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Abstract. Version 2 of the unstructured-mesh Finite-Element
Sea ice–Ocean circulation Model (FESOM) is presented. It
builds upon FESOM1.4 (Wang et al., 2014) but differs by its
dynamical core (finite volumes instead of finite elements),
and is formulated using the arbitrary Lagrangian Eulerian
(ALE) vertical coordinate, which increases model flexibility.
The model inherits the framework and sea ice model from the
previous version, which minimizes the efforts needed from a
user to switch from one version to the other. The ocean states
simulated with FESOM1.4 and FESOM2.0 driven by CORE-
II forcing are compared on a mesh used for the CORE-II in-
tercomparison project. Additionally, the performance on an
eddy-permitting mesh with uniform resolution is discussed.
The new version improves the numerical efficiency of FE-
SOM in terms of CPU time by at least 3 times while retain-
ing its fidelity in simulating sea ice and the ocean. From this
it is argued that FESOM2.0 provides a major step forward in
establishing unstructured-mesh models as valuable tools in
climate research.

1 Introduction

Ocean circulation models formulated on unstructured
meshes offer multi-resolution functionality in a seamless
way. Although they are common in coastal ocean modeling,
they are only beginning to be used for global ocean studies.
The Finite-Element Sea ice–Ocean circulation Model (FE-
SOM, Wang et al., 2014) is the first mature global multi-
resolution model designed to simulate the large-scale ocean.
A number of FESOM-based studies related to the impact of
local dynamics on the global ocean (see, e.g., Hellmer et al.,
2012; Haid and Timmermann, 2013; Wekerle et al., 2013;
Haid et al., 2015; Wang et al., 2016a; Sein et al., 2016; Wek-

erle et al., 2016) indicate that the multi-resolution approach
advocated by FESOM is successful and allows one to explore
the impact of local processes on the global ocean with mod-
erate computational effort (see Sein et al., 2016). Other new
global multi-resolution models are appearing (see Ringler
et al., 2013), and new knowledge on unstructured-mesh mod-
eling has accumulated (for a review, see Danilov, 2013). Al-
though FESOM1.4 (Wang et al., 2014) already offers a very
competitive throughput compared to structured-mesh mod-
els in massively parallel applications (Sein et al., 2016), we
continue to explore the ways to further increase the numeri-
cal efficiency of unstructured-mesh models and extend their
area of applicability. This paper describes the new numerical
core of FESOM2, which is based on finite-volume discretiza-
tion. Despite the change in the discretization type, we keep
the old abbreviation, which now will take “E” from the last
letter of “volume”. The reason is that FESOM2 builds on
the framework of FESOM1.4, including its ice component,
FESIM (Danilov et al., 2015), its input and output routines
and its user interface. It works on the same general triangular
meshes and is conceived so as to minimize new learning re-
quired from users with experience with FESOM1.4. We will
use FESOM2 as a root name for the new version, and FE-
SOM2.0 for the implementation available at present.

The main reason for switching to a new finite-volume nu-
merical core in FESOM2 is its higher computational effi-
ciency. It stems largely from a more efficient data structure.
FESOM1.4 is based on tetrahedral elements, and tetrahedra
below any surface triangle do not necessarily keep the same
neighborhood connectivity pattern as the depth increases.
Three-dimensional auxiliary and look-up arrays are therefore
needed, and accessing them for each element slows down
the performance. Another reason for switching to a finite-
volume version is the availability of clearly defined fluxes
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and a possibility to choose from a selection of transport algo-
rithms, which was very limited for the continuous Galerkin
discretization of FESOM1.4. A very useful feature of FE-
SOM1.4 is its ability to combine geopotential and terrain-
following vertical mesh levels, namely, it was the reason for
using tetrahedral elements and not triangular prisms. To en-
sure similar functionality in the new version, we introduce
the arbitrary Lagrangian Eulerian (ALE) vertical coordinate
(see, e.g., Donea and Huerta, 2003), which provides a general
approach to incorporating different types of vertical coordi-
nates within the same code.

Although many details of the finite-volume method used
by FESOM2 have already been presented in Danilov (2012),
we will repeat their description here for completeness. Be-
sides, the ALE vertical coordinate redefines the implemen-
tation details. The paper begins with the description of basic
model numerics, delegating some details and implementation
variants to the Appendices. The performance of FESOM2
is compared to that of FESOM1.4 in simulations driven by
the CORE-II forcing (Large and Yeager, 2009). We report on
simulations carried out on a coarse (nominally 1◦) mesh used
by FESOM1.4 in the framework of CORE-II intercompari-
son, and on a global mesh with a resolution of about 15 km.
The intention here is to illustrate that FESOM2 is a fully
functional and highly competitive general ocean circulation
model. A detailed model assessment paper will be presented
separately.

2 Basic description

2.1 The placement of variables

FESOM2 uses a cell–vertex placement of variables in the
horizontal directions. The 3-D mesh structure is defined by
the surface triangular mesh and a system of level surfaces
which form a system of prisms. In a horizontal plane, the
horizontal velocities are located at cell (triangle) centroids,
and scalar variables are at mesh (triangle) vertices. The vec-
tor control volumes are the prisms based on mesh surface
cells, and the prisms based on median–dual control volumes
are used for scalars (temperature, salinity, pressure and ele-
vation). The latter are obtained by connecting cell centroids
with edge midpoints, as illustrated in Fig. 1. The same cell–
vertex placement of variables is also used in FVCOM (Chen
et al., 2003); however, FESOM2 differs in almost every nu-
merical aspect, including the implementation of time step-
ping, scalar and momentum advection and dissipation (see
below).

In the vertical direction, the horizontal velocities and
scalars are located at mid-levels. The velocities of inter-layer
exchange (vertical velocities for flat layer surfaces) are lo-
cated at full layers and at scalar points. Figure 2 illustrates
this arrangement.

v1
v
2

v
7

c
1

c
2

v
3

v
6

v
5

v
4

c
3

c
4

c
5

c
6

v
1

c
2

l
e

c
1

v
2d

ec2

d
ec1

Figure 1. Schematic of cell–vertex discretization (left) and the
edge-based structure (right). The horizontal velocities are located
at cell (triangle) centers (red circles) and scalar quantities (the ele-
vation, pressure, temperature and salinity) are at vertices (blue cir-
cles). The vertical velocity and the curl of horizontal velocity (the
relative vorticity) are at the scalar locations too. Scalar control vol-
umes (here the volume associated with vertex v1 is shown) are
obtained by connecting the cell centers with midpoints of edges.
Each cell is characterized by the list of its vertices v(c), which is
(v1,v2,v3) for c = c1, and the list of its nearest neighbors n(c).
For c = c1, n(c) includes c2, c6 and a triangle (not shown) across
the edge formed by v2 and v3. One can also introduce c(v), which
is (c1,c2,c3,c4,c5,c6) for v = v1, and other possible lists. Edge
e (right panel) is characterized by the list of its vertices v(e)=
(v1,v2) and the ordered list of cells c(e)= (c1,c2) with c1 on the
left. The edge vector le connects vertex v1 to vertex v2. The edge
cross-vectors dec1 and dec2 connect the edge midpoint to the re-
spective cell centers.

The layer thicknesses are defined at scalar locations (to be
consistent with the elevation). There are also auxiliary layer
thicknesses at the horizontal velocity locations. They are in-
terpolated from the vertex layer thicknesses.

The cell–vertex discretization selected for FESOM2 can
be viewed as an analog of an Arakawa B-grid (see also be-
low), while that of FESOM1.4 is an analog of an A-grid.
The cell–vertex discretization is free of pressure modes,
which would be excited in the A-grid FESOM1.4 without
its stabilization. However, the cell–vertex discretization al-
lows spurious inertial modes because of excessively many
degrees of freedom used to represent the horizontal veloci-
ties. They can be filtered by the horizontal viscosity. In the
quasi-hexagonal C-grid discretization used by the Model for
Prediction Across Scales (MPAS) (Ringler et al., 2013) the
location of scalar variables is the same (on vertices of a
dual triangular mesh) as in FESOM2. The triangular C-grid
of ICON (www.mpimet.mpg.de/en/science/models/icon/) is
notably different for its scalar variables are located at cells
and there are twice as many of them as in FESOM2. Our pref-
erence for the cell–vertex discretization is mostly due to its
lack of pressure modes, the straightforward way of handling
its spurious modes and the ability to work on general triangu-
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lar meshes (in contrast to orthogonal meshes required by C-
grids). Such meshes are more flexible than the Voronoi quasi-
hexagonal meshes or orthogonal triangular meshes needed
for C-grids.

2.2 Notation

For convenience of model description we introduce the fol-
lowing notation. Quantities defined at cell centroids will be
denoted with the lower index c, and the quantities at vertices
will be denoted with the lower index v. The vertical index
k will appear as the first index, but it will be suppressed if
this does not lead to ambiguities. The agreement is that the
layer index increases downwards. The indices may appear in
pairs or in triples. Thus the pair kc means the vertical layer
(or level for some quantities) k and cell c, and the triple kcv
means that the quantity relates to layer (level) k, cell c and
vertex v of this cell. We use the notation c(v) for the list of
cells that contain vertex v, v(c) for the list of vertices of cell
c, e(v) for the list of edges emanating from vertex v, and
so on. Each edge e is characterized by its vertices v(e), the
neighboring cells c(e), the length vector le directed from the
first vertex in v(e) to the second one and two cross-edge vec-
tors dec directed from the edge center to the cell center of the
left and right cells, respectively (see Fig. 1). The cells in the
list c(e) are ordered so that the first one is on the left of the
vector le. The boundary edges have only one (left) cell in the
list c(e).

We use a spherical coordinate system with the North Pole
displaced to Greenland (commonly 75◦ N, 50◦W). A local
Cartesian reference frame is used on each cell with cellwise-
constant metric coefficients (cosine of latitude). Gradients of
scalar quantities and cell areas are computed with respect to
local coordinates. The vectors dec are stored in a local phys-
ical measure of respective cells c for they always enter in
combination with velocity (defined on cells) to give normal
transports. Vectors le are stored in radian measure. Whenever
their physical length is required, it is computed based on the
mean of cosines on c(e). We will skip other details of spher-
ical geometry and ignore the difference in the representation
of le and dec for brevity below. The x and y directions should
be understood as local zonal and meridional directions.

2.3 Bottom representation

The bottom topography is commonly specified at scalar
points because the elevation is defined there. However,
for discretizations operating with full velocity vectors, this
would imply that velocity points are also at topographic
boundaries. In this case the only safe option is to use the no-
slip boundary conditions, similar to the traditional B-grids.
To avoid this constraint, we use the cellwise representation
of bottom topography. In this case both no-slip and free-slip
boundary conditions are possible. Their implementation re-
lies on the concept of ghost cells which are obtained from the

Figure 2. Schematic of vertical discretization. The thick line repre-
sents the bottom; the thin lines represent the layer boundaries and
vertical faces of prisms. The locations of variables are shown for
the left column only. The blue circles correspond to scalar quanti-
ties (temperature, salinity, pressure), the red circles to the horizontal
velocities and the yellow ones to the vertical exchange velocities.
The bottom can be represented with full cells (three left columns)
or partial cells (the next two). The mesh levels can also be terrain-
following, and the number of layers may vary (the right part of the
schematic). The layer thickness in the ALE procedure may vary in
prisms above the blue line. The height of prisms in contact with the
bottom is fixed.

boundary elements by reflection with respect to the boundary
face (edge in 2-D). The drawback of the elementwise bottom
representation is that the total thickness is undefined at scalar
points if the bottom is stepwise (geopotential vertical coordi-
nate). The motion of level surfaces of the ALE vertical coor-
dinate at each scalar location is then limited to the layers that
do not touch the bottom topography (above the blue line in
Fig. 2). This is related to the implementation of partial cells,
which is much simpler if the thickness of the bottom layer
stays fixed. The layer thickness h is dynamically updated at
scalar points (vertices) in the layers that are affected by the
ALE algorithm and interpolated to the cells

hc = (1/3)
∑
v(c)

hv. (1)

The cell thicknesses hc enter the discretized equations as the
products with horizontal velocities.

