·∇Bµ) (31)

+ (∇Aµ ·∇Bh−∇Ah ·∇Bµ)
for arbitrary functionals A and B. As before, the time evolu-
tion of an arbitrary functional A is then given by
dA
dt
= {A,H}. (32)

It is easy to see that Eqs. (21), (22), and (23) are recovered
when A is set equal to h, ζ or µ, respectively. Note that
each of the brackets in Eqs. (29), (30), and (31) are anti-
symmetric, and that the Casimirs C =

∫
�
hF(q)d� satisfy

{A,C} = 0 (where F is an arbitrary function and A is an ar-
bitrary functional) independently for each bracket.

The use of the Poisson (and Nambu) bracket formulation
of the shallow water equations is motivated by the intimate
connection between these formulations and the conserved
quantities. As is well known, the conservation of energy H
rests solely on the anti-symmetry of the Poisson bracket,
and a numerical scheme that retains this feature will auto-
matically conserve energy. However, potential enstrophy is
a Casimir, and therefore developing a numerical scheme us-
ing the Poisson formulation that conserves it requires that
the discrete potential enstrophy lies in the null space of the
resulting discrete bracket. This can be difficult, especially on
arbitrary grids, and this motivates the use of a continuous
formulation that does not contain a null space, which is dis-
cussed below.

2.6 Nambu bracket formulation (vorticity–divergence)

Fortunately, there is a closely related formulation of the
shallow water equations in terms of Nambu brackets (see
Salmon, 2007):

{F ,H,Z}ζ ζ ζ =
∫
�

d�ZζJ (Fζ ,Hζ ), (33)

{F ,H,Z}µµζ =
∫
�

d�ZζJ (Fµ,Hµ), (34)

{F ,H,Z}µζh =
∫
�

d�
(

∇Zh ·∇Fµ ·∇Hζ ·
1

∇q
(35)

−∇Zh ·∇Fζ ·∇Hµ ·
1

∇q

)
+ cyc(F ,H,Z),

where cyc is a cyclic permutation, Z =
∫
�

d�h q
2

2 is the po-
tential enstrophy, and the multi-part dot product is simply the
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product of the individual components, summed over each ba-
sis (for example, in two-dimensional (2-D) doubly periodic
flow the first term is ∂xZh∂xFδ∂xHζ

∂xq

)
. The time evolution of

an arbitrary functional A is now given by

dA
dt
={A,H,Z} = {A,H,Z}ζ ζ ζ +{A,H,Z}µµζ (36)

+{A,H,Z}µζh.

These brackets are useful because they are triply anti-
symmetric (which ensures the conservation ofH and Z) and
non-degenerate (they have no Casimirs). In fact, discrete con-
servation of both total energy and potential enstrophy re-
quires only the triply anti-symmetric nature is retained. It
is also possible to generalize these brackets to any Casimir
(as shown in Salmon, 2005), but since we are interested
mostly in potential enstrophy conservation this is not nec-
essary. These brackets will form the basis of the Z grid dis-
cretization method discussed below.

3 C-grid scheme

Following Thuburn and Cotter (2012), the prognostic vari-
ables for the C-grid scheme are the fluid height integrated
over a primal grid cell (equivalent to the mass in that grid
cell) M and the wind integrated over a dual edge (equiv-
alent to the circulation along a dual edge) Û . Letting x =
(M,Û), the vector-invariant Poisson bracket can be dis-
cretized in a manner that preserves its anti-symmetric char-
acter (which ensures total energy conservation) and a subset
of the Casimir invariants (specifically mass, potential vortic-
ity, and potential enstrophy). Combined with a choice for the
discrete Hamiltonian, this constitutes a complete discretiza-
tion for the nonlinear rotating shallow water equations. Ide-
ally, one would use a Nambu bracket formulation of the
vector-invariant shallow water equations rather than the Pois-
son bracket formulation in order to avoid the difficulties as-
sociated with developing a discretization that has the cor-
rect Casimirs, since in the Nambu bracket case only anti-
symmetry must be enforced. Unfortunately, the only known
Nambu bracket for the vector-invariant shallow water equa-
tions possesses intractable singularities and is not suitable as
the basis for developing a discretization (Salmon, 2005). In
what follows, uppercase letters will denote the entire (col-
umn) vector of degrees of freedom, while lowercase letters
will denote a specific degree of freedom. A hat on a variable
indicates that the quantity is defined on the dual grid.

Specifically, the brackets in Eqs. (7) and (8) are discretized
using the operators from Appendices C and B as

{A,B}R =−
(
δA
δM

)T

D2
δB
δÛ
−

(
δA
δÛ

)T

D1
δB
δM

, (37)

{A,B}Q =
(
δA
δÛ

)T

Q
δB
δÛ

, (38)

where the functional derivatives are simply the partial deriva-
tives with respect to the appropriate quantity. Note that these
discrete brackets are only bilinear and anti-symmetric, they
do not satisfy the Jacobian identity. In addition, they pos-
sess only a subset of the Casimirs of the continuous brackets.
Therefore, they should be properly be termed quasi-Poisson
brackets. The brackets given in Eqs. (37) and (38) are essen-
tially a generalization of the brackets introduced in S04 from
uniform square grids to arbitrary polygonal grids, using the
operators from Thuburn and Cotter (2012). The Hamiltonian
H is discretized as

H=
1
2
gMTI(M + 2B)+

1
2
ÛTHĈ, (39)

where g is the acceleration due to gravity, B is the topo-
graphic height integrated over a primal grid cell, Ĉ =MeÛ

is the mass flux on dual edges, and Me
= φIM , with φ an

interpolation operator. Taking functional derivatives yields

δH
δx
=

(
8̂

F

)
, (40)

where 8̂ is the Bernoulli function sampled at dual vertices
and F is the mass flux integrated over primal edges. Com-
puting actual values yields 8̂= I(K + gM + gB) with K =
φT Û×HÛ

2 , where K is the kinetic energy integrated over pri-
mal grid cells and F =HĈ. A detailed description of these
discrete variables and their staggering on the computational
grid can be found in Appendix E, and a diagram of their stag-
gering is in Fig. 2. The resulting discrete evolution equations
are

∂M

∂t
+D2F = 0, (41)

∂Û

∂t
−QF +D18̂= 0. (42)

In fact, by making alternative choices for F , Q, and 8̂
(along with the operators discussed below) it is possible to
recover a wide range of C-grid schemes present in the lit-
erature (such as Ringler et al., 2010, Thuburn et al., 2014,
and Weller, 2014; see Eldred, 2015 for more details). The
operators D2, D1, D1, D2, I, J, R, W, and H are defined
in Appendices B and C (and can also be found in a general
form in Thuburn and Cotter, 2012). The novelty of the cur-
rent scheme is a new definition of Q, such that the proper-
ties of total energy conservation, potential enstrophy conser-
vation, and steady geostrophic modes hold simultaneously.
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This is the subject of Sect. 4. A potential vorticity equation
can be obtained from Eq. (42) by taking D2 to yield

∂(M̂ ×Q)

∂t
−D2QF = 0, (43)

where D2D1 = 0 has been used to eliminate the gradient
term, and D2Û = 0̂ is the relative vorticity integrated over
dual grid cells; ϒ̂ = 0̂+f = M̂×Q, where M̂ = RM is the
mass integrated over dual grid cells, ϒ̂ is the absolute vortic-
ity integrated over dual grid cells, f is the Coriolis parameter
integrated over dual grid cells, andQ is the potential vorticity
sampled at primal grid vertices.

