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Abstract. Numerous existing satellites observe physical or
environmental properties of the Earth system. Many of these
satellites provide global-scale observations, but these obser-
vations are often sparse and noisy. By contrast, contiguous,
global maps are often most useful to the scientific commu-
nity (i.e., Level 3 products). We develop a spatio-temporal
moving window block kriging method to create contiguous
maps from sparse and/or noisy satellite observations. This
approach exhibits several advantages over existing methods:
(1) it allows for flexibility in setting the spatial resolution of
the Level 3 map, (2) it is applicable to observations with vari-
able density, (3) it produces a rigorous uncertainty estimate,
(4) it exploits both spatial and temporal correlations in the
data, and (5) it facilitates estimation in real time. Moreover,
this approach only requires the assumption that the observ-
able quantity exhibits spatial and temporal correlations that
are inferable from the data. We test this method by creating
Level 3 products from satellite observations of CO2 (XCO2)

from the Greenhouse Gases Observing Satellite (GOSAT),
CH4 (XCH4) from the Infrared Atmospheric Sounding In-
terferometer (IASI) and solar-induced chlorophyll fluores-
cence (SIF) from the Global Ozone Monitoring Experiment-
2 (GOME-2). We evaluate and analyze the difference in per-
formance of spatio-temporal vs. recently developed spatial
kriging methods.

1 Introduction

Satellite observations of the Earth’s surface and atmosphere
provide a valuable window into the functioning of the Earth
system. Satellites often provide global observations, but
these observations are rarely uniform or contiguous in space–

time. The observations can be non-contiguous due to satellite
orbit geometries and periods, geophysical limitations (e.g.,
cloud cover), and temporary instrument malfunctions. Fur-
thermore, satellites may provide a large quantity of data, but
individual observations can have a large noise-to-signal ra-
tio. It is often necessary to spatially interpolate the data in
order to organize the data onto a regular grid, query the data
at a particular location of interest, estimate data at unsam-
pled times and/or locations, and/or map the underlying sig-
nal in a noisy dataset. These gridded, interpolated maps are
commonly named “Level 3” data (e.g., NASA, 2014) and are
often part of the standard suite of satellite data products.

CO2 column observations (XCO2) from the Greenhouse
Gases Observing Satellite (GOSAT), CH4 column observa-
tions (XCH4) from the Infrared Atmospheric Sounding In-
terferometer (IASI) and solar-induced chlorophyll fluores-
cence (SIF) observations from the Global Ozone Monitoring
Experiment-2 (GOME-2) provide prototypical examples of
these challenges, and these three satellites are the primary
application used throughout this work (see Sect. 3).

The most commonly used method for creating Level 3
maps from satellite data is binning. This approach involves
taking the mean of all observations within a given grid cell or
“bin” (see Kulawik et al., 2010, and Crévoisier et al., 2009a,
for examples). The binning method, however, has a number
of shortfalls that can lead to inconsistent or inaccurate re-
sults. First, different bins contain variable numbers of obser-
vations. As a result, some bins will be well constrained by
the data, while others may be based upon sparse, noisy ob-
servations. Second, binning does not produce uncertainty es-
timates. Third, this method cannot extrapolate the unknown
quantity to bins without any observations.
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A broad class of geostatistical methods known as krig-
ing provides an alternative approach to mapping satellite
observations. Kriging is a best linear unbiased estimator
(for kriging, see Chiles and Delfiner, 2012), where covari-
ance functions are used to represent correlations among
data. As a result, kriging can account for a variable den-
sity of observations and can estimate uncertainties in the re-
sulting maps. Various forms of kriging have recently been
used to map satellite Earth observations, particularly for
XCO2 (e.g., Hammerling et al., 2012a, b; Tadić et al., 2015;
Zeng et al., 2013, 2016; Guo et al., 2013). Hammerling et
al. (2012a, b) presented an approach to mapping Orbiting
Carbon Observatory-2 (OCO-2) and GOSAT XCO2 obser-
vations, respectively, with non-stationary properties. In our
previous study (Tadić et al., 2015) we extended that approach
to create XCO2 maps that can have a different spatial resolu-
tion from the resolution or footprint of the original satellite
observations. Our previous study and those of Hammerling
et al. (2012a, b) accounted for spatial covariances among ob-
servations but did not include a temporal component. The
present study extends this geostatistical framework from a
purely spatial to a spatio-temporal domain.

Spatio-temporal approaches to interpolation can provide
a number of advantages relative to purely spatial methods
(e.g., Zeng et al., 2016; Guo et al., 2013). A purely spa-
tial approach will usually aggregate observations into tem-
poral blocks; observations within the same block effectively
have the same time stamp whether or not those observations
are actually synchronous (e.g., Tadić et al., 2015; Hammer-
ling et al., 2012a, b). Any real temporal variability within a
block becomes noise. A spatio-temporal approach, by con-
trast, treats time as an explicit dimension and models covari-
ances among data as a function of time.

