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Abstract. The outputs from general circulation models
(GCMs) provide useful information about the rate and mag-
nitude of future climate change. The temperature variable is
more reliable than other variables in GCM outputs. How-
ever, hydrological variables (e.g., precipitation) from GCM
outputs for future climate change possess an uncertainty that
is too high for practical use. Therefore, a method called in-
tentionally biased bootstrapping (IBB), which simulates the
increase of the temperature variable by a certain level as as-
certained from observed global warming data, is proposed.
In addition, precipitation data were resampled by employing
a block-wise sampling technique associated with the temper-
ature simulation. In summary, a warming temperature sce-
nario is simulated, along with the corresponding precipita-
tion values whose time indices are the same as those of
the simulated warming temperature scenario. The proposed
method was validated with annual precipitation data by trun-
cating the recent years of the record. The proposed model
was also employed to assess the future changes in seasonal
precipitation in South Korea within a global warming sce-
nario as well as in weekly timescales. The results illustrate
that the proposed method is a good alternative for assessing
the variation of hydrological variables such as precipitation
under the warming condition.

1 Introduction

The complex influence of human actions on the climate
system is well represented through global climate mod-
els (GCMs). A number of GCMs demonstrate variations in
the large-scale atmospheric circulation and related changes
in hydrometeorological variables (Allen and Ingram, 2002;

Held and Soden, 2006; Lenderink and Van Meijgaard, 2008).
It has been generally accepted that quantifying the range of
possible changes in the hydrological cycle (such as precipi-
tation and evaporation) is harder than in temperature (Allen
and Ingram, 2002). Furthermore, hydrological variables vary
much more in space and time than temperature and are diffi-
cult to correctly simulate.

The relationship between temperature and precipitation
has been studied in literature in order to predict the future
variations of precipitation under the global warming condi-
tion. From the Clausius—Clapeyron (C—C) relation, saturation
vapor pressure increases by 6—7 % for each 1 °C increase in
temperature, and rainfall intensity also increases at a simi-
lar rate with warming (Trenberth and Shea, 2005). Lenderink
and Van Meijgaard (2008) showed that the intensity of hourly
precipitation exhibits a C—C relation for summer while show-
ing super C—C scaling for winter.

These relations are only focused on very short timescales
(not more than daily) or generally retrieved from GCM out-
puts. The behavior of mean precipitation over long-term pe-
riod such as months and seasons is difficult to predict as tem-
perature increases. It might be beneficial if one could derive
the behavior of long-term mean precipitation under warming
conditions or the range of possible changes (IPCC, 2013).

Therefore, a simple method that simulates temperature
from observed data is proposed in the current study while
increasing temperature up to a certain level as a warming
scenario. In addition, precipitation is simulated by employ-
ing a block-wise resampling technique (Srinivas and Srini-
vasan, 2000) associated with the temperature simulation. The
resampled covariate, precipitation, forcing the warming con-
dition in a certain level is obtained from the simulation. The
proposed approach allows for assessment of the impact of
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Figure 1. Procedure for the proposed simulation IBB method of
temperature and precipitation data.

precipitation as temperature increases with a current climate
horizon.

The paper is organized as follows. In the next section,
the fundamental mathematical background related to bias-
bootstrapping modeling is presented. The employed data and
application methodology are described in Sect. 3. The valida-
tion study of the proposed IBB approach is shown in Sect. 4.
The results assessing the long-term evolution of seasonal pre-
cipitation with simulating weekly temperature and precipita-
tion data are illustrated in Sect. 5. Finally, the summary and
conclusions are presented in Sect. 6.

2 Methodology

In order to simulate the warming scenario, i.e., increasing
mean temperature, up to a certain level, the observed data
must be sampled with a different combination. Intuitively,
warmer temperature values are more likely to be resampled
among the observations if the mean is increased. Therefore,
the proposed method in the current study is to resample the
observed data by fixing the mean temperature increment in
the resampled dataset by weighting the probability of selec-
tion according to its magnitude (see Fig. 1). In addition, the
block bootstrapping with precipitation was employed to as-
sess the changes in these variables as temperature increases.
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2.1 Intentionally biased bootstrapping (IBB)

Bootstrapping (also known as resampling from observed data
with replacement) is a statistical method for creating replica
datasets from the original data to assess the variability of the
quantities of interest without analytical calculation (Davi-
son and Hinkley, 1997; Davison et al., 2003; Ouarda and
Ashkar, 1995). This bootstrapping technique has been ex-
tended to simulate time series of hydrometeorological vari-
ables (Beersma and Buishand, 2003; Lall et al., 1996; Lall
and Sharma, 1996; Lee and Ouarda, 2011, 2010; Mehrotra
and Sharma, 2005). In the current study, the intentionally bi-
ased bootstrapping (IBB) technique is employed so that the
mean of the resampled datasets is varied as needed to simu-
late a global warming scenario.

