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Abstract. A method, based on climate pattern scaling, has
been developed to expand a small number of projections of
fields of a selected climate variable (X) into an ensemble
that encapsulates a wide range of indicative model struc-
tural uncertainties. The method described in this paper is re-
ferred to as the Ensemble Projections Incorporating Climate
model uncertainty (EPIC) method. Each ensemble member is
constructed by adding contributions from (1) a climatology
derived from observations that represents the time-invariant
part of the signal; (2) a contribution from forced changes
in X, where those changes can be statistically related to
changes in global mean surface temperature (Tglobal); and
(3) a contribution from unforced variability that is generated
by a stochastic weather generator. The patterns of unforced
variability are also allowed to respond to changes in Tglobal.
The statistical relationships between changes in X (and its
patterns of variability) and Tglobal are obtained in a “train-
ing” phase. Then, in an “implementation” phase, 190 simu-
lations of Tglobal are generated using a simple climate model
tuned to emulate 19 different global climate models (GCMs)
and 10 different carbon cycle models. Using the generated
Tglobal time series and the correlation between the forced
changes in X and Tglobal, obtained in the “training” phase,
the forced change in theX field can be generated many times
using Monte Carlo analysis. A stochastic weather generator
is used to generate realistic representations of weather which
include spatial coherence. Because GCMs and regional cli-
mate models (RCMs) are less likely to correctly represent
unforced variability compared to observations, the stochastic
weather generator takes as input measures of variability de-
rived from observations, but also responds to forced changes
in climate in a way that is consistent with the RCM projec-

tions. This approach to generating a large ensemble of pro-
jections is many orders of magnitude more computationally
efficient than running multiple GCM or RCM simulations.
Such a large ensemble of projections permits a description of
a probability density function (PDF) of future climate states
rather than a small number of individual story lines within
that PDF, which may not be representative of the PDF as
a whole; the EPIC method largely corrects for such poten-
tial sampling biases. The method is useful for providing pro-
jections of changes in climate to users wishing to investigate
the impacts and implications of climate change in a prob-
abilistic way. A web-based tool, using the EPIC method to
provide probabilistic projections of changes in daily maxi-
mum and minimum temperatures for New Zealand, has been
developed and is described in this paper.

1 Introduction

While future changes in climate will follow a single tra-
jectory, it is highly unlikely that any single climate model
projection will correctly simulate that trajectory. The use of
a single model projection is therefore insufficient for assess-
ing the potential future state of the climate. Rather, what is
required is a large (e.g. 10 000-member) ensemble of projec-
tions that provides a probabilistic portrayal of how the cli-
mate is expected to evolve. Clustering of trajectories within
that probabilistic envelope then shows where any single tra-
jectory has a higher likelihood of occurring. Probabilistic
simulations of future climate, presented as probability den-
sity functions (PDFs), give decision makers a much clearer
picture of likelihoods of future climate states compared to
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a single projection, or a small set of projections (Watterson
et al., 2008). That said, if decision makers are presented with
PDFs obtained from the same family of models, these may be
biased by the assumptions and limitations inherent in a single
family of models that do not explore the possible trajecto-
ries seen in other model families. PDFs of future climate that
consider a greater number of sources of uncertainty, includ-
ing uncertainty resulting from structural differences in the
underlying models, provide more robust information needed
for quantitative risk assessments, since the likelihood of any
particular trajectory can be better estimated.

Exploring expected changes in extreme weather events
also requires probabilistic simulations of future climate.
While climate change may result in a small shift in the mean
and/or standard deviation (SD) of a PDF of a selected climate
variable, the tails of the distribution, which represent extreme
weather events, can exhibit fractionally much larger changes
(see Fig. 1.8 in Solomon et al., 2007). It is especially impor-
tant that extreme events, which by their nature are unusual,
are captured in an ensemble of projections.

Resolving changes in the frequency of regional-scale ex-
treme weather events requires large ensembles of projections
of high spatial and temporal resolution. Generating such en-
sembles using models which simulate all important physical
processes, such as global climate models (GCMs) or regional
climate models (RCMs), is currently computationally pro-
hibitive. The ideas underlying climate pattern scaling sug-
gest a means of overcoming this hurdle and form the basis
for the newly developed Ensemble Projections Incorporating
Climate (EPIC) model uncertainty method described here.
First, a robust statistical relationship is derived between the
local climate variable of interest (X) and some associated
readily generated predictor. In climate pattern scaling, this
predictor is typically the global mean surface temperature
(Tglobal). If observations are being used to establish this re-
lationship, then observed values of X and Tglobal would be
used. If GCM or RCM output is used to establish the re-
lationship, then X and Tglobal should come from the same
model simulation.

