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Abstract. A test procedure is proposed for identifying nu-
merically significant solution changes in evolution equations
used in atmospheric models. The test issues a “fail” sig-
nal when any code modifications or computing environment
changes lead to solution differences that exceed the known
time step sensitivity of the reference model. Initial evidence
is provided using the Community Atmosphere Model (CAM)
version 5.3 that the proposed procedure can be used to dis-
tinguish rounding-level solution changes from impacts of
compiler optimization or parameter perturbation, which are
known to cause substantial differences in the simulated cli-
mate. The test is not exhaustive since it does not detect issues
associated with diagnostic calculations that do not feedback
to the model state variables. Nevertheless, it provides a prac-
tical and objective way to assess the significance of solution
changes. The short simulation length implies low computa-
tional cost. The independence between ensemble members
allows for parallel execution of all simulations, thus facilitat-
ing fast turnaround. The new method is simple to implement
since it does not require any code modifications. We expect
that the same methodology can be used for any geophysical
model to which the concept of time step convergence is ap-
plicable.

1 Introduction

The Community Atmosphere Model (CAM; Neale et al.,
2010, 2012), like all other general circulation models
(GCMs) used for weather and climate prediction and re-
search, is a large body of computer code that solves a sys-
tem of differential, integral, and algebraic equations. Testing

the code to ensure it behaves as expected involves a wide
range of efforts that touch upon the formulation of the equa-
tions, the solution algorithms, and the software design and
implementation. This paper addresses the issue of regression
testing, i.e., verifying that results from the model stay the
same despite changes in the code or the computing environ-
ment. In certain cases, it is possible to achieve this goal by
demonstrating that a newly conducted simulation produces
bit-for-bit (BFB) identical output compared to a simulation
previously certified to be valid. More often, however, soft-
ware or hardware updates as well as code optimization or
refactoring inevitably lead to the loss of BFB reproducibil-
ity, in which case a different criterion is needed to declare
two simulations as “the same”. The large number of equa-
tions in an atmospheric GCM and the nonlinearities of the
equation set make it a challenging task to define such a crite-
rion.

Since the CAM is a climate model, one possibility could
be to require that the long-term statistics of the atmo-
spheric motions be representative of the climate simulated
by the old code in the old environment (see, e.g., “Con-
dition 3” in Rosinski and Williamson, 1997). One proce-
dure to make such an assessment could be a “Subjective
Independent Examination and Verification by Experts”, or
SIEVE, which consists of experienced climate modelers per-
forming multi-year simulations and examining many fields
of the model output to determine whether the simulated cli-
mate has changed or not. This procedure is unsatisfactory
due to its subjectivity and the high computational cost, but
we speculate this is the most widely used method in many
modeling groups. Recently, Baker et al. (2015) developed an
Ensemble-based Consistency Test (ECT) as a replacement
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of SIEVE, which we refer to as CAM-ECT following Baker
et al. (2016). CAM-ECT involves first generating a reference
ensemble of 1-year simulations on a trusted computer with
an accepted version and configuration of CAM, and creating
a statistical distribution that characterizes the ensemble us-
ing principal component analysis (PCA) of the globally av-
eraged annual-mean fields. To test a new code or computing
environment, a small ensemble of 1-year simulations is con-
ducted, and the CAM-ECT tool determines whether the new
simulations are statistically distinguishable from the refer-
ence ensemble. Compared to SIEVE, CAM-ECT is a major
step forward in regression testing since it clearly defines an
objective criterion for “pass” or “fail”. The use of PCA al-
lows for the test diagnostics to include all variables written
out by the model, resulting in rather complete code cover-
age. As demonstrated by Baker et al. (2015) and Milroy et al.
(2016), the method is able to detect the impact of parameter
changes in the model source code as well as issues in the
computing environment. The main limitation of CAM-ECT
lies in its computational cost. In the original implementation
described by Baker et al. (2015), the reference ensemble con-
sisted of 151 members and the test ensemble included three
simulations. A follow-up study by Milroy et al. (2016) pro-
posed using 453 simulations from multiple compilers to pro-
vide sufficient variability in the reference ensemble. Since
the reference ensemble needs to be updated every time a new
code version with different climate characteristics is selected
as the baseline for further model development (e.g., after a
climate-changing bug fix), the large ensemble size can be a
substantial burden in computational cost, especially during
very active model development phases.

Given that the purpose of the regression testing is to as-
sure the model results stay the same, rather than to provide
a descriptive characterization of the simulated physical phe-
nomena, it would be useful to have additional test methods
that can give early warnings of unexpected model behavior
using computationally inexpensive simulations. The pertur-
bation growth test (hereafter PERGRO) based on the work of
Rosinski and Williamson (1997) is an example that assesses
the short-term behavior of the model results. PERGRO was
originally designed to verify the simulations after a predeces-
sor of CAM was ported to different computers. More gener-
ally, the method has been used to verify that code modifi-
cations only produced round-off-level changes in the model
results.

The PERGRO test involved comparing one test simulation
and two trusted simulations over the course of 2 model days.
Solution differences were quantified by the spatial root mean
square differences (RMSDs) in the temperature field at each
time step. The differences between the two trusted simula-
tions were triggered by random temperature perturbations of
the order of 10−14 K introduced to the initial conditions in
one of the simulations. Rosinski and Williamson (1997) es-
tablished two conditions for the verification of a ported code:

– Condition 1: during the first few time steps, differences
between the original and ported code solutions should
be within 1 to 2 orders of magnitude of machine round-
ing.

– Condition 2: during the first few days, growth of the dif-
ference between the original and ported code solutions
should not exceed the growth of the initial perturbation.

It is worth noting that in order for those two conditions to
be useful for the intended verification, the model code has to
satisfy a “condition 0”:

– Condition 0: during the first few time steps, rounding-
level initial perturbations introduced to the original code
in the original environment should not trigger solution
differences larger than 1 to 2 orders of magnitude of
machine rounding.

If condition 0 is violated, it is expected that the ported code
will always fail condition 1 whether there is a porting error
or not. In addition, rapid growth of perturbations even in a
trusted computing environment can make it difficult to distin-
guish differences between trusted solutions from differences
between a trusted solution and a problematic test solution,
causing misleading fulfillment of condition 2. Therefore, if
condition 0 is violated, conditions 1 and 2 might no longer
be useful for port verification.

When the PERGRO test was originally developed, the
physical parameterizations were quite simple, the code was
able to satisfy condition 0, and the test method was robust. As
the model became more comprehensive and complex, more
rapid growth of rounding-level initial perturbation was ob-
served. Compromises were made to preserve some utility for
the test. For example, in CAM4, the test needed to be per-
formed in an aqua-planet configuration, i.e., without the land
surface parameterizations, and with a few (small) pieces of
code in the atmospheric physics parameterizations switched
off or revised, because those codes were known to be very
sensitive to small perturbations. If those pieces of code were
not switched off or revised, perturbations on the trusted ma-
chine would grow so rapidly that the RMSD would reach
O(0.1)K over a few time steps. Disabling the land interac-
tions and a few pieces of code returned the bulk of the atmo-
spheric model to a configuration where differences between
perturbed and unperturbed initial conditions grew substan-
tially more slowly. Most of the time, the RMSD grew at a rate
well below 1 order of magnitude per time step in a trusted
environment. An example is shown in Fig. 1a with the blue
curve. With the revised aqua-planet configuration of CAM4,
it was still possible to examine solution differences between
original and test solutions to see whether they violated con-
dition 2 for a port verification effort. But with CAM5, initial
perturbations grow too rapidly even in an aqua-planet sim-
ulation (Fig. 1a, red curve), making the original PERGRO
method no longer useful for port verification.
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Figure 1. Examples of the evolution of root mean square (rms) temperature difference (unit: K) caused by random perturbations of the
order of 10−14 K imposed on the temperature initial conditions. (a) Aqua-planet simulations conducted with the CAM4 (blue) and CAM5.3
(red) physics parameterization suites using the default 1800 s time step. (b) Simulations conducted with the CAM5.3 physics suite using the
default 1800 s time step and with radiation calculated every other step (red), using a 1 s time step and with radiation calculated every other
step (purple), and using a 1 s time step and with radiation calculated only once at the beginning of the integration. All simulations used the
spectral element dynamical core at approximately 1◦ horizontal resolution.