A handful of recent studies have considered temporal re-
lationships when mapping satellite observations of XCO2.
These studies have either used various forms of Kalman
smoothing (e.g., Katzfuss and Cressie, 2011, 2012; Nguyen
et al., 2014) or geostatistics (e.g., Guo et al., 2013; Zeng
et al., 2013, 2016). The former group of studies leverages
Kalman smoothing to improve the computational tractabil-
ity of mapping dense or abundant datasets, like OCO-2 and
the Atmospheric Infrared Sounder (AIRS). The latter group
of studies, by contrast, has applied geostatistics to sparse
datasets like those from the GOSAT satellite. A detailed re-
view of spatial and spatio-temporal mapping methods has
been published recently (Li and Heap, 2014).

The goal of this study is to develop a geostatistical spatio-
temporal mapping and upscaling method (applicable, but not
limited, to satellite observations of XCO2) that exhibits sev-
eral advances relative to previous methods. It can (1) fill in
temporal gaps in the observations, (2) create maps at higher
temporal resolutions than a purely spatial approach, (3) pro-
duce more accurate estimates when observations have vari-
able spatio-temporal coverage, and (4) predict future values
(i.e., extrapolate temporally). Among other improvements,

we develop an efficient method for subsampling satellite
observations and utilize the product–sum covariance model
(e.g., De Iaco et al., 2001) that is easy to parameterize, which
makes it applicable to both dense and sparse datasets. The
entire work has been conducted in Matlab 2012a.

Section 2 of this study describes the presented model in de-
tail; it describes an efficient subsampling procedure that can
handle very large datasets and a covariance model that can
estimate both spatial and temporal relationships in the data.
We then incorporate these components into a spatio-temporal
version of moving window block kriging. In Sects. 3 and 4,
we subsequently apply this model to map GOSAT XCO2,
IASI XCH4 and GOME-2 SIF at multiple time resolutions
(including daily).

2 Methods

The spatio-temporal block kriging approach presented in this
study proceeds in three steps for each model grid cell and es-
timation time. First, we subsample the observations within
a predetermined spatio-temporal domain (Sect. 2.1). Next,
we characterize the local spatio-temporal covariance struc-
ture (Sect. 2.2). Finally, we interpolate the satellite observa-
tions at the desired spatial resolution (Sect. 2.3).

2.1 Subsampling of observations

The ultimate goal of the proposed subsampling strategy is
to reduce the number of observations in the spatio-temporal
vicinity of an estimation location to a representative, compu-
tationally feasible subset of data. We use a subset of observa-
tions (M) to estimate a local set of covariance parameters and
use another subset (N) to estimate the desired quantity and
associated uncertainty. Note that, for the method presented
here, M and N can refer to either the same subset of data or
different subsets.

The total number of observations used for covariance
parameter estimation (M) is selected to be small enough
to make this estimation computationally feasible but large
enough to yield a sample representative of both local and
regional variability. The optimal subset of N observations
used for mapping depends on the actually observed covari-
ance structure, which is not known prior to the covariance
parametrization step. In the example presented in Sect. 3, the
optimal observational subset used in a mapping step for each
grid cell comprised N points having the highest covariance
with the estimation location. In the example below, we set
bothM and N at 500; larger values ofM and N did not have
a substantial impact on the estimated parameters and mapped
quantity, respectively.

We select a subset of observations M for each estimation
grid cell by assigning a relative selection probability to each
observation based on that observation’s spatial and temporal
“separation distances” from the centroid of the grid cell. In
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the absence of a proper metric for distance in space–time,
we model the spatial and temporal components of the overall
selection probability separately.

The selection probability (and its components) is de-
scribed by the following equation:

P = Ps×Pt ∝ 1/(Ashs)
2
× e−(Atht)

2
, (1)

where Ps is the spatial component of the relative probabil-
ity of a given observation being selected, Pt is the temporal
component, hs and ht are distances between estimation lo-
cation and observations, in space and time, respectively, and
As and At are unit dependent, user defined weighting factors
between separation distances in space vs. in time (how deep
in space vs. time the sampling should occur). The unit de-
pendent choice of As and At can be initially based on user
expectations of the decorrelation distances in space vs. time
and, if necessary, subsequently corrected, accounting for ac-
tually computed decorrelation lengths in space and time in an
iterative fashion. In this way temporal and spatial sampling
depths could even be locally optimized and become location-
specific. In the examples below (Sect. 3), As and At were set
to 1 km−1 and 0.5 day−1, respectively, based on the observed
average decorrelation distances in space and time (see Fig. 1
and Sect. 4.1).
hs is calculated as the great circle distance between the

centroid xj of the estimation grid cell and the location xi of
an observation:

hs
(
xi,xj

)
= rcos−1

(
sinϕi sinϕj

+ cosϕi cosϕj cos(λi − λj )
)
, (2)

where ϕi and λi are the latitude and longitude of location xi
and r is the radius of the Earth.