IBB was proposed by Hall and Presnell (1999) as a class
of weighted bootstrapping techniques in order to reduce bias
or variance, as well as to render some characteristic equal
to a predetermined quantity. A good example of IBB is the
adjustment of Nadaraya—Watson kernel estimators to make
them competitive with local linear regression (Cai, 2001). In
the current study, IBB was employed to simulate the tem-
perature data from observation by bootstrapping under the
constraint of increasing mean value, which indicates warm-
ing. The conceptual background of IBB has been employed
to simulate future climates of weather analogs (Orlowsky et
al., 2010; Orlowsky et al., 2008). In the current study, an IBB
method with easy manipulation to simulate increased tem-
perature data is proposed. The mathematical description of
the proposed IBB method is the following.

Among an n number of observations x;, where i =
1,...,n, assume resampling the observations with replace-
ment (i.e., bootstrapping) by increasing the mean of the sim-
ulated data by as much as A; this implies that higher val-
ues have a higher probability of being resampled and lower
values have lower selection probability. This IBB can be
achieved by assigning different weights S; , according to the
magnitudes of the observations as follows.

Si,nzi/n (1)

Note that this assigned weight S; , plays a role in the selec-
tion probability for the observed data in the IBB procedure
after scaling and adjusting it.

The mean of the resampled data is as follows:

- 1

h=g ;Si,nx(i), ()

where x(;) represents the ith increasing ordered value and
n

W = > S, ,. The amount of the mean increases,, is as fol-

i=1
lows.

- . 1 <& 1 <&
SM:M_M:EZI:Si,nX(i)_;ZI:xi 3)
1= 1=
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To obtain different values of §,,,the weights can be general-
ized with the weight order (r) as follows:

~ 1<
w(r) = v ZS;nX(i), 4)
ri=1

n
where W, = > ST . The difference is as follows.
i=1

~ R R 1<
Bu() =) = A= D8] a3y =~ D% 5)
rj=1 j=1

Once the magnitude of the mean increase is given (e.g., tem-
perature increase) as A, the weight order “r” is estimated
accordingly. For example, when the temperature change is
obtained from the GCM outputs and this change is supposed
to be propagated into a specific location and a finer timescale,
the selection of the weight order can be performed using
a meta-heuristic optimization technique with the objective
function as follows.

Minimize [A, — 8, (r)]? (©6)

In the current study, the harmony search (HS) was used for
the meta-heuristic optimization. The performance of the HS
in hydrological applications is well reviewed in the litera-
ture (Geem et al., 2001; Lee and Geem, 2005, 2004; Lee and
Jeong, 2014a; Mahdavi et al., 2007; Yoon et al., 2013a). Note
that if » > 0, then 6, (r) > 0, which implies a global warm-
ing scenario; if r < 0, then §,,(r) < 0, which implies a global
cooling scenario. When r < 0, lower values are resampled
more frequently than higher values, causing the mean of the
resampled data to decrease. Furthermore, if r goes to infinity
then the maximum of the observations is always selected, and
if r goes to negative infinity, only the minimum is chosen.

In the IBB procedure, the adjusted scaled weight n; =
S; ,/¥r is the probability that each ith data point is sub-
ject to be selected. In the case of n = 30, the weights for
i=1,...,n are shown in Fig. 2 with the weight order of
r =0.5. The figure shows that the probability of being se-
lected (i.e., n;) is between approximately 0.01 for the lowest
values and 0.05 for the highest order values of approximately
0.05 to lead to positive bias in the resampled data (e.g., 1.0 °C
increase). For example, if the number of the simulation is 100
and n; = 0.05, then the data point will be selected 5 times.
A different probability implies a different number of selec-
tion for each data point. Subsequently, a different number of
selections may lead to variation changes, called variance re-
duction or inflation. This issue is dealt with in the following
section.