Once the relationship between X and Tglobal has been de-
termined, then, given multiple versions of Tglobal, multiple
time series of X can be generated based on that relationship.
This methodology assumes that many versions of Tglobal can
be simulated in a way that captures the inherent variability re-
sulting from structural uncertainties in GCMs and carbon cy-
cle models in a computationally efficient way – e.g. through
the use of a simple climate model (SCM). If the large en-
semble of Tglobal time series spans the range of model struc-
tural uncertainties, then the resultant ensemble of generated
X time series will reflect that spread in uncertainties – e.g. as
done in Reisinger et al. (2010).

A number of previous studies (e.g. Murphy et al., 2007;
Sexton, 2012; Harris et al., 2010) used a method that was
designed by the UK Met Office (Murphy et al., 2009) to
provide probabilistic projections of future climate for Eu-

rope. Their method combines information from a perturbed
physics ensemble (PPE), multi-model ensembles to cap-
ture model structural uncertainties, and observations. Since
GCMs have been shown to not be structurally independent
(Masson and Knutti, 2011; Knutti et al., 2013), multi-model
ensembles benefit from model weighting to improve the en-
semble performance (Knutti et al., 2017). The limitations of
these methods are that large computer resources are required
to run the ensembles of simulations required, which limits
the ability to apply this method across many different green-
house gas (GHG) emissions scenarios.

2 Models and data sources

2.1 Regional climate model

An RCM simulation, or a number of RCM simulations, are
used to provide the time series used to train EPIC, i.e. to
quantitatively establish the relationship between the change
in annual mean global mean surface temperature and the
change in the climate variable of interest and its variabil-
ity. RCM simulations used in this study were performed us-
ing the Hadley Centre RCM HadRM3-PRECIS (Jones et al.,
2004) that has been modified to be used for New Zealand
(Bhaskaran et al., 1999, 2002; Drost et al., 2007) and which is
described in further detail in Mullan et al. (2016). The RCM
domain spans 32 to 52◦ S and 160 to 193◦ E (167◦W) on
a regular rotated grid with a horizontal resolution of 0.27◦

and with the North Pole at 48◦ N and 176◦ E. Such a rotated
grid, with the equator running through the New Zealand do-
main, ensures a quasi-uniform grid box spacing. The 0.27◦

resolution results in a domain of 75×75 grid points, reduces
computation time for long simulations, and has been shown
to be adequate in previous studies (Drost et al., 2007). The
spatial resolution necessitates a computational time step of
3 min. The model orography and vegetation data sets were
updated from those used by Drost et al. (2007) to the high-
resolution surface orography data set used in NIWA’s opera-
tional forecast model (Ackerley et al., 2012); differences in
the vegetation fields are small. The first year of model sim-
ulation (the spin-up) is excluded from the analysis, as this
is used to achieve quasi-equilibrium conditions of the land
surface and the overlying atmosphere.

The RCM lateral boundary conditions can be sourced
either from meteorological reanalyses (these are typically
used for hindcast simulations) or from GCM output. The
atmosphere-only GCM (AGCM) used in this study was
HadAM3P developed by the Hadley Centre in the UK and
forced by prescribed sea surface temperatures (SSTs) and sea
ice extent at the air–sea interface for past and future climate
simulations. HadAM3P is a slightly improved version of the
atmospheric component of HadCM3, with 19 vertical levels
and a horizontal resolution of 1.875◦ longitude by 1.25◦ lat-
itude. HadAM3P simulates all atmospheric and land surface
processes relevant to climate (Pope et al., 2000). Processes
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related to clouds, radiation, the boundary layer, diffusion,
gravity wave drag, advection, precipitation, and the sulfur
cycle are all parameterised in HadAM3P. Additional details
regarding HadAM3P are available in Gordon et al. (2000),
Pope et al. (2000), Pope and Stratton (2002), and Gregory
et al. (1994). The output from the RCM was then statistically
downscaled to a 0.05◦× 0.05◦ grid (Mullan et al., 2016).

The prescribed boundary conditions for the HadAM3P
model were obtained from six atmosphere–ocean GCM
(AOGCM) simulations obtained from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive –
namely simulations from the BCC-CSM1-1, CESM1-
CAM5, GFDL-CM3, GISS-EL-R, HadGEM2-ES, and
NorESM1-M models. These AOGCMs were selected for
their ability to best simulate changes in synoptic-scale cli-
mate around New Zealand.