Because of cellwise bottom representation, algorithms
aiming to closely follow the bottom topography may create
triangular prisms going inland (two lateral faces touch the
land) at certain levels on z-coordinate meshes even if such
prisms were absent along the coast. Such prisms lead to in-
stabilities in practice and have to be excluded. The opposite
situation with land prisms pointing into the ocean is much
less dangerous, yet it is better to avoid them too. We ad-
just the number of layers under each surface triangle at the
stage of mesh design to exclude such potentially dangerous
situations. This issue is absent in FESOM1.4 because of the
difference in the placement of horizontal velocities and no-
slip boundary conditions. Since the number of cells is nearly
twice as large as the number of vertices, the cellwise bottom
representation may contain more detail than can be resolved

www.geosci-model-dev.net/10/765/2017/ Geosci. Model Dev., 10, 765–789, 2017



768 S. Danilov et al.: FESOM2: from finite elements to finite volumes

by the field of vertical velocity. This may make quasi-vertical
transport velocities look noisy in layers adjacent to the bot-
tom.

2.4 Partial cells

Partial cells on z-coordinate meshes are naturally taken into
account in the ALE formulation because it always deals with
variable layer thicknesses (heights of prisms). If Kc is the
number of layers under cell c, we define

K+v =max
c(v)

Kc, K
−
v =min

c(v)
Kc. (2)

If the layer thicknesses are varied in the ALE procedure, this
is limited toK−v −1 layers. With this agreement, the thickness
of the lowest layer on cells is kept as initially prescribed. In
this case the implementation of partial cells reduces to taking
the thicknesses of the lowest layers on cells as dictated by the
bottom topography unless they are too thick (the real depth
is deeper than the deepest standard level by more than the
half thickness of the last standard layer), in which case we
bound them. The heights of scalar control prisms in the lay-
ers belowK−v are formally undefined, so they are considered
to be the volume-mean ones. Scalar and vector quantities de-
fined at mid-layers are kept at their standard locations. This
avoids the creation of spurious pressure gradients. The par-
tial cells then work through the modified transports crossing
the faces of control volumes. Since the horizontal velocities
are located at cells, the transports entering scalar control vol-
umes are uniquely defined. For vector control volumes the
areas of vertical faces may be different on two prisms meet-
ing through the face. Taking the minimum area to compute
fluxes is the safest option in this case.

3 Layer equations and time stepping

3.1 Layer thicknesses and layer equations

We introduce layer thicknesses hk = hk(x,y, t), where k =
1 :K is the layer index and K the total number of layers.
They are functions of the horizontal coordinates and time in
a general case. We basically follow the implementation of
the ALE vertical coordinate as presented in Ringler et al.
(2013) (there are other approaches; see, e.g., Adcroft and
Hallberg, 2006; Hofmeister et al., 2010), namely, we intro-
duce the transport velocities w through the top and bottom
boundaries of the prisms. They are the differences between
the physical velocities in the direction normal to the layer
interfaces and the velocities due to the motion of the inter-
faces. These velocities are defined at the interfaces (the yel-
low points in Fig. 2). For layer k the top interface has index
k and the bottom one is k+ 1. All other quantities – hori-
zontal velocities u, temperature T , salinity S and pressure p
– are defined at mid-layers. Their depths will be denoted as
Zk , and the notation zk is kept for the depths of mesh levels

(the layer interfaces). They are functions of horizontal coor-
dinates and time in a general case.

The equations of motion, continuity and tracer balance are
integrated vertically over the layers. We will use T to de-
note an arbitrary tracer. The continuity equation becomes the
equation on layer thicknesses

∂thk +∇ · (uh)k +
(
wt
−wb

)
k
+Wδk1 = 0, (3)

and the tracer equation becomes

∂t (hT )k +∇ · (uhT )k +
(
wtT t
−wbT b

)
k
+WTW δk1

=∇3 ·hkK∇3Tk. (4)

Here, W is the water flux leaving the ocean at the surface.
It contributes to the first layer only (hence the delta func-
tion); TW is the property transported with the surface wa-
ter flux and the indices t and b imply the top and bottom
of the layer. The operator ∇ is a 2-D one. The right-hand
side of Eq. (4) contains the 3-by-3 diffusivity tensor K,
and ∇3 denotes the 3-D divergence or gradient operators.
In writing the 3-D divergence we assume the discrete form
∇(. . .)+ ((. . .)t− (. . .)b)/h, where (. . .) are the placeholders
for the horizontal and vertical components of the 3-D vector
it acts on. The components of the 3-D gradient do not share
the same location, so the discretization of K∇3T requires
special care (see Lemarié et al., 2012a, for the discussion for
quadrilateral meshes). Note thatw coincides with the vertical
velocity through the layer surface only if the layer surfaces
are flat. If the surfaces are inclined, w is the quasi-vertical
transport velocity defining the exchange between the layers.

Integrating Eq. (3) vertically and assuming wt
= 0 at the

free surface, we obtain the elevation equation

∂tη+∇ ·
∑
k

hkuk +W = 0. (5)

The layer-integrated momentum equation in the flux form
is

∂t (hu) +∇ · (huu)+w
tut
−wbub

+ f k×uh

+h(∇p+ gρ∇Z)/ρ0

=Duhu+ (νv∂zu)
t
− (νv∂zu)

b, (6)

with Duhu the horizontal viscosity operator (to be specified
later), νv the vertical viscosity coefficient, f the Coriolis pa-
rameter and k a unit vertical vector. We ignore the momen-
tum source due to the added water W at the surface. The
pressure field is expressed as

p = pa+ gρ0η+ph, ph = g

0∫
z

ρdz, (7)

with pa the atmospheric pressure, which will be omitted for
brevity, η the elevation, ρ the deviation of density from its
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reference value ρ0, and ph the hydrostatic pressure due to
ρ. The term with the pressure gradient, gρ∇Z, accounts for
the fact that layers deviate from geopotential surfaces. The
quantity Z appearing in this term is the z coordinate of the
midplane of the layer with thickness h. The origin of this
term should become clear if one recalls that the horizontal
pressure gradient has to be computed at a constant vertical
coordinate z.

If the flux form (6) is used, it is more natural to formu-
late the solution procedure in terms of the horizontal layer
transport velocities U = hu.

We get another familiar option by subtracting umultiplied
by the thickness Eqs. (3), rearranging the terms with vertical
transports and dividing over the layer thickness h:

∂tu +
ω+ f

h
k×uh+

((
w∂zu

)t
+
(
w∂zu

)b)
/2

+∇

(
p/ρ0+u

2/2
)
+ gρ∇Z/ρ0

=Duu+ ∂z (νv∂zu) . (8)

Here, additionally, we used the identity

u · ∇u= ωk×u+∇
(
u2/2

)
, ω = k · (∇ ×u) ,

which leads to the vector-invariant form of the momentum
equation.

The second term on the lhs of Eq. (8) includes division
and multiplication by the layer thickness, and in doing so, it
introduces the layer potential vorticity (PV) q = (ω+ f )/h
and its transport uh. The layer thickness drops out from the
continuous Eq. (8). In the discrete case, the location of vor-
ticity points (vertices) and velocity points is different, and by
keeping h the equation will then deal with the same horizon-
tal transports as the thickness equations. This is the prereq-
uisite for developing discretizations that conserve potential
vorticity. We will suppress h in Eq. (8) further for simplicity,
but including it requires only small modifications.

To summarize, the velocity w of quasi-vertical transport
through the interfaces replaces the vertical velocity in the for-
mulas above. The layer surfaces can be any combination of
the standard choices, including the moving surfaces.

3.2 Asynchronous time stepping

FESOM1.4 uses asynchronous time stepping, with the hori-
zontal velocities and scalars shifted by a half time step. We
adapt it to FESOM2. This requires that the elevation and
layer thicknesses be introduced at, respectively, full (integer)
and half-integer time levels. We write

hn+1/2
−hn−1/2

=−τ
[
∇ ·
(
unh∗

)
+wt
−wb

+W n−1/2δk1

]
(9)

and

hn+1/2T n+1/2
−hn−1/2T n−1/2

=−τ
[
∇ ·
(
unh∗T n

)

+wtT t
−wbT b

+W n−1/2TW δk1

]
+DT (10)

to warrant tracer conservation. Here τ is the time step and
DT stands for the terms related to diffusion. We omit the
time index on w, for w is related to u and h. Since the hor-
izontal velocity is centered in time, these equations will be
of the second order for advective terms if h∗ = hn. When the
vector-invariant form of the momentum equation is used, tak-
ing h∗ = hn−1/2 is more convenient. In this case one does not
need thicknesses at full time levels, but only the elevation.
Although this formally reduces the time order to the first, the
consequences are minor as long as thickness variations are
small, which are our options at present. In addition, the el-
evation is usually computed with the accuracy shifted to the
first order in large-scale ocean models, including this one. We
will proceed with this option here. Appendix A shows how
to implement h∗ = hn for the flux form of the momentum
equation, and its generalizations are straightforward.

The elevation at full time steps and the total thickness on
half-steps, given by the vertical sum of hk , may become de-
coupled due to numerical errors. In order to suppress such de-
coupling, we seek an algorithm which maintains consistency
between the physical layer thickness (h, used with tracers)
and dynamical thickness (dependent on the elevation η). We
introduce

h=
∑
k

hk −H, (11)

where H is the unperturbed ocean thickness. h would be
identical to the elevation η in the continuous world, but not
in the discrete formulation here.

For h∗ = hn−1/2 we write for the elevation

ηn+1
− ηn =−τ

α
∇ · h

n+1/2∫
un+1dz+W n+1/2



+(1−α)

∇ · h
n−1/2∫

undz+W n−1/2


 . (12)

Here α is the implicitness parameter (0.5≤ α ≤ 1) in the
continuity equation. Note that the velocities at different time
steps are taken on their respective meshes. This approach is
inspired by Campin et al. (2004). The equation for thick-
nesses can be vertically integrated, giving, under the condi-
tion that the surface value of wt vanishes,

h
n+1/2

−h
n−1/2

=−τ∇ ·

h
n−1/2∫

undz− τW n−1/2. (13)

Expressing the rhs in the formula for η through the difference
in surface displacements h from the last formula, we see that
η and h can be made consistent if we require that

ηn = αh
n+1/2

+ (1−α)h
n−1/2

. (14)
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Now, to eliminate the possibility of η and h diverging, we al-
ways compute ηn from the last formula, then estimate ηn+1

by solving dynamical equations, and use it only to compute
un+1. On the new time step a “copy” of ηn+1 will be created
from the respective fields h. We commonly select α = 1/2;
in this case, ηn is just the interpolation between the two adja-
cent values of h. Note that Eq. (14) will be valid for h∗ = hn;
it is only the upper limits in the integrals above that will be
adjusted. The advantage of this approach compared to the
synchronous time stepping is that a single version of w cen-
tered at full steps is needed. The disadvantage is the addi-
tional machinery involving the thicknesses and elevation.