2.2 Variance reduction and inflation

Because of the biased selection of higher values, the vari-
ance of the resampled data results is reduced (Lee and Jeong,
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Figure 2. Example of the adjusted scaled weights (1;) vs. order
numbers in the case of n = 30 and order weight r = 0.5. Note that
n; is the probability of being selected and increases as the order is
increased, so that higher values are subject to being selected more
often than lower values, leading to a positive bias.

2014a; Lee and Ouarda, 2010; Lee et al., 2010; Salas and
Lee, 2010; Sharif and Burn, 2006). The estimated variance
of the simulated data with IBB is as follows.

n gt
Ghr) =2 ) @)
=

Note that the variance in Eq. (7) is based on o2=E(X% -
(E X)2. The difference of the variance is as follows:

8,2(r) =62 —=5%(r), ®)

where 62 is the sample variance of the observed data. To
overcome the reduction of the variance in IBB, a random per-
turbation can be applied to the resampled data Xr as follows:

Xr*x = XR ++/8,2(r)e, )

where ¢ is a random variable with a normal distribution
N (0, 1). Subsequently, the mean and variance of the per-
turbed data are as follows:

ARs =L, (10)
62, =6248,20r)=6>+62—-52(r) =62 (11)

2.3 Block bootstrapping

Bootstrapping is a random sampling with replacement and
block bootstrapping is to resample blocks. Each block con-
tains a set of predictor and predictand, like a regression. Here,
temperature and precipitation can be set as a block and they
act as predictor and predictand, respectively.

Geosci. Model Dev., 10, 525-536, 2017
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When the temperature presumably increases by a certain
degree, it is interesting to note how the other weather vari-
ables vary. For example, if the temperature is increased by
1 °C, the greatest concern in climate research will be how the
precipitation will change.

To address this question, the block bootstrapping tech-
nique for the precipitation variable is adapted (Carlstein et
al., 1998; Lee et al., 2010). Once the temperature is resam-
pled from the observed data at certain times using IBB, the
observed precipitation data from the same time are consid-
ered (see Fig. 2). Unlike for the case of temperature, not
much significant variance reduction is expected in the resam-
pled precipitation data because the precipitation data are not
conditionally resampled. This block bootstrapping technique
is popularly employed in multivariate weather simulations
(Lee and Jeong, 2014b; Lee et al., 2012).

2.4 Overall simulation procedure

The overall simulation procedure of temperature and precipi-
tation data is described in this section. Simple schematic pre-
sentation of the procedure is shown in Fig. 1.

Let x;,y; (i =1,...,n) be the observed temperature and
precipitation data, respectively. Suppose that the simulation
length is the same as the record length (i.e., n) and 100 series
need to be simulated.

a. Assume that the increased overall temperature mean is
known as A ;.

b. Estimate the weight order (r) from meta-heuristic algo-
rithm (here, Harmony Search) with the objective func-
tion of Eq. (6) from the observed temperature data.

c. Resample the temperature data from the observations
with the probability of S, ~for ith largest data (i =
1,...,n).

d. Assume that kth largest temperature data x)is resam-
pled from step (3) and its corresponding time index of
(k) is “j”. Note that (k) indicates the kth largest value
and j indicates the jth time-index value. Then, jth pre-
cipitation data, y;, is resampled simultaneously.

e. Apply Eq. (9) to the resampled temperature data from
step (3) (say, x(k) +/042(r)e), if the variance inflation
is chosen.

Note that the current procedure is explained for the case of
no seasonal variability due to simplicity. In other words, the
explained procedure above must be applied at each week or
each month for weekly or monthly data. The detailed descrip-
tion of the proposed method for the case of monthly precipi-
tation data with the full record is provided in the supplemen-
tary material (Supplement A).