Most GCM and RCM simulations display biases when
compared to observations. The RCM simulations used in
this study were partially bias-corrected by bias correcting
the SSTs that are used as lower boundary conditions for
the HadAM3P simulations, which then provided the lateral
boundary conditions for the RCM simulations.

2.2 Simple climate model

In this study, MAGICC (Model for Assessment of
Greenhouse-gas Induced Climate Change; Meinshausen
et al., 2011a, b) is the SCM used to generate an ensemble
of Tglobal time series. MAGICC is a reduced-complexity cli-
mate model with an upwelling diffusive ocean and is cou-
pled to a simple carbon cycle model that includes carbon
dioxide (CO2) fertilisation and temperature feedback param-
eterisations of the terrestrial biosphere and oceanic uptake.
MAGICC can be tuned to emulate the behaviour of 19 dif-
ferent CMIP3 AOGCMs (Meehl et al., 2007) and 10 car-
bon cycle models (Friedlingstein et al., 2006). The resultant
190 different “tunings” for MAGICC can be used to generate
190 equally probable Tglobal time series that provide an indi-
cation of the spread in Tglobal resulting from structural un-
certainties in AOGCMs and the carbon cycle models used in
C4MIP (Coupled Carbon Cycle Climate Model Intercompar-
ison Project). When used as predictors for changes in local
climate variables, and using the prior established quantita-
tive relationship between Tglobal and the X, these 190 Tglobal
time series can be used to generate 190 time series emulating
X.

The EPIC method does not attempt to faithfully represent
the full, true PDF of potential tuning parameters both for the
AOGCM tunings and the carbon cycle model tunings – i.e.
were MAGICC tuned to a different set of AOGCMs (e.g.
the CMIP5 set rather than the CMIP3 set), we would obtain
a different set of tuning files which could lead to a somewhat
different spread in our generated ensembles. The purpose of
this paper is not to generate perfect ensembles that encap-
sulate structural model uncertainty in a completely accurate

way but rather to describe a method that provides a better
representation of that uncertainty than can be achieved with
only a limited set of RCM simulations. The robustness of the
EPIC method depends on the set of AOGCM and carbon cy-
cle model tunings available, and as more comprehensive sets
(that better reflect the likelihood of some tunings over others)
become available, we expect the large ensembles generated
by EPIC to better reflect the true underlying uncertainties.

2.3 Virtual climate station network

While the RCM simulations have been partially bias-
corrected, we recognise that some biases may remain. There-
fore, we build our projections off an observational data set, so
that, in the absence of any forced changes in climate, the pro-
jections default to observations (this is described in greater
detail below). Observationally based time series are obtained
from the so-called virtual climate station network (VCSN).
The VCSN data set for the New Zealand land surface is con-
structed on a regular 0.05◦× 0.05◦ grid from spatially inho-
mogeneous and temporally discontinuous quality-controlled
weather station data (Tait et al., 2005). The values estimated
on the 0.05◦× 0.05◦ grid are based on thin plate smoothing
spline interpolation using a spatial interpolation model as de-
scribed in Tait (2008).

3 Methodology

For a given geographic location, each ensemble member,
covering the period 1960 to 2100, is constructed from contri-
butions including

1. a climatology derived from observations that represents
the time invariant part of the signal;

2. a contribution from long-term forced changes in the
magnitude of the variable of interest where those
changes scale with changes in anomalies in global mean
surface temperature (T ′global);

3. a contribution from weather, generated by a stochastic
weather generator that incorporates both forced and un-
forced variability.

The construction of each of these signals is described in
greater detail below with a high-level overview of how these
contributions are related shown in Fig. 1. The methodology
described below pertains to a selected single GHG emis-
sions scenario and the daily maps of the climate variable
of interest (X; here daily maximum (Tmax) and daily mini-
mum (Tmin) surface temperatures) are obtained from one or
more RCM simulations. To produce the results for this study,
10 ensemble members were generated for each of the 190
Tglobal time series from MAGICC to produce an ensemble
of 1900 members. These ensemble members were generated
over the period 1960 to 2100. The Tmax and Tmin fields were
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Figure 1. Flow chart illustrating the processes involved in generating a single EPIC ensemble member based on training from a selected
RCM simulation. Numbers in brackets refer to the section in the text where more details are provided.