We will continue by providing more detail on the asyn-
chronous time stepping. We write

un+1
−un = τ

(
R
n+1/2
u + ∂zνv∂zu

n+1

−g∇
(
θηn+1

+ (1− θ)ηn
))
. (15)

Here θ is the implicitness parameter for the elevation;Rn+1/2
u

includes all the terms except for vertical viscosity and the
contribution from the elevation. We use the second-order
Adams–Bashforth (AB) method for the terms related to the
momentum advection and Coriolis acceleration; the contri-
bution of pressure ph does not need the AB interpolation (be-
cause it is centered) and the horizontal viscosity is estimated
on the level n. We write the predictor equation as

u∗−un− τ∂zνv∂z
(
u∗−un

)
= τ

(
R
n+1/2
u + ∂zνv∂zu

n
− g∇ηn

)
. (16)

Solving the three-diagonal operator on the lhs for each col-
umn, we find the predicted velocity update 1u= u∗−un.1

The corrector step is written as

un+1
−u∗ =−gτθ∇

(
ηn+1
− ηn

)
. (17)

Expressing the new velocity from this equation and substi-
tuting the result into the equation for the elevation, we find

1
τ

(
ηn+1
− ηn

)
−αθgτ∇ ·

h
n+1/2∫
∇

(
ηn+1
− ηn

)
dz

=−α

∇ · h
n+1/2∫

(un+1u)dz+W n+1/2



− (1−α)

∇ · h
n−1/2∫

undz+W n−1/2

 . (18)

1The vertical viscosity contribution on the rhs can be conve-
niently added during the assembly of the operator on the lhs.

Here, the operator part depends on hn+1/2, which is the cur-
rent value of the thickness. The last term on the rhs is taken
from the thickness computations on the previous time step.

The overall solution strategy is as follows.

– Compute ηn from Eq. (14). Once it is known, compute
1u from Eq. (16).

– Solve Eq. (18) for ηn+1 and estimate the new horizontal
velocity from Eq. (17).

– Compute h
n+3/2

from Eq. (13).

– Determine layer thicknesses and w according to the op-
tions described below.

– Advance the tracers. The implementation of implicit
vertical diffusion will be detailed below.

Options for the vertical coordinate:

– Linear free surface: if we keep the layer thicknesses
fixed, the time derivative drops out, and the rest gives
us the standard equation to compute w, starting from
the bottom and continuing to the top,

wt
−wb

+∇ · (hu)= 0.

If this option is also applied to the first layer, the fresh-
water flux cannot be taken into account in the thickness
equation. Its contribution to the salinity equation is then
through the virtual salinity flux. In this option, w at the
(fixed) ocean surface differs from zero, and so do the
tracer fluxes. They do not necessarily integrate to zero
over the ocean surface, which is why tracer conservation
is violated.

– Full (nonlinear) free surface: we adjust the thickness of
the upper layer, while the thicknesses of all other layers
are kept fixed, ∂thk = 0 for k > 1. The thickness equa-
tions are used to compute w on levels k = 2 :Kv start-
ing from the bottom. The change in the thickness of the
first layer hn+3/2

1 −h
n+1/2
1 is given by Eq. (13), writ-

ten for the respective time interval. In this case there
is no transport through the upper moving surface (the
transport velocity w1 is identically zero). This option
requires minimum adjustment with respect to the stan-
dard z coordinate. However, the matrix of the operator
in Eq. (18) needs to be re-assembled on each time step.

– We can distribute the total change in height ∂th between
several or all eligible layers. Due to our implementation,
at each scalar horizontal location they can only be the
layers that do not touch the bottom topography. If all
eligible layers are involved, we estimate

∂thk =
(
h0
k/H̃

)
∂th,
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where h0
k are the unperturbed layer thicknesses and H̃ is

their sum for all eligible layers. The thickness of the lay-
ers adjacent to the topography is kept fixed. The equa-
tion on thickness, written for each layer, is used to com-
pute transport velocities w starting from zero bottom
value. This variant gives the so-called z∗ coordinate.

– This can be generalized even further. One can use ar-
bitrary distribution of layer thicknesses provided that
their tendencies sum to ∂th over the layers. In particu-
lar, requiring that transport velocities w are zero, isopy-
cnal layers can be introduced. The levels can move
with high-pass vertical velocities, leading to the so-
called z̃ coordinate – see Leclair and Madec (2011),
Petersen et al. (2015), or follow density gradients as in
Hofmeister et al. (2010). The unperturbed layer thick-
nesses need not follow the geopotential surfaces and
can be terrain-following, for example. Additional mea-
sures may be required in each particular case. For ex-
ample, for terrain-following meshes the algorithms of
computing pressure gradient should be adjusted to min-
imize errors in the momentum equation. Updated trans-
port algorithms are also needed (in the spirit of Lemarié
et al., 2012b) to minimize spurious numerical mixing
in terrain-following layers. These generalizations are
among the topics of ongoing work.

Because of varying layer thicknesses, the implementation
of implicit vertical diffusion needs slight adjustment com-
pared to the case of fixed layers. We write, considering time
levels n− 1/2 and n+ 1/2,

hn+1/2T n+1/2
−hn−1/2T n−1/2

= τ

(
RnT +

(
K33∂zT

n+1/2
)t
−

(
K33∂zT

n+1/2
)b
)
, (19)

and split it into

hn+1/2T ∗−hn−1/2T n−1/2
= τRnT (20)

and

hn+1/2
(
T n+1/2

− T ∗
)

= τ
(
K33∂z

(
T n+1/2

− T ∗
)
+K33∂zT

∗

)
|
t
b. (21)

Here RT contains all advection terms and the terms due to
the diffusion tensor except for the diagonal term with K33.
Note that the preliminary computation of T ∗ here is a ne-
cessity to guarantee that a uniform distribution stays uniform
(otherwise some significant digits will be lost).

The semi-implicit implementation of the part related to
the surface elevation (external mode) implies that an itera-
tive solver must be used to solve the equation on ηn+1. An
alternative is the option with subcycling, as detailed in Ap-
pendix B.

4 Spatial discretization of equations

To obtain the finite-volume discretization, the governing
equations are integrated over the control volumes. The flux
divergence terms are then, by virtue of the Gauss theorem,
transformed into the net fluxes leaving the control volumes.
All other terms are estimated as a mean over the volumes. It
is assumed that

Acuc =

∫
c

udS, (22)

and, similarly for the temperature and other scalars,

AkvTkv =

∫
kv

T dS. (23)

Here Ac and Akv are the horizontal areas of cells and scalar
prisms. Note that the scalar areas vary with depth, hence the
index k in Akv in the formula above (the index k will be sup-
pressed in some cases). For layer k, Akv is the area of the
prism kv including its top face. The area of the bottom face
is A(k+1)v and may differ from that of the top one if the bot-
tom is encountered. To be consistent in spherical geometry,
we use

Akv =
∑
c(v)

Ac/3, (24)

where c(v) is the list of wet prisms containing v in layer k.
Since the horizontal velocity is at centroids, its cell-mean

value uc can be identified with the value of the field u at the
centroid of cell c with the second order of spatial accuracy.
For scalar quantities a similar rule is valid only on uniform
meshes, but even in this case it is violated in the vicinity of
boundaries or the topography. This has some implications for
the accuracy of transport operators.

4.1 Horizontal operators

– Scalar gradient takes vertex values of a field and returns
the gradient at the cell center:

Ac(∇p)c =

∫
c

∇pdS =
∑
e(c)

lene
∑
v(e)

pv/2, (25)

where ne is the outer normal to cell c. Clearly lene =
−k× le if c is the first (left) cell of c(e). This procedure
introduces Gcv =

(
Gxcv,G

y
cv

)
with the x and y compo-

nent matrices Gxcv and Gycv . They have three non-zero
entries for each cell (triangle), which are stored. In con-
trast to FESOM1.4, where similar arrays are stored for
each tetrahedron (and for four vertices and three direc-
tions), here only surface cells are involved.

– Vector gradient takes the values of velocity components
and returns their derivatives at cell locations. They are
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computed through the least squares fit based on the ve-
locities on neighboring cells sharing edges with cell c.
Their list is n(c). The derivatives (αx,αy) of the veloc-
ity component u are found by minimizing

L=
∑
n(c)

(
uc− un+

(
αx,αy

)
· rc n

)2
=min.

Here rc n = (xc n,yc n) is the vector connecting the cen-
ter of c to that of its neighbor n. The solution of the
minimization problem can be represented as two matri-
ces gxc n and gyc n, acting on velocity differences un− uc
and returning the derivatives. Computations for the v-
component result in the same matrices. The explicit ex-
pressions for the matrix entries are

gxc n = (xc nY
2
− yc nXY)/d, (26)

g
y
c n = (yc nX

2
− xc nXY)/d. (27)

Here d =X2Y 2
− (XY)2, X2

=
∑
n(c)x

2
c n,

Y 2
=
∑
n(c)y

2
c n and XY =

∑
n(c)xc nyc n. The matrices

are computed once and stored.

On the cells touching the lateral walls or bottom topog-
raphy, we use ghost cells (mirror reflections with respect
to the boundary edge). Their velocities are computed ei-
ther as un =−uc or un = uc− 2(uc ·nn c)nn c for the
no-slip or free-slip cases, respectively. Here n is the in-
dex of the ghost cell, and nn c is the vector of the unit
normal to the edge between cells c and n. Note that fil-
ing ghost cells takes additional time, but allows us to
use matrices gxc n and gyc n related to the surface cells
only. Otherwise, separate matrices will be needed for
each layer. Note also that ghost cells are insufficient to
implement the free-slip condition. In addition, the tan-
gent component of viscous stress should be eliminated
directly.

We stress that matrices gxc n and gyc n return derivatives
of velocity components, and not the components of the
tensor of velocity derivatives. The latter includes addi-
tional metric terms.

– Flux divergence takes fluxes nominally defined on cells
and returns their divergence on scalar control volumes:

Akv(∇ ·F )vhv =
∑
e(v)

∑
c(e)

F chc ·necdec, (28)

where ne c is the outer normal to control volume v.
Clearly, if v is the first vertex in the list v(e), ne cde c =
−k× de c if c is the first in the list c(e) (signs are
changed accordingly in other cases). While these rules
may sound difficult to memorize, in practice computa-
tions are done in a cycle over edges, in which case signs
are obvious.

In contrast to the scalar gradient operator, the operator
of divergence depends on the layer (because of bottom
topography), which is one of the reasons why it is not
stored in advance. Besides, the fluxes F involve esti-
mates of the scalar quantity being transported. Comput-
ing these estimates requires a cycle over edges in any
case, so there would be no economy even if the matri-
ces of the divergence operator were introduced.

– Velocity curl takes velocities at cells and returns the rel-
ative vorticity at vertices:

Akv

∫
v

(∇ ×u) · kdS =
∑
e(v)

∑
c(e)

uc · te cde c, (29)

where te c is the unit vector along de c oriented so as to
make a counterclockwise turn around vertex v. If v is
the first in the list v(e) and c is the first in the list c(e),
te cde c = de c. This operator also depends on the layer
and is not stored.

It can be verified that the operators introduced above are
mimetic. For example, the scalar gradient and divergence are
negative adjoints of each other in the energy norm and the
curl operator applied to the scalar gradient operator gives
identically zero. The latter property allows a PV conserving
discretization, but we will not discuss it here.

4.2 Momentum advection

FESOM2.0 has three options for momentum advection. Two
of them use the flux form and the third one uses the vector-
invariant form. In spherical geometry the flux form takes an
additional term Mk×u, where M = u tanλ/rE is the met-
ric frequency, with λ the latitude and rE the Earth’s radius.
All the options are based on the understanding that the cell–
vertex discretization has an excessive number of velocity de-
grees of freedom on triangular meshes. The implementation
of momentum advection must contain certain averaging in
order to suppress the appearance of grid-scale noise.

– Vertex velocity option. We compute vertex velocities by
averaging

Avuvhv =
∑
c(v)

uchcAc/3, (30)

and use them to compute the divergence of horizontal
momentum flux:

Ac

(
∇ · (huu)

)
c
=

∑
e(c)

le

(∑
v(e)

ne ·uvhv

)(∑
v(e)

uv/4

)
. (31)

Here ne is the external normal and lene =−k× le if
c is the first one in the list c(e). Since the horizontal
velocity appears as the product with the thickness, the
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expressions here can be rewritten in terms of transports
U = uh.