The temporal and spatial components of the probability
function have different functional forms out of necessity. The
measurements often come pre-aggregated in time slices cor-
responding to hours, days, or longer aggregation time pe-
riods, which multiplies the number of observations by the
same time stamp. As a result, it is not possible to assign sam-
pling probability along a temporal axis in a manner equiv-
alent to the spatial approach; doing so would result in infi-
nite probabilities assigned to all observations within the time
slice of the actual estimation location (Pt ∼ 1/02

=∞). The
same holds for spatially co-located observations. However,
since each observation comes with unique spatial coordinates
(not pre-binned like in the temporal case), we select a simpler
form of the spatial component of the sampling function. The
defined form of P (Eq. 1) ensures that pairs of observations
close to the estimation location define the shape of the var-
iogram at short separation distances (the variogram should
reflect variability in the spatio-temporal vicinity of the esti-
mation grid cell (see Sect. 2.2)). Different forms of P can
be used if directional anisotropy is expected or if more/fewer

observations along a given direction are desired to better rep-
resent expected correlations.

Previous approaches required the user to choose spatial
and temporal windows that determine which neighboring ob-
servations to use (see, for comparison, Alkhaled et al., 2008;
Hammerling et al., 2012a, b). The approach proposed in
this paper, by contrast, requires fewer subjective choices –
only the form of the sampling function and unit-dependent
choice of normalizing coefficients As and At. In addition,
our approach is computationally feasible even for very large
datasets.

2.2 Characterization of spatio-temporal covariance

Existing studies have used a number of models to estimate
spatio-temporal covariances for a variety of applications.
Models used include the metric model (Dimitrakopoulos and
Luo, 1994), linear model (Rouhani and Hall, 1989), product
model (De Cesare et al., 1996), non-separable model (Cressie
and Huang, 1999), and generalized product–sum covariance
model (De Iaco et al., 2001). The approach developed in this
paper uses a generalized product–sum covariance model (De
Iaco et al., 2001). This model affords a number of advantages
relative to other covariance models: (1) a product sum covari-
ance model outperformed other models in terms of prediction
accuracy in a recent study using GOSAT satellite data (Guo
et al., 2013), (2) it is relatively easy to implement (De Iaco
et al., 2001), and (3) it is more flexible than a non-separable
covariance model (De Cesare et al., 2001a).

The product–sum model, as it has been applied in the past,
has one important area for improvement. The original proce-
dure (De Iaco et al., 2001) assumed separate modeling of the
spatial and temporal covariance (variograms) and their later
unification into a spatio-temporal model in the final step. The
procedure requires observations approximately in the same
location at multiple different times. However, satellite obser-
vations are often not perfectly collocated in consequent mea-
surement cycles over the same region. As a result, we would
need to assume that each measurement cycle is perfectly co-
located with previous/future cycles, or define an arbitrary tol-
erance, in order to apply the original approach. This assump-
tion becomes more prone to error if the observations are very
sparse, as is often the case with satellites.

Thus, in this study, we cater to specific properties of satel-
lite data and alter the original procedure by estimating all
covariance parameters simultaneously, thereby avoiding the
aforementioned problem.

We broadly define the covariance as follows:

Cs,t(hs,ht)= Cov(Z(s+hs, t+ht),Z(s, t)). (3)

The equation shows that covariance between two points (Z)
separated in space–time (s, t) depends on their distance in
space (hs) and distance in time (ht). The following class of
valid product–sum covariance models was introduced in De
Cesare et al. (2001b) and further developed in De Iaco et
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Figure 1. (a) Sampling probability as a decreasing function of spatial and temporal distance as used in this study. (b) The typical example of
subsampled IASI Level 2 XCH4 (altitude below 4 km) data for a selected estimation location (yellow circle). The colors of the observations
show semivariance between observation and estimation locations (blue: lowest; red: highest). Due to stronger temporal covariance, the
relative decrease in the sampling probability along the temporal axis is smaller than with spatial distance.

al. (2001):

Cs,t(hs,ht)= k1Cs(hs)Ct(ht)+ k2Cs(hs)+ k3Ct(ht), (4)

where Ct and Cs are valid temporal and spatial covariance
models, respectively. De Iaco et al. (2001) proved that for
positive definiteness it is sufficient that k1 > 0, k2>0 and
k3>0. It is interesting to note that from Eq. (4) it follows that
spatio-temporal covariance models collapse down to purely
spatial models in cases where temporal covariance does not
exist. Thus, the spatial approach could be viewed as a special
case of spatio-temporal modeling.