obtained from six RCM simulations driven by the Represen-
tative Concentration Pathway (RCP) 8.5 GHG emissions sce-
nario for the period 1971–2100. RCP 8.5 was chosen as it
displays a high climate signal-to-noise ratio, resulting in the
most robust regression results (Huntingford and Cox, 2000;
Mitchell, 2003), but the methodology is valid for any chosen
GHG emission scenario, assuming that a robust regression fit
is obtained during the training phase. The assumption, which
has been verified (not shown here), is that the dependence of
X on Tglobal is independent of the GHG emissions scenario
used for the training. All anomalies were calculated with re-
spect to the period 2000 to 2010. This anomaly period was
chosen because the change in X over the 21st century was of
interest.

3.1 The climatology

At each 0.05◦ by 0.05◦ (approximately 5 km) grid point,
a mean annual cycle is calculated from daily observational
data from 2001 to 2010. For this study, these observational
data were obtained from VCSN (Sect. 2.3). Since the 10-
year baseline period is rather short, a climatology derived
by calculating calendar day means would still contain some

weather-induced noise. Therefore, a regression model which
includes an offset basis function, expanded in two Fourier se-
ries (Fourier pairs) to account for seasonality (see Sect. 2.4
of Kremser et al., 2014), is fitted to the daily observational
data to obtain the mean annual cycle. The first two Fourier
series expansions are given by

β(d)=β0+β1× sin(2πd/365)+β2× cos(2πd/365)
+β3× sin(4πd/365)+β4× cos(4πd/365), (1)

where d is the day number of the year and β is the regression
coefficient being expanded. By using an offset basis function
expanded in Fourier pairs, the resultant mean annual cycle
is smooth. Examples of the mean annual cycle are shown in
Fig. 2 for four selected locations around New Zealand.

This repeating mean annual cycle then provides the sta-
tionary baseline for the entire period of interest – e.g. 1960
to 2100.
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Figure 2. Observations of daily maximum surface temperature (red) and daily minimum surface temperature (cyan) from VCSN, together
with the mean annual cycle obtained from the regression model fit to the daily maximum surface temperature (magenta) and the daily
minimum surface temperature (blue) time series for four selected locations in New Zealand, over the period 2001 to 2010.

3.2 Direct response to T ′
global

3.2.1 Training phase

In the training phase, the first-order long-term forced change
in X is established using the correlation between X′ and
T ′global. This relationship is expected to be dependent on the
RCM simulation from which the variable of interest is ob-
tained. There are two ways in which this can be managed:

1. A statistical relationship is quantified for each RCM
simulation providing data for the training phase of
EPIC. Then, in the “implementation phase” of EPIC
(see below), for each ensemble member, a single rela-
tionship is randomly selected.

2. A single statistical relationship is quantified using
a concatenated time series obtained from all RCM sim-
ulations providing data for the training phase of EPIC.
In the “implementation phase”, this relationship is used.

For the purposes of this study, method (1) is used, as
method (2) will tend to underestimate the true uncertainty
of the relationship between X′ and T ′global.

A simple linear correlation between X′ and T ′global is cal-
culated for each of the six RCM simulations and each grid

point independently, namely

X′(t)= α× T ′global(y)+R(t), (2)

whereX′(t) are the daily anomalies with respect to the 2001–
2010 mean annual cycle of X, the T ′global(y) are the anoma-
lies of an annual mean global mean surface temperature time
series obtained from the AGCM which provided the bound-
ary conditions for the selected RCM simulation, α is the re-
gression coefficient, and R is the residual which is the part of
the signal that cannot be explained by the statistical model.
In this case, the residuals are used by the stochastic weather
generator (see Sect. 3.3) to model higher-order changes in
the variability in X which are not captured by Eq. (2).

The mean annual cycle of X, which is used to calculate
X′, is generated using the same method and time period used
to calculate the mean annual cycle of the observational set.
X′, rather than X, is used in Eq. (2), as the change in the
seasonal cycle is of interest. Removing the mean annual cy-
cle removed the need to add additional terms to describe the
baseline seasonal cycle.