Rosinski and Williamson (1997) noted that dynamical-
core-only simulations typically showed much slower growth
of initial perturbation, and this characteristic remains true in
newer model versions. For example, using the default config-
uration of CAM5’s spectral element dynamical core (Taylor
and Fournier, 2010; Dennis et al., 2012) at 1◦ spatial reso-
lution, the temperature RMSD only reaches O(10−12)K by
day 2, suggesting that the rapid growth shown in Fig. 1a is
due to the physics parameterizations. Efforts have been made
to understand the cause of the rapid growth, and those find-
ings will be detailed in a separate paper (Singh et al., 2017).
Here we provide only a brief description of three causes.

First, the default time step of 1800 s in CAM5 is sizable
compared to the characteristic timescales of many physi-
cal processes represented by the model; therefore, the in-
crements in the model state during one time step (i.e., the
process tendencies times the model time step) are signifi-
cant, and the differences between a pair of simulations with
slightly different initial conditions can also be perceptible.
The red and purple curves in Fig. 1b show that when the time
step sizes of all model components are changed by a factor
of 1800, the solution differences after the same number of
time steps also change by a similar ratio. Longer model time
steps lead to larger increments from the simulated physical
processes, but not necessarily so for software or hardware is-
sues. Therefore, the growth of perturbation in a model with
long time steps can make it difficult to expose solution dif-
ferences caused by a new computing environment.

The second reason for rapid perturbation growth is related
to the fact that the radiation parameterization in CAM5 uses a
pseudo random number generator, and the seeds for the gen-
erator are chosen from the less significant digits of the pres-

sure field. This effectively introduces state-dependent noise
into the numerical solution. The green curve in Fig. 1b shows
the differences between a pair of simulations conducted with
1 s time step but with radiation calculated only once at the
beginning of the integration. Compared to the purple curve
where radiation was calculated every other time step, the so-
lution differences were further reduced by about 3 orders of
magnitude. We note that the noisiness from the radiation cal-
culation can be controlled by making the random seeds inde-
pendent of the model state so that the random series become
reproducible from one simulation to another; but more gen-
erally, the radiation example also implies that models with
state-dependent stochastic parameterizations might feature
more rapid perturbation growth than those using determin-
istic schemes.

The third reason for rapid perturbation growth has to do
with particular pieces of code. Two types of examples were
discussed in Rosinski and Williamson (1997): (i) an upshift-
in-digit of solution difference resulting from division by a
small number, and (ii) “if” statements associated with algo-
rithmic discontinuity. We have experienced both types of sit-
uations in the CAM5 code, although the specific formulae
were different from those given by Rosinski and Williamson
(1997). Compared to its predecessors, CAM5 uses modern
parameterizations with substantially more detailed descrip-
tion of the atmospheric phenomena, and the model also car-
ries an expanded list of tracers. The increase in model com-
plexity and the corresponding growth in the size of the code
substantially increase the chance for similar situations to oc-
cur.

The examples shown in Fig. 1b indicate that it is possible
to identify reasons for perturbation growth, with the potential
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to make PERGRO a useful testing method again, although
experience shows that such efforts can be rather substantial
and time-consuming. We will document that path elsewhere.
In the present paper, we describe a strategy that tests a code
“as is” so that new parameterizations and code updates can
be assessed as soon as they enter the model. The new test
procedure is based on the work of Wan et al. (2015) on time
step convergence in CAM5. The underlying concept and de-
sign considerations are explained in Sect. 2. A first imple-
mentation of the test in CAM5 is described in Sect. 3 and
evaluated in Sect. 4. Further discussions on the test design
and its relationship to other methods are presented in Sect. 5.
Conclusions are drawn in Sect. 6.

2 Test philosophy

In this section, we start with a clarification of the purpose
and scope of the new test method (Sect. 2.1), then proceed to
a discussion of the desirable features that guided the design
of our test (Sect. 2.2). The underlying concept of the new
method is explained in Sect. 2.3.

2.1 Purpose and scope

As stated earlier, the topic of this paper is regression testing
under circumstances when results from an atmospheric GCM
are no longer BFB reproducible. In other words, the testing
discussed here aims at substantiating whether results from
an atmospheric GCM stay the same after supposedly minor
code modifications or computing-environment changes. By
“minor code modifications” we mean code refactoring, opti-
mization of the computational efficiency, or any other code
changes that might alter the sequence of computation but
still solve the same set of equations using the same math-
ematical algorithms. Computing environment changes refer
to any changes in the hardware or software configuration in
which the model code is compiled and executed. Two factors
need to be considered when designing a method for regres-
sion testing: (i) the physical quantities that represent the out-
come of a simulation, and (ii) a criterion for declaring two
simulations as “the same”. In the present paper, we consider
the outcome of a simulation unchanged if the numerical solu-
tion is found to have the same time stepping error relative to
a reference solution obtained with a previously verified code
and computing environment. The details are explained later
in Sect. 2.3. The reasoning behind our choice for element (i)
is explained below.

From the perspective that a GCM is a suite of algorithms
solving a large set of differential, integral, and algebraic
equations, the physical quantities (model variables) calcu-
lated by the code can be sorted into three categories:

Type I Prognostic and diagnostic variables, whose equa-
tions are coupled to one another such that any change
in variable A will, within one time step or after multiple

time steps, affect variable B in this same category. Ex-
amples in this category include basic model state vari-
ables like temperature, winds, and humidity, as well as
quantities calculated as intermediate products in a pa-
rameterization, for example the aerosol water content
(which affects radiation and eventually temperature),
and the convective available potential energy (which af-
fects the strength of convection and hence temperature
and humidity).

Type II Prognostic variables that are influenced by type I
variables but do not feedback to them. An example
could be passive tracers carried by the model to inves-
tigate atmospheric transport characteristics (e.g., Zhang
et al., 2008; Kristiansen et al., 2016)

Type III Diagnostic quantities calculated to facilitate the
evaluation of a simulation, but do not feedback to type
I or type II. Examples include the daily maximum 2 m
temperature, the total ice–liquid conversion rate in the
cloud microphysics parameterization (which is calcu-
lated merely for output in CAM5), and any variable
specific to the COSP simulator package (Bodas-Salcedo
et al., 2011).

We take the standpoint that the essential characteristics of
the simulated atmospheric phenomena are determined and
represented by type I variables. If instantaneous and grid-
point values are monitored, any significant solution change
should be detectable through the monitoring of a single vari-
able in type I, per definition of that variable type, as long as
the simulations are long enough for the impact to propagate
and evolve to a discernable signal in that monitored variable.
On the other hand, since we are taking a deterministic per-
spective here, the simulations need to be sufficiently short to
avoid chaos.

Based on the reasoning above, the test diagnostics of our
new method are calculated from a small set of prognostic
variables of type I. The use of multiple variables is meant to
help increase the sensitivity of the test (decrease the chance
of failing to detect a significant solution change), since bugs
or issues associated with a specific piece of code might take
a longer time to cause discernable solution differences in one
variable than in another. In Sects. 3 and 4, where we de-
scribe and evaluate the first implementation of our method
in CAM5, the monitored variables include a few basic at-
mospheric state variables plus aerosol and hydrometeor con-
centrations. We note that this choice of variables can be fur-
ther evaluated or tailored to meet the user’s needs. The test
method can also be extended to include variables of type
II, but cannot be used on type III variables or diagnostic
variables in type I because the concept of time step conver-
gence does not apply. This means our test does not provide
a full coverage of all code pieces in the model. For example,
bugs in the implementation of a satellite simulator or other
“diagnostic-only” calculations would not be detected by our
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test. Issues in software functionalities that are not exercised
during the simulations, e.g., the reading and writing of restart
files, would also not be caught. We acknowledge that the pro-
posed test method is not exhaustive; but given its simplicity,
low computational cost, and the effectiveness demonstrated
in Sect. 4, we believe it is a practical and promising method
for assessing the magnitude of solution differences in com-
plex models.