3.1 Relationship to discrete exterior calculus

As discussed in Thuburn and Cotter (2012), these operators
have an interpretation in terms of discrete exterior calculus.
In fact, D2, D1, D2, and D1 are discrete exterior derivatives,
I, J, and H are Hodge stars and the various prognostic and di-
agnostic quantities can be interpreted as discrete differential
forms. This connection is further explored in Eldred (2015).

3.2 Linearized scheme

As is well known, the linearized version of a Hamiltonian
system about a steady state can be found by evaluating the
brackets at that state and using the quadratic approximation
to the associated pseudo-energy as the Hamiltonian (Shep-
herd, 1993). Following this procedure and letting the Corio-
lis parameter f be a constant, B = 0, and assuming a back-
ground state of x = (H,0), we obtain

{A,B}R =−
(
δA
δM

)T

D2
δB
δÛ
−

(
δA
δÛ

)T

D1
δB
δM

, (44)

{A,B}Q =
(
δA
δÛ

)T

W
δB
δÛ

(45)

for the brackets (where W=Qqv=1 is the linearized version
of Q) and

H=
1
2
gMTI(M + 2B)+

1
2
HÛTHÛ (46)

for the Hamiltonian, which has associated functional deriva-
tives of

δH
δx
=

(
gIM
HHÛ

)
. (47)

The resulting evolution equations are

∂M

∂t
+HD2HÛ = 0, (48)

∂Û

∂t
− fWHÛ + gD1IM = 0. (49)

Figure 2. A subset of discrete variables and their staggering on the
computational grid for the C-grid scheme. A subscript i indicates
quantities defined at primal grid cells or dual grid vertices, a sub-
script e indicates quantities defined at primal or dual grid edges,
and a subscript v indicates quantities defined at primal grid vertices
or dual grid cells. The prognostic (red) quantities are the mass in-
tegrated over primal grid cells mi and the wind integrated along
dual grid edges ue, the other quantities are diagnostic (blue). More
details can be found in Appendix E.

3.3 Properties of scheme

This scheme has many important properties, including the
following:

1. Mass and potential vorticity conservation: both massM
and mass-weighted potential vorticity M̂ ×Q are con-
served in both a local (flux-form) and global (integral)
sense.

2. No spurious vorticity production: by construction,
D2D1 = 0 and there is no spurious production of vor-
ticity due to the gradient term in the wind equation.

3. Linear stability (pressure gradient force and Coriolis
force conserve energy): this is due to the fact that I, J,
and H are all symmetric positive definite; DT

2 =−D1,

D2
T
=D1, and W=−WT.

4. Steady geostrophic modes: by construction, −RD2 =

WD2 (noting that W is the same for all members of this
family), which gives steady geostrophic modes.

5. PV Compatibility: again by construction −RD2 =

WD2 with Qqv=c→ cW, and therefore the potential
vorticity equation is compatible with the diagnostic
mass equation (a constant PV field remains constant).
Note that this is same as the condition required for
steady geostrophic modes.

6. Other conservation properties: see below for a discus-
sion on total energy and potential enstrophy conserva-
tion.
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Table 1. Summary of required operator properties for obtaining the desirable mimetic properties along with total energy and potential
enstrophy conservation. A example of operators that satisfy these properties can be found in Appendix C. More details can be found in
Thuburn and Cotter (2012) or Eldred (2015). Note that the mapping column indicates which types of quantities the operator accepts as
inputs, and what it produces as output, with “p” or “d” denoting the primal and dual grids; while the number (0,1,2) denotes the geometric
entity the quantity is integrated over. For example, the R operator takes as input quantities integrated over primal grid cells, and produces as
output quantities integrated over dual grid cells.

Operator Properties Notes Mapping

I Symmetric positive definite Hodge star p2→ d0

J Symmetric positive definite Hodge star d2→ p0

H Symmetric positive definite Hodge star d1→ p1

W RD2 =D2W Interior product (contraction) p1→ d1

R W=−WT Identity operator p2→ d2

Q=−QT

Q Q→ q0Q when qv = q0 is constant Interior product (contraction) p1→ d1

−D1RT q2
v
2 +QD1qv = 0 ∀qv

D2 D2D1 = 0 and DT
2 =−D1 Exterior derivative p1→ p2

D2 D2D1 = 0 and D2
T
=D1 Exterior derivative d1→ d2

D1 D2D1 = 0 and DT
2 =−D1 Exterior derivative p0→ p1

D1 D2D1 = 0 and D2
T
=D1 Exterior derivative d0→ d1

φ see text see text see text

Table 1 shows a summary of the required properties in or-
der for the resulting scheme to have all of the mimetic and
conservation properties discussed above.

3.3.1 Total energy conservation

Following S04, total energy will be conserved for any choice
ofH if the discrete brackets retain their anti-symmetric char-
acter. This requires that DT

2 =−D1, and that Q=−QT.
The first condition is satisfied by construction of the dis-
crete derivative operators D2 and D1. The second condi-
tion is satisfied only for certain choices of Q. One exam-
ple is Q= 1

2Q
eW+ 1

2 WQe (as used in Ringler et al., 2010),
where Qe is any function that, given the set of qv at pri-
mal vertices, computes a unique Qe at primal edges (such as
Qe
=

1
2
∑
v∈VE(e)qv). Flexibility in the choice of Qe allows

for a wide variety of stabilization methods such as CLUST
or APVM (Weller, 2012; Weller et al., 2012). Unfortunately,
this choice does not conserve potential enstrophy.

3.3.2 Potential enstrophy conservation

Following S04, potential enstrophy is a Casimir and therefore
will be conserved when

{Z,A} = 0 (50)

holds for any choice of functional A. Potential enstrophy is
defined as

Z =
1
2
(Q)Tϒ̂ =

1
2

(
ϒ̂

M̂

)T

ϒ̂. (51)

Its functional derivatives are

δZ
δx
=

(
−RQ×Q

2
D1Q

)
. (52)

Using the chain rule for functional derivatives, it suffices
to show that Eq. (50) holds for A=

∑
imi and A=

∑
eue.