Because GCM and RCM output provide a much longer
time series than observations and extend into a period of
greater changes in X, GCM or RCM output are preferen-
tially used in this training phase. In this study, the input to the
training phase of EPIC, T ′global, is sourced from the AGCM
that provided the boundary conditions for the RCM simula-
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Figure 3. Annual mean global mean surface temperatures calcu-
lated from the CMIP5 AOGCM simulations under the RCP8.5 sce-
nario (coloured solid lines). The annual mean global means from the
HadAM3P (dashed lines) and MAGICC (grey lines) for RCP8.5 are
also shown.

tion. Both the T ′global time series used in the training phase
and later in the implementation phase of EPIC need to be
geophysically consistent. This geophysical consistency can
be assessed by comparing the T ′global time series obtained
from the HadAM3P simulations with the T ′global time series
obtained from the CMIP5 AOGCMs that provided the SST
boundary conditions for the HadAM3P simulations (which
were not used elsewhere in EPIC), as well as with the 190
T ′global time series obtained from MAGICC (Fig. 3). There
are clear differences between the T ′global time series obtained
from the CMIP5 AOGCMs and those obtained from the
HadAM3P simulations. This is because the SSTs from the
CMIP5 AOGCMs are bias-corrected before being used as
the surface boundary conditions for the HadAM3P simula-
tions. The six T ′global time series from the HadAM3P simu-
lations (used in the training phase of EPIC) fall well within
the envelope of the 190 MAGICC T ′global time series used in
the implementation phase of EPIC, even though MAGICC is
emulating a range of CMIP3 models.

Because the fit coefficient, α, is expected to depend on sea-
son, it is expanded in two Fourier pairs to account for its sea-
sonality (Eq. 1). The resulting α has a smooth seasonal cycle,
which would not be the case if each month was fitted inde-
pendently. When embedded in Eq. (2), the resulting equation
has five fit coefficients (α0 to α4):

X′(t)=(α0+α1× sin(2πd/365) (3)
+α2× cos(2πd/365)+α3× sin(4πd/365)
+α4× cos(4πd/365))× T ′global(y)+R(t).

The statistical model is solved using a multivariate least
squares regression approach (Moore and McCabe, 2003) to
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Figure 4. An example of the fit of Eq. (2) (red line) to daily
maximum surface temperature anomalies (blue) obtained from the
NorESM1-M RCM simulation under the RCP8.5 GHG emissions
scenario at Alexandra, New Zealand (45.249◦ S, 169.396◦ E). Solid
line represents the zero line (no change).

obtain the fit coefficients. We refer to each such set of five
fit coefficients as a tuple; recall that this fit is applied at each
grid point and for each available RCM simulation.

An example of a fit of Eq. (2) to daily maximum surface
temperature anomalies is shown in Fig. 4 for a location in the
South Island of New Zealand.

The small annual cycle in the fit, with growing amplitude,
results from summertime and wintertime daily maximum
surface temperatures exhibiting different correlations against
T ′global. The inter-annual variation arises from changes in
Tglobal as α does not change from year to year. In addition
to the long-term forced change, there is significant day-to-
day variability. The use of the residuals from such fits in the
stochastic weather generator is described in Sect. 3.3.

The unitless α coefficient describes a location’s sensitiv-
ity to changes in annual mean global mean surface temper-
ature. The magnitude of α indicates whether Tmax or Tmin
are changing faster (α > 1) or slower (α < 1) than the global
mean surface temperature. Example maps of the α coeffi-
cient, over New Zealand, for four selected days throughout
the year, are shown in Fig. 5. This analysis shows that daily
maximum surface temperatures over most of New Zealand
are warming more slowly than Tglobal. However, high-altitude
regions, such as the Southern Alps, indicate a Tmax increasing
faster than Tglobal for Southern Hemisphere spring, summer,
and autumn.

There is, of course, some uncertainty in α. To account for
that uncertainty, a large set of α tuples is derived through
a Monte Carlo bootstrapping approach (Efron and Tibshirani,
1994), whereby residuals from the Eq. (2) fit are randomly
sampled and added to the regression model fit to generate
multiple statistically equivalent time series, which are then
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Figure 5. Maps of α coefficients (unitless), which represent the sensitivity of changes in daily maximum surface temperature to changes in
annual mean global mean surface temperatures for locations throughout New Zealand. The α coefficients were derived from fits of Eq. (2)
to daily time series of daily maximum temperatures at each grid point of the NorESM1-M RCM simulation. The annual mean global
mean surface temperature anomalies were taken from the AGCM simulation that provided the boundary conditions for this particular RCM
simulation. Black lines indicate α values of 1.0.

refitted to obtain equally probable α fit coefficients (Bodeker
and Kremser, 2015). This approach allows for the incorpo-
ration of the uncertainty in the fit of Eq. (2) into the final
ensemble of projections.