2.2 Desirable features

Given the continuously growing complexity of modern atmo-
spheric GCMs and the need by large groups of model devel-
opers and users to perform regression testing routinely (e.g.,
on a daily basis), it is desirable to have test procedures that
have the following features:

1. objective,

2. easy to perform and automate,

3. requiring no or minimum code modifications,

4. exercising the entire model in its “operational” configu-
ration,

5. also applicable to a subset of the code and thus useful
for debugging,

6. capable of detecting changes in both global and/or re-
gional features of the simulations,

7. insensitive to round-off differences associated with
changes in the order of accumulations or associative op-
erations,

8. computationally efficient.

The CAM-ECT of Baker et al. (2015) fulfills criteria 1–4
and 7, and partly 5. For criterion 5, we expect CAM-ECT
to be capable of isolating issues associated with variables of
type II or III (see Sect. 2.1) through systematic elimination
of model output variables from the test diagnostics (Milroy
et al., 2016). Bugs associated with type I variables would be
more difficult to pinpoint; since all variables in this type are
inherently coupled, we expect that any substantial change in
one equation would have affected all the type I variables after
a year of model integration; furthermore, conducting 1-year
simulations might be challenging for a code that is still in
debugging stage thus numerically unstable for long simula-
tions. The use of global annual averages by CAM-ECT might
lead to difficulty in detecting changes in small-scale features
(criterion 6). For example, Baker et al. (2015) noted that
CAM-ECT did not identify the impact of a perturbed hori-
zontal diffusion parameter as “climate-changing” (see case
NU discussed in Sect. 4.3 therein). On the other hand, since
a large number (120) of model output variables are used in
CAM-ECT and the simulations are relatively long, thus al-
lowing ample time for the impact of a bug or system issue

to evolve and propagate, the chance of missing a climate-
changing feature (i.e., getting a false “pass”) is relatively
small. The main limitation of CAM-ECT lies in its computa-
tional cost (criterion 8), as already mentioned in Sect. 1.

The PERGRO test of Rosinski and Williamson (1997) ful-
fills criterion 7 per design. The use of 2-day simulations
translates to very low computational cost thus fulfilling cri-
terion 8. the method also satisfies criteria 2, 3, 5, and 6.
The aqua-planet setup with a few test-specific code changes
leads to a configuration that is very close to the full ver-
sion of the atmosphere model (criterion 4). The interpre-
tation of the perturbation growth test has some subjectiv-
ity (criterion 1), since there is not a quantitative criterion
regarding how close the new RMSD curve should resem-
ble the reference curve. However, the developers’ experi-
ence was that when a simulation fails the test, “it gener-
ally fails spectacularly, i.e., the difference curve will exceed
the perturbation curve by many orders of magnitude within
a few model time steps” (http://www.cesm.ucar.edu/models/
cesm1.0/cam/docs/port/pergro-test.html). Therefore, objec-
tivity is also not a major weakness of the PERGRO test. The
main – and also critical – difficulty with the method is that it
is ill-suited for CAM5 because the “condition 0” needed by
the test strategy has now been violated.

The new test proposed in this paper aims at satisfying
all the eight features listed above. It keeps the determinis-
tic spirit of PERGRO to achieve an early detection of solu-
tion differences thus saving computational time. Ensemble
simulations are conducted to take into account the internal
variability of the atmospheric motions. The test design was
inspired by the results of Wan et al. (2015), as explained be-
low. In the remainder of the paper, we will refer to the new
test method as the time step convergence (TSC) test.

2.3 Time step convergence (TSC)

Wan et al. (2015) evaluated the short-term TSC in CAM5
for the purpose of quantifying and attributing numerical arti-
facts caused by time integration. Starting from the same ini-
tial conditions, a series of 1 h simulations were conducted
using time step sizes ranging from 1 to 1800 s. The nu-
merical solution with 1t = 1 s was viewed as the proxy
“truth”, and the time stepping error associated with a longer
step size was defined as the RMSD between instantaneous
three-dimensional (3-D) temperature fields after 1 h of model
integration. To take into account possible flow dependencies
of the numerical error, the exercise was repeated using ini-
tial conditions sampled from different months of a previ-
ously conducted multi-year simulation, following the idea of
Wan et al. (2014). A linear regression was then applied be-
tween the ensemble-mean log10(RMSD) and log10(1t). The
regression coefficient gives the time step convergence rate.
Experience so far indicates that the diagnosed convergence
rate is rather insensitive to the choice of initial conditions
(see Sect. 3.2 for further discussion).

www.geosci-model-dev.net/10/537/2017/ Geosci. Model Dev., 10, 537–552, 2017

http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/port/pergro-test.html
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/port/pergro-test.html


542 H. Wan et al.: Solution reproducibility test

Figure 2. Convergence diagram showing the root mean square
(rms) solution differences calculated using the instantaneous 3-D
temperature field after 1 h of CAM5 integration. Blue circles and
green triangles are the rms differences relative to reference solu-
tions obtained with the same code but using a 1 s time step. Red
circles are the rms differences between the reference solution of
the CTRL model (1 s time step) and the RH-MIN-HIGH simula-
tions with longer step sizes. Each marker shows the average rms
difference of 12 ensemble simulations that used different initial con-
ditions sampled from different months of the year; the bars indi-
cate the ±σ ranges where σ denotes the ensemble standard devi-
ation. The dashed lines are linear fits between log10(RMSD) and
log10(1t).

In Fig. 2, the 12-member ensemble-mean temperature
RMSD in the default CAM5.3 model (“CTRL”) is shown
with blue circles, and the ±σ ranges are shown by verti-
cal bars. Here σ denotes the ensemble standard deviation.
The blue regression line indicates a convergence rate close
to 0.4. It is important to emphasize that this regression line
corresponds to the self-convergence, i.e., the convergence to-
wards a solution produced with the same code and a very
small step size. When the code is not exercised correctly, or
when the model equations have changed because of param-
eterization update or parameter tuning, convergence towards
the original reference solution should no longer be expected.
This is the key hypothesis on which our new test method is
based.

To demonstrate this point, Fig. 2 also shows results from
simulations conducted with a modified parameter in the
physics package. Specifically, the grid-box mean relative hu-
midity threshold for the formation of high-level clouds, a pa-
rameter called cldfrc_rhminh in the large-scale condensation
scheme of Park et al. (2014), was changed from 0.8 to 0.9.
This parameter change was used in Baker et al. (2015) for the
evaluation of CAM-ECT, and we label it “RH-MIN-HIGH”
following that study. The RMSD calculated against a new
reference solution using cldfrc_rhminh= 0.9 and 1t = 1 s
is shown in green in Fig. 2. The self-convergence of the

modified model turns out to be very similar to the self-
convergence in the original model. This is expected, and
also consistent with the concept of self-convergence since no
structural changes (e.g., parameterization or numerical algo-
rithm modifications) have been introduced into the model.
However, when the RMSD of the RH-MIN-HIGH simula-
tions are calculated against the 1 s simulations of CTRL, the
RMSD values appear to be considerably larger at smaller
step sizes. The discrepancies – caused by the parameter
change – far exceed the ensemble spread of the reference so-
lutions. The divergence of the red and blue convergence path-
ways in Fig. 2 provides a proof of concept that the model’s
time step convergence behavior can be used as a metric to
detect significant changes in the numerical solution. In Fig. 2,
the RMSD is shown for a range of step sizes for a better il-
lustration of the concept. In practice, anomalous RMSD at
one step size will be sufficient to flag a code or computing
environment as failing the expectation that they provide the
same numerical solution as the reference code or environ-
ment does, although the identification of a “true anomaly”
requires an ensemble of independent simulations, which we
will demonstrate in Sect. 3.2.