Therefore, Eq. (50) reduces to

D2D1Q= 0, (53)

−D1R
Q×Q

2
+QD1Q= 0, (54)

which must hold for any choice of Q. The first of these is
again satisfied by construction for D2 and D1. The second
is much trickier, and is the main subject of Sect. 4. One ex-
ample is Q=QeW (as used in Ringler et al., 2010), where
Qe
=

1
2
∑
v∈VE(e)qv . Unfortunately, this choice does not con-

serve total energy. It would be possible to explore alternative
definitions of Z , but these would lead to different, less natu-
ral stencils for Q.
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3.4 Arakawa and Lamb 1981

In the case of a uniform square grid, the C-scheme grid above
reduces to the well-known Arakawa and Lamb 1981 total en-
ergy and potential enstrophy scheme (modified to prognose
mi and ue) if their choice of Q is used. Unfortunately, the
definition of Q presented in AL81 works only for logically
square, orthogonal grids. For more general, non-orthogonal
polygonal grids, a new operator Q must be found. This is the
subject of the next section.

3.5 Hollingsworth instability

Since this is an extension of Arakawa and Lamb 1981
scheme, it seems extremely likely that the proposed scheme
will suffer from the Hollingsworth instability, especially if
applied in a height coordinate framework using a Lorenz
staggering in the vertical (as discussed in Bell et al., 2016 and
Hollingsworth et al., 1983). However, other similar schemes
have been able to mitigate the Hollingsworth instability when
used with an isentropic or Lagrangian vertical coordinate, or
when a Charney–Phillips staggering is used in the vertical.
On a uniform square grid using AL81, it is possible to rig-
orously modify the kinetic energy stencil to eliminate the
non-cancellation error that is at the heart of the instability.
Furthermore, this modification can be done in such a way
as to conserve total energy, by expressing it as a modifica-
tion to the Hamiltonian H itself and then deriving the asso-
ciated consistent mass flux Fe. A similar modification of the
kinetic energy stencil for a similar C-grid scheme on non-
square grids (Gassmann, 2013) has been shown to mitigate
the Hollingsworth instability even without rigorous elimina-
tion of the non-cancellation error. Therefore, given the many
possible mitigation strategies, the possible presence of the
instability is not expected to prevent use of this scheme in a
model solving the hydrostatic or non-hydrostatic equations.

4 Operator Q

The principal novelty of the new C-grid scheme is the spec-
ification of a Q operator that simultaneously conserves total
energy and potential enstrophy, and also supports PV com-
patibility. Previous work found choices for Q that conserved
either total energy or potential enstrophy, but not both. The
key lies in S04, showing that the AL81 approach could be
extended to more general stencils (although retaining a logi-
cally square, orthogonal grid). This work takes the Salmon
2004 approach in a different direction, keeping the same
stencil as AL81 but considering a general polygonal grid.

4.1 Definition of Q

Loosely following S04, Q is defined as

QFe =
∑

e′∈ECP(e)

∑
v∈VC(i)

qvαe,e′,vFe, (55)

Figure 3. A diagram of the stencil of Q when applied to an edge
e (green). The nonlinear PV flux QFe at edge e (green) is a linear
combination of the mass fluxes Fe at the edges e′ ∈ ECP(e) (red),
where the weights αe,e′,v are themselves a linear combination of
the potential vorticity qv at vertices v ∈ VC(i) (blue), and i is the
cell shared between edges e (green) and e′ (red). By choosing the
weights αe,e′,v appropriately, an operator Q can be found that si-
multaneously conserves both total energy and potential enstrophy
and supports steady geostrophic modes.

where i is the primal grid cell covered by both e and e′. A
diagram of this operator is shown in Fig. 3. An equivalent
alternative form for Q given in terms of the Poisson bracket
that closely mimics the one found in S04 can be found in
Eldred (2015). It is easy to see that in the case of a logically
square, orthogonal grid, this approach reduces to the same
stencil considered by AL81. At this point, the coefficients
αe,e′,v are undetermined.

4.2 Linear system for α

It remains to determine the coefficients αe,e′,v in a manner
such that the resulting operator Q conserves both total energy
and potential enstrophy, and satisfies PV consistency.

4.2.1 Requirements introduced by energy conservation

Following S04, in order for Q to be energy conserving then
Q=−QT. In terms of the coefficients, this implies that
αe,e′,v =−αe′,e,v , or in other words, they are anti-symmetric
under an interchange of e and e′.

4.2.2 Requirements introduced by potential enstrophy
conservation

From Eq. (54), in order for Q to conserve potential enstrophy,
−D1RQ×Q

2 +QD1Q= 0 must hold for any choice of Q.
Expanding this out yields

∑
e′∈ECP(e)

( ∑
v∈EVC(e,e′)

αe,e′,vqv

) ∑
v′∈VE(e′)

te′,v′q
′
v
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Figure 4. A diagram of the stencil v ∈ CVE(e)= VE(i1)∪VE(i2)
with (i1, i2)= CE(e), which is simply the union of all vertices v
(blue) in the cells on either side of edge e (green).

=

∑
i∈CE(e)

(−ne,i)
∑

v∈VC(i)

Ri,v
q2
v

2
(56)

for every e, which must hold for any choice of qv . For a
given edge e, the vertices in question are v ∈ CVE(e) (shown
in Fig. 4), where CVE(e)= VE(i1)∪VE(i2) and (i1, i2)=
CE(e). Both the left- and right-hand side of these equations
are a quadratic form in this set of vertices, and for this to hold
for arbitrary qv the coefficients in these two quadratic forms
must be equal. These coefficients are linear combinations of
the α’s, and therefore the equality of these quadratic forms
implies a set of linear equations for the α’s.