Geosci. Model Dev., 10, 525-536, 2017
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Figure 3. Annual mean temperature difference (°C) between the
validation period (1994-2008) and the test period (1976-1993) for
each station for the IBB-simulated data (box plot) and the observed
data (circle). Boxes indicate the interquartile range (IQR), and
whiskers extend to +1.5IQR. The horizontal lines inside the boxes
depict the median of the data. Data beyond the fences (1.5 IQR)
are indicated by a plus symbol (+), which represents outliers.
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Figure 4. Annual mean precipitation (mm) of the IBB simulation
(box plot) and the observation over the validation period (filled blue
circle) as well as the test period (filled red triangle) conditioned with
the temperature change (see Fig. 3). Note that the observed mean
precipitation over the validation period (1994-2008) (see the red
triangles) shows mostly higher than the mean over the test period
(1976-1993) (see the blue circles). Also, the IBB-simulated pre-
cipitation (box plot) reflects this tendency showing higher than the
mean precipitation of the test period (blue circles). Boxes indicate
the interquartile range (IQR), and whiskers extend to £1.5 IQR. The
horizontal lines inside the boxes depict the median of the data. Data
beyond the fences (£1.5 IQR) are indicated by a plus symbol (4),
which represent outliers.
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Figure 5. Annual mean precipitation (top panel) during the vali-
dation period (1994-2008) and its difference (bottom panel) with
the test period (1976-1993) for the observed data (abscissa) and
the IBB-simulated data (ordinate) over all the employed stations in
South Korea. For more details about the difference at the bottom
panel, see Egs. (12) and (13).

3 Data description and application methodology

In the current study, 54 weather stations that record tempera-
ture and precipitation in South Korea with more than 30 years
of record length, and which are managed by the Korea Me-
teorological Administration (KMA), were employed. South
Korea is located in eastern Asia and has a mean annual pre-
cipitation of 1283 mm according to the KMA. This country
is climatologically influenced by the Siberian air mass during
winter and the Maritime Pacific High during summer. Most
of the annual precipitation in South Korea falls during the
rainy season from June to September due to the occurrence
of tropical cyclones, extratropical cyclones, fronts, and other
weather systems. Because the orographic area in South Ko-
rea is heterogeneous and large, the rainfall in South Korea
has large spatial and temporal variability (Park et al., 2007;
Yoon et al., 2013b). The water resource control system, in-
cluding climate change, is an important aspect of this study
due to the seasonal and spatial variability of rainfall in this
country.
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Figure 6. Spatial distributions of annual mean precipitation differ-
ence between the validation period (1994-2008) and the test pe-
riod (1976-1993) for the observed data (left panel) and the IBB-
simulated data (right panel).
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Figure 7. (a) Estimated weight order from HS and weekly statis-
tics of (b) mean and (c) variance for the observed temperature data
(solid line) and the theoretical statistics (dashed line with cross) us-
ing Eqgs. (2) and (7), for Buan station. The weekly difference in
variance between observation and theoretical (see Eq. 8) is shown
in panel (c) by a dotted line.
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Figure 8. The statistics of the observed (dotted line with cross) and generated (box plot) data for the weekly mean temperature using IBB,
with a 0.5 °C temperature increase in Buan, South Korea. Boxes display the interquartile range (IQR), and whiskers extend to the extrema
(i.e., maximum and minimum). The horizontal lines inside the boxes depict the median of the data. Note that the mean and maximum of
the simulated data are increased significantly compared with the corresponding observed data, while the minimum of the simulated data is
slightly increased and the standard deviation of the simulated data agrees with that of the observed data due to the variance inflation, as in

Eq. (9).

Datasets shorter than 30 years of data were excluded, after
which a total of 54 datasets were employed. The data were
extracted from the KMA website (http://www.kma.go.kr/).
Most of the time spans are approximately 33 years, from
1976 to 2008.

The validation study was performed with an annual dataset
to present the performance of the proposed model with trun-
cating recent years as 1994-2008. The truncated data were
not used in simulation but employed in validation. Also, a
case study was applied with the weekly dataset of the 54 sta-
tions in South Korea. In the application study of the pro-
posed IBB procedure in Sect. 5, (1) 0.5 and 1.0 °C increases
in the mean weekly temperature were assumed; (2) weekly
temperature datasets were simulated using the assumed tem-
perature increase; and (3) weekly precipitation datasets were
also simulated along with the weekly temperature dataset as
a block. Note that the simulation does include not a gradual
change, such as a trend, but the overall mean change. We sim-
ulated the weekly timescale so that the data spanned a long
enough period to provide a summary of weather statistics and
a short enough period to reflect the temporal variability. Fur-
thermore, the observed weekly datasets of temperature and

Geosci. Model Dev., 10, 525-536, 2017

precipitation were aggregated into seasonal timescale data,
and the aggregated seasonal data were used to present the
seasonal variations in precipitation as temperature increases.

Note that although we simulated the temperature with a
specific condition of increase (e.g., +0.5 or +1.0°C), no
such restriction was placed on the precipitation, allowing one
to determine whether there is any change in precipitation
with the condition of increasing temperature. One hundred
series were simulated with the same time span as the obser-
vations.