The fluxes through the top and bottom faces are com-
puted with wc =

∑
v(c)wv/3 using either centered or

standard third-order upwind algorithms.

– Scalar control volumes. Instead of using vector control
volumes, we assemble the flux divergence on the scalar
control volumes and then average the result from the
vertices to the cells. For the horizontal part,

Av(∇ · (huu))v =
∑
e(v)

∑
c(e)

uchc ·ne cucde c,

with the same rule for the normals as in the computa-
tions of the divergence operator. The contributions from
the top and bottom faces of the scalar control volume are
obtained by summing the contributions from the cells,

Av
(
wvu

t
)
= wv

∑
c(v)

ut
cAc/3

for the top surface, and similarly for the bottom one.
The estimate of ut can be either centered or third-order
upwind as above. Other methods will follow.

This option is special in the sense that the continuity is
treated here in the same way as for the scalar quantities.

– Vector-invariant form. The relative vorticity in the cell–
vertex discretization is defined on vertices, and so
should the Coriolis parameter. We use the following rep-
resentation:(
(ω+ f )k×u

)
c
=

∑
v(c)

(ω+ f )vk×uc/3.

The representation with the thicknesses,(
(ω+ f )k×u

)
c
=

∑
v(c)

ωv + fv

3hv
k×uchc,

is reserved for the future. The gradient of kinetic energy
should be computed in the same way as the pressure gra-
dient, which necessitates computations of u2 at vertices.
This is done as

Avu
2
v =

∑
c(v)

Acu
2
c/3.

The vertical part follows Eq. (8),

(w∂zu)
t
c = 2

(
u(k−1)c−ukc

)
/
(
h(k−1)c+hkc

)∑
v(c)

wkv/3,

for the top surface, and similarly for the bottom. Note
that the contributions from the curl of horizontal veloc-
ity, the gradient of kinetic energy and the vertical part
involve the same stencil of horizontal velocities.

The three options above behave similarly in simple tests on
triangular meshes, but their effect on flow–topography inter-
actions or eddy dynamics remains to be studied. The vector-
invariant option is slightly less dissipative, but may leave
some noise in w in areas where mesh resolution is varied
(see Danilov and Wang, 2015), which is absent for the flux
forms. Higher-order methods can be applied for momentum
flux computations, exploring which is reserved for the future.

4.3 Viscosity operators

Formally, the derivatives of horizontal velocity can be es-
timated and the components of the viscous stress tensor,
σij = νh(∂iuj + ∂jui), can be found. Here the indices i, j
imply the horizontal directions, and νh is the horizontal vis-
cosity. In computing their divergence a centered estimate of
stresses has to be taken at the lateral faces of vector control
volumes. If discretized in terms of cell velocities, this scheme
downweights or fully eliminates the contributions from the
nearest cells, and is thus incapable of eliminating grid-scale
fluctuations in velocities.

The expression for stresses can be simplified as σij =
νh∂iuj . As discussed by Griffies (2004), its divergence still
ensures energy dissipation, but is nonzero for solid-body ro-
tations if νh is variable. In spite of this drawback, using
the simplified form is advantageous because the contribu-
tions from the neighbor velocities in flux divergence can be
strengthened. Indeed, only contraction with a normal vector
νhni∂iuj , i.e., the derivative in the direction of the normal
n, appears in the contributions for each vertical face. For the
face identified with edge e between cells c and n, we for-
mally write n= rc n/|rc n| + (n− rc n/|rc n|), where rc n =
de n−de c is the vector connecting the centroids of cells c and
n, and split the stress contracted with n into two respective
parts. The velocity derivative (up to metric terms) in the di-
rection of rc n is just the difference between the neighboring
velocities divided by the distance |rc n|. The remaining part
of the viscous flux (contracted with (n− rc n/|rc n|)) is com-
puted with the standard procedure based on the centered esti-
mate of stresses. It is easy to see that only the nearest neigh-
bors will be involved on equilateral meshes (for n and rc n are
collinear). However, the computations of velocity derivatives
and stresses are still needed if meshes deviate from equilat-
eral. The discretization of the harmonic viscosity operator,
amended as described above, works well. Its biharmonic ver-
sion is obtained by applying the procedure twice.

This procedure, especially its biharmonic version, proves
to be costly, for it involves computations of velocity deriva-
tives and manipulations with two types of contributions. On
the other hand, we see that the expensive part involving the
general computation of velocity derivatives is only needed
on deformed meshes; it will be small on quasi-equilateral
meshes and, even if it is not small generally, it contributes
little to penalizing differences between the nearest velocities.
This leads to the idea to introduce simplified operators based
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on the nearest neighbors. Indeed, by writing

Ac(Duu)c = (1/2)
∑
e(c)

(νhn+ νhc)(un−uc) le/|rcn|, (32)

where n is the cell sharing edge e with cell c, we take into
account the contributions from the nearest neighbors. This
expression is written for a uniform layer thickness, but can
be adjusted for a variable one by adding hc on the lhs and
he on the rhs. The computation is implemented as a cycle
over edges. One uses ghost velocities to impose boundary
conditions, or can skip the contributions from the boundary
edges to emulate free slip. It is easy to see that the opera-
tor integrates to zero in the domain interior (momentum con-
servation) and is negative definite in the energy norm. The
procedure is applied twice to get a biharmonic version.

The procedure can be simplified even further as

(Duu)c = τ
−1
u

∑
e(c)

(un−uc) . (33)

Here τu is a factor with dimension of time to be specified
further. This variant is a filter removing grid-scale fluctu-
ations. Clearly, in a general case, it does not ensure mo-
mentum conservation, and we cannot strictly prove that it
leads to kinetic energy dissipation. However, on equilateral
triangular meshes it reduces to Du = (l

2/3τu)(∂xx + ∂yy),
where l is the triangle height. This allows one to identify τu
with l2/(3νh). The biharmonic form of the filter is taken as
−τuDu(A0/Ac)

1/2Du, where A0 is the reference cell area.
In this case τu = l3l0/(9νbh), where l0 is the side of the refer-
ence cell and νbh the coefficient of biharmonic viscosity. The
inclusion of area scaling is needed for cubic dependence on l.
Writing νbh in the commonly used form νbh = V l

3, where V
is the velocity scale, one finds V = l0/9τu. The values about
0.02 ms−1 are generally sufficient even on highly variable
meshes.

The code contains these options but we are using the last
one in the biharmonic version in most cases – it is efficient
both computationally and in terms of providing stable code
performance. We have not met any visible artifacts thus far
despite its obvious physical shortcomings. In all other cases,
the coefficient of horizontal viscosity is scaled with mesh size
to provide νh = V l in the harmonic case and νbh = (V l

3) in
the biharmonic case.

We note that the inefficiency of the standard Laplace oper-
ator in filtering grid scales for cell variable placement and
measures needed to amend it are well known (see, e.g.,
Blazek, 2001). For the co-called ZM discretization, which
is similar to the cell–vertex discretization up to the detail
of scalar control volumes, Ringler and Randall (2002) pro-
posed introducing a small-stencil vector Laplacian operator
based on the identity 1u=∇∇ ·u−∇×∇×u. The stencil
involves only the nearest neighbors. However, because these
computations are not related to the full mesh cells, they nei-
ther ensure momentum conservation nor negative definite-
ness of kinetic energy dissipation in a general case. In this

respect using them is not more logical than using the simpli-
fied forms (32) or (33).

4.4 Transport of scalar quantities

High-order transport schemes for vertex variable placement
can be realized by using polynomial reconstruction of scalar
fields or the reconstruction of gradients of scalar fields at
mid-edges. We experimented with the quadratic reconstruc-
tion of scalars, which provides a compromise between ac-
curacy and computational effort (see Skamarock and Men-
chaca, 2010). Its other advantage for vertex placement of
variables is that it needs only the information from the near-
est neighbors, which imposes no new demands on halo ex-
change in parallel implementation. It turned out that it is not
more accurate than the gradient reconstruction algorithm, be-
ing twice as expensive and demanding much more storage
for the reconstruction matrices. For this reason, at present we
keep the gradient reconstruction algorithm as the basic one,
which is also available in combination with the FCT (flux
corrected transport) algorithm.

Consider edge e with v(e)= (v1,v2) and c(e)= (c1,c2).
The advective flux of scalar quantity T through the face of
the scalar volume associated with this edge is

Fe = Te
(
−hc1de c1 ×uc1 +hc2de c2 ×uc2

)
· k = TeQe. (34)

The quantity Qe is the volume flux associated with edge e
which leaves the control volume v1. We need an estimate for
Te at the mid-edge. In order to provide it, for each edge e we
store the indices of the cells ahead or behind this edge in the
direction le. We compute two estimates

T +e = Tv1 + (1/2)le(∇T )
+
e ,

(∇T )+e = (2/3)(∇T )
c
+ (1/3)(∇T )u,

and

T −e = Tv2 − (1/2)le(∇T )
−
e ,

(∇T )−e = (2/3)(∇T )
c
+ (1/3)(∇T )d,

where the upper index c implies the centered estimate, while
u and d imply the gradients on up-edge and down-edge cells
(computed by applying the stored scalar gradient operator).
Since the centered estimate is only needed in the direction of
the edge, le(∇T )c = Tv2 − Tv1 . Taking

2TeQe =

(
Qe+ |Qe|

)
T +e +

(
Qe− |Qe|

)
T −e ,

one obtains the standard third-order upwind method, and the
estimate

2Te = T +e + T
−
e

provides the fourth-order centered method. The third-order
method is a bit too dissipative, at least in eddy-dominated
flows. The combination

2QeTe = (Qe+ (1− γ )|Qe|)T
+
e + (Qe− (1− γ )|Qe|)T

−
e
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takes the fourth-order part with the weight γ and the third-
order part with 1− γ . In practice, γ between 0.75 and 0.85
works well for many cases, reducing the upwind dissipation
considerably (by a factor of 4 for γ = 0.75). These are the
recommended values.

We note that the high order of the scheme above is only
achieved on uniform meshes. However, since Te is computed
through linear reconstruction, the second order is warranted
on general meshes.

The implementation requires preliminary computation of
scalar gradients on cells. An extended halo exchange is
needed to make these gradients available during flux as-
sembly. Edges touching the topography may lack either u
or d cells. In this case the simplest choice is either to use
the central estimate or the estimate based on the mean ver-
tex gradient Av(∇T )v =

∑
c(v)Ac(∇T )c/3. This introduces

some additional logistics, but it is common for all high-order
schemes.

For the vertical direction, we provide a set of possibili-
ties which include the third-/fourth-order option similar to
the algorithm described above, spline interpolation, as well
as the piece-wise parabolic method by Colella and Wood-
ward (1984).

The FCT version uses the first-order upwind method as
the low-order monotonic method and the method above as
the high-order one. The low-order solution and the antidiffu-
sive fluxes (the difference between the high-order and low-
order fluxes) are assembled in the same cycle (over edges for
the horizontal part and over vertices for the vertical part) and
stored. We experimented with separate pre-limiting of hori-
zontal and vertical antidiffusive fluxes and found that com-
monly this leads to an increased dissipation, for the horizon-
tal admissible bounds are in many cases too tight. For this
reason, the computation of admissible bounds and limiting is
3-D. As a result, it will not necessarily fully eliminate non-
monotonic behavior in the horizontal direction. The FCT al-
gorithm of FESOM1.4 follows the same logic; however, in
that case it is the only possibility. Using the FCT version
roughly doubles the cost of the transport algorithm, but adds
the stability needed in practice.