Specifically, for each grid cell i with ne edges and nv
vertices (note that ne = nv for a polygonal grid cell, but it
is useful to keep distinct notation to ease exposition), there
are ne nv(nv+1)

2 equations (coefficients in the quadratic forms)
and nv

ne(ne−1)
2 unknowns (the coefficients αe,e′,v). Since

nv = ne, this is therefore an overdetermined system, and the
coefficient will be found through a least-squares procedure.
The equations come from equating the coefficients in the
two quadratic forms: there are nv(nv+1)

2 independent vertex
pairs, and ne edges. The unknowns are the coefficients αe,e′,v
that are associated with the grid cell: there are ne(ne−1)

2 inde-
pendent unique edge pairs, and nv vertices. Note that this
has already taken into account the fact that αe,e′,v =−αe′,e,v
(hence the wording unique edge pair), which reduces the
number of independent coefficients in half. Letting v and v′

loop over the vertices in the cell (they are the unique mem-
bers of VC(i)×VC(i)), the equations are given by

Av,v =
∑

e′∈EVE(v,e,i)

αe,e′,vte′,vsgn(e,e′), (57)

Bv,v =
∑
i

ne,i
Ri,v

2
=
Ri,v

2
, (58)

where the sum for Bv,v occurs only when v ∈ VE(e); and

Av,v′ =
∑

e′∈EVE(v′,e,i)

αe,e′,vte′,v′sgn(e,e′), (59)

+

∑
e′∈EVE(v,e,i)

αe,e′,v′ te′,vsgn(e,e′)

Bv,v′ = 0, (60)

where e loops over each edge in i and EVE(v,e, i)= EC(i)∩
EV(v)− e; and sgn(e,e′)= 1=−sgn(e′,e) (which ensures
that the scheme is also energy conservative). A diagram of
EVE(v,e, i) is provided in Fig. 5. Note that coefficients in
one cell are coupled with adjacent cells when v ∈ VE(e) or
v′ ∈ VE(e); that is to say, the equations involve coefficients
that are associated with other grid cells. On a non-uniform
mesh, this means that the entire set of coefficients must be
solved at the same time.

The solution procedure outlined above gives a large matrix
system

Aα = b, (61)

where each row in A represents an equation obtained by
equating coefficients in the quadratic forms, and α is the
vector of unknown coefficients. This system can be solved
(via a least-squares approach) to yield a set of coefficients
α such that Q conserves potential enstrophy, provided the
system can be solved exactly. This procedure is essentially
identical to the one employed in S04. In addition, the co-
efficients can be computed once, and then stored for later
use. Unfortunately, the system that results directly from this
procedure is impractical to solve for realistic non-uniform
meshes: it is too large and ill conditioned. For example, on
an icosahedral–hexagonal mesh with O(1 million) grid cells,
there will be O(90 million) coupled coefficients that need to
be solved for.

4.3 Practical solution

Instead, following Thuburn et al. (2009), the coefficients can
be uncoupled by defining

Bv,v =

(
Ri,v

2
+C

)
ne,i, (62)

Bv,v′ = Cne,i (63)

when v ∈ VE(e) or v′ ∈ VE(e), where C =−1/6. This will
produce an independent subsystem for each grid cell, with
for example 90 unknowns on a hexagonal grid cell and 24
unknowns on a square grid cell. When this procedure is
applied to a uniform square grid it reproduces the AL81
scheme, and on a uniform hexagonal grid it produces a to-
tal energy and potential enstrophy conserving scheme (not
shown, verified numerically). In all cases, including the non-
uniform meshes tested (icosahedral and cubed-sphere grids),
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Figure 5. A diagram of the stencil EVE(v,e, i)= EC(i)∩EV(v)−
e. Consider the set (v,e, i) denoted in green; note that EVE(v,e, i)
are the two red edges. Now consider the set (v,e, i) denoted in blue:
then EVE(v,e, i) is the brown edge.

the least-squares problem is solved exactly, in the sense that
the coefficients exactly satisfy the relationships for potential
enstrophy and total energy conservation. Since each subsys-
tem is still overdetermined, this implies the existence of an
associated solvability condition. It seems likely that the solv-
ability condition is the key to writing down an explicit for-
mula for the coefficients in terms of Ri,v and ne,i . Unfor-
tunately, we were unable to derive such a condition. How-
ever, this does not prevent the numerical solution of the least-
square problems, which is sufficient for practical use of the
scheme. We were able to solve the systems on cubed-sphere
meshes with up to 884 736 grid cells and on icosahedral–
hexagonal meshes with up to 655 363 grid cells in a few
hours using an unoptimized, serial algorithm on a laptop
computer. Furthermore, the uncoupled nature of the prob-
lem (one small independent least-squares problem per grid
cell) would facilitate trivial parallelism if needed for larger
meshes.

4.3.1 PV compatibility

The astute reader will note that nothing has been said yet
about enforcing PV compatibility (Qqv=c = cW. It was orig-
inally believed that PV compatibility would have to added as
additional equations in the matrix–vector system. However,
it was found that enforcing potential enstrophy conservation
(even using the uncoupled form) was sufficient to ensure that
Q was PV compatible. This corresponds with the results of
S04 (Salmon, 2004), who did not explicitly add PV compat-
ibility, yet all of his schemes had this property. The reasons
behind this result are not yet understood. If PV compatibility
had to be added explicitly, it would simply mean that∑
v∈VC(i)

αe,e′,v = we,e′ (64)

for every edge pair (e,e′); which could be easily added to
the independent system of equations solved in each grid cell.

Although enforcing Qqv=c = cW ensures PV compatibility,
it also requires the use of the W operator from Thuburn et al.
(2009). Therefore, Q will share the same limitations, includ-
ing inconsistency on general grids. The consequences of this
are explored more in Eldred and Randall (2017a).

5 Z grid scheme

Unlike the C-grid scheme, the Z grid scheme starts with
Nambu brackets rather than Poisson brackets. This greatly
simplifies the derivation, since only the triply anti-symmetric
nature of the brackets must be retained to ensure total energy
and potential enstrophy conservation: there is no considera-
tion of Casimirs. Start by defining a set of collocated discrete
variables

x = (hi,ζi,µi), (65)

which are pointwise values of h, ζ , and µ at primal grid cen-
ters. We will also use the More details about the grid; dis-
crete operators and discrete variables can be found in Ap-
pendices A, D, and F.

5.1 Functional derivatives

The functional derivative of a general functional F with re-
spect to discrete variable xi is then defined as

δF
δxi
= Fxi =

1
Ai

∂F
∂xi

, (66)

where Ai is the area of primal grid cell i. The diagnostic
variables 8i , χi , ψi , and qi are defined through the func-
tional derivatives of the discrete Hamiltonian H and discrete
Potential Enstrophy Z as

8i ≡
δH
δhi
=Hh, (67)

−ψi ≡
δH
δζi
=Hζ , (68)

−χi ≡
δH
δµi
=Hµ, (69)

qi ≡
δZ
δζi
= Zζ . (70)

At this point the discrete Hamiltonian H and discrete poten-
tial enstrophy Z are left unspecified.