4 Validating IBB model with annual data

To further prove the credibility of the proposed IBB model,
we validated the model with truncating the last 15 years
(1994-2008) of the annual mean temperature and precipita-
tion data over South Korea. The last truncated 15 years were
set as the validation period while the rest of the preceding
years were set as the test period. The dataset of the test period
was employed in the simulation while the dataset of the vali-
dation period is only used in comparison, to check how much

www.geosci-model-dev.net/10/525/2017/
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Figure 9. The mean precipitation differences of the observed and simulated data (a) for the weekly precipitation in Buan with a 0.5 °C mean
temperature increase, (b) for the seasonal precipitation of all 54 stations with a 0.5 °C mean temperature increase, and (c) for a 1.0 °C mean
temperature increase. Note that the mean of the simulated precipitation data is indicated for weekly (a) or seasonal (b, ¢) time frames.

the proposed model performs. Among others, annual-scale
data are employed to easily illustrate the performance of the
proposed IBB model. At first, some mathematical terms need
to be defined to explain the validation procedure as follows.

12)
13)

b
Duy™ = wpy = tpr
IBB
D)™ = tppp — Mprs

where ), and p,; are the mean annual precipitation over
the validation years and over the test period, respectively,
while ppigp is the annual mean precipitation of the IBB-
simulated data with the record length of the validation years.
The same denotation as the precipitation variable is taken

for the temperature variable as wzy, L1y, UTigs, DS, and

DyulBB.

The validation procedure is (1) to truncate the 15 years
(1994-2008) of annual temperature and precipitation for
each station; (2) to estimate the mean differences of the an-
nual temperature and precipitation between the validation pe-
riod (1994-2008) and the test period (1976-1993), D/L%bs
and Dufl’,bs, respectively; (3) to perform the IBB simulation
with the annual precipitation and temperature of the test pe-
riod conditioned on the estimated mean differences of the
temperature between two periods (i.e., Du%bs) for each sta-

tion; and (4) to compare the estimated mean differences of

www.geosci-model-dev.net/10/525/2017/

the observed precipitation (i.e., D ,u‘;,bs) with the mean differ-
ences between the IBB-simulated precipitation and the pre-
cipitation for the test period (i.e., D ,ufUBB).

The annual mean temperature differences between the val-
idation period and the test period at each station is shown
in Fig. 3 for the IBB-simulated data (D;LITBB, box plot) and
the observed data (D,u%bs, circle). The figure indicates that
the IBB model fairly well simulates the temperature data as
much as it was intended, except for a few stations that show
a high increase, especially more than 1 °C increase (e.g., sta-
tions 6 and 7). Note that the employed test period is relatively
short and not enough numbers of high values of annual tem-
perature are included during the test period; this might result
the underestimation of the intended temperature increase.

In Fig. 4, the annual mean precipitation of the observation
over the validation period (u py , filled blue circle) and the test
period (i py, filled red triangle) as well as the IBB simula-
tion (i przg, box plot) is illustrated. The result indicates that
the observed mean precipitation over the validation period
(14 py) presents higher than the mean for the test period (¢ ;)
in most of the stations. The IBB-simulated data reflects this
tendency, showing higher mean precipitation than the mean
precipitation of the test period, though its magnitude shows
some difference.

Geosci. Model Dev., 10, 525-536, 2017
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Table 1. Mean precipitation difference of the observed and simulated data for seasonal data over all the employed stations in South Korea in

case of +1.0 °C mean temperature increase.

Mean difference

Mean difference

Station Winter Spring Summer Autumn Station Winter Spring  Summer Autumn
1 11.2 14.3 20.2 —12.0 28 2.6 12.1 9.6 —4.1