3.2.2 Implementation phase

Once the Monte Carlo derived sets (just one set if method (2)
is used) of α tuples have been obtained, they are used in the
implementation phase of EPIC. As described in Sect. 2.2,
190 simulations of T ′global can be generated using a SCM.
A randomly selected T ′global time series from the 190-member
set is used together with a randomly selected tuple of α val-
ues to generate a series of maps of X′forced using Eq. (2),

where the forced subscript denotes that these are changes
which correlate with T ′global.

There might be some concern that the random selection
of an α tuple from the available set of tuples for a location
could cause the spatial coherence in the forced signal across
New Zealand to be lost, as at a nearby location a different
tuple could be randomly selected. This was tested for and was
found not to be the case, as the multiple instances of tuples
(multiple instances of Fig. 5) are very similar and consistent
(not shown here).

3.3 Indirect response to T ′
global and weather noise

In addition to the change in X that correlates directly with
T ′global, higher-order components of variability, as well as re-
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alistic weather noise, must be present in the projections com-
prising the ensemble. One potential use of the ensemble of
projections generated by EPIC is assessment of the impacts
and implications of climate change on a regional scale. These
impacts seldom happen at a single site, i.e. the impact is felt
over a large area. For this reason it is important that any spe-
cific member of an ensemble is appropriately spatially co-
herent over multiple sites. This is not achieved if the method
considers each site in isolation, since any purely stochasti-
cally determined weather noise added to a site would not be
spatially coherent at neighbouring sites. For this reason, an
empirical orthogonal function (EOF) approach, described by
Lorenz (1956), is used to describe the spatial weather pat-
terns and how they change over time. EOF analysis is a sta-
tistical method which reveals the spatial patterns, or modes
of variability in a data set, and how these patterns evolve
over time as given by the resulting principal component (PC)
time series. Hereafter we refer to these modes of variabil-
ity as “weather modes”. The EOF analysis is applied to X′

after the dependence on T ′global has been removed. These
weather modes, and PC time series, are then used to construct
a weather generator which produces realistic weather noise
by stochastically generating PC time series (PCsyn). The fol-
lowing is recognised in the construction of the stochastic
weather generator:

1. That VCSN data will provide the most realistic repre-
sentation of weather noise.

2. That RCM simulations will simulate how that weather
noise is likely to evolve in response to climate change
(represented by T ′global).

3. That the RCM simulations will be imperfect in simulat-
ing the patterns of variability derived from the VCSN
data.

4. That there will be patterns of variability (weather)
whose amplitude and variability will respond to climate
change as well as others which do not change with in-
creases in T ′global.

3.3.1 Identifying the modes of variability responding to
climate change

We begin by conducting an EOF analysis on VCSN data that
have been detrended by removing the first-order trend and
on residuals from the fit of Eq. (2) to RCM data in the train-
ing phase. Where the patterns of variability obtained from
EOF analyses of VCSN and RCM diverge is considered to
be the cut-off point for where the RCM simulation can be
taken to have any integrity with regard to simulating forced
changes in weather noise. Visual inspection of the EOF maps
derived from VCSN and RCM data suggested that the first
four modes of variability are well represented by the RCM
simulations (see Fig. 6).

Figure 6. The first five EOF patterns of weather noise in daily max-
imum surface temperatures obtained from VCSN data from 1972 to
2013 (left column) and obtained from RCP8.5 NorESM1-M RCM
output from 1972 to 2100. The colour bar shows the amplitude of
the pattern in ◦C. The percentage values in each panel show the
fraction of the total variability explained by each mode.

It is clear from Fig. 6 that the RCM EOFs exhibit the same
modes of weather variability as seen in the VCSN data up
until EOF pattern 4. Together, the first four patterns of vari-
ability explain 83.3 % of the total weather variability in the
VCSN data and 64.7 % of the variability in the RCM data.
It is these four modes of weather variability that evolve with
T ′global in our stochastic weather generator.
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3.3.2 Modelling forced changes in the amplitude and
variability of weather modes

To compare statistics from the PC time series calculated from
VCSN and RCM data, they must share the same underly-
ing weather modes. This is done by projecting the VCSN
weather modes (EOFVCSN) onto the RCM data to calculate
a pseudo-PC time series. A pseudo-PC time series is calcu-
lated in the same way that a standard PC time series is calcu-
lated, except that the weather modes are prescribed instead
of being calculated from the data. A pseudo-PC time series
describes the magnitude of a particular pattern of variability
from VCSN, which is present in the RCM data. The VCSN
weather modes, rather than the RCM weather modes, were
prescribed because the observational data set is more likely
representative of patterns of variability seen in New Zealand.
The pseudo-PC and VCSNPC time series can be compared as
they both describe the same patterns of variability.