4.5 Vertical velocity splitting

As demonstrated in Lemarié et al. (2015), in practice, the
strongest Courant number limitation comes from vertical ad-
vection in isolated patches adjacent to the coast. The code
numerical efficiency can be augmented if some measures are
taken to stabilize it with respect to vertical advection. Un-
structured meshes of variable resolution might be even more
vulnerable to such limitations because their irregularity can
easily provoke a noisy pattern in w through rendering of to-
pography. We implement the approach proposed by Shchep-
etkin (2015) according to which the vertical transport veloc-
ity is split into two contributions w = wex+wim where the
first one is determined by the maximum admissible Courant

number, and the second one is the rest. The advection with
wex is done explicitly using the schemes mentioned above.
The advection with wim is implicit. It uses the first-order up-
wind (backward Euler in time) so that the vertical operator
that corresponds to it is diagonally dominant. The latter is
solved together with the implicit vertical mixing by the stan-
dard sweep algorithm. As a result, if this option is used, the
incurring additional costs of the model time step are negligi-
ble. The use of the first-order upwind scheme may seem to
be too dissipative, but the point is that it is applied only to
part of the velocity, and only in critical cases.

4.6 GM and isoneutral operators

4.6.1 The eddy-induced transport

There are several ways to implement the Gent–McWilliams
(GM) parameterization (Gent and McWilliams, 1990; Gent
et al., 1995). We follow the algorithm proposed by Ferrari
et al. (2010) in FESOM2. FESOM1.4 operates with skewsion
(see Griffies, 2004, for the mathematical details).

The bolus velocity v∗ = (u∗,w∗) is expressed in terms of
eddy-induced streamfunction 9,

v∗ =∇3×9, 9 = γ × k,

where γ is a 2-D vector. Ferrari et al. (2010) suggest com-
puting it by solving(
c2∂zz−N

2
)
γ = (g/ρ0)κ∇zσ (35)

with boundary conditions γ = 0 at the surface and ocean bot-
tom. In this expression, c is the speed of the first baroclinic
mode, σ the isoneutral density, κ the thickness diffusivity, N
the Brunt–Väisälä frequency, and the index z means that the
gradient is computed for fixed z (it differs from the gradient
along layers, ∇zσ =∇σ − ∂zσ∇Z). In terms of the vector γ
the components of eddy-induced velocity are computed as

u∗ = ∂zγ , w
∗
=−∇ · γ . (36)

It is easy to see that solving Eq. (35) plays a role of taper-
ing, for it allows one to smoothly satisfy boundary condi-
tions. Because of the boundary conditions, adding the eddy-
induced velocity to the mean velocity (u,w) does not change
h as the vertically integrated divergence of u∗ is zero. In the
ALE formulation the inclusion of eddy-induced velocity im-
plies that the thickness and tracer equations are now written
for the so-called residual velocity ur = u+u

∗, wr = w+w
∗.

Although the natural placement for γ is at the cell cen-
troids, we solve for it on the mesh vertices in order to reduce
the number of computations. The vertical location is at full
levels (layer interfaces). The horizontal bolus velocities are
then computed at cell centroids as

u∗c = (1/3)∂z
∑
v(c)

γ v. (37)
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The vertical bolus velocity w∗ is then found together with w
at the end of the ALE step and the full residual velocity is
used to advect tracers.

We compute the speed c in the WKB approximation as

c =
1
π

0∫
−H

Ndz.

Among other factors, the magnitude of the thickness diffusiv-
ity κ depends on the resolution r and the local Rossby radius
LR = c/f :

κ = κ0fκ(r/LR),

where fκ is a cut-off function that tends to 0 if r/LR < 1 and
to 1 otherwise. The resolution is defined as a square root of
the area of the scalar control volume. On general meshes it
may exhibit substantial local variations, so smoothing over
the neighboring vertices is done. Note that scaling with mesh
resolution for viscosity and diffusivity coefficients will also
benefit from using a smoothed r .

4.6.2 Isoneutral diffusion

Assuming that the slope of the isopycnals is small, we can
write the diffusivity tensor as

K=

 Ki 0 sxKi
0 Ki syKi

sxKi syKi s2Ki+Kd

 . (38)

HereKi andKd are the isoneutral and diapycnal diffusivities,
and s is the isoneutral slope vector computed along layers,

s = (sx, sy)=−∇σ/∂zσ. (39)

If layer interfaces deviate substantially from geopotential
surfaces, for example, if layers follow the bottom topogra-
phy, the slope vector can be substantially larger than typ-
ically found on z-coordinate meshes. Mixed derivatives in
the ∇3hK∇3 operator in this case can cause time-step limita-
tions (Lemarié et al., 2012a). To maintain stability, the term
h∂z

(
s2Ki+Kd

)
∂z has to be treated implicitly. Appendix D

shows the details of the numerical implementation of isoneu-
tral diffusion.

5 FESOM2.0 vs. FESOM1.4

In the following we evaluate the performance of FESOM2.0
by simulating the realistic ocean state under prescribed atmo-
spheric forcing. The purpose is to illustrate that FESOM2.0
is ready to be run in global configurations, although it may
still need some further parameter tuning. Model efficiency is
then briefly assessed. Detailed model assessment is the sub-
ject of future work.

5.1 Meshes

The evaluation will be done in two steps. In the first step
we compare the performance of FESOM2.0 to that of finite-
element FESOM1.4 (Wang et al., 2014). For this purpose,
we run both models on the same coarse-resolution refer-
ence mesh and in similar configurations. The z-coordinate
in the vertical is used in the simulations described below.
Although the same mesh and level surfaces are used, the
vertical mesh geometry is different: FESOM2.0 assumes the
mesh to be composed of prisms, whereas these prisms are
split into tetrahedra in FESOM1.4. The mesh contains about
120 000 surface nodes, its horizontal resolution varies from
25 km in high latitudes of the Northern Hemisphere to nom-
inally 1 ◦elsewhere, and there are 46 unevenly spaced z lev-
els in the vertical. This mesh was also used to carry out
FESOM1.4 simulations for model intercomparison in the
Coordinated Ocean-ice Reference Experiments – Phase II
(CORE-II, Large and Yeager, 2009) project. It has been
demonstrated that FESOM1.4 performs well in this config-
uration compared to other ocean models (see, e.g., Griffies
et al., 2014; Danabasoglu et al., 2014 and other papers in the
same virtual issue).

In the second step we simulate the ocean state under
CORE-II forcing with FESOM2.0 but on an eddy-permitting
global mesh with a quasi-uniform resolution of 15 km,
referred to further as Glob15. The mesh contains about
2 000 000 surface nodes. It is worth mentioning that the size
of Glob15 is already larger than all meshes we used with FE-
SOM1.4 thus far. We did not carry simulations on Glob15
with FESOM1.4 to save computational resources.

5.2 Model settings

Although we try to configure both model versions as closely
as possible for our intercomparison, there are a few differ-
ences due to the details of implementation. First, different
transport schemes are used. The Taylor–Galerkin (TG) al-
gorithm of FESOM1.4 with consistent mass matrices is ex-
pected to be less dissipative than the third-/fourth-order up-
wind algorithm used in FESOM2.0. The TG scheme works
by default with a FCT limiter in FESOM1.4, so we apply
the FCT limiting in FESOM2 too. Second, the difference be-
tween the two versions of FESOM comes from the imple-
mentation of the GM parameterization of eddy transport. FE-
SOM1.4 uses the GM skew flux formulation as suggested by
Griffies (1998). Because of the finite-element discretization
and hence variational formulation, this strategy is optimal for
FESOM1.4, but less convenient for FESOM2.

All simulations are run with the linear free-surface and vir-
tual salinity forcing. The surface salinity is restored to the cli-
matological data with the piston velocity of 50 m/300 days,
which is a common practice for stand-alone ocean models.
Although the default mixing scheme in FESOM1.4 is the
k-profile parameterization (KPP, Large et al., 1994), it has
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Figure 3. The departure of simulated potential temperature averaged over 1998–2007 from WOA2005 climatology, averaged over depth
ranges. The left and middle columns correspond to the simulations performed with FESOM1.4 and FESOM2, respectively, on the coarse-
resolution reference mesh. The right column corresponds to FESOM2.0 on the global mesh with a resolution of 15 km (no GM parameteri-
zation is used in this case).

not been tested yet with FESOM2.0. That is why the verti-
cal mixing in all simulations presented further is provided by
the Pacanowski and Philander (1981) scheme with the back-
ground vertical diffusion of 2× 10−3 m2 s−1 for momentum
and 10−5 m2 s−1 for the potential temperature and salinity,
and the maximum is limited to 0.01 m2 s−1. The parameter-
ization of mesoscale eddies was switched off in the simu-
lation with Glob15 as suggested by Delworth et al. (2012).
The time step was set to 30 and 15 min for the reference and
Glob15 meshes, respectively, in order to meet the Courant–
Friedrichs–Lewy (CFL) condition. All runs are initialized in
winter from the Polar Science Center Hydrographic Clima-
tology (Steele et al., 2001) and the integration covers the time
frame 1948–2007 of CORE-II atmospheric forcing (Large
and Yeager, 2009).

5.3 Intercomparison on the coarse-resolution reference
mesh

We first compare the last 15 years of the simulated hydrog-
raphy in the two model runs on the coarse-resolution refer-
ence mesh to the World Ocean Database 2005 (WOA2005,
Conkright et al., 2002). One should keep in mind that the
spin-up time of 60 years is too short to provide an equili-
brated ocean state. Nevertheless, the departure of the mod-
eled hydrography from climatology after 60 years of integra-
tion can already serve as a measure of the model drift and in-
dicate the quality of the solution. The bias of temperature in
different depth ranges is shown in Fig. 3 for FESOM1.4 and
FESOM2.0, respectively. The patterns for the upper 200 m
look generally similar in the models. Notably, for the cold
bias in the Labrador Sea, its surroundings, and in the region
of Malvinas Current, FESOM2.0 simulates much larger de-
partures from WOA2005 than FESOM1.4. This cold bias is
primarily associated with the missing northwestern corner in
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Figure 4. The same as in Fig. 3 but for salinity.

the path of the North Atlantic Current and the overly weak
strength of the subpolar gyre. Both are often attributed to the
lack of spatial resolution. Marzocchi et al. (2015) show that
the resolution of 1/12◦ (on ORCA-type meshes) is already
sufficient to properly resolve the pathway of the North At-
lantic Current. On other hand, at coarse resolutions, Stouf-
fer et al. (2005) and Jochum et al. (2008) demonstrate that
the reduction in viscosity in the extratropical ocean in cli-
mate models increases the strength of the subpolar gyre in
the North Atlantic. Other experiments carried out with FE-
SOM, which are not presented here, indicate that even small
changes in model parameters like viscosity and GM thick-
ness diffusivity can impact the strength of the cold bias. Im-
proving the simulation quality in the Labrador Sea and its
vicinity by both, increasing the local resolution and tuning
the model parameters, will be the focus of future studies. It
should be mentioned that the bias in the upper ocean hydrog-
raphy shown here for FESOM1.4 is different from that pre-
sented in the intercomparison of CORE-II hindcasts (Griffies
et al., 2014; Danabasoglu et al., 2014), where the KPP mix-
ing scheme was used instead of PP. As mentioned, different

mixing schemes besides PP still need to be more thoroughly
tested with FESOM2.0.