2 3.2 22.4 4.5 0.0 29 4.4 20.6 50.4 —3.8

3 11.0 5.0 21.5 —17.2 30 5.5 11.7 30.0 —4.2

4 1.6 15.7 38.1 —-2.3 31 44 19.2 15.8 —4.7

5 1.5 11.9 3.9 —6.2 32 4.2 15.9 18.0 -2.0

6 1.7 10.1 28.5 -2.0 33 6.6 16.4 46.1 —4.2

7 1.7 8.2 16.8 2.3 34 9.5 9.5 32.6 -7.1

8 3.2 223 33.6 -3.1 35 6.4 1.7 44.1 —6.8

9 2.3 19.1 15.0 —-49 36 5.1 —4.2 52.1 -94

10 9.8 6.7 214 —16.3 37 5.6 7.4 39.9 -94

11 2.8 18.8 30.3 —-33 38 9.2 —4.3 53.8 -3.1

12 5.3 10.8 32.9 7.2 39 9.6 —-3.2 65.0 -5.6

13 5.1 35 21.5 -93 40 11.5 -9.9 82.2 —6.5

14 9.8 1.2 28.8 —4.5 41 9.1 4.2 333 —74

15 6.6 -0.9 11.5 =51 42 9.6 —11.5 61.2 —8.1

16 5.9 —-1.0 32.6 -17.5 43 4.2 129 42.7 -3.0

17 10.2 -93 26.7 0.6 44 6.3 20.2 33.8 -2.6

18 8.2 —-1.7 50.2 —4.5 45 129 8.8 10.5 -7.9

19 13.2 2.7 23.4 0.8 46 5.8 11.2 19.4 —-3.8

20 9.8 —4.3 33.1 —-0.7 47 3.1 14.3 56.3 -7.0

21 8.1 —154 124 —4.5 48 7.1 —24 14.8 —4.7

22 7.8 —6.0 52.3 —-2.3 49 9.0 34 68.4 -5.9

23 114 -175 19.7 —12.6 50 4.2 2.1 31.6 -2.3

24 1.9 11.2 21.1 0.1 51 8.9 5.5 39.5 -32

25 2.3 8.6 21.8 —24 52 8.6 8.0 78.2 —1.5

26 2.3 8.8 134 0.8 53 16.4 6.0 28.8 —4.1

27 2.5 9.3 26.0 -29 54 10.5 20.9 23.2 1.7
Mean confidence interval +538 +£15.04 +29.94 +7.01
# of significant stations 33 13 25 16
(percent) (61 %) (24 %) (46 %) (30 %)

The mean of the observed annual precipitation for the
validation period at each station and the mean of one hun-
dred IBB-simulated data is shown in Fig. 5. The top panel
shows that the simulated data reproduce fairly well the ob-
served mean of annual precipitation for the validation pe-
riod (1994-2008). The observed mean difference (D,u?,bs)
of the annual precipitation between the test period (1976—
1993) and the validation period, shown at the bottom panel of
Fig. 5, matches fairly well with the one of the IBB-simulated
data (D ,u;BB). Rather high variability at the difference is in-
evitable due to relatively small record length for both the test
period and the validation period. Overall, the validation study
implicates that the proposed IBB approach can simulate the
future evolution of annual precipitation over South Korea.

In Fig. 6, the spatial distribution of the differences for the
annual mean precipitation is shown with the observed data
(i.e., D/L(;,bs) and with the IBB-simulated data (DuBB). A

p
high increase of annual mean precipitation in the northern
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and southern parts of the country and a small increase and
slight decrease in the southern part shown in the observed
data (left panel) are well reflected in the IBB-simulated data
(right panel), except that the increase shown from the IBB-
simulated data (right panel) in the left southern part of the
country is not shown in the observed data. Overall, the figure
indicates that the spatial pattern of the annual mean precipi-
tation difference from the observed data (see the left panel) is
similar to the one from the IBB-simulated data (see the right
panel).

5 Precipitation changes according to assumed
temperature increase

Figure 7 shows the results of the fitted IBB model for the
Buan station, located at 35°44’'N and 126°43’E. The top
panel (Fig. 7a) shows the estimated weight order of each
week for the mean temperature data employing the HS meta-
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Table 2. Confidence interval for mean precipitation difference of the observed and simulated data for seasonal data.

Station  Winter Spring Summer Autumn Station Winter Spring Summer Autumn
1 10.7 12.4 28.4 13.6 28 3.89 14.15 32.45 6.08
2 3.7 13.2 29.0 5.1 29 4.71 14.76 31.49 6.34
3 12.7 10.3 29.6 14.2 30 5.24 14.79 30.39 5.55
4 3.7 14.6 34.7 7.6 31 4.08 14.26 27.61 7.45
5 3.6 12.0 25.9 7.8 32 4.25 14.31 28.31 7.09
6 4.0 12.0 253 5.6 33 5.00 15.87 31.29 8.08
7 3.6 14.0 25.9 7.7 34 5.62 13.73 25.75 6.06
8 4.1 13.7 26.4 6.4 35 4.86 12.44 30.64 6.93
9 4.1 14.8 27.1 8.6 36 5.61 12.53 27.52 7.52