The model in Eq. (4) corresponds to the spatio-temporal
variogram shown in Eq. (5). In the original procedure, De
Iaco et al. (2001) estimated separate spatial (ht = 0) and
temporal (hs = 0) variograms using the data. De Iaco et
al. (2001) then combined these models to obtain the final
spatio-temporal variogram model:

γs,t(hs,ht)= γs,t(hs,0)+ γs,t(0,ht)

− kγs,t(hs,0)γs,t(0,ht), (5)

where γs,t(hs,0) and γs,t(0,ht) are spatio-temporal vari-
ograms for ht = 0 and hs = 0, respectively (Fig. 2). Parame-
ter k is estimated from the data which make the model easily
applicable:

k =
ksCs (0)+ ktCt (0)−Cs,t(0,0)

ksCs(0)ktCt(0)
, (6)

where ksCs (0) and ktCt (0) are spatial and temporal sills
(variances) obtained in modeling of separate spatial and tem-
poral variograms. The only condition k has to fulfill in order
to create an admissible covariance model is

0< k6
1

max{σ 2
s
(
γs,t (hs,0)

)
; σ 2

t
(
γs,t (0,ht)

)
}
. (7)

Due to the specifics of satellite data, we estimate both the
covariance parameters and parameter k simultaneously. This

approach accounts for constraints that ensure a positive def-
initeness of the model (De Iaco et al., 2001). This simulta-
neous approach makes the model more applicable to sparse
data and data with variable spatial coverage, as is often the
case with satellite observations.

We use a Gaussian variogram function with a nugget ef-
fect to model temporal covariance in the example presented
here (for an overview of variogram models, see Chiles and
Delfiner, 2012). We use an exponential model for the spatial
variogram. In both cases, we make this choice based upon
visual inspection of local variograms at multiple estimation
locations:

γt (ht)(Gaussian)

=


0, for ht = 0,

σ 2
t (1− exp

(
−
h2

t

l2t

)
+ σ 2

nug, for ht > 0,
(8)

γs (hs)(exponential)

=


0, for hs = 0,

σ 2
s (1− exp

(
−
hs

ls

)
+ σ 2

nug, for hs > 0, (9)

where σ 2 and l are the variance and correlation length of
the quantity being mapped, and σ 2

nug is the nugget variance,
typically representative of measurement and retrieval errors
in the case of satellite observations.

Unlike the original procedure in De Iaco et al. (2001), we
model the variogram using only two steps. First, we calculate
a raw spatio-temporal variogram based on the subsampled
observations for each estimation grid cell:

γ (hs,ht)=
1
2

[
y (xi)− y(xj )

]2
, (10)

where γ is the raw spatio-temporal variogram value for a
given pair of observations y(xi) and y(xj ), and hs and ht are,
respectively, the great circle distance and temporal distance
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Figure 2. Illustration of the experimental and fitted theoretical
spatio-temporal variogram for GOSAT XCO2 data.

between the spatio-temporal locations (xi and xj ) of these
observations.

Second, we fit the theoretical variogram defined in Eq. (5)
to the raw variogram using non-linear least squares. We sub-
sequently calculate the spatio-temporal covariance using the
following equation:

Cs,t(hsht)= Cs,t (0,0)− γs,t(hsht)). (11)

Validity on the sphere. Most covariance models were orig-
inally designed for Euclidean space, and their validity in
other coordinate systems cannot be assumed per se. Huang
et al. (2011) examined the validity of several theoretical co-
variance models in spherical coordinate systems. However,
this evaluation has not been done for the spatio-temporal
product–sum covariance model. Other studies that use a
product–sum covariance model typically assume the valid-
ity of this covariance model on a sphere (e.g., Zeng et al.,
2013, 2016). Results from Huang et al. (2011) explicitly vali-
date the exponential covariance model on a sphere, as well as
sums of the products of exponential covariance models and
constants (provided that the constants are positive). The first
term of the product–sum covariance model used in this study
(Eq. 4) represents a Hadamard product (Million, 2007) of
two positive definite matrices. According to the Schur prod-
uct theorem, a Hadamard product of two positive definite ma-
trices necessarily gives a positive definite matrix (Mathias,
1993). It therefore follows that a generalized product–sum
model (Eq. 4) is valid on a sphere if its spatial component is
valid on a sphere.

2.3 Mapping using spatio-temporal moving window
block kriging

This section leverages the sampling function (Sect. 2.1) and
the product–sum covariance model (Sect. 2.2) to implement
a spatio-temporal version of moving window block kriging.
A primary advantage of block kriging is its ability to estimate

contiguous maps at any spatial resolution equal to or coarser
than the spatial support (i.e., footprint size) of observations
(refer to Sect. 1 and Tadić et al., 2015). Unlike the ordinary
kriging method, the spatial support in block kriging corre-
sponds to the average value within each chosen grid cell.