At deeper levels of the tropical Atlantic, FESOM2.0 per-
forms better than FESOM1.4; at the same time, errors be-
come larger in the Southern Ocean and the eastern North At-
lantic. Our experience in running FESOM is that the drift
in the Southern Ocean is substantially affected by the im-
posed spatial (horizontal and vertical) pattern of the GM
coefficient κ , which needs to be tuned in FESOM2. The
warm bias in the eastern North Atlantic is a persistent fea-
ture in all simulations with FESOM2.0 and is likely due to an
overly strong Mediterranean outflow. A closer look at salin-
ity (Fig. 4) reveals that FESOM2.0 simulates a much fresher
Mediterranean Sea than FESOM1.4 and that more salt is re-
leased into the North Atlantic across the Strait of Gibraltar.
Indeed, the meshes used here have an artificially widened
strait, whereas the cell placement of velocity vectors and the
free-slip boundary condition applied in FESOM2.0 (no-slip
option used in FESOM1.4) have the potential to increase the
Gibraltar outflow if the same geometrical boundary is used.
Although the idea of resolving the Strait of Gibraltar may
seem straightforward, too fine a resolution would lead to
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additional computational burden associated with sufficiently
small time steps. Individual adjustment of mesh geometry is
required for two model versions.

The streamfunction of meridional overturning circulation
(MOC) shown in Fig. 6a and b for reference runs with
FESOM1.4 and FESOM2.0, respectively, reveals that the
Antarctic Bottom Water (AABW) production is larger in FE-
SOM2.0 compared to FESOM1.4 and is at the upper bound-
ary of the observation-based estimate available from the lit-
erature (see, e.g., Lumpkin and Speer, 2007). The maximum
overturning of Upper Circumpolar Deep Water (UCDW) at
about 35◦ S exceeds 20 Sv compared to only 5 Sv in FE-
SOM1.4. This behavior suppresses the mid-depth cell at
about 30◦ S. The maximum of the mid-depth cell in the
North Atlantic is about 12 Sv in both versions and remains
at the lower boundary of observational estimates published
in the literature. Another distinction between both MOCs is
at the northern boundary of the domain. As mentioned in
Sidorenko et al. (2009), there is an ambiguity in transport
definitions for discretizations exploiting the finite-element
approach. This results in a bias that accumulates in the diag-
nosed MOC at the northern boundary when integrating from
the south to the north. The inconsistency amounts to about
2 Sv at certain depths in FESOM1.4, while it is zero in FE-
SOM2.0. We conclude that FESOM1.4 and FESOM2.0 show
similar behavior on the reference mesh, but FESOM2.0 may
benefit from further tuning. In particular, the impact of ver-
tical transport schemes, bottom representation and boundary
conditions needs to be explored in more detail.

5.4 Eddy-permitting global simulation at 15 km
resolution

5.4.1 Simulated ocean state

The difference in hydrography simulated on Glob15 com-
pared to WOA2005 is shown for the mean over the last
15 years in Figs. 3 and 4 ( right columns) for temperature
and salinity, respectively. Overall, the model drift in Glob15
is smaller than in the reference runs. The largest improve-
ment is seen at the surface, where the cold bias north of 45◦ N
is now confined to the northwestern corner of the North At-
lantic Current. It does not vanish completely, however, be-
cause the resolution of 15 km is far from being even eddy-
permitting in this region, where the Rossby radius of de-
formation goes well below 10 km. The area with freshwater
bias north of Newfoundland has been significantly reduced
compared to the reference simulation with FESOM2.0. This
points to the improved linkage between the Arctic and North
Atlantic oceans. Some other improvements are also seen at
other locations and different depth ranges. For instance, the
bias in the Southern Ocean is remarkably reduced in the
deeper layers, as is visible from salinity patterns (Fig. 4).
These improvements indicate that over some parts of the

Figure 5. A snapshot of subsurface (40 m) relative vorticity for
1 January 2007 from eddy-permitting simulation with FESOM2.0
on the global 15 km mesh.

global ocean partially resolving mesoscale features can al-
ready impact dynamics.

In order to illustrate the eddy activity, we show the snap-
shot of subsurface relative vorticity in the North Atlantic
in Fig. 5. Although we show the North Atlantic only, the
dynamics in Glob15 is eddy-rich around all key fronts and
in subtropical gyres of the global ocean. As expected, the
mesoscale features are prominent in Fig. 5 along the Florida
Current, the Gulf Stream and the North Atlantic Current. The
Azores Current branching off the Gulf Stream at ca. 35◦ N is
also reproduced well. At higher latitudes above about 50◦ N,
the resolution becomes insufficient for capturing eddy dy-
namics because the Rossby radius decreases. In the high-
resolution experiment with FESOM2.0, the Gulf Stream sep-
arates too far north of Cape Hatteras, a feature shared by most
ocean models with resolution below 0.1◦. As one would ex-
pect, the wrong separation of the Gulf Stream is also reflected
in the drift of hydrography, where an overly warm and salty
bias develops close to the western coast.

The pattern of relative vorticity also reveals the existence
of zonally elongated patches corresponding to zonal jets
which are often simulated with the high-resolution ocean
models, and are confirmed by the altimetric observations
(see, e.g., Maximenko et al., 2005). The stripes in the vor-
ticity are seen primarily in the North and South Pacific and
in the South Atlantic Ocean (not shown). In the North At-
lantic zonal jets are most visible at about 30◦ N and in the
eastern North Atlantic at about 50◦ N. Note that for better
visualization of zonal jets one shall inspect the vorticity pat-
tern averaged over certain periods of time or do the same for
zonal velocity components.
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Figure 6. Eulerian-mean meridional overturning streamfunction averaged over the last 15 years of 60-year simulations for FESOM1.4 on
the reference mesh (a) and FESOM2.0 on the reference (b) and Glob15 (c) meshes.

The MOC for Glob15 is shown in Fig. 6c and depicts
significant improvements compared to that simulated with
FESOM2.0 on the reference mesh. While the bottom cell
has been reduced, there is a significant increase in the mid-
depth cell, reaching a maximum of above 15 Sv in the North
Atlantic. The Antarctic Bottom Water export across about
65◦ S shows a clear connection with the UCDW matching
the estimates from inverse techniques by Lumpkin and Speer
(2007). The reader is referred to Fig. 2 in their paper. The im-
provements seen for simulations on mesh Glob15 compared
to the reference mesh may serve as an argument in favor of
using high resolution.

5.4.2 Sea ice

The sea ice thickness simulated on Glob15 is shown in Fig. 7
for March and September. The maps of ice thicknesses com-
pare well to those of the Pan Arctic Ice-Ocean Modeling and
Assimilation System (PIOMAS; Schweiger et al., 2011) pre-
sented in Notz et al. (2013) (their Fig. 8) for the Northern
Hemisphere. The thickest sea ice in the Arctic reaches above
5 m in March and September and is found north of Greenland
and in the Canadian Archipelago, becoming thinner towards
the Siberian coast. The simulated 15 % sea ice concentra-
tion contours, indicating the sea ice edge, are also shown in
Fig. 7 (white contour line) together with NSIDC observations
(Fetterer et al., 2002, updated 2009) (black contour line).
In September, the model overestimates the sea ice coverage
along the Siberian Shelf and in the northern Barents Sea. Be-
cause of this, the summer Arctic sea ice extent in Glob15 is
on average overestimated by 10 % compared to the satellite
data, providing 7.54× 106 km2 compared to 6.74× 106 km2

from NSIDC. In the Southern Hemisphere, Glob15 underes-

timates the summer ice extent. In this context further study
of the performance of mixed-layer parameterization and the
effect of still insufficiently strong eddies on the properties of
the watermasses simulated around the Antarctic coast may be
needed. The sea ice extent simulated by the new model ver-
sion is very similar to that simulated by FESOM1.4, which
lies within the spread of the CORE-II multi-model ensemble
(Downes et al., 2015; Wang et al., 2016b). This similarity is
probably not too surprising given that both versions of FE-
SOM share the same sea ice component.

In order to quantify the seasonal variability of the sea ice,
we plot the monthly time series of sea ice extents in Fig. 8.
The result compares well to the observation in the Northern
Hemisphere, while the amplitude of seasonal variability is
overestimated in the Southern Hemisphere. The model sim-
ulates lower summer and higher winter sea ice extent in the
Southern Ocean. For both hemispheres, the model captures
realistic trends in sea ice extent from 1979 to 2007, which
are negative and positive in the Northern Hemisphere and
Southern Hemisphere, respectively.

5.5 Performance and implementation issues

FESOM is written in Fortran 90 with some C/C++ code
inserts providing bindings to the third party libraries. The
code employs the distributed memory parallelization based
on MPI (Message Passing Interface). The model experiments
have been carried out on a Cray XC40 system hardwared
with Intel Xeon Haswell and 24 cores per node, which was
made available through the North-German Supercomputing
Alliance (HLRN). The experience shows that the parallel
scalability of both versions of FESOM starts to saturate after
assigning less than 300 vertices of surface mesh per computa-
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Figure 7. The simulated mean ice thickness distribution (m) in the
Northern (top) and Southern (bottom) hemispheres in March (left)
and September (right).

tional core. In view of this, the experiments on the reference
were conducted using 384 cores (16 nodes).

Disregarding input/output, the throughput of FESOM1.4
is ca. 25 simulated years per day (SYPD), where 92.5 and
7.5 % of the resources are spent in the ocean and ice compo-
nents, respectively. The resources spent in dynamical (solv-
ing for u, v, w, η) and tracer (solving for T , S) parts in the
ocean are nearly equal. The performance of the dynamical
part of the ocean component highly relies on the numerical
solver used to solve for the external mode (elevation). We use
the parallel Algebraic Recursive Multilevel Solver (pARMS,
Li et al., 2003) augmented with the Schur Complement Pre-
conditioner with local incomplete LU factorization (Fuchs,
2013). The cost of solving with pARMS is only about 10 %
of the dynamical part and nearly 5 % of the total cost.

Using the same computer resources, the throughput of FE-
SOM2.0 is 110 SYPD. In this version, the resources between
the ocean and sea ice components are split as 67 and 33 %,
respectively. The ocean component in FESOM2.0 demon-
strates 7 times higher throughput than that of FESOM1.4,
giving the largest speedup in the tracer part, where it is even 9
times faster than in FESOM1.4. The implementation of GM
following Ferrari et al. (2010) costs nearly 10 % in the ocean
component and 20 % is spent in pARMS to solve for the
sea surface height. Interestingly, pARMS shows much faster
convergence (up to a factor of 2.5) in FESOM2.0 than in FE-
SOM1.4. In summary, disregarding input/output, the refer-
ence setup FESOM2.0 shows about 5 times higher through-
put than FESOM1.4.

The Glob15 configuration was run on 1728 cores
(72 nodes) giving a throughput of 17 SYPD, with relative
costs between model components remaining comparable to
those of the coarser-resolution reference setup. For this mesh

Figure 8. The simulated ice extent in the Northern (top) and South-
ern (bottom) hemispheres.

the relative cost of using pARMS decreases compared to the
reference mesh despite the much larger mesh and the number
of cores. We guess that it is partly linked to a smaller time
step which improves the diagonal dominance in the matrix
of the sea surface height operator. Compared to the reference
mesh, which was run in the limit of linear scalability (≈ 300
surface vertices per core), Glob15 was run with ≈ 1150 ver-
tices per core, so there is still potential for further increase in
throughput.

The numbers given above serve only to illustrate the
computational performance. Details may depend on the fre-
quency of output, the type of transport algorithm, the pres-
ence of isoneutral diffusion or GM parameterization and the
number of subcycles used in the elastic-viscous-plastic sea
ice solver of FESIM (Danilov et al., 2015). A conservative
estimate would be a 3-fold speedup compared to FESOM1.4.