10 8.9 10.5 26.7 114 37 5.32 12.89 26.21 7.28
11 4.8 14.5 23.0 7.0 38 5.12 13.53 32.37 5.46
12 5.5 15.2 30.7 6.4 39 5.15 15.64 34.46 6.45
13 4.6 13.1 24.6 5.2 40 5.27 20.28 37.15 6.87
14 8.2 12.9 30.9 6.7 41 4.80 20.76 29.50 5.57
15 4.8 12.1 23.6 4.5 42 5.20 21.00 35.75 7.88
16 5.6 12.5 26.9 6.3 43 4.45 15.73 26.47 6.16
17 72 15.7 30.1 6.9 44 5.23 14.63 26.25 5.11
18 5.2 154 31.9 5.7 45 8.23 11.25 24.05 7.16
19 6.9 20.1 35.1 8.7 46 4.30 10.81 24.10 4.29
20 6.0 19.3 34.3 7.5 47 4.60 11.30 25.36 491
21 4.6 15.7 26.5 6.1 48 4.80 11.24 23.40 4.32
22 5.0 19.5 30.1 6.9 49 5.81 12.41 34.88 5.73
23 5.4 22.6 394 8.4 50 5.38 14.71 33.37 5.54
24 3.6 17.3 27.5 8.3 51 473 15.29 30.09 6.00
25 3.6 13.1 30.8 6.6 52 6.32 17.35 41.62 7.15
26 4.0 13.5 28.2 6.9 53 7.70 29.41 44.00 11.16
27 33 13.5 27.7 4.6 54 7.56 23.95 42.12 9.89

heuristic algorithm with the objective function of Eq. (6)
while assuming a 0.5 °C increase. The estimated values of the
weight order range from 0.2 to 1.3. The mean and standard
deviation of the observed and theoretical results (see Egs. 2
and 7) with a 0.5 °C mean increase are shown in Fig. 7b and
c, respectively. The predominant annual cycle of the mean
weekly temperature is seen in the mean statistics, as shown
in Fig. 7b, while the annual cycle of the standard deviation
(equivalent to the square root of variance) is not as promi-
nent as the annual cycle of the mean (see Fig. 7c). Note that
the weight order and the standard deviation (see Fig. 7a and
c) are highly negatively correlated. In other words, when the
standard deviation is small (e.g., at approximately the 23rd
week), the weight order is high, and vice versa. This result
is intuitive in that if the variance is great, the correspond-
ing temperature values differ greatly from each other. Subse-
quently, the weights of the large values to be selected are not
necessarily much different from the weights of the low values
in such a case, which induces a low weight order. In Fig. 7c,
the variance difference between the observed and theoretical
data, as defined in Eq. (8), is shown with a dotted line. This
variance difference is inflated to the resampled data, as in
Eq. (9). This inflation procedure is optional in assessing the
overall trend of annual mean precipitation data regarding cli-
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mate warming scenarios. However, it might be helpful when
the purpose of the study is to evaluate an overall variation of
extreme precipitation statistics.

The statistics of the simulated data from IBB with the con-
dition of a 0.5 °C mean temperature increase are shown as
a box plot in Fig. 8; the statistics of the observed data are
shown in the same figure with dotted lines and cross marks.
The mean increases by exactly 0.5 °C, as intended, and the
standard deviation (square root of variance) is well preserved
through the variance inflation process (see Eq. 8). The min-
ima and maxima of the mean weekly temperatures are in-
creased.

Shown in Fig. 9a are the mean differences between the
simulated and observed weekly precipitation with the con-
ditions of 0.5 and 1.0 °C increases at the Buan station. The
differences are not significant at the 5 % level. However, the
mean differences are continuously positive from the 30th to
40th week, which is during the summer season. This result
indicates that a seasonal effect on the precipitation change
must exist. Therefore, we also extended our study to a sea-
sonal timescale. The mean precipitation differences of all 54
stations are shown for 0.5 and 1.0 °C increases in Fig. 9b and
¢, respectively. Both plots show a decrease in autumn and
increases in the other seasons.

Geosci. Model Dev., 10, 525-536, 2017
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Figure 10. Spatial distributions in South Korea of the mean differ-
ence in seasonal precipitation (mm) with a 1.0 °C increase in mean
temperature. Note that the scale for the summer distribution is dif-
ferent from the other seasons, the 95 % significance intervals are
different at each station and the mean values of the significance in-
tervals are & 5.38, +15.04, +29.94, and 44.84 for Winter (De-
cember, January, February), Spring (March, April, May), Summer
(June, July, August), and Autumn (September, October, November),
respectively.