Moving window block kriging requires solving a set of
linear equations to obtain a set of weights (λ). These weights
must be estimated for each prediction location using N asso-
ciated observations:[

Q+R 1
1T 0

][
λ

−ν

]
=

[
qA
1

]
. (12)

In this equation, R is a diagonal N ×N nugget covariance
matrix that describes measurement and retrieval errors, Q is
an N ×N covariance matrix among the N observations with
individual entries as defined in Eq. (11), 1 is an N × 1 unity
vector, ν is a Lagrange multiplier, and qA is an N × 1 vector
of the spatio-temporal covariances between the N observa-
tion locations and the estimation grid cell, defined as

qA,i =
1
n

n∑
j=1

q
(
hsi,j ,hti,j

)
, (13)

where qA,i is the covariance between the grid cell and ob-
servation i. q

(
hi,j

)
is defined as Cs,t in Eq. (11) based on

the distances hsi,j and hti,j between observation i and n reg-
ularly spaced locations within the grid cell. In the context
of satellite measurements, n is the highest number of non-
overlapping footprints contained within a grid cell and was
calculated based on the relative size of the satellite footprint
compared to the size of the estimation grid cells. n varies
with latitude, as the size of grid cells decreases with the dis-
tance from the Equator. The system in Eq. (12) is solved for
the weights (λ) and the Lagrange multiplier (ν). We subse-
quently use these parameters to define the estimate (ẑ) and
estimation uncertainty (σ 2

ẑ
) for the grid cell:

ẑ= λTy, (14)

σ 2
ẑ
= σAA− λ

TqA+ ν, (15)

where y is the N×1 vector of subsampled observations, and
σAA is the variance of the observations at the resolution of
the estimation grid cell, defined as

σAA =
1
n2

n∑
j=1

n∑
k=1

q
(
hj,k

)
. (16)

In that equation, q
(
hsi,j ,hti,j

)
is defined as Cs,t in Eq. (11)

based on the distances hsi,j and hti,j between any combina-
tion of the n regularly spaced locations within the grid cell
defined previously.

3 Example applications

We select three case studies of satellite Level 2 data to
demonstrate the properties of the method developed in this
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Figure 3. (a) GOSAT/ACOS v3.4 XCO2 retrievals (Level 2 data) (ppm) for 3 August 2009. (b) Contiguous global GOSAT/ACOS v3.4
maps (Level 3 data) (ppm) for the same day obtained using spatio-temporal moving window block kriging at 1× 1◦ spatial resolution.
(c) Associated uncertainties, given as 1σ (σẑ) (ppm).

paper: column-integrated dry air model fraction of CO2
(XCO2) from the Japanese Greenhouse Gas Observing
SATellite (GOSAT), CH4 (XCH4) from the Infrared Atmo-
spheric Sounding Interferometer (IASI), and SIF from the
Global Ozone Monitoring Experiment-2 (GOME-2). Level 2
datasets from GOSAT, IASI and GOME-2 have relatively
different characteristics. For example, GOSAT observations
are sparse, while IASI and GOME-2 are abundant. These di-
verse datasets are therefore ideal for testing the method de-
veloped here.

The method was demonstrated by producing two differ-
ent sets of maps. First, it was applied at resolutions coarser
than native (1× 1◦, 2.5× 2◦, and 1× 1◦ for GOSAT, IASI,
and GOME-2, respectively) to demonstrate the block kriging
capabilities of the method (Sect. 3). Second, it was applied
at the native resolution of the satellites for cross-validation
(method evaluation) purposes (Sect. 4).

3.1 Total column CO2 (XCO2) observed by GOSAT

The Japanese Greenhouse Gas Observing SATellite
(GOSAT) (e.g., Kuze et al., 2009), the first satellite dedi-
cated to global greenhouse gas monitoring, was launched
in 2009. Basic information about the satellite, its orbit
configuration, and the CO2 column observations are given
in our previous study (Tadić et al., 2014). It flies in a polar,
sun-synchronous orbit with a 3-day repeat cycle and an
approximate 13:00 LT overpass time. GOSAT has a nadir
footprint of about 10.5 km diameter at sea level (Kuze et al.,
2009) and 2× 103 observations per week. The XCO2 obser-
vations from GOSAT have large retrieval uncertainties (e.g.,
O’Dell et al., 2012) and exhibit large spatial and temporal
gaps (e.g., Fig. 3a). Although these XCO2 observations
are sparse and noisy, contiguous Level 3 maps are often
desirable for environmental and ecological applications
(Maksyutov et al., 2013; Liu et al., 2012). To this end, we
generate global daily estimates for XCO2 (2–7 August 2009)
to match the time frame used in Tadić et al. (2014).

We obtain bias-corrected and filtered GOSAT Level 2
observations using NASA’s Atmospheric CO2 Observations
from Space (ACOS) algorithm v3.4 release 3 (e.g., O’Dell
et al., 2012; Crisp et al., 2012). In this study, we use spatio-
temporal moving window block kriging to create a series of

contiguous, in-filled global daily maps and associated uncer-
tainties for 2–7 August 2009 (two repeat cycles) (Fig. 3a–c)
at 1× 1◦ resolution. We select the time period to match the
time period from our previous study (Tadić et al., 2014). Un-
like results from our previous study and other similar stud-
ies, which created estimates at 6-day or longer time periods
(Hammerling et al., 2012a), we leverage the method devel-
oped here to produce maps at the daily scale.