6 Discussion

6.1 From finite elements to finite volumes

There are several reasons for developing a new dynamical
core based on finite-volume discretization. The first and main
one is the need for enhanced numerical efficiency. Gener-
ally, the codes based on unstructured meshes are less efficient
numerically than their structured-mesh counterparts, partly
because of (i) indirect indexing and the need for numerous
auxiliary (look-up) arrays (neighboring cells, vertices, ma-
trices of horizontal derivatives) and partly because of (ii) an
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increased share of floating-point and memory-access opera-
tions needed in the absence of directional splitting and mesh
structure. The overhead related to (i) can be minimized in
codes using prismatic elements defined by unstructured sur-
face meshes. In this case the same 2-D auxiliary arrays can
be used over the entire water column, which makes the cost
of assessing them rather moderate. The overhead of (3-D)
auxiliary arrays is much larger in FESOM1.4 because of
its tetrahedral elements needed to implement arbitrary level
surfaces. Using bilinear prismatic elements (Wang et al.,
2008) requires storing and accessing Jacobians on general-
ized meshes, which adds to the computational burden. Turn-
ing to the finite-volume method together with the ALE verti-
cal coordinate provides a simple and efficient way to exploit
the benefits of prismatic meshes.

The second reason for switching to a finite-volume dis-
cretization is that, as mentioned in Danilov (2013), contin-
uous Galerkin finite elements are suboptimal for hydrostatic
codes because they create horizontal connections even in the
matrices of purely vertical operators. In order to be practi-
cal, FESOM1.4 used a potential φ for the vertical velocity
w = ∂zφ and a finite-difference method to compute pressure
from the hydrostatic balance. This destroys energetic consis-
tency between conversions of kinetic and available potential
energy. The finite-volume discretization allows us to main-
tain energetic consistency (up to errors due to temporal dis-
cretization).

Finally, the finite-volume discretization operates with
clear definition of fluxes, which is much more convenient for
post-processing. For example, it makes computations of the
meridional overturning streamfunction much more straight-
forward and free of interpretation inconsistencies intrinsic
to the continuous finite-element discretization. In addition,
it also allows numerous transport algorithms, whereas the
choice available for finite elements of a selected type is much
more restrictive.

6.2 Cell–vertex discretization

Among possible finite-volume discretizations, the cell–
vertex discretization used by FESOM2 presents a compro-
mise allowing us to keep general triangular meshes and use
staggering of velocities and pressure. A collocated vertex–
vertex finite-volume discretization, which is the closest ana-
log to FESOM1.4, was explored by Danilov (2012). It
presents a finite-volume analog of linear finite elements, and
needs stabilization on an uneven bottom against pressure
modes for the same reason as FESOM1.4. Although stabi-
lization does not necessarily lead to deficiencies in the simu-
lated ocean state, it introduces biases to energy exchanges
and geostrophic balance, which should better be avoided.
Additionally, it requires splitting of the horizontal velocities
into contributions located on vertices and cells, so that the
velocity used to transport scalar quantities and the velocity
used to compute momentum balance are different entities.

The cell–vertex discretization is free of pressure modes; how-
ever, this comes at the price of an excessively large number
of velocity degrees of freedom. This creates spurious inertial
velocity modes and requires the presence of efficient grid-
scale viscosity operator coupling neighboring velocities. We
have found that biharmonic filters are efficient in accomplish-
ing this even on highly nonuniform meshes.

Because of staggering and keeping the velocity vector, the
triangular cell–vertex discretization is an analog of an in-
verted B-grid (we call it a quasi-B-grid). The inversion (the
domain boundary is defined by scalar points) allows us to
implement both free- and no-slip boundary conditions. Spu-
rious inertial modes are absent on quadrilateral B-grids. This
prompts us to consider hybrid meshes composed of triangles
and quads, where the triangles will be used to provide transi-
tions between regions of different resolution. The generaliza-
tion to hybrid meshes is straightforward in the finite-volume
implementation because most of the operations are imple-
mented as a cycle over edges. Furthermore, since the number
of edges on quadrilateral meshes is smaller than on triangu-
lar meshes for a given number of vertices, this also implies a
speedup in the code performance. This strategy is already im-
plemented in the coastal branch of FESOM (to be described
elsewhere) and will be made available in FESOM later.

Two other variants of finite-volume discretization are used
at present in global ocean circulation models. MPAS (Ringler
et al., 2013) uses a C-grid discretization on the Voronoi
polygonal meshes (most of the polygons are hexagons),
and the ICON implementation (at the Max Planck Insti-
tute for Meteorology, Hamburg) is based on a triangular
C-grid (which needs an orthogonal triangular mesh). The
spurious modes of hexagonal C-grids are well controlled,
but hexagons are less flexible geometrically and were not
selected for our development. The triangular C-grids have
spurious divergence modes which seem to be more diffi-
cult to control than inertial modes of cell–vertex discretiza-
tion. Practical experience gained in future by using models
with different types of unstructured-mesh finite-volume dis-
cretization will reveal the most efficient choice. The com-
munity effort may lead to a certain convergence among fu-
ture model versions, similarly to the convergence toward C-
grids observed presently for models formulated on structured
quadrilateral meshes.

7 Conclusions

This paper describes version 2 of FESOM. The new numer-
ical core uses a cell–vertex finite-volume discretization. FE-
SOM2.0 compares well with FESOM1.4 in terms of simu-
lated global ocean circulation. It inherits the model frame-
work and the sea ice model of its predecessor, and is con-
ceived so as to allow users familiar with FESOM1.4 to switch
the versions easily. FESOM2.0 ensures higher numerical
throughput than FESOM1.4, which makes it much closer to
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the structured-mesh models in terms of numerical efficiency.
It offers new functionality through the ALE vertical coordi-
nate. Future development will focus on the generalized verti-
cal coordinates, high-order transport algorithms working on
partly terrain-following meshes without excessive diapycnal
mixing and on generalization to mixed meshes combining
triangles and quads. FESOM2 will gradually replace FE-
SOM1.4, yet the latter will be maintained and user support
will be provided over several years to come.

8 Code and data availability

The version of FESOM2.0 used to carry out simulations re-
ported here can be accessed from https://swrepo1.awi.de/svn/
awi-fvom/ after registration. The updated versions will be
available through the same link in future. For convenience,
the configuration used, together with the meshes, is archived
at doi:10.5281/zenodo.161319. Mesh partitioning in FESOM
is based on a METIS Version 5.1.0 package developed at
the Department of Computer Science & Engineering at the
University of Minnesota (http://glaros.dtc.umn.edu/gkhome/
views/metis). METIS and pARMS (Li et al., 2003) present
separate libraries which are freely available subject to their
licenses. FESOM1.4 is available at https://swrepo1.awi.de/
projects/fesom/ (requires registration). The Polar Science
Center Hydrographic Climatology (Steele et al., 2001) used
to initialize runs of CORE-II atmospheric forcing data (Large
and Yeager, 2009) is freely available online. The simulation
results can be obtained from the authors on request.
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Appendix A: The flux form of momentum advection

When using the flux form of momentum, the natural choice is
h∗ = hn, which makes the thickness and transport equations
centered. The choice for the thickness appearing with pres-
sure is hn+1/2, which is centered. The advection and Coriolis
terms will be computed through AB2 (or AB3) time stepping,
or, if needed, the Coriolis term can be made semi-implicit.
The transport Un = unhn becomes a natural velocity vari-
able.

The time stepping algorithm can be formulated as follows:

Un+1
−Un = τ

(
R
n+1/2
U − ghn+1/2

∇

(
θηn+1

+ (1− θ)ηn
)

+

(
νv∂zu

n+1
)t
−

(
νv∂zu

n+1
)b)

(A1)

with

R
n+1/2
U =

(
R∗U

)AB
−hn+1/2 (∇ph+ gρ∇Z)/ρ0,

and

R∗U =−∇ ·
(
Unun

)
−

(
wtut
−wbub

)n
− f k×Un.

The last expression combines the terms that need the AB
method for stability and the second order. We use hn+1/2 to
compute Z and follow the same rule as Eq. (14) to compute
ηn. The steps are the following.

– Do the predictor step and compute 1Ũ = τRn+1/2
U −

τghn+1/2
∇ηn.

– Update for implicit viscosity.

∂t1U −
(
νv∂z

(
1U/hn+1/2

))∣∣∣t
b

=1Ũ +
(
νv∂z

(
Un/hn+1/2

))∣∣∣t
b
.

– Solve for new elevation. We write first

U =
∑
k

U

and similarly for other quantities, getting

U
n+1
−U

n
=1U − gτ

(
H +h

n+1/2
)
θ∇

(
ηn+1
− ηn

)
(A2)

and

ηn+1
− ηn =−τ∇ ·

(
αU

n+1
+ (1−α)U

n
)

− τ
(
αW n+1/2

+ (1−α)W n−1/2
)
. (A3)

Eliminating U
n+1

between these two equations, one
gets the equation on the elevation increment 1η =
ηn+1
− ηn

1η− gτ 2θα∇ ·
((
H +h

n+1/2
)
∇1η

)

=−τ∇ ·
(
α1U +U

n
)

− τ
(
αW n+1/2

+ (1−α)W n−1/2
)
. (A4)

In reality, everything remains similar to the vector-
invariant case, and the matrix to be inverted is the same.

– Correct the transport velocities as

Un+1
−Un =1U − gτhn+1/2θ∇1η. (A5)

– Proceed with ALE and determine wn+1, hn+3/2, and
T n+3/2.

– The new velocities are estimated as

un+1
= Un+1/hn+1. (A6)

Here hn+1 can be computed either in the agreement with
the ALE procedure (ηn+1 is already known) or by inter-
polating between the n+ 1/2 and n+ 3/2 time levels.

It should be clear now that the vector-invariant form can be
treated with h∗ = hn, but this will require considering both u
and U .

Appendix B: Subcycling instead of solver

We discuss modifications needed to solve for the external
mode through subcycling. This option will be added in fu-
ture when needed for massively parallel runs. We use the flux
form of momentum advection as an example. We take

ηn =
(
h
n−1/2

+h
n+1/2

)/
2,

since it provides the second-order accurate estimate.
We follow a common technology and run subcycles be-

tween time levels n and n+ 2, with subsequent averaging to
level n+ 1. We formally take θ = 1 in vertically averaged
equations, for the accuracy of external time stepping will be
defined by the procedure used for subcycling. Furthermore,
ηn+1 will not be used, but the barotropic part of the new ve-
locity will be directly adjusted.

For the same reason, the contribution from the elevation
ηn can be omitted while predicting 1Ũ . However, if this is
done, the implicit solve for vertical viscosity has to be moved
to the end and applied to trim the full velocity un+1. We will
keep the contribution from ηn in the predictor step. Then the
compensation term with ηn will be present (see Eq. B2 be-
low).

Instead of Eqs. (A2) and (A3) we introduce subcycles in-
dexed with j , j = 0 : 2J , with ηn+j/J the shortcut to ηj and
the same for U in several formulas below. The simplest form
of subcycling looks like

ηj+1
− ηj =−

(
∇ ·U

j
+W j

)
τ
/
J, (B1)
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U
j+1
−U

j
=1U/J − g(τ/J )

(
H +h

n+1/2
)
∇

(
ηj+1
− ηj

)
. (B2)

Other forms of subcycling can be used to increase stability
and reduce the number of subcycles 2J + 1. The contribu-
tion from the Coriolis acceleration can be put in the subcy-
cling procedure (it is a zero-order term defining the proper-
ties of surface inertia gravity (Poincaré) waves). To do this
we have to (i) move the implicit viscosity update to the
end of velocity step, (ii) separate the Coriolis contribution
in1U =

(
1Ũ + f k×UAB)

−f k×UAB, and use the verti-
cally integrated combination in the brackets in place of 1U
above. If we take the Coriolis acceleration in the barotropic
equations, we can also treat it implicitly for better stability.