5.2 Discrete Nambu brackets

Following Salmon (2007), the general discretization starts
from the Nambu brackets in Eqs. (33), (34), and (35) for
the shallow water equations in vorticity–divergence form. As
long as these brackets retain their triply anti-symmetric struc-
ture when discretized, total energy and potential enstrophy
will be automatically conserved for any definition of the to-
tal energy and potential enstrophy (with one caveat explained
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below). In addition, the bracket structure ensures that this
conservation is local as well as global. That is, the evolu-
tion of a conserved quantity can be written in flux form for
each grid cell, where cancellation of fluxes between adjacent
cells leads to the global integral being invariant. This is in
contrast to a method that conserves the global integral, but
cannot be written in flux form for each grid cell. In what fol-
lows below, we will consider only the case where Z is the
potential enstrophy, although this approach could be easily
generalized to arbitrary Casimirs (see Salmon, 2005 for an
example of this on a uniform square grid). In discretizing the
Nambu bracket, the operators D1, D2, D1, and D2 from the
C-grid scheme are needed. In addition to these, the additional
operators J (A,B), K, Xv , and Xe are also needed, and they
are given in Appendix D.

5.2.1 Jacobian brackets

Loosely following S07, the {F ,H,Z}ζ ζ ζ bracket can be dis-
cretized as

{F ,H,Z}ζ ζ ζ = (71)
1
3

∑
edges

1
2
(D1(Zζ )v)J (Fζ ,Hζ )+ cyc(F ,H,Z).

Note that this bracket is triply anti-symmetric (due to the
cyclic permutation), as required. The {F ,H,Z}µµζ bracket
can be similarly discretized as

{F ,H,Z}µµζ =
∑
edges

1
2
(D1(Zζ )v)J (Fµ,Hµ). (72)

This bracket is only doubly anti-symmetric (in H and F
due to the anti-symmetry of J ), but it will conserve Z as
well provided that δZ

δµi
= 0 (since J (A,B)= 0 when either

A= 0 or B = 0). These brackets are essentially those en-
countered when discretizing the Arakawa Jacobian, as de-
tailed in Salmon (2005).

5.2.2 Mixed brackets

The mixed bracket is trickier since it contains an apparent
singularity

(
1

∇q

)
. On closer inspection, in the continuous

case this singularity cancels out when combined with the
functional derivative of the potential enstrophy. This is the
caveat mentioned above; i.e., the discrete mixed bracket must
be constructed such that the apparent singularity cancels out
with the discrete functional derivative of the potential enstro-
phy. With this in mind, the general form of the discrete mixed
bracket is chosen as

{F ,H,Z}µζh =
∑
edges

D1(Zh)
D1qi

le
de

[
(D1Fµ)(D1Hζ ) (73)

−(D1Fζ )(D1Hµ)
]
+ cyc(F ,H,Z),

where, from before, qi ≡ δZ
δζi

. The quantities le and de are
the edge lengths on the primal and dual grid, as defined in

Appendix A. This bracket is triply anti-symmetric (again due
to the cyclic permutation), and the apparent singularity will
cancel if Z is chosen with care.

5.2.3 Conservation

Since the {F ,H,Z}ζ ζ ζ and {F ,H,Z}µζh brackets are triply
anti-symmetric, and the {F ,H,Z}ζµµ bracket is doubly anti-
symmetric, both total energy and potential enstrophy will
be conserved for any choice of H and Z , provided that the
caveats mentioned above are obeyed. Those are

1. δZ
δµi
= 0 (ensures that the {F ,H,Z}ζµµ bracket con-

serves potential enstrophy)

2. Z chosen such that the apparent singularity (D1(Zh)
D1qi

term + cyc(F ,H,Z) terms) in the {F ,H,Z}µζh
bracket cancels out .

These are fairly minimal requirements, and many reasonable
choices for Z satisfy them.

5.3 Discrete Hamiltonian and Helmholtz
decomposition

The Hamiltonian H can be split into three parts: HFD, HJ,
and HPE, where the first two are the kinetic energy due to
flux-divergence terms and Jacobian terms, and the last is the
potential energy. In the continuous system we have

H=HFD+HJ +HPE, (74)

where

HFD =

∫
�

d�
1

2h
[∇χ ·∇χ +∇ψ ·∇ψ] , (75)

HJ =

∫
�

d�
2J (χ,ψ)

2h
=

∫
�

d�
J(χ,ψ)− J (ψ,χ)

2h
, (76)

HPE =

∫
�

d�
1
2
gh(h+ 2hs). (77)

These can be discretized as

HFD =
1
2

∑
edges

le
de
(D1χi)

2

he
+

le
de
(D1ψi)

2

he
, (78)

HPE =
1
2

∑
cells
Aighi(hi + bi), (79)

HJ =
1
2

∑
edges

(
D1

1
hv

)
J (χi,ψi). (80)
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5.4 Helmholtz decompositions and Bernoulli function

By taking variations of H, we obtain

δHPE =
∑
cells
gAi(hi + bi)δhi, (81)

δHFD =−
1
2

∑
edges

le
de
(D1χi)

2
+ (D1ψi)

2

h2
e

δhe, (82)

−

∑
edges

le
de
(D1χi)(D1δχi)

he
+

∑
edges

le
de
(D1ψi)(D1δψi)

he

δHJ =
1
2

∑
edges

D1
1
h2
v

δhvJ (χi,ψi)+
1
2

∑
edges

D1
1
hv
δJ (χi,ψi).

(83)

After a lot of algebra, these can be grouped (half of each
term involving δhi goes to 8i and half to µi/ζi) to obtain

δH=−χiδµi +−ψiδζi +8iδhi, (84)

where (using the definition of functional derivative)

8i =
δH
δhi
=

1
Ai
g(hi + bi)+

1
4

1
Ai

K
le
de

(85)

(D1χi)
2
+ (D1ψi)

2

h2
e

+
C

2
1
Ai

KD1
1
h2
v

J (χi,ψi),

µi =
1
Ai
D2

1
he

le
de
D1χi −

1
2

1
Ai
D2

(
D1

1
hv

)
ψe, (86)

ζi =
1
Ai
D2

1
he

le
de
D1ψi +

1
2

1
Ai
D2

(
D1

1
hv

)
χe. (87)

The latter two equations (Eqs. 86 and 87) are the discrete
version of the Helmholtz decomposition, and form a pair of
non-singular elliptic equations. They can be combined into a
single equation as

A
(
χi
ψi

)
=

(
FDH −JA
JA FDH

)(
χi
ψi

)
=

(
µi
ζi

)
, (88)

where, for example, FDHχi = 1
Ai
D2

1
he

le
deD1χi and JAψi =

1
2

1
Ai
D2(D1

1
hv
)ψe. Note that (without the 1

Ai
factors) FDH is

symmetric and JA is anti-symmetric, which means that A=
−AT (i.e., A itself is skew symmetric). Also note that when
hi =H is a constant (and therefore he =H ), they reduce to

µi =
1
H

1
Ai
D2

le
de
D1χi =

1
H

Lχi, (89)

ζi =
1
H

1
Ai
D2

le
de
D1ψi =

1
H

Lψi, (90)

where L= 1
Ai
D2

le
deD1, which is the expected linearization

behavior.