3.2 Total column CH4 (XCH4) observed by IASI

The Infrared Atmospheric Sounding Interferometer (IASI)
developed by the Centre National d’Etudes Spatiales (CNES)
in collaboration with the European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT) is a
Fourier transform spectrometer based on a Michelson inter-
ferometer coupled to an integrated imaging system that mea-
sures infrared radiation emitted from the Earth. It is carried
by MetOp-A, a sun-synchronous polar orbit satellite which
flows at an altitude of 817 km. Detailed information about
the IASI instrument could be found elsewhere (Crévoisier et
al., 2009a, b; Massart et al., 2014). IASI has an instantaneous
field of view of 50× 50 km, composed of four pixels each
12 km in radius, delivering ∼ 56× 103 XCH4 observations
per week.

Methane Level 2 IASI (0–4 km) data were retrieved at
the NOAA/NESDIS using the NUCAPS (NOAA Unique
CrIS/ATMS Processing System) algorithm (Gambacorta,
2013; Xiong et al., 2013). For the ice-covered ocean the
data for the lower troposphere (0–4 km) are unreliable due
to insufficient thermal contrast between the surface and the
atmosphere. Filtering parameters have been provided by
X. Xiong (personal communication, 2014). The data are
available at http://www.nsof.class.noaa.gov/. Using the new
method, we created a series of contiguous global daily maps
and associated uncertainties for the Northern Hemisphere,
for 26 February–4 March 2013 (i.e., Fig. 4a–c) at 1◦× 1◦ res-
olution. We chose this time period to match the occurrence
of the methane “anomaly” north of the coast of Scandinavia.

Geosci. Model Dev., 10, 709–720, 2017 www.geosci-model-dev.net/10/709/2017/
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Figure 4. (a) IASI XCH4 (0–4 km) retrievals (ppb) for 2 March 2013 (sea only). (b) Contiguous IASI maps for the Northern Hemisphere
for the same day obtained using spatio-temporal moving window block kriging at 2.5×2◦ spatial resolution and (c) associated uncertainties,
given as 1σ (σẑ) (ppb).

3.3 Global land solar-induced fluorescence fields
observed by GOME-2

The GOME-2 (Global Ozone Monitoring Experiment-2) in-
strument on board METOP-A (e.g., Joiner et al., 2013) ob-
serves SIF. The GOME-2 spatial footprint (i.e., support) of
the observations is 40 km× 80 km (Joiner et al., 2013), and
the volume of available data is approximately 2× 105 SIF
observations per week.

Multiple recent studies have demonstrated the potential
use of satellite observations of SIF for understanding the pho-
tosynthetic CO2 uptake at large scales (Joiner et al., 2011,
2012, 2013; Frankenberg et al., 2011, 2012, 2014; Guanter
et al., 2012; Lee et al., 2013). Satellite SIF measurements
can be used with land surface models to understand gross
primary production (GPP) response to environmental stress
(e.g., Lee et al., 2013) and to improve the representation
of GPP. GOME-2 provides the highest spatial and temporal
density of data, among all available datasets.

In the example presented here we use SIF GOME-2 v.14
data (Joiner et al., 2013) with the approach described in Sect.
2 to create contiguous maps of SIF at a single spatial reso-
lution (1◦× 1◦) and daily temporal resolutions. Maps of SIF
and associated uncertainties are created at daily temporal res-
olutions covering 5–14 May 2012, some of which are shown
in Fig. 5a–c.

4 Method evaluation: accuracy, precision and bias

4.1 Accuracy, precision and bias

We use a leave-one-out cross-validation technique to as-
sess the performance of spatio-temporal (ST) versus spa-
tial moving window block kriging. We produce these esti-
mates at the native resolution of GOSAT, IASI and GOME-
2 satellites/instruments, which allowed a direct comparison
to measured values. For IASI and GOME-2, for each day
in 26 February–4 March 2013, and 5–14 May 2012, respec-

tively, 10 % of available observational data were randomly
selected for use in leave-one-out cross-validation, and their
coordinates extracted. For XCO2, all GOSAT XCO2 obser-
vations for each day in 2–7 August 2009 were used. We as-
sess the accuracy (the difference between estimates and with-
held observations) of both methods using two common mea-
sures: (1) mean absolute error (MAE), and (2) root mean
squared error (RMSE). We also use two more recently pro-
posed measures (Li and Heap, 2011; Li, 2016) that remove
the effect of unit/scale. The first is relative mean absolute er-
ror (RMAE), which is given as

RMAE=
1
n

n∑
i=1

∣∣(ẑi − yi)/oi∣∣× 100, (17)

and the second is relative root mean square error (RRMSE),
as follows:

RRMSE=

[
1
n

n∑
i=1

(∣∣yi − ẑi∣∣/yi)2]1/2

× 100, (18)

where n is the number of observations or samples, o is the
observed value, and p is the predicted or estimated value.