Figure 2 also indicates that the RMSDs calculated both
ways are hardly distinguishable at the default step size, sug-
gesting that the impact of the parameter change is smaller
than or similar to the time integration error, at least for this
prognostic variable and at the chosen timescale (1 h). If we
had introduced larger changes in the model, e.g., by chang-
ing cldfrc_rhminh to 0.999 instead of 0.9 from the default
value of 0.8, or by replacing a certain parameterization by
a different scheme, the impact might be more visible at the
default step size. In contrast, if the parameter change were
smaller, e.g., from 0.8 to 0.82 instead of 0.9, the red and
blue convergence pathways in Fig. 2 might not diverge until a
step size on the order of a few seconds. In order to establish a
highly sensitive regression test that can detect very small so-
lution changes, it would be desirable to find a time step size
that corresponds to very small numerical error. The shortest
possible step size for CAM5.3 simulations is 1 s; this is the
shortest possible interval at which the dynamical core and the
various parameterized physical processes interact with each
other, and also the shortest step size the coupler can handle
for the coupling between different model components (atmo-
sphere, land, ocean, sea ice, etc.). Hence, the new TSC test
uses the RMSD between a pair of simulations with 2 and 1 s
time steps as the metric for assessing the magnitude of solu-
tion changes.

In the study of Wan et al. (2015), simulations with short-
ened time step sizes were conducted with all physics param-
eterizations calculated every time step except for radiation,
which was called only once (i.e., with a 1 h step size; see Ta-
ble 1 in Wan et al., 2015). The simulations shown in Fig. 2
followed the same design, but we also repeated the simula-
tions with radiation calculated every other time step (as in the
default model). The results were hardly distinguishable from
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Fig. 2 (not shown), suggesting that the calling frequency of
radiation does not change the convergence property of the
CAM5 model. When describing the TSC implementation in
the next section, we propose to calculate radiation every other
time step so that the time step ratio is kept the same among
all model components. In Sect. 5 we also present results from
simulations with radiation calculated only at the first time
step, and discuss the impact of noisy parameterization on the
TSC results.

We also note that in the earlier study of Wan et al. (2015),
convergence analysis was done not only with the full CAM5
model but also using configurations that exercised the dy-
namical core plus one parameterization or parameteriza-
tions group at a time, e.g., deep convection, shallow convec-
tion, large-scale condensation, or the stratiform cloud micro-
physics, as an attempt to find out which of those parameteri-
zations led to the convergence rate of 0.4 instead of 1 in the
full model. Additional simulations were conducted using the
dynamical core plus a simple saturation adjustment scheme
or with the cloud microphysics parameterization of CAM5
but with the formation and sedimentation of rain and snow
turned off (see Fig. 3 in Wan et al., 2015). Those simula-
tions revealed different convergence rates and time step sen-
sitivities associated with different components of the model
code. We expect that this strategy of breaking down the code
into small exercisable units could be used to pinpoint bugs
when, e.g., a code refactoring effort leads to solution differ-
ences that are unexpectedly large according to the TSC test.
In other words, we expect the TSC method to fulfill feature 5
listed in Sect. 2.2. Future work is planned to evaluate TSC’s
utility for that purpose.

3 Implementation

In this section we first give a brief overview of the CAM5
model (Sect. 3.1), emphasizing only on the aspects that are
directly relevant for the technical implementation of the TSC
test. The test procedure is then described in detail in Sect. 3.2

3.1 CAM5.3 overview

The global climate model used in this paper is CAM5.3
(Neale et al., 2012) with the spectral element dynamical core
(Taylor and Fournier, 2010; Dennis et al., 2012). The dynam-
ical core solves a hydrostatic version of the fluid dynamics
equation, with surface pressure (PS), temperature (T ), and
horizontal winds (U , V ) being the prognostic variables. In
addition, the model includes budget equations for specific
humidity (Q), as well as the mass and number concentra-
tions of the stratiform cloud droplets (CLDLIQ, NUMLIQ)
and ice crystals (CLDICE, NUMICE). The time evolution
and spatial distribution of water vapor and hydrometeors
are affected by resolved-scale transport and by subgrid-scale
moist processes such as turbulence, convection, and cloud

microphysics. Those subgrid-scale processes provide feed-
back to the thermodynamical state of the atmosphere through
latent heat release. CAM5.3 also has a modal aerosol mod-
ule (MAM; Liu et al., 2012; Ghan et al., 2012) that repre-
sents the life cycle of six aerosol species: sulfate, black car-
bon, primary organic aerosols, secondary organic aerosols,
sea salt, and mineral dust. The size distribution of the aerosol
population is mathematically approximated by a few lognor-
mal modes. In this study we used the three-mode version of
MAM; thus, the model’s prognostic variable set also includes
the particle number concentrations of the 3 modes (num_a1,
num_a2, and num_a3, for the accumulation mode, Aitken
mode, and coarse mode, respectively), and the mass concen-
trations of each aerosol species in each mode.

In the present paper, we use the FC5 component set of the
model, meaning that the model is configured to run with in-
teractive atmosphere and land, prescribed climatological sea
surface temperature and sea ice cover, and with the anthro-
pogenic aerosol and precursor emissions specified using val-
ues representative of the year 2000.

3.2 Test procedure

The basic idea of the TSC test is to perform control and
test simulations with a 2 s time step, calculate their RMSDs
with respect to reference simulations conducted with the con-
trol model with a 1 s time step, then determine whether the
RMSDs of the control and test simulations are substantially
different.

For a generic prognostic variable ψ , we define

RMSD(ψ)=

{∑
i

∑
kwi [1ψ(i,k)]21p(i,k)∑
i

∑
kwi1p(i,k)

}1/2

, (1)

1ψ(i,k)= ψ(i,k)−ψr(i,k) , (2)

1p(i,k)=
[
1p(i,k)+1pr(i,k)

]
/2. (3)

Here 1p(i,k) denotes the pressure layer thickness at
vertical-level k and cell i, andwi is the area of cell i. The sub-
script r indicates the reference solution. This formulation of
RMSD follows the work of Rosinski and Williamson (1997).

Time step size affects the numerical solution at every time
step and every grid point, while certain atmospheric pro-
cesses might occur in isolated regions, thus impacting only
a limited number of grid points during very short simula-
tions. Consequently, subtle but systematic solution changes
can be masked by the model’s time stepping error and can
be difficult to detect. To help address this challenge, we cal-
culate RMSDs for Ndom = 2 domains, i.e., land and ocean,
separately. This is a practical and somewhat arbitrary choice
aiming at increasing the sensitivity of the TSC test.

As for the physical quantities, the results shown in the
present paper include RMSD of Nvar = 10 prognostic vari-
ables: V , T , Q, CLDLIQ, CLDICE, NUMLIQ, NUMICE,
num_a1, num_a2, and num_a3 (i.e., the meridional wind
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field, temperature, specific humidity, grid-box mean mass,
and number concentrations of the stratiform cloud droplets
and ice crystals, and the particle number concentrations of
the three lognormal modes that describe the aerosol size dis-
tribution, respectively). This selection of prognostic variables
is motivated by an emphasis on atmospheric circulation, ther-
modynamics, clouds, and aerosols. The mass concentrations
of aerosol species are not included, because it is unlikely that
a perturbation will change the aerosol mass concentrations
without affecting the number concentrations after multiple
steps of integration. Additional variables of type I defined in
Sect. 2.1 can be added to the list, and a longer variable list
might help increase the sensitivity of the test. Type II vari-
ables can also be added if the user wishes to cover the respec-
tive code pieces. The TSC method is flexible in this regard,
although we emphasize again that only prognostic variables
of type I and type II can be included in the list. The concept
of time step convergence does not apply to variables that are
not calculated using an evolution equation.

The test procedure includes three steps. Steps 1 and 2 are
needed every time a new baseline model with different so-
lution characteristics is established. Between such baseline
releases, only step 3 is needed for the testing of a new code
version or computing environment.

Step 1 Create an M member simulation ensemble with a
control version of the model in a trusted computing en-
vironment, using 1 s time step for a simulation length
of X minutes. These are considered the reference so-
lutions. The independent members are initialized on
1 January 00:00 UTC using model states sampled from
different months of a previously performed climate sim-
ulation, with non-zero concentrations for water vapor,
hydrometeors, aerosols, and all other tracers that the
model carries. One should save the 3-D instantaneous
values of theNvar prognostic variables listed above, plus
the values of surface pressure and land fraction, all in
double precision, after a model time of t .