5.5 Discrete potential enstrophy

A natural definition of the discrete potential enstrophy is

Z =
1
2

∑
cells
Ai
η2
i

hi
, (91)

where ηi = ζi + fi . Taking variations of this yields

δZ
δµi
= 0= Zµ, (92)

δZ
δhi
=−

1
2
η2
i

h2
i

= Zh, (93)

δZ
δζi
=
ηi

hi
= Zζ . (94)

Then the natural definition for qi =
ηi
hi

works, and the above
simplifies to

Z =
1
2

∑
cells
Aihiq

2
i , (95)

δZ
δhi
=−

1
2
q2
i , (96)

δZ
δζi
= qi . (97)

By plugging these back into the {F,H,Z}µζh bracket, it
is seen that this choice of Z also ensures that the singularity
cancels.

5.6 Independence between choices for H/Z and
Nambu Brackets

As noted before, the mimetic and conservation properties of
the discrete scheme are completely independent of the choice
of discrete Hamiltonian H, provided the Hamiltonian is pos-
itive definite and produces invertible elliptic equations for
the Helmholtz decomposition. If the resulting elliptic equa-
tions were singular, then the scheme would have a compu-
tational mode (as discussed in Salmon, 2007). Additionally,
the discrete Helmholtz decomposition should also simplify to
a pair of uncoupled Poisson problems when linearized. The
mimetic and conservation properties are also independent of
the specific choice of Z , provided that the singularity in the
mixed bracket cancels and Zµ = 0. The given choices of H
and Z were selected to have these properties, and also cor-
respond with those in S07 for the special cases of a uniform
planar square grid and an orthogonal polygonal planar grid
with a triangular dual.

www.geosci-model-dev.net/10/791/2017/ Geosci. Model Dev., 10, 791–810, 2017



804 C. Eldred and D. Randall: Derivation of schemes

5.7 Discrete evolution equations

By setting F = (hi,ζi,µi) in turn, the following evolution
equations are obtained:

∂hi

∂t
=−Lχi, (98)

∂ζi

∂t
= Jζ (qi,ψi)−FD(qi,χi), (99)

∂µi

∂t
=−L8i + Jδ(qi,χi)+FD(qi,ψi), (100)

where L is the Laplacian, FD is the flux divergence and J is
the Jacobian. On an icosahedral hexagonal–pentagonal grid
these operators are the same as those from Heikes and Ran-
dall (1995a), and will therefore share the same limitations as
those operators, such as the inconsistency of the Jacobian on
general grids. The consequences of this are explored more
in Eldred and Randall (2017a). The differences between the
schemes arise from the use of different arguments to the oper-
ators (qi instead of ηi) and the use of different definitions for
χi and ψi (which in turns induces a different Poisson prob-
lem and different expression for 8i).

5.7.1 Laplacian and flux-divergence operators

The Laplacian and flux-divergence operators (which come
from the mixed bracket) can be written as

Lαi =
1
Ai
D2

le
de
D1αi, (101)

FD(αi,βi)=
1
Ai
D2αe

le
de
D1βi, (102)

where αe =
∑
i∈CE(e)

αi
2 .

5.7.2 Jacobian operators

The Jacobian operators (which come from the Jacobian
brackets) can be written as

Jδ(qi,χi)=−
1
Ai
D2[(D1qv)(χe)], (103)

Jζ (qi,ψi)=
−1
3

1
Ai
D2[(D1qv)(ψe)], (104)

+
1
3

1
Ai
D2[(D1ψv)(qe)].

Note that on a polygonal grid with a purely triangular dual
(including the important case of an icosahedral grid), Jδ =
Jζ .

5.8 Linearized version

Under the assumption of linear variations around a state of
rest (hi =H , ζi = µi = 0, qi =

f
H

) on a f plane, this scheme

reduces to
∂hi

∂t
=−Lχi =−Hµi, (105)

∂ζi

∂t
=−

f

H
Lχi =−fµi, (106)

∂µi

∂t
=−gLhi +

f

H
Lψi =−gLhi + f ζi, (107)

where the Helmholtz equations given by Eqs. (89) and (90)
have been used to simplify the scheme (to the point that it no
longer requires solving any elliptic equations). In the case of
a uniform square grid (uniform hexagonal grid), this scheme
is identical to the one studied in Randall (1994) (Ničković
et al., 2002), and it shares the same excellent linear wave
properties found for those schemes.

5.9 Relation to Salmon schemes

For the cases of a uniform planar square grid and a general
orthogonal planar polygonal grid with triangular dual, the
general discretization scheme presented above reduces to the
schemes given in S07. However, this discretization scheme is
more general, and it also makes specific choices for the total
energy H and potential enstrophy Z when using a general
polygonal grid.

5.10 Properties of scheme

The discrete scheme as outlined above possesses the follow-
ing (among others) key properties:

1. Linear stability (Coriolis and pressure gradient forces
conserve energy): provided that L= LT (which is satis-
fied for the L given above, and the majority of discrete
Laplacians), the scheme will conserve energy in the lin-
ear case.

2. No spurious vorticity production: by construction, the
pressure gradient term does not produce spurious vor-
ticity since the curl is taken in the continuous system,
prior to discretization.

3. Conservation: by construction, this scheme conserves
mass, potential vorticity, total energy, and potential en-
strophy in both a local (flux-form) sense and global (in-
tegral) sense.

4. PV compatibility and consistency: by inspection, the
mass-weighted potential vorticity equation is a flux-
form equation that ensures both local and global conser-
vation of mass-weighted potential vorticity. In addition,
an initially uniform potential vorticity field will remain
uniform. This rests on the fact that Jζ (qi,ψi)= 0 and
FD(qi,χi)= cLχi when qi = c is constant.

5. Steady geostrophic modes: since the same divergence
µi appears in both the linearized vorticity and continu-
ity equations, the scheme possesses steady geostrophic
modes.
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6. Linear properties (dispersion relations, computational
modes): as expected, the scheme possesses the same lin-
ear mode properties on uniform planar grids as those
presented in Randall (1994) and Ničković et al. (2002);
and it does not have any computational modes. More
details of the linear mode properties of the scheme on
both uniform planar and quasi-uniform spherical grids
can be found in a forthcoming paper (Eldred and Ran-
dall, 2017b).