We assess the performance of each method using two ad-
ditional measures: (3) the accuracy of the uncertainty bounds
(the degree to which the reported uncertainties capture the
difference between estimates and withheld observations) and
(4) bias (the mean difference between estimates and withheld
observations).

We parameterize the temporal component of the spatio-
temporal sampling function in such a way that observations
located ±3 days from the actual date had a 10 % probability
of being sampled compared to observations from the actual
day (see Fig. 1a). We compare the results to spatial kriging
estimates obtained in two different ways, based on observa-
tions only from the actual day (1d) and based on observa-
tions from ±3 days from the actual day (7d). This latter case
is analogous to the ± 3-day window that we use for the ST
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Figure 5. (a) GOME-2 SIF v14 retrievals (Level 2 data) (mW m−2 sr−1 nm−1) for 5 May 2012, (b) contiguous global GOME-2/SIF v14
maps (Level 3 data) (mW m−2 sr−1 nm−1) for the same day obtained using spatio-temporal moving window block kriging at 1× 1◦ spatial
resolution, and (c) associated uncertainties, given as 1σ (σẑ) (mW m−2 sr−1 nm−1).

approach. In this 7d case, we obtain these spatial kriging re-
sults by assuming the entire observational dataset collected
within the selected time period (actual day ±3 days) is per-
fectly temporally correlated. In other words, we use all obser-
vations as though they were collected at the same time. We
then produce estimates at locations of observations collected
within the selected time frame and compare the performance
of the two methods. We repeat the procedure described in
Sect. 2 for every observation selected for cross-validation,
and we average the statistics, displayed in Table 1.

According to the results, the spatio-temporal approach
performs better than the spatial (7d) approach in all three
cases and in all performance measures (for example, the spa-
tial (7d) MAE was 6–10 % larger). The comparison clearly
shows that proper characterization of the temporal covari-
ance between two points residing in different time periods
(days), embedded in the spatio-temporal approach, improves
kriging performance. In the IASI and GOME-2 cases, the
spatio-temporal method also performed better than the spa-
tial one (1d). However, in the case of GOSAT data, the spatio-
temporal approach slightly underperformed against the spa-
tial (1d) approach, having a 12 % higher MAE (please see
Sect. 4.2 for discussion).

We observed that RMAE and RRMSE error measures
should be used with caution in cases when observations can
take real zero values, like in the GOME-2 case. In such cases
the division by close-to-zero values results in extremely high
RMAE and RRMSE values, which overall limits the applica-
bility of these error measures.

We evaluate the accuracy of the uncertainty bounds by ex-
amining how often those bounds encapsulate withheld obser-
vations. The percentage of observations that fall outside the
uncertainty bounds in the spatio-temporal approach is com-
parable to that of the spatial method, confirming the accuracy
of the estimated uncertainty bounds (for normally distributed
data the percentage of observations that fall outside of the
one, two, and three estimations standard deviation (σẑ) un-
certainty bounds should be 32, 5, and 0.3 %, respectively).
The fraction of observations that fall outside the uncertainty
bound is generally lower than would be expected for nor-
mally distributed data, and our results may indicate non-
normal features in the data.

4.2 When is spatio-temporal modeling recommended?

An ST approach can afford advantages over purely spatial
methods when temporal data correlations and data coverage
are strong. Indeed, in many cases, the ST approach is more
accurate than a purely spatial method (Table 1). This result
is consistent with the existing literature, which uniformly re-
ports that ST approaches are more accurate than spatial ap-
proaches (Zeng et al., 2013, 2016; Guo et al., 2013).

However, although considering information from days
preceding and following the target estimation day should in
principle always provide a further constraint on the estimate,
this does not guarantee that an ST method will always outper-
form a spatial-only method in practice. The prime reasons for
this are 2-fold. First, because computational limitations cap
the number of observations that can be considered, consid-
ering observations across multiple days necessarily leads to
a reduction in the spatial density of observations being con-
sidered. This first factor can be partially alleviated by care-
fully designing the selection probability function (Eq. 1). The
second reason is that implementing an ST approach involves
the estimation of a larger number of covariance parameters
(Eqs. 4–9) relative to a spatial-only approach, which can in-
troduce additional uncertainty. Indeed, we observe that the
purely spatial approach performs better than the ST method
in some cases (e.g., the GOSAT case).