Step 2 Obtain an M member ensemble using the same ini-
tial conditions as in step 1, again with the control model
in a trusted computing environment, but using a 2 s time
step. Compute the RMSD using Eq. (1) for each pair
of simulations that started from the same initial con-
ditions. The resulting RMSDs at time t are denoted as
RMSDtrusted,t .

Step 3 Repeat Step 2 with a modified code or in a different
computing environment. Compute the RMSDs with re-
spect to the reference solutions created in Step 1, and
denote the results at model time t as RMSDtest,t . Now

define

1RMSDt,j,m = RMSDtest,t,j,m−RMSDtrusted,t,j,m

(m= 1, · · ·,M ; j = 1, · · ·,Nvar×Ndom) , (4)

and denote the M member ensemble mean by
1RMSDt,j . For each prognostic variable and do-
main (i.e., each j ), we assume the ensemble mean of
1RMSDt,j,m is a random variable µt,j . The Students
t test is performed on the null hypothesis that µj,t
is statistically zero, with the alternative hypothesis of
µj,t > 0. A one-sided test is used here because of the
concept of self-convergence explained in Sect. 2.3, i.e.,
when bugs are introduced, or when the code is compiled
or executed incorrectly, the simulation will not solve
the originally intended equations, and thus will not con-
verge to the reference solutions produced by the original
code or environment. Let us use the symbol Sori,1s to de-
note the reference solution of the original equation set
obtained with a 1 s time step, and use Stest,2s to denote a
test simulation conducted with the new equation set us-
ing a 2 s time step. The RMSD calculated in TSC is the
root mean square of (Stest,2s−Sori,1s), which can also be
expressed as(
Stest,2s− Stest,1s

)
+
(
Stest,1s− Sori,1s

)
. (5)

The difference in the first pair of parentheses in Eq. (5)
measures the time step sensitivity of the solution of the
new equation set, while the difference in the second pair
of parentheses measures the discrepancy between the
reference solutions of the old and new equation sets.
By using a one-sided test, we assume that the second
difference will be non-negligible, and that the two dif-
ferences will not incidentally compensate each other to
result in values of (Stest,2s− Sori,1s) that are systemati-
cally smaller than (Sori,2s− Sori,1s). The validity of this
assumption can be evaluated in the future by comparing
TSC results using one-sided and two-sided tests.

In the present paper we use a one-sided t test. The j th
variable at time t fails the TSC test if the null hypothesis
is rejected, i.e., if

P
(
µt,j >1RMSDt,j

)
< P0, (6)

where P stands for probability and P0 is an empirically
chosen threshold. If Eq. (6) turns out to be true for any
j , or in other words

Pmin,t = min
j=1,Nvar×Ndom

[
P
(
µt,j >1RMSDt,j

)]
< P0, (7)

then the ensemble fails the TSC test at time t .

In case the test and control simulations only contain in-
significant differences, Pmin,t is expected to be relatively
large during the X minutes of integration, but can still get
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Table 1. CAM5 simulations conducted to evaluate the effectiveness of the TSC method. Simulations in group ENV used the same code
but different computers, compiler versions, or optimization levels. Group MOD includes code modifications following Milroy et al. (2016).
Group PAR includes parameter perturbation simulations following Baker et al. (2015). The pass/fail criterion and the definition of Pmin,t
can be found in Sect. 3.2.

Group Case name Computer
Compiler/ Code

Model parameters
Pass/fail Pass/fail Pmin,t Pmin,t

optimization change expected from TSC 5–10 min avg. at t = 5 min

– CTRL Titan Intel 15.0.2 -O2 No All default – – – –

ENV Titan-PGI Titan PGI 15.3.0 -O2 No All default Pass Pass 11 % 6.4 %
ENV YS-Intel15-O2 Yellowstone Intel 15.0.0 -O2∗ No All default Pass Pass 4.5 % 3.8 %
ENV YS-Intel15-O3 Yellowstone Intel 15.0.0 -O3∗ No All default Fail Fail 3.8×10−12 % 1.0×10−11 %

MOD DM Titan Intel 15.0.2 -O2 Yes All default Pass Pass 8.6 % 6.2 %
MOD P Titan Intel 15.0.2 -O2 Yes All default Unknown Pass 7.8 % 4.2 %

PAR DUST Titan Intel 15.0.2 -O2 No dust_emis_fact= 0.45 (0.55) Fail Fail 1.6×10−3 % 1.9×10−3 %
PAR FACTB Titan Intel 15.0.2 -O2 No sol_factb_interstitial= 1.0 (0.1) Fail Fail 2.5×10−6 % 8.6×10−6 %
PAR FACTIC Titan Intel 15.0.2 -O2 No sol_factic_interstitial= 1.0 (0.4) Fail Fail 4.8×10−7 % 4.6×10−7 %
PAR RH-MIN-LOW Titan Intel 15.0.2 -O2 No cldfrc_rhminl= 0.85 (0.8975) Fail Fail 3.6×10−15 % 3.5×10−15 %
PAR RH-MIN-HIGH Titan Intel 15.0.2 -O2 No cldfrc_rhminh= 0.9 (0.8) Fail Fail 9.2×10−14 % 3.3×10−14 %
PAR CLDFRC-DP Titan Intel 15.0.2 -O2 No cldfrc_dp1= 0.14 (0.10) Fail Fail 2.1×10−9 % 4.0×10−9 %
PAR UW-SH Titan Intel 15.0.2 -O2 No uwschu_rpen= 10.0 (5.0) Fail Fail 2.0×10−9 % 3.7×10−9 %
PAR CONV-LND Titan Intel 15.0.2 -O2 No zmconv_c0_lnd= 0.0035 (0.0059) Fail Fail 9.0×10−4 % 4.7×10−3 %
PAR CONV-OCN Titan Intel 15.0.2 -O2 No zmconv_c0_ocn= 0.0035 (0.045) Fail Fail 6.7×10−10 % 8.1×10−10 %
PAR NU-P Titan Intel 15.0.2 -O2 No nu_p= 1.0× 1014 (1.0× 1015) Fail Fail 2.5×10−10 % 1.4×10−10 %
PAR NU Titan Intel 15.0.2 -O2 No nu= 9.0× 1014 (1.0× 1015) Fail Fail 1.4×10−5 % 1.5×10−5 %
∗ Model was compiled without the “-fp-model” flag; all the other Intel simulations in the table used “-fp-model source” for Fortran and“-fp-model precise” for the C code.

Figure 3. 1RMSDt,j,m of individual ensemble members after t = 5min of model integration in the “CONV-LND” test case that was
designed to fail the TSC test when all variables, domains, and ensemble members are considered (see Table 1 and Sect. 4.2). The values have
been normalized by the mean RMSD of the trusted ensemble, i.e., RMSDtrusted,t,j , of the corresponding prognostic variables and domains;
(a) ocean and (b) land. Dashed (solid) lines correspond to variables that passed (failed) the TSC test according to the criterion defined by
Eq. (6). The prognostic variables shown in the figure are specific humidity (Q), grid-box mean ice crystal mass concentration in stratiform
clouds (CLDICE), and grid-box mean ice crystal number concentration in stratiform clouds (NUMICE).

small values by chance, thus appearing like a random vari-
able. In case a bug or software/hardware issue causes sub-
stantial solution differences, it is expected that Pmin,t will
show very small values after a certain time of spin-up. We
use this distinction to determine an overall pass or fail for a
test ensemble. In order to fully automate the test procedure,
a quantitative criterion is needed to describe this distinction.
For simplicity and as a preliminary choice, we propose to
fail a test ensemble if Pmin,t < P0 for all output steps in a
time window [X0,X], where X is the total simulation length

and X0 is the spin-up time. The use of multiple time steps
in the overall pass/fail criterion reflects our perspective of
viewing the model integration as a time evolution problem.
We note that the typical values of Pmin,t depend on the num-
ber of monitored variables (i.e., largerNvar×Ndom can result
in smaller Pmin,t in a statistical sense); hence, P0 needs to be
determined empirically for a given Nvar×Ndom. Ideally, P0
should be small enough to reduce the chance of false posi-
tive (i.e., insignificant solution differences being assigned a
“fail”), and large enough to reduce the chance of false neg-
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ative (i.e., subtle but systematic solution differences being
assigned a “pass”). In the present paper we have made an
empirical and somewhat arbitrary choice of