On completing sybcycles one is at time level n+2. In order
to eliminate possible high frequencies, averaging is done to
time level n+ 1:

U
n+1
= (2J + 1)−1

∑
j

U
j
, ηn+1

= (2J + 1)−1
∑
j

ηj . (B3)

The common further action is to use U
n+1

for the barotropic
transport combined with the baroclinic transport diagnosed
from Un+1. We introduce first the new baroclinic transport
by writing

U∗ = Un+1U , (B4)

Ũ
n+1
= U∗−U

∗ hn+1

H + ηn+1 . (B5)

It is then updated to the full transport velocity by

Un+1
= Ũ

n+1
+U

n+1 hn+1

H + ηn+1 . (B6)

As an aside, we document another possibility which im-
plements a pseudotime solver. We want to solve the same pair
of equations as Eqs. (A2) and (A3). We rewrite these equa-
tions as an iterative procedure, with δ some large parameter:

δ
(
U
j+1
−U

j
)
= U

n
−U

j
+1U

− gτ
(
H +h

n+1/2
)
θ∇

(
ηj − ηn

)
,

δ
(
ηj+1
− ηj

)
= ηn− ηj

− τ∇ ·
(
αU

j+1
+ (1−α)U

n
)
.

In this case j becomes a “pseudotime” index, while the lhs
in each of the equations is the residual of an iterative pro-
cess. The analysis of stability shows that one should select
δ2 > k2τ 2c2θα. Here c is the phase speed and −k2 is the
eigenvalue of the Laplacian operator. Its maximum value is
(π/1x)2. Clearly, damping of fast waves in pseudotime fol-
lows e−j/δ , which means that the number of pseudotime iter-
ations J should exceed δ. The hope is that J will not need to

be too large if the procedure is kept stable through appropri-
ate selection of δ. The high-frequency waves will be damped
over several time steps. The condition on δ is that it is larger
than the Courant number kτc (which is much larger than the
one for τ of the “internal” mode).

While this option is not cheaper than the commonly used
one, it is equivalent to the solution based on semi-implicit
solvers, and warrants consistency. Indeed, in this case U ap-
pears as an auxiliary variable, and the issue of barotropic–
baroclinic splitting does not emerge.

Appendix C: Terrain-following meshes

Meshes combining z and terrain-following layers are of in-
terest for studies focused on exchanges between ice cavities
or ocean shelves with the deep ocean, and may lead to an
improved representation of overflows. The use of tetrahedral
elements in previous versions of FESOM was dictated by the
need to maintain this functionality. In the framework of ALE
this possibility is realized by prescribing the initial thick-
nesses of layers as hk = hk(x,y) in such a way that some
of them follow topography. The practical question is on time
step limitations and suppression of dynamical biases on such
meshes. We need (i) to adjust the algorithm of computing
pressure gradient and (ii) to implement stable isoneutral bi-
harmonic diffusion operators, as suggested by Lemarié et al.
(2012a, b). The former means that ∇p/ρ0+ gρ∇Z/ρ0 in
dynamical equations, which is ∇zp/ρ0, may turn out to be
insufficiently accurate if discretized as written. FESOM1.4
does not use this two-term representation, but applies verti-
cal polynomial interpolation to the density field instead. This
approach will be retained in FESOM2. The implementation
of (ii) will allow us to avoid excessive mixing accompanying
advection on terrain-following meshes. These measures are
the subject of ongoing work.

Appendix D: Isoneutral diffusion on triangular prisms

For completeness, we write down the expressions for the hor-
izontal and vertical components of fluxes:

F h(T ) =−Ki (∇T + s∂zT ),

Fz(T ) =−Ki

(
s∇T + s2∂zT

)
−Kd∂zT .

The terms including Ki are referred to as the isoneutral flux;
the remaining term with Kd is the dianeutral flux. To com-
plete the description, the slope has to be expressed in terms
of thermal expansion and saline contraction coefficients α
and β,

s =−
−α∇T +β∇S

−α∂zT +β∂zS
. (D1)

(Note that α here has another meaning to the rest of pa-
per.) The discretized isoneutral part of the flux operatorK∇3
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should be zero when applied to the density. The implemen-
tation difficulty stems from the fact that the tracers together
with α and β are located at mid-layers, the vertical deriva-
tives are located at the level surfaces, and the horizontal
derivatives are at mid-layers, but at cells instead of vertices.
The estimate of a slope at a single point is impossible without
extra interpolation, which will break full consistency. The so-
lution involves triads (see, e.g., Griffies, 2004 and Lemarié
et al., 2012a) and variational formulation. Note, however,
that the implicit time stepping of the contribution with s2Ki
in the vertical flux, needed for stability reasons (Lemarié
et al., 2012a), will introduce some errors even in this case.

First, we split each triangular prism of our mesh into
subvolumes characterized by unique values of the expan-
sion/contraction coefficients, vertical gradients and horizon-
tal gradients, to form triplets. We obtain six subprisms per
prism, formed by sections along the midplane and by verti-
cal planes passing through centroids and mid-edges.

Next, one writes the dissipation functional. We will use
a different but equivalent formulation. Consider the bilinear
form

6F(T̃ ,T )=−
∑
k,c

p=6∑
p=1

Achkc
(
∇3T̃K∇3T

)
kcp
. (D2)

Here the first summation is over mesh prisms (cells and lay-
ers), and the second one over the subprisms p. The volume of
each subprism is 1/6 of the volume of the full prism (hence
the factor 6 on the lhs). Clearly, 2F(T ,T ) corresponds to to-
tal variance dissipation. If T is the isoneutral density and its
gradients are expressed in terms of α and β as for the slope
above, F vanishes.

The last step is to compute the contribution to the rhs of
the scalar equation from the diffusion term

(RT )kv = (1/Akv)∂F/∂T̃kv. (D3)

Here we took into account that we are dealing with layer-
integrated equations, hence the division over the area of the
scalar cell v instead of division by volume. Writing down the
expression for RT is a rather tedious task. The result can be
reformulated in terms of the discrete divergence of discrete
flux. Indeed, (RT )kvAkv is the volume-integrated rhs, i.e., the
sum of fluxes through the faces.

Note that since F is a bilinear form, the definition of the
rhs is always globally consistent. Indeed, the total variance
dissipation is 2

∑
k,vTkv(RT )kvAkv = 2

∑
k,vTkv∂F/∂T̃kv =

2F(T ,T ).
In summary, the variational formulation originally pro-

posed for quadrilaterals can easily be extended to triangular
meshes. All symmetry properties will be granted if computa-
tions are local on subprisms.

Substituting K in the form F , we get

F =
∑
k,c

∑
p

[
−Ki∇T̃ · ∇T −Ki∇T̃ · s∂zT

−Ki∂zT̃ s · ∇T −
(
Kd+ s

2Ki

)
∂zT̃ ∂zT

]
kcp
(Achkc/6) .

The first term does not involve the slope and will not be con-
sidered.

Let us start from the third term and compute its contribu-
tion to ∂F/∂T̃kv . The vertical derivative at level k (the top
surface of layer k) is

(∂zT )kv =
T(k−1)v − Tkv

Z(k−1)v −Zkv
,

and ∇T is defined on cell c:

(∇T )kc =
∑
v(c)

GcvTkv.

Hence it follows for the contribution from layer k and ele-
ment c that

∂F
∂T̃kv

:
1
6
Achkc

[
−1

Zk−1−Zk
(−Kis)

t
kcv(∇T )kc

+
1

Zk −Zk+1
(−Kis)

b
kcv · (∇T )kc

]
,

∂F
∂T̃(k−1)v

:
1
6
Achkc

1
Zk−1−Zk

(−Kis)
t
kcv · (∇T )kc,

∂F
∂T̃(k+1)v

:
1
6
Achkc

−1
Zk −Zk+1

(−Kis)
b
kcv · (∇T )kc.

In the expressions above, indices k and c identify the tri-
angular prism, and the index of vertex v together with the
upper index t or b identify the subprism (related to v and
either the top or bottom of the full prism). The expression
(Kis)

t
kcv means that Ki is estimated on level k and vertex v,

and the slope involves the triplet with α, β at kv, the verti-
cal derivatives at kv and the horizontal derivatives at kc. For
(Kis)

b
kcv , the pairs of indices are (k+ 1)v, kv, (k+ 1)v and

kc, respectively.
Now, we combine the contributions from the column as-

sociated with cell c that enters the rhs of the equation on Tkv
(they come from prisms (k− 1)c, kc and (k+ 1)c):

∂F
∂T̃kv

:
Ac

6

[
hkc

Zk−1−Zk
(Kis · ∇T )

t
kcv

+
h(k−1)c

Zk−1−Zk
(Kis · ∇T )

b
(k−1)cv

−
hkc

Zk −Zk+1
(Kis · ∇T )

b
kcv

−
h(k+1)c

Zk −Zk+1
(Kis · ∇T )

t
(k+1)cv

]
.

We easily recognize here the fluxes through the upper and
lower surfaces of scalar prism kv coming from the part
shared with prism kc. They are thickness-weighed over the
cells on both sides. Indeed, 2(Zk−1−Zk)= hkc+h(k−1)c for
the top surface and similarly for the bottom.
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We continue with the contribution from −s2Ki∂zT̃ ∂zT .
The contribution to the equation at kv from prisms (k− 1)c,
kc and (k+ 1)c may come from the following terms in F :

Ac

6

[(
− s2Ki

)t
kcv

T̃(k−1)v − T̃kv

Zk−1−Zk

T(k−1)v − Tkv

Zk−1−Zk
hkc

+

(
−s2Ki

)b

kcv

T̃kv − T̃(k+1)v

Zk −Zk+1

Tkv − T(k+1)v

Zk −Zk+1
hkc

+

(
−s2Ki

)b

(k−1)cv

T̃(k−1)v − T̃kv

Zk−1−Zk

T(k−1)v − Tkv

Zk−1−Zk
h(k−1)c

+

(
−s2Ki

)t

(k+1)cv

T̃kv − T̃(k+1)v

Zk −Zk+1

Tkv − T(k+1)v

Zk −Zk+1
h(k+1)c

]
.

Now, performing differentiation with respect to Tkv , we
find

∂F
∂T̃kv

=
Ac

6

[(
hkc

Zk−1−Zk
(s2Ki)

)t

kcv

+ . . .
h(k−1)c

Zk−1−Zk
(s2Ki)

b
(k−1)cv

Tk−1− Tk

Zk−1−Zk

+

(
−

hkc

Zk −Zk+1
(s2Ki)

)b

kcv

− . . .
h(k+1)c

Zk −Zk+1
(s2Ki)

t
(k+1)cv

Tk − Tk+1

Zk −Zk+1
.

The result is the standard scheme for the vertical diffusion,
but the estimates of s2Ki are thickness-weighted over con-
tributing layers. The fluxes through the top and bottom sur-
faces can conveniently be assembled in a cycle over cells and
layers.

We return to the horizontal part in the expression for F .
Layer k and cell c contribute to F as

Ac

6
hkc(

∑
v(c)

GcvT̃kv) ·

[∑
v(c)

T(k−1)v − Tkv

Zk−1−Zk
(−Kis)

t
kcv

+

∑
v(c)

Tkv − T(k+1)v

Zk −Zk+1
(−Kis)

b
kcv

]
.

For the contribution into equation kv from ∂F/∂T̃kv , it is
straightforward to prove that it corresponds to the flux of the
quantity in the square brackets through the segments bound-
ing the control volume around v inside triangle c. Indeed,
for geometrical reasons Gcv is ncv/hcv , with ncv the normal
to the edge of c opposing vertex v directed from this vertex
(outer for c) and hcv the height in c drawn from v. This im-
plies that AcGcv = ncvlcv/2, where lcv is the length of the
opposing edge. Obviously, for the two segments bounding
the control volume v inside cell c, the sum of normal vectors
multiplied by the lengths of segments is ncvlcv/2. Thus, we
arrive at flux representation.
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