In the stochastic weather generator, we consider changes
in the following two items:

1. The amplitude of the weather mode: this is quantified by
correlating the associated pseudo-PC time series with
T ′global and then using that correlation coefficient (β) to
drive a trend in the PC time series obtained from the
VCSN-based EOF analysis.

2. The variability of the weather mode: this is quantified
by correlating the variability in the associated pseudo-
PC time series with T ′global and then using that correla-
tion coefficient (βvar) to drive a trend in the variability of
the PC time series obtained from the VCSN-based EOF
analysis. The mean variability of the weather mode is
obtained from the VCSN PC time series rather than the
pseudo-PC time series, so that the weather mode em-
ulates the magnitude of variability seen in the VCSN
data.

We also recognise that the PC time series will exhibit tem-
poral auto-correlation and therefore that correlation is quan-
tified and removed before correlating the PC signal, and its
variability, against T ′global. The resulting time series (PCsyn_n)
captures both long-term shifts and/or changes in spread of
the nth weather mode. We note, however, that by considering
only lag-one autocorrelation in these PC time series, we ne-
glect longer-term auto-correlation, e.g. that resulting from El
Niño and La Niña events. As a result, our ensemble time se-
ries exhibit smaller inter-annual variability than is observed
in VCSN time series.

The ability of the method to generate a set of PDFs of the
PCsyn_1 to PCsyn_4 time series is demonstrated in Fig. 7.

The EPIC method corrects for any shortcomings in the
ability of the RCM to correctly simulate expected magni-
tudes of weather variability for these four primary modes
and then accommodates these corrections when generating
PC time series that evolve into the future.

3.3.3 Modelling higher order modes of variability in
weather

The stochastic weather generator includes the effects of EOF
patterns five and higher but assumes that these modes show
no dependence on T ′global as the RCM simulations do not ac-
curately simulate these higher modes of weather variability.
The variability of the PC time series often has a strong sea-
sonal cycle. Therefore, for EOF pattern five and higher, syn-
thetic PC time series (PCsyn) are generated using a standard
Monte Carlo approach, i.e. randomly selecting values from
N(0,σ (d)) – that is, a normal distribution with a mean of 0
and a SD which depends on the day of the year which is be-
ing modelled. σ(d) is determined by a linear least squares fit
of two Fourier pairs (Eq. 1) to the VCSN PC time series. The
Fourier pairs model the seasonal cycle in the PC time series.
This approach allows selection of extreme PC values that are
outside of the range of PC values experienced in the 1972–
2013 period, but noting that the PDFs of these PCs do not
evolve with time. As with the forced changes in the ampli-
tude and variability of weather modes, the auto-correlation
in the PC time series is also quantified and captured in the
statistically modelled PC time series.

For a given ensemble member, once synthetic PC time se-
ries at daily resolution have been generated, they are used to
produce a reconstructed weather field, W , according to

W(i,j, t)=

50∑
n=1

EOFVCSN_n(i,j)PCsyn_n(t),

where i, j , and t represent the latitude, longitude, and time
dimensions respectively and n is the nth weather mode.

Since W has been constructed from a linear combination
of spatial patterns of variability, each of which is spatially co-
herent, it retains the property of spatial coherence. The vari-
ability evolves as expected under changes in T ′global for the
first four modes of variability, as simulated by the RCM, and
where extreme conditions, outside the range of the training
period, occur with a statistically reasonable frequency due to
the stochasticity in the construction of the pseudo-PC time
series.
Tmin is modelled identically to Tmax with one small

change: days with anomalously low Tmax would be more
likely to have anomalously low Tmin. Not accounting for this
correlation could result in stochastically modelled Tmin val-
ues being higher than the modelled Tmax value for that day.
To avoid that, and to capture the correlation between Tmax
and Tmin on any given day, the same set of random numbers
used to generate the values in the synthetic PCn time series
for Tmax for a given day is used to generate the values in the
synthetic PCn time series for Tmin. This forces the selection
of PCsyn values from the same region of the PDF for both
Tmax and Tmin.
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Figure 7. PDFs of the first four synthetic (PCsyn) and RCM (PCRCM) PC time series for the first decade of the 21st century are shown
as solid lines and PDFs for the last decade of the 21st century are shown as dashed lines. PCRCM and PCsyn were both derived from the
NorESM1-M RCM output as an example. The PDF from the PC time series (2000–2010) obtained from VCSN is also shown (PCVCSN). The
disagreement between the PCRCM and PCVCSN validates the use of VCSN weather noise as the basis for our stochastic weather generator,
and the good agreement between the ensemble of PCsyn and PCVCSN demonstrates that the EPIC method generates synthetic PC time series
with a degree of variability that matches reality.