P0 = 0.5%, X0 = 5 min, X = 10 min . (8)

Further evaluation of this choice and possible improvement
of the overall pass/fail criterion are topics of future work. In
the next section, we present results from 30 min simulations
with the test diagnostics calculated every minute to reveal the
time evolution of Pmin,t .
M = 12 ensemble members are used in this study. One

set of initial conditions is sampled from each month of the
year to obtain a reasonable coverage of the seasonal varia-
tions in the atmospheric circulation, clouds, and aerosol life
cycle. The purpose is to account for possible flow depen-
dencies of the numerical error. The need for an ensemble is
demonstrated in Fig. 3 where the normalized1RMSD of se-
lected variables is shown for individual ensemble members
after 5 min of integration in an experiment with a modified
parameter in the deep convection parameterization over land
(“CONV-LND”, following Baker et al., 2015; see Table 1
and Sect. 4.2 for further details). Passing and failing vari-
ables are indicated by dashed and solid lines, respectively.
Ocean and land are shown in separate panels using different
scales for the y axes. The values of 1RMSDt,j,m have been
normalized by the mean RMSD of the trusted ensemble, i.e.,
by RMSDtrusted,t,j . Our exploration has indicated that, due to
the complexity and nonlinearity of the model equations, the
values of 1RMSD of a passing variable from individual en-
semble members often are distributed around zero (Fig. 3a).
Therefore, a single positive 1RMSDt,j,m cannot be viewed
as sufficient evidence of non-convergence towards the ref-
erence solution. The magnitude of a positive1RMSDt,j,m is
also not a good indicator, as Fig. 3b shows that even after nor-
malization, a failing variable (e.g., NUMICE in Fig. 3b) can
still have small albeit consistently positive1RMSD, whereas
a passing variable (e.g.,Q in Fig. 3b) may occasionally show
large deviations from zero. We have not yet explored the de-
pendence of the test results on the ensemble size, but plan to
do so in the future. Furthermore, while we currently apply a
t test to determine whether the ensemble mean 1RMSD is
equal to or larger than zero, more advanced methods might
help to better characterize the ensemble distribution.

For all the simulations presented in this paper, the initial
conditions were sampled from the first year (after 6 months
of spin-up) of a previously conducted 5-year simulation. The
decision of using the first year was arbitrary. In our experi-
ence, climate simulations of 1–5 years are frequently carried
out during model development or evaluation, making such
initial conditions easy to obtain. The two features we had in
mind when choosing the initial conditions were that (i) they
contain reasonably spun-up values for the model state vari-
ables (e.g., not all zeros or spatially constant values for the
hydrometeors or aerosol concentrations), and (ii) they repre-
sent synoptic weather patterns in different seasons. The ini-

tial conditions do not need to represent well-balanced states
in the quasi-equilibrium phase of a multi-year climate simu-
lation. In fact, the default model time step of 1800 s was used
when creating the initial conditions for this study, while the
control and test simulations in TSC used a 1 or 2 s time step;
therefore, the model state was certainly not well-balanced
during those TSC simulations. Also notice that while model
states from different seasons were used for initialization,
all ensemble members started on 1 January 00:00 UTC for
simplicity of the simulation and post-processing workflow,
which also led to initial imbalances. Such imbalances are
considered harmless since the purpose of the numerical inte-
gration is regression testing rather than faithfully simulating
the atmospheric motions in the real world. We expect that
the same set of initial conditions can be used after answer-
changing code baselines are established – until a point when
the list of prognostic variables in the model becomes sub-
stantially different. Then it would be useful to regenerate the
initial conditions, and rethink which variables should be in-
cluded in the test diagnostics.

4 Numerical experiments

Numerical simulations were carried out under a number of
scenarios (test cases) to help characterize Pmin,t and evalu-
ate the TSC method. A reference ensemble with a 1 s time
step and a trusted ensemble with a 2 s time step were ob-
tained on the supercomputer Titan at the Oak Ridge Lead-
ership Computing Facility using the Intel compiler version
15.0.2 with optimization level, -O2. Various test simulations
were then conducted in three groups (Table 1).

The group ENV used the same code as in the reference
ensemble but with different computers, compilers, or opti-
mization levels:

– PGI compiler version 15.3.0 with -O2 on Titan (“Titan-
PGI”);

– Intel compiler version 15.0.0 with -O2 on Yellowstone
(ark:/85065/d7wd3xhc) at the Computational and Infor-
mation Systems Laboratory of the National Center for
Atmospheric Research (“YS-Intel15-O2”);

– Intel compiler version 15.0.0 with -O3 on Yellowstone
(“YS-Intel15-O3”).

Titan-PGI and YS-Intel15-O2 are supported environments
for CAM5.3, in which the simulations are expected to pass
the TSC test. The YS-Intel15-O3 case was found by Baker
et al. (2015) to produce incorrect answers, and is expected to
fail TSC. (We note that such incorrect answers are produced
only when the model is compiled without the “-fp-model”
flag. In contrast, if the “-fp-model source” flag is applied to
the Fortran code, and the “-fp-model precise” is applied to the
C code, the -O2 and -O3 optimization options will produce
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Figure 4. Pmin,t as a function of model integration time, plotted in linear scale (a) and in logarithmic scale (b). The dashed gray lines
indicate the threshold for assigning an overall “pass” or “fail” to a test ensemble (see Eq. 8 and the text above it).

BFB identical results when CAM5.3 is compiled on Yel-
lowstone with Intel 15.0.0.) We do not include here results
from computers that produced borderline pass/fail results in
CAM-ECT (e.g., Mira at the Argonne National Laboratory
and Bluewaters at the University of Illinois). Valuable inves-
tigations have been made by Milroy et al. (2016), but those
cases still need further investigation and characterization.

The group MOD consists of two code modification cases
from Milroy et al. (2016) that were motivated by optimiza-
tion of the computational performance:

– In the division-to-multiplication (“DM”) case, division
by a time-invariant array was replace by multiplication
of the inverse at one place in the dynamical core (see
Sect. 3.2 in Milroy et al., 2016). This case has been
found by CAM-ECT to produce a model climate that
is statistically consistent with the reference ensemble.
We expect the TSC test to produce a “pass” result.

– In the precision (“P ”) case, a subroutine in the physics
suite for calculating the saturation vapor pressure over
water using the Goff–Gratch formula was changed from
double precision to single precision. This modification
has also been found by CAM-ECT to produce consis-
tent climate, but we put “unknown” in Table 1 for the
expected outcome of TSC due to the deterministic na-
ture of the TSC method and the use of double-precision
output in the calculation of the test diagnostics.

In group PAR, we repeated all the parameter perturbation
experiments presented by Baker et al. (2015), where one pa-
rameter in CAM5’s physics package was modified in each
experiment. All but one case failed CAM-ECT, the excep-
tion being the NU case in which the numerical diffusion in
the dynamical core was changed by about 10 %. Baker et al.
(2015) pointed out that CAM-ECT gave an unexpected but
understandable “pass” flag in this case, because CAM-ECT
monitored the global mean values that were not directly af-
fected by the numerical horizontal diffusion. We expect the

TSC test to assign “fail” to all cases in this group, including
NU, since TSC compares the instantaneous grid-point values
of the prognostic variables, and thus is expected to be capa-
ble of detecting solution changes at all spatial scales resolved
by the model. All simulations in groups MOD and PAR were
conducted on Titan using the default Intel compiler version
and optimization level (15.0.2-O2).