Overall, an ST approach is likely to outperform a spatial-
only approach when the data exhibit one (or more) of three
characteristics. First, an ST approach is likely better when
the data are sparse or unequally distributed. In these cases,
an ST approach can intelligently leverage data in adjacent
time periods to compensate for the sparsity of data in the
time period of interest. Second, an ST approach works well
for datasets with temporal gaps (e.g., due to cloud cover or
instrument malfunction). An ST approach can fill these gaps,
while a spatial-only approach cannot be used for temporal
gap-filling. Third, an ST approach is well suited to datasets
with regional biases that manifest in one time slice but that
do not repeat in adjacent time slices. The differences be-
tween the performance of ST and S approaches obtained
through cross-validation become most pronounced in pro-
cessing datasets with measurement errors that are spatially
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Table 1. Cross-validation results of GOSAT XCO2, IASI XCH4 and GOME-2 SIF datasets using spatio-temporal and spatial methods,
including mean absolute error (MAE), root mean squared error (RMSE), relative mean absolute error (RMAE), relative root mean square
error (RRMSE), percent of observations lying outside of 1, 2, and 3 standard deviations (σẑ) of the mapping uncertainty, and mean difference.
The MAE, RMSE and bias units for GOSAT, IASI and GOME-2 are ppm, ppb and mW m−2 sr−1 nm−1, respectively. RMAE and RRMSE
are unitless, and, for the reasons explained in Sect. 4.1, given only for GOSAT and IASI. Shaded fields represent the best estimate in each
category for every satellite.

GOSAT XCO2 IASI XCH4 GOME-2 SIF

ST 1d 7d ST 1d 7d ST 1d 7d

Estimates Mean absolute 0.83 0.74 0.89 19.19 20.23 21.04 0.52 0.54 0.54
error (MAE)
Root mean squared 1.12 0.98 1.21 25.25 27.10 27.77 0.68 0.69 0.69
error (RMSE)
Relative mean absolute 0.22 0.19 0.23 1.04 1.09 1.14 – – –
error (RMAE)
Relative root mean 0.29 0.25 0.31 1.37 1.46 1.50 – – –
square error (RRMSE)

Uncertainties % observations falling 9.13 15.03 10.70 11.02 9.06 13.84 14.60 12.14 24.80
outside 1σẑ uncertainty
% observations falling 1.12 3.01 1.39 0.48 0.51 0.86 1.20 0.64 4.33
outside 2σẑ uncertainty
% observations falling 0.067 0.52 0.13 0.04 0.046 0.022 0.11 0.05 0.83
outside 3σẑ uncertainty

Bias Mean difference −0.012 0.0066 −0.034 0.28 −0.14 0.58 0.016 0.0013 0.032

but not temporally correlated. In these cases, an ST approach
can use data from adjacent time periods to obtain an esti-
mate, data that do not have the same regional, spatially cor-
related biases. Although the resulting estimate may appear
inferior during cross-validation, this is because that estimate
will not reproduce regional biases in data from the time slice
of interest. A spatial-only approach, by contrast, will repro-
duce these regional biases because it does not use data from
adjacent times when creating the estimate. As a result, a
spatial-only approach will appear to perform better in cross-
validation, but the ST approach will more accurately reflect
the true, underlying process.

5 Conclusions

In this study, we develop a method to create high spatio-
temporal resolution maps from satellite data using spatio-
temporal moving window block kriging based on the
product–sum covariance model. The method relies on a lim-
ited number of assumptions: that the observed physical quan-
tity is spatio-temporally auto-correlated, and that its nature
can be inferred from the observations.

The method has several advantages over previously ap-
plied methods. Apart from the advances alluded to in Sect. 1,
(1) it improves the covariance parameter estimation proce-
dure because it does not model spatial and temporal covari-
ance separately, (2) it allows for great flexibility in the choice
of sampling function and (3) it provides estimates even for

the time periods when measurements are not available. It can
exploit correlations with both past and future periods of the
observed time spot to provide the most accurate estimates.

We demonstrate the applicability of this method by cre-
ating Level 3 products from the GOSAT XCO2, IASI CH4
and GOME-2 SIF data. Sparse XCO2 observations from
GOSAT and dense XCH4 and SIF observations from IASI
and GOME-2 make a perfect test ground for the method.
We show that the proposed method can even map XCO2 on
daily timescales. The method generally yields more precise
and accurate (and unbiased) estimates compared to the spa-
tial method which used the same observations but assumed
a perfect temporal correlation between the data. The factors
which could affect the performance of the ST method are
discussed in Sect. 4.2.

This approach could be used in the future to produce
real-time estimates not only of XCO2, XCH4 or SIF, but of
other environmental data observed by satellites which exhibit
spatio-temporal autocorrelations. Especially important could
be satellite datasets that have spatially, but not temporally,
correlated errors. In such cases, sampling across several time
periods could perhaps help isolate and remove them, which
should be a subject of further studies.

The method could be applied in a standalone mode or as
part of a broader satellite data processing package. Maps
produced by the spatio-temporal approach could then be in-
corporated into physical and biogeochemical models of the
Earth system.
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6 Code availability

The documented Matlab source code is available at
the Researchgate website (https://www.researchgate.net/
publication/311595272_Spatio-temporal_approach_to_
moving_window__block_kriging_of_satellite_data_v10_
code; doi:10.13140/RG.2.2.21411.04643, Tadić et al., 2016).
The code is made available under CC BY license terms
(https://creativecommons.org/licenses/).
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