7. Accuracy: unfortunately, as shown in Heikes et al.
(2013), the Jacobian operator as given is inconsistent
on general grids. Even more unfortunately, the fix pro-
posed in that paper breaks key properties of the Jacobian
necessary to retain total energy and potential enstrophy
conservation. Surprisingly, as shown in Eldred and Ran-
dall (2017a), the inconsistency of the Jacobian opera-
tor does not appear to cause issues in the test cases that
were run. More details on possible fixes to the accuracy
issue are discussed in Eldred and Randall (2017a).

6 Implementation and results

6.1 Implementation

To test the utility of the C- and Z grid schemes developed
above, they were implemented in a combination of Python as
a driver language along with Fortran kernels for the numer-
ics. Although only tested on quasi-uniform grids that admit a
structured approach, for simplicity the code uses an unstruc-
tured mesh with indirect addressing. Due to this highly un-
optimized implementation, no cost comparisons were made
with other codes; instead, we simply note that both the C- and
Z grid schemes are structurally similar to other schemes used
in existing models such as MPAS, Dynamico, and UZIM, and
can be expected to share similar performance characteristics.

6.2 Results

As a short preview of the more detailed results in El-
dred (2015) and Eldred and Randall (2017a), a run of the
Galewksy et al. (2004) test case using the C- and Z grid
scheme is presented below. Third-order Adams–Bashford
time stepping was used, and no dissipation beyond the in-
herent damping in the time scheme was applied. The C-grid
scheme was run on both a cubed-sphere grid (with 884 736
grid cells, approximately 26 km resolution, 1t = 15 s) and
an icosahedral grid (with 655 362 grid cells, approximately
34 km resolution, 1t = 22.5 s), whereas the Z grid scheme
was run only on the icosahedral grid. The absolute vortic-
ity at day 6 for all three schemes is shown in Fig. 6, and
the results from both the C- and Z grid schemes are broadly
similar to both each other and to other results in the litera-
ture. Some differences can be found in the inactive region
of the jet, especially when comparing the cubed sphere to

Figure 6. A plot of the absolute vorticity from the Galewsky et al.
(2011) test case at day 6 for the C-grid scheme on a cubed-sphere
grid (top panel), C- grid scheme an icosahedral grid (middle panel),
and Z grid scheme on an icosahedral grid (bottom panel). The de-
veloped region of the jet is very similar for all three schemes, and is
quite similar to other results in the literature. Some differences can
be seen in the undeveloped region of the jet.

the icosahedral grid simulations. It is believed that these dif-
ferences are due to the underlying grid structure, since the
C- and Z grid scheme on the icosahedral grid produce the
same pattern for the inactive region (and a very similar C-
grid scheme on the cubed sphere that conserves only enstro-
phy produces an extremely similar pattern to the fully con-
servative C-grid scheme on the cubed sphere, as shown in
Eldred, 2015). In contrast to the results in Weller (2014), we
did not encounter any issues in using the C- grid scheme on
the cubed-sphere grid. Plots of the time series of total energy
and potential enstrophy are available in Eldred and Randall
(2017a) and Eldred (2015), and verify that the schemes are
conserving both energy and potential enstrophy in the spatial
semi-discretization limit.

7 Conclusions

This paper presents an extension of AL81 to arbitrary non-
orthogonal (spherical) polygonal grids in a manner that pre-
serves almost all of the desirable properties of that scheme
(including both total energy and potential enstrophy conser-
vation) through a new Q operator. Unfortunately, on non-
quadrilateral grids such as the icosahedral grid there will be
extra branches of the dispersion relationship due to a mis-
match in the number of degrees of freedom in the wind and
mass fields inherent to the C-grid approach. Switching from
a C-grid type staggering (to an A grid staggering, for exam-
ple) is undesirable for many reasons, foremost among them
being the natural association of physical variables with ge-
ometric entities in a staggered grid as suggested by exte-
rior calculus and differential geometry (see Tonti, 2014 and
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Blair Perot and Zusi, 2014). Fortunately, other than these ex-
tra mode branches on the icosahedral grid the proposed C-
grid scheme does not possess any additional computational
modes. Furthermore, extensive testing has thus far been un-
able to show negative impacts from this extra mode branch,
especially when running full-physics simulations with realis-
tic topography and initial conditions (John Thuburn and Bill
Skamarock, personal communication, 2016).

This work has also presented an extension of the total
energy and potential enstrophy conserving Z grid scheme
in S07 from planar grids to arbitrary orthogonal (spherical)
polygonal grids, using the same toolkit of Nambu brack-
ets and Hamiltonian methods. The restriction to orthogonal
grids rather than more general non-orthogonal grids (such as
a cubed sphere) is a drawback. However, the major motiva-
tions for using a cubed-sphere grid are the ability to prop-
erly balance degrees of freedom when using a staggered C-
grid methods (and therefore avoid spurious branches of the
dispersion relationship), a tensor-product grid structure for
spectral or finite element type methods (which ensures a di-
agonal mass matrix for spectral element methods and effi-

cient implementation of finite element methods) and higher-
order finite volume methods (enabling easy dimension split-
ting), and an underlying piecewise continuous coordinate
system for higher-order finite volume methods (allowing ex-
tended stencils). None of these considerations apply to a Z
grid method, so the restriction to icosahedral grids is not an-
ticipated to be a significant hurdle.

A detailed comparison of the two schemes, including an
analysis of the accuracy of the operators used and results
from a variety of test cases, can be found in second part of
this series (Eldred and Randall, 2017a). In addition, an anal-
ysis of the linear mode properties of these two schemes on
various quasi-uniform grids is undertaken in the third part of
this paper series (Eldred and Randall, 2017b).

8 Code availability

The schemes described in this manuscript have been im-
plemented in a Python/Fortran mixed language code, and
are freely available at https://bitbucket.org/chris_eldred/phd_
thesis under a GNU Lesser General Public License Version 3.
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Appendix A: Discrete grid

The schemes described above are designed to work on ar-
bitrary (spherical) polygonal grids along with an associated
dual grid. In the case of the C- grid scheme, the grid can be
either orthogonal or non-orthogonal, while theZ grid scheme
is restricted to orthogonal grids. A description of the grid
framework is given in what follows.