4.1 Evolution of Pmin,t

To understand the initial evolution of Pmin,t , we conducted
30 min simulations and calculated the test diagnostics after
every minute. Figure 4 shows the time series of Pmin,t using
a linear scale in panel a and a logarithmic scale in panel b.
Two distinct types of behavior can be seen in the figure. In
test scenarios where solution differences were thought to be
insignificant, Pmin,t resembles random perturbations around
mean values of a few percent. The value at a particular time
instance can fall below 1 %, but returns to larger values at
later time steps (Fig. 4a). In all test scenarios with modified
model parameters, the values of Pmin,t are distinctly closer to
zero (Fig. 4a). The time series either show a clear decrease in
the first 10 min and considerably slower changes afterwards
(e.g., CONV-LND and NU in Fig. 4b), or start with very low
probabilities already and show relatively small changes dur-
ing the integration (e.g., DUST and FACTIC in Fig. 4b).

The dashed gray lines in Fig. 4 indicate the threshold we
chose for assigning an overall “pass” or “fail” to a test en-
semble (Eq. 8). The test scenarios that were expected to pro-
duce insignificant (significant) solution differences indeed
pass (fail) the TSC test. The precision (“P ”) case of unknown
outcome also passes the TSC test, giving a result consistent
with that from CAM-ECT. The two rightmost columns of
Table 1 show the values of Pmin,t at t = 5min or averaged
between 5 and 10 min. Both the instantaneous and averaged
probabilities are orders of magnitude smaller in the failing
cases than in the passing cases.
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Figure 5. Ensemble-mean 1RMSDt,j (dots) and the ±2σ range of the mean (filled boxes) where σ denotes the standard deviation. The
left end of an unfilled box shows the threshold value corresponding to P0 = 0.5 % in the one-sided t test. All values shown here have been
normalized by the mean RMSD of the trusted ensemble, i.e., RMSDtrusted,t,j , of the corresponding prognostic variable and domain (see
y axis labels). Red and blue indicate fail and pass, respectively, according to the criterion defined by Eq. (6). Results are shown at t = 5min
for four test cases: (a) P , (b) YS-Intel15-O3, (c) DUST, and (d) CONV-LND. The test case configurations are explained in Table 1 and
Sect. 4.

4.2 Results at 5 min

We now take a closer look at the test diagnostics at a sin-
gle time instance. In Fig. 5, the statistical distributions of
µt,j (the mean 1RMSD) estimated from the 12-member
ensembles are shown at t = 5min for the individual prog-
nostic variables and domains for four test cases. The values
are normalized using the corresponding mean RMSD of the
trusted ensemble, i.e., RMSDtrusted,t,j . The dots indicate the
observed ensemble mean (i.e., 1RMSDt,j ), and the filled
boxes indicate the ±2σ range of the mean. The left end of
an unfilled box shows the threshold value corresponding to
P0 = 0.5 % in the one-sided t test. Red and blue indicate fail
and pass, respectively, according to the criterion defined by
Eq. (6). Notice that the x axes in the sub-panels of Fig. 5
are shown in different scales. The normalized mean RMSD
differences between the P ensemble and the trusted ensem-
ble are small, on the order of 0.1 or smaller, and the value of
0 lies within the ±2σ range of the observed 1RMSDt,j for
all the Nvar×Ndom variables (Fig. 5a). In contrast, the YS-

Intel15-O3 case (which is known to produce incorrect solu-
tions) is associated with typical RMSD differences of around
1. The large number of failing variables (16 out of 20) and
the very small Pmin,t (1× 10−11 %) indicate a clearly failing
case.

The test case with a modified dust emission factor (DUST)
was expected to be challenging for the TSC method. In any
model day, the emission only occurs at a very small frac-
tion of the dust source areas. Dust particles emitted from the
surface can only be transported over a short distance dur-
ing the few-minute simulation time, and the impact on me-
teorological conditions through the absorption and/or scat-
tering of radiation is also limited. Hence, it is unlikely that
the solution differences can be seen in the global tempera-
ture RMSD. This was the reason that motivated us to use
multiple prognostic variables and to separate land and ocean
when defining the test diagnostics. The results shown in
Fig. 5c confirm our expectation, as only 1 out of the 20
1RMSDj,t is significantly larger than zero. The DUST ex-
periment should nevertheless be considered a clearly failing
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case since the failing variable (num_a3 over land) is indeed
the physical quantity that is most directly affected by dust
emission, and the large 1RMSDj,t corresponds to a very
small P

(
µj,t >1RMSDj,t

)
of 0.0019 % (see Table 1).

The CONV-LND case is challenging for similar reasons.
Here the coefficient that controls the conversion of cloud
condensate to precipitation was modified for deep convec-
tion over land. With a smaller value for zmconv_c0_lnd, we
expect to have more cloud condensate detrained by deep con-
vection, which can lead to changes in the mass and number
concentrations of ice crystals in stratiform clouds. Failing re-
sults are indeed seen in these two variables (Fig. 5d). The
anomalous result in num_a2 is likely related to the removal
of aerosol particles by convective precipitation. Since deep
convection over land happens in limited areas, and the natural
variability is very strong, it is not surprising that 1RMSDj,t
of the other variables are not yet significantly larger than zero
after 5 min of integration.

As mentioned earlier, CAM-ECT assigned a “pass” to the
NU case but we expect the TSC result to be a “fail”. The
respective time series in Fig. 4b reveals Pmin,t values below
10−4 % after 3 min of integration. At 5 min, there are a total
of six variables with Pt,j < 0.5%; the four variables with
lowest probabilities are ocean-mean meridional wind, land-
mean meridional wind, ocean-mean temperature, and ocean-
mean specific humidity. The small minimum probability and
the combination of the failing variables provide confidence
in the “fail” result of the NU case.

4.3 Computational cost

Based on the results shown above, we propose a version 1.0
implementation of the TSC test that uses 12-member 10 min
simulations. As such, the computational cost of obtaining an
ensemble of reference solutions (using 1 s time step) plus an
ensemble of trusted solutions (using 2 s time step) is similar
to conducting a single 7.5-month simulation using the de-
fault model time step (30 min). For the testing of a new code
or computing environment, the cost of conducting 12 sim-
ulations using a 2 s time step is similar to that of a 75-day
simulation performed using the default time step. Compared
to the CAM-ECT, which uses 151 to 453 1-year simulations
in the reference ensemble and three 1-year simulations in the
test ensemble, the TSC test is a factor of several hundred
cheaper to obtain the reference simulations, and a factor of
15 cheaper to test a new code or environment.

The TSC method also allows for very fast test turnaround
since the ensemble simulations can be conducted in parallel.
On Titan we used 512 MPI processes for each simulation and
often submitted 12 simulations to the Portable Batch System
(PBS) in three 128-node batch jobs. The wall clock time for
finishing a single 10 min simulation with 2 s time step was
about 10 min; the entire set of 12 simulations was often com-
pleted in 30 min after submission. The time between first job

submission and last job completion rarely exceeded a few
hours.

5 Discussion

In this paper we have presented evidence to demonstrate that
the concept of time step convergence can be used to assess
the magnitude of solution difference in the CAM model. Fu-
ture work will be useful to explore the following topics.

5.1 Test setup

The TSC test procedure described in this paper has mul-
tiple parameters that can be modified: (1) ensemble size,
(2) initialization strategy (e.g., simulation start time), (3) time
step sizes, (4) integration length, (5) prognostic variables and
model sub-domains included in the calculation of test diag-
nostics, and (6) the pass/fail criterion. Results presented in
the previous section indicate that given (1)–(3), the choices
for (4)–(6) can have strong impacts on the outcome of the
TSC test.

In the DUST case, for example, systematically positive
1RMSD, was detected only in one prognostic variable and
only over land (see Fig. 5c for results at t = 5min; results
at later time are similar thus not shown). If we had not in-
cluded aerosol concentrations in the list of monitored vari-
ables, or had not chosen to calculate the test diagnostics over
land and ocean separately, the TSC test would have given
a false “pass” (i.e., a false negative result). While the limited
number of test scenarios included in this study have been cat-
egorized as expected by the current test setup, there might be
more subtle cases, e.g., minor bugs in the code, that require
further adjustment of aspects (4)–(6). As a next step, we plan
to include a number of bug fixes and additional parameter
modifications from the recent model development activities
to further evaluate the TSC test setup.