4 Results

Examples of the Tmax and Tmin time series generated by the
EPIC method are shown in Fig. 8 for four population cen-
tres in New Zealand together with the associated VCSN time
series.

Actual EPIC ensemble time series add these anomaly time
series to the 2001–2010 VCSN-derived annual cycle cli-
matology and therefore show no systematic bias with re-
spect to the VCSN data. The EPIC-generated time series
also show a long-term evolution consistent with expectations
from RCM simulations, including the effects of the spread
in those simulations. While it cannot be directly seen from
the time series plotted in Fig. 8, the EPIC-generated time
series also exhibit changes in weather variability consistent
with RCM projections of expected changes in the first four
modes of weather variability. The apparent annual cycle in
the anomaly time series reflects the annual cycle in the vari-
ance and not an annual cycle in the anomalies; towards the

end of the period there is a true annual cycle in the anoma-
lies from differential seasonal changes in Tmax and Tmin. The
inter-annual variability of the EPIC ensemble members is
lower than that of the observational data set. This is due
to EPIC not including any terms which describe patterns of
variability which occur at timescales of longer than 1 year.

5 Discussion and conclusions

The EPIC (Ensemble Projections Incorporating Climate
model uncertainty) method is able to generate large ensem-
bles of daily time series of daily maximum and minimum
temperatures that exhibit the following characteristics:

– No bias with respect to VCSN data.

– Long-term evolution consistent with projections from
a suite of RCM simulations, incorporating the uncer-
tainties inherent in those simulations as well as addi-
tional structural uncertainties that may arise from the
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Figure 8. Example output from 1900 EPIC-generated time series for Auckland, Wellington, Christchurch and Dunedin from 1960 to 2100
under the RCP8.5 GHG emissions scenario. Grey shaded areas show the 1, 10, 25, 75, 90, and 99 percentiles while the blue line shows the
median value on each day. The T ′max (left column) and T ′min (right column) anomalies are with respect to the 2000–2010 mean annual cycle.
VCSN time series are overlaid in each panel (red lines).
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use of a wider suite of RCMs as captured by the use of
projections of T ′global. The T ′global time series were gen-
erated by a SCM tuned to 19 different AOGCMs and
10 different carbon cycle models and used as a predic-
tor for the long-term change in Tmax and Tmin.

– Weather variability with extremes that extend beyond
that observed in the VCSN record, and which evolve in
a way consistent with RCM projections of changes in
the four primary modes of weather variability.

– Spatial coherence in weather variability in any single
ensemble member is preserved.

As such, EPIC-generated projections are suitable for gener-
ating robust PDFs of projections of Tmax and Tmin.

The number of members in each ensemble is essentially
limited only by the computing resources available. The
stochasticity introduced by the Monte Carlo analysis and
modelling of the weather noise allows for many ensemble
members to be generated for a given Tglobal. For calculating
the PDFs that are delivered to users, we currently generate
19 000 member ensembles (10 ensemble members for each
Tglobal) for a given RCP scenario at each 0.05◦× 0.05◦ grid
point across New Zealand.

A web-based tool has been developed to deliver PDFs of
Tmax and Tmin for the periods 2001–2010 and 2091–2100 to
users along with statistics regarding the change in frequency
of extreme events, i.e. days per year with Tmax above 25 and
30 ◦C and Tmin below 0 and 2 ◦C. The tool is available at
http://futureextremes.ccii.org.nz/.

The next steps for the development of EPIC include ex-
tending the range of climate variables to daily surface broad-
band radiation, surface humidity, and precipitation, and in-
corporating longer-term sources of variability, e.g. those gen-
erated by El Niño and La Niña events, into the stochastic
weather model. The implementation of a model weighting
scheme, such as that of Knutti et al. (2017), for the training
data could increase the applicability of the model.

Code and data availability. The source code and data used are
available upon request to the corresponding author. The VCSN data
set employed is available from NIWA (2017) (https://www.niwa.co.
nz/climate/our-services/virtual-climate-stations).
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