A1 General non-orthogonal polygonal grid

Consider a (primal) conformal grid constructed of polygons
(or spherical polygons). A dual grid is constructed such that
there is a unique one to one relationship between elements of
the primal grid and element of the dual grid: primal grid cells
are associated with dual grid vertices, primal grid edges are
associated with dual grid edges, and primal grid vertices are
associated with dual grid cells. This grid configuration covers
the majority of grids that are used in current and upcoming
atmospheric dynamical cores, including cubed sphere and
icosahedral grids (both hexagonal–pentagonal and triangular
variants). Once the dual grid vertices have been placed, there
are several important geometric quantities that are needed in
order to construct the discrete operators (shown graphically
in Fig. A1). Specifically, we need the primal cell area Ai , the
dual cell area Av , the distance between primal grid centers
“le”, the distance between dual grid centers “de”, and the
overlap areas Aiv and Aie. On a planar grid, these are eas-
ily defined using the standard Euclidean metric and formu-
las. On a spherical grid, distances must be calculated using
geodesic arcs, and areas are calculated by subdividing into
spherical triangles as needed and then applying the relevant
spherical area formulas. See the discussion in Weller (2014)
for more details.

Appendix B: Discrete derivative operators

Following Thuburn and Cotter (2012), a set of discrete
derivative operators can be defined as

D1 =
∑

v∈VE(e)

te,v, (B1)

D1 =
∑

i∈CE(e)

− ne,i, (B2)

D2 =
∑

e∈EC(i)

ne,i, (B3)

D2 =
∑

e∈EV(v)

te,v, (B4)

where ne,i is an indicator that is 1 when e is oriented out of a
primal grid cell and −1 when e is oriented into a primal grid
cell, and te,v is an indicator that is 1 when e is oriented into
a dual grid cell and −1 when e is oriented out of a dual grid
cell. D2 is the divergence, D2 is the curl, D1 is the skew gra-
dient, andD1 is the gradient; by the Gauss theorem these are

Figure A1. The geometric quantities on a planar grid. Primal grid
edge lengths are denoted as “de”, dual grid edge lengths are denoted
as “le”, the area associated with an edge byAe, the overlap between
primal grid cell i and edge e by Aie, and the overlap between dual
grid cell v and edge e by Aiv . Note that the same definitions can
be used on a spherical grid, provided the appropriate measures are
used (such as geodesic lengths for distances, and spherical polygo-
nal areas for areas). See Weller (2014) for more details.

exact (since they operate on integrated quantities). By con-
struction, these satisfy D2D1 = 0, D2D1 = 0, DT

2 =−D1

andD2
T
=D1 for arbitrary polygonal grids. These identities

are the discrete analogues of ∇ ·∇⊥ = 0, ∇⊥ ·∇ = 0, and ad-
jointness between divergence and gradient, and curl and skew
gradient. The operators can also be identified as the discrete
exterior derivative operators from discrete exterior calculus.

Appendix C: Specific choices for various C-grid
operators

In order to close the C-grid scheme presented in Sect. 3, spe-
cific choices must be made for I, J, H, R, φ, and W. The
ones used here (and in Ringler et al., 2010 and Thuburn et al.,
2014) are

I=
1
Ai
, (C1)

HO =
∑

i∈CE(e)

le
de
, (C2)

HNO =
∑

e′ 6=e∈S(e)

He,e′ , (C3)

J=
1
Av
, (C4)

φ =
∑

i∈CE(e)

Aie

Ae
, (C5)

R=
∑

i∈CV(v)

Aiv

Ai
, (C6)
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and

W=
∑

e′∈ECP(e)

We,e′ , (C7)

where I, J, and H0 are diagonal matrices, HO is used on or-
thogonal grids such as the icosahedral grid and HNO is used
on non-orthogonal grids such as the cubed-sphere grid. The
details of the construction of this operator, including the sten-
cil S(e) and the weightsHe,e′ , can be found in Thuburn et al.,
2014). The weights We,e′ are chosen such that W=−WT

and−RD2 =D2W (the details for this operator can be found
in Thuburn et al., 2009). I, H, and J transform quantities be-
tween the primal and the dual grids, and are in fact what
are known as discrete Hodge star operators. R is a discrete
analogue of the identity operator that maps quantities inte-
grated over primal cells to quantities integrated over dual
cells, while W can in fact be identified as a discrete ana-
logue of the interior product (or contraction) operator. On an
orthogonal grid, the choices given for I, J, and H correspond
to the Voronoi Hodge star from discrete exterior calculus.

Appendix D: Specific choices for various Z-grid
operators

For the Z grid scheme, the following operators are needed:

K =
∑

e∈EC(i)

, (D1)

which is the sum of edges for a given grid cell, and

J (A,B)= ne,2A2B1+ ne,1A1B2, (D2)

which is used to build a discrete Jacobian operator. Note
that J (A,B) is anti-symmetric (J (A,B)=−J (B,A)) and
satisfies J (A,0)= J (B,0)= J (A,A)= 0. In addition, two
different interpolations (from cell centers to vertices and to
edges, respectively) are defined:

Xv =
∑

i∈CV(v)

CXi, (D3)

Xe =
∑

i∈CE(e)

1
2
Xi, (D4)

where C- is a constant given by 1
n

, and n is the size of CV(v)
(equal to 4 for quadrilateral dual grid cells and 3 for triangu-
lar dual grid cells).

Table E1. List of discrete C- grid variables and their diagnostic
equations.

Variable Type Equation Description

M p-2 Prognostic Mass
Û d-1 Prognostic Wind
B p-2 Constant Topography
f d-2 Constant Coriolis force
Ĉ d-1 C =Me

× Û Dual mass flux
F p-1 F =HĈ Primal mass flux
Q p-0 M̂ ×Q= ϒ̂ Potential vorticity
0̂ d-2 0̂ =D2Û Relative vorticity
ϒ̂ d-2 ϒ̂ = 0̂+ f Absolute vorticity
8̂ d-0 8̂= I(K + gM + gB) Bernoulli function
M̂ d-2 M̂ = RM Dual mass

K p-2 K = φT Û×HÛ
2 Kinetic energy

Table F1. List of discreteZ grid variables and their diagnostic equa-
tions.

Variable Type Description

hi Prognostic Fluid height
ζi Prognostic Relative vorticity
µi Prognostic Divergence
ηi = ζi + fi Diagnostic Absolute vorticity
qi = ηi/hi Diagnostic Potential vorticity
8i =Ki + ghi Diagnostic Bernoulli function
Ki Diagnostic Kinetic energy
χi Diagnostic Velocity potential
ψi Diagnostic Stream function

Appendix E: Discrete variables for the C-grid scheme

Table E1 gives the discrete variables used in the C- grid
scheme, their type (which indicates the staggering on the
grid), and their diagnostic equation (where applicable). For
the type, the first designator indicates the location on the grid
type (primal or dual) and the second designator indicates the
degree of the geometric entity the quantity is integrated over
(0,1 or 2). For example, C- is a quantity on the dual grid in-
tegrated over edges.

Appendix F: Discrete variables for the Z-grid scheme

Table F1 gives the discrete variables used in the Z grid
scheme and their type (either prognostic or diagnostic).
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