Results in Fig. 4 revealed that Pmin,t in passing and failing
cases evolve differently. Considering the inherent nonlinear-
ities in the model equations and the resulting variability in
the numerical solutions, a pass/fail criterion that character-
izes the time series of Pmin,t using multiple time steps is ex-
pected to provide more accurate test results than a criterion
based on one time step. In this paper we made a simple and
preliminary choice, requiring all Pmin,t diagnosed between
t = 5min and t = 10min to fall below a threshold of 0.5 %
in order for a case to fail the test. Adopting a more refined
criterion, e.g., one that takes into account not only the mag-
nitude of Pmin,t but also its trend, might allow us to further
shorten the integration time. The impacts of ensemble size
and initialization strategy were not explored in this study, but
are worth investigating in future work.
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Figure 6. As in Fig. 4b, but showing only a few test scenarios to compare the results obtained from simulations where (a) radiation is
calculated every other time step, and (b) radiation is calculated only at the beginning of the integration.

5.2 Impact of noisy parameterization

As mentioned in the introduction, the radiation parameteri-
zation in CAM5 uses a random number generator that leads
to state-dependent noise in the model results. All the simula-
tions presented in Sect. 4 were conducted with a fixed time
step size ratio between radiation and the other physics pa-
rameterizations, with radiation calculated every other time
step. We also conducted TSC simulations with radiation cal-
culated only at the first time step. The impact is illustrated
by Fig. 6 where one failing case, CONV-LND, is shown to-
gether with two passing cases, Titan-PGI and YS-Intel15-
O2. The time series of Pmin,t in the CONV-LND case is not
distinguishable from the passing cases in the first 3 min of
model integration when radiation was called frequently, but
already distinguishable after the first minute when radiation
was called only once. Substantial decrease of initial Pmin,t
in the “radiation-once-only” configuration was also seen in
several other test scenarios. Our interpretation of this ob-
servation is that noise in the model makes it harder to de-
tect signals associated with parameter perturbation, thus re-
quiring longer spin-up in the TSC test. This implies that for
models that have very noisy physics, e.g., those with stochas-
tic parameterizations, the TSC simulations might need to be
longer than proposed here. Hodyss et al. (2013) demonstrated
that noise in a discrete model can result in reduced conver-
gence rate or even loss of convergence. We speculate that
the TSC method can still be useful as long as the model has
an appreciably positive convergence rate (recall that the time
step convergence in CAM5 features a slow rate of 0.4). It will
be interesting to explore the utility of our method in models
with stochastic parameterizations.

5.3 Comparison with other test methods

The development of the TSC test was motivated by the loss of
utility of the PERGRO method and the relatively high com-
putational cost of CAM-ECT. Since all three are regression
testing methods, it is worth clarifying some linkages and dis-
tinctions among them.

CAM-ECT compares the model climate, and considers
two sets of results “the same” when ensembles of 1-year
simulations show consistent statistical distributions of global
annual averages. PERGRO and TSC view CAM as a de-
terministic model, and considers two sets of model results
“the same” when the observed solution differences with re-
spected to trusted solutions appear to be consistent with the
expected evolution of initial perturbation or time stepping er-
ror. In PERGRO and TSC, one-to-one solution comparisons
are conducted using instantaneous grid-point values, and the
solution differences are evaluated well within the determin-
istic limit of the flow evolution.

From the perspective that climate is essentially the statisti-
cal characterization of deterministic-scale atmospheric con-
ditions, and the fact that the same set of differential-integral
equations control the short-term and long-term behaviors of
the atmospheric motion in a numerical model, one can ex-
pect the different regression testing methods to provide the
same “pass” or “fail” results when the solution differences
are either very small (e.g., at round-off level) or very dif-
ferent (e.g., due to a major bug in the code). The general
consistency between the TSC results shown in this paper and
the corresponding test results from Baker et al. (2015) pro-
vides evidence to support this reasoning. On the other hand,
since the different methods assess the magnitude of solution
change with different criteria and at different timescales, we
expect there will be cases when they give different answers.
The NU case (see Table 1 and Sect. 4) that passed CAM-
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ECT but failed TSC is one such example. As a possible op-
posite example, we note that within the step size range of
1 s to 1800 s, the time step convergence in CAM5.3 is slow
(the rate is about 0.4) and the time step sensitivity is strong
(Wan et al., 2015). In other words, in the few-second time
step range, the solutions are converging but have not yet con-
verged. For this reason, we speculate that some subtle solu-
tion changes might pass the TSC but fail CAM-ECT.

For practical model testing, it is highly desirable to
find methods capable of detecting early signs of climate-
changing results at low computational cost and with fast
test turnaround. However, it is worth noting that the word
“climate-changing” is ambiguous until a quantitative cri-
terion is specified. For example, two simulations repre-
senting indistinguishable climate characteristics according
to SIEVE (see Sect. 1) based on the AMWG diagnos-
tics package (https://www2.cesm.ucar.edu/working-groups/
amwg/amwg-diagnostics-package) might be distinguishable
using additional metrics or using CAM-ECT. Similarly,
two simulations determined to be consistent using CAM-
ECT based on the global and annual averages might turn
out distinguishable using grid-point-wise model output and
monthly time series. As for the TSC method, the relatively
strong time step sensitivity in CAM5 implies that the numer-
ical accuracies are substantially different when time step size
is changed; hence, a test procedure based on time step con-
vergence also includes some level of ambiguity. As can be
seen in Fig. 2, if we had chosen to conduct a TSC test using a
1800 s time step instead of 2 s, the results from the RH-MIN-
HIGH case (which was determined by CAM-ECT as climate
changing) would have been assigned a “pass” by TSC. In the
future, if CAM’s convergence rate is improved and the ac-
curacy of time stepping increased, one can expect TSC test
conducted with 2 s step size to be capable of detecting more
subtle solution differences. Since there are flexibilities in the
TSC test (see Sect. 5.1), we expect it will be possible to ad-
just the test setup so that the outcome closely matches the
results from CAM-ECT or other methods that compare the
model climate with a clearly defined criterion for “climate-
changing” results. Future work is planned to further compare
TSC with other regression testing methods.

6 Conclusions

In this study, we designed and evaluated a test procedure for
determining whether the solutions of a numerical model re-
main the same within the limit of the time integration accu-
racy when the bit-for-bit reproducibility is lost due to code
modifications or computing environment changes. A “fail”
signal is issued when the numerical solutions no longer con-
verge to the reference solutions of the original model. The
test method is deterministic by nature, but involves an ensem-
ble of simulations to account for possible flow dependencies
of the numerical error.

Using the CAM5 model, we provided initial evidence
that the test procedure based on 10 min simulations with 2 s
step size (i.e., a total of 300 time steps per simulation) can
be used to distinguish situations where solution differences
were deemed insignificant or substantial by a different testing
method based on assessment of the simulated climate statis-
tics. The new test is not exhaustive since it does not detect is-
sues associated with diagnostic calculations that do not feed-
back to the model state variables. Nevertheless, it provides a
practical, objective, and computationally inexpensive way to
assess the significance of solution changes. Our experience
showed that, using supercomputing facilities, the wall clock
time for conducting an ensemble of 12-member simulations
typically ranges from a few minutes to a few hours. Such
a fast turnaround makes the new test a convenient tool for
model testing. Future studies are planned to further evaluate
the new method using more test scenarios, compare it with
other methods of regression testing, and optimize the imple-
mentation of the strategy. We also plan to assess the feasibil-
ity of applying the test to subcomponents of the model code
for the purpose of unit testing and debugging.

The new test is built on the generic concept of time
step convergence, and the implementation does not require
any code modifications. We plan to explore the utility of
the method in other components of our Earth system model
(e.g., ocean, sea ice, and land ice), and expect that the same
concept is applicable to a wide range of geophysical mod-
els such as global and regional weather and climate models,
cloud-resolving models, large-eddy simulations, and even di-
rect numerical simulations.

7 Code and data availability

The source code of CAM5 can be obtained as part of the
Community Earth System Model (CESM) from the public
release website https://www2.cesm.ucar.edu/models/current.
The scripts for conducting and analyzing the ensemble sim-
ulations, and the simulation data discussed in the paper, are
available from the corresponding author upon request.
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