For a 1.0 °C temperature increase, 61, 24, and 45 % of the
employed stations show a significant increase in mean pre-
cipitation for the winter, spring, and summer seasons, respec-
tively. In contrast, the mean temperature decreases during the
autumn season. Approximately 30 % of the stations experi-
ence a significant change in the mean precipitation at the 5 %
level given a 1.0 °C temperature increase. The detailed infor-
mation is provided in Table 1.

The spatial distribution of seasonal mean precipitation dif-
ferences is shown in Fig. 10 given the condition of a 1°C
temperature increase. An increasing pattern of precipitation
during winter (see Fig. 10a) can be seen over the South Ko-
rean peninsula. Notably, the eastern and southern coastal ar-
eas undergo a significant increase with a 95 % confidence
interval (£5.38). Note that the significance interval at each

Geosci. Model Dev., 10, 525-536, 2017
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(b) Spring

(c) Summer

(d) Autumn

Figure 11. Spatial distribution of mean difference of seasonal pre-
cipitation (mm) with 0.5 °C increasing mean temperature in South
Korea. Note that the scale of summer is different from the other
seasons and the 95 % significance intervals are different at each sta-
tion and the mean values of the significance intervals are £5.38,
+15.04, £29.94, and £4.84 for Winter (December, January, Febru-
ary), Spring (March, April, May), Summer (June, July, August), and
Autumn (September, October, November) respectively.

station is different because the variances between stations are
different. The detailed significance interval for each station is
provided in Table 2. During spring (see Fig. 10b), the north-
ern part of the country shows an increasing pattern while
the southwestern and southeastern parts show decreasing pat-
terns, but their magnitudes are not significant (£15.04). The
summer precipitation (see Fig. 10c) undergoes a significant
increase in the southwestern area of the country (£29.94). In
contrast to the other seasons, a significant decrease in mean
precipitation occurs during autumn (see Fig. 10d) through-
out the country, especially over the eastern coastal area. The
same spatial pattern of seasonal mean precipitation can be
observed given the condition of a 0.5°C temperature in-
crease, as in the case of a 1.0 °C temperature increase, with
little significant change (see Fig. 11).
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The spatial distributions of seasonal precipitation changes
seem to be related to the flow direction of the seasonal air
mass. In South Korea, winter is influenced primarily by the
Siberian air mass with prevailing northwesterly winds, while
summer is hot and humid with southeasterly winds.

6 Summary and conclusions

A simple method is proposed (1) to simulate precipitation
given the condition of a mean temperature increase derived
from the observations and (2) to address the problem of how
the precipitation varies while the temperature is increased
through global warming. The results illustrated that a sim-
ple IBB technique for the temperature variable, incorporating
block sampling of precipitation, can achieve this objective.

The presented technique is valuable because hydromete-
orological variables such as precipitation and discharge are
difficult to model with current GCMs, while the temperature
prediction is relatively accurate. The proposed method can
be extended to other hydrometeorological variables as well
as other applications, including studies at the global scale.
The limit of the proposed method is that the temperature in-
crease is limited since employed data are observational. One
possibility for allowing a greater temperature increase than
that from the observations is to include neighboring, simi-
lar stations or seasons. The author believes that the proposed
model can be a good surrogate or competitor in GCM-based
climate change impact assessments of hydrometeorological
variables.

The proposed IBB method is not a physical-based method
but a statistical simulation approach in which a physical
mechanism of precipitation cannot be taken into consider-
ation. Substantial modification might be required to accom-
modate this mechanism. The proposed IBB method is con-
ditioned and assumed only on the mean temperature change.
A further scheme can be developed to consider the changes
of multiple variables by classifying the conditions of inter-
ested variables. Another possible extension of the current
study must be analyzing the future variation of hydrologi-
cal extreme events (e.g., extreme floods). When a long-term
variation of hydrological extreme events is related with pre-
cipitation, the proposed IBB method can be used to derive
the variation.

7 Code and data availability

All the employed code can be provided upon request to the
author of the current study. The employed precipitation and
temperature data over South Korea can be downloaded from
the KMA website http://www.kma.go.kr/weather/climate/
pastcal.jsp.
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