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Abstract. Coastal hydrodynamics can be greatly affected
by the presence of submerged aquatic vegetation. The ef-
fect of vegetation has been incorporated into the Coupled
Ocean—Atmosphere—Wave—Sediment Transport (COAWST)
modeling system. The vegetation implementation includes
the plant-induced three-dimensional drag, in-canopy wave-
induced streaming, and the production of turbulent kinetic
energy by the presence of vegetation. In this study, we eval-
uate the sensitivity of the flow and wave dynamics to veg-
etation parameters using Sobol’ indices and a least squares
polynomial approach referred to as the Effective Quadra-
tures method. This method reduces the number of simula-
tions needed for evaluating Sobol’ indices and provides a
robust, practical, and efficient approach for the parameter
sensitivity analysis. The evaluation of Sobol’ indices shows
that kinetic energy, turbulent kinetic energy, and water level
changes are affected by plant stem density, height, and, to
a lesser degree, diameter. Wave dissipation is mostly depen-
dent on the variation in plant stem density. Performing sen-
sitivity analyses for the vegetation module in COAWST pro-
vides guidance to optimize efforts and reduce exploration of
parameter space for future observational and modeling work.

1 Introduction

The presence of aquatic vegetation (e.g., mangroves, salt
marshes, and seagrass meadows) provides several ecolog-
ical benefits including nutrient cycling, habitat provision,
and sediment stabilization (Costanza et al., 1997). Vegeta-
tion provides a habitat for many species of epiphytes, inverte-
brates, and larval and adult fish (Heck et al., 2003). Seagrass
meadows reduce sediment resuspension, thereby stabilizing
bottom sediment, increasing light penetration, and improving
water clarity in a positive feedback loop (Carr et al., 2010).
In addition, aquatic vegetation provides coastal protection by
absorbing wave energy (Wamsley et al., 2010).

One approach to implement the influence of aquatic veg-
etation on circulation is by increasing the bottom roughness
coefficient (Ree, 1949; Morin et al., 2000). Recent studies
involving 2-D depth-averaged models (Chen et al., 2007;
Le Bouteiller and Venditti, 2015) have quantified the effect
of vegetation through parameterization as ‘“form drag” as op-
posed to “skin friction”. To account for 3-D vertical struc-
tures, estuary-scale models have implemented both mean
and turbulent flow impacts of vegetation (Temmerman et al.,
2005; Kombiadou et al., 2014; Lapetina and Sheng, 2014).
In addition to impacts on the flow field, the presence of veg-
etation also results in wave attenuation. The decay of wave
height over vegetation has been simulated by enhancing bed
roughness (Moller et al., 1999; de Vriend, 2006; Chen et
al., 2007). A more physical description of wave attenuation
due to vegetation was developed by Dalrymple et. al (1984),
who approximated wave energy loss due to stalks approxi-
mated as cylinders. This approach has been applied in spec-
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tral wave models and calibrated against flume experiment re-
sults (Mendez and Losada, 2004; Suzuki et al., 2012; Wu,
2014; Bacchi et al., 2014).

Recently, Beudin et al. (2017) implemented the effects of
vegetation in a vertically varying water column through mo-
mentum extraction and turbulence dissipation and genera-
tion using a 3-D hydrodynamic model and accounting for
wave dissipation due to vegetation in a spectral wave model.
The modeling approach was implemented and tested within
the open-source COAWST (Coupled Ocean—Atmosphere—
Wave—Sediment Transport) modeling system that couples
hydrodynamic and wave models (Warner et al., 2010). The
vegetation module was based on modifications to the flow
field resulting from three-dimensional drag, in-canopy wave-
induced streaming, and production of turbulent kinetic en-
ergy in the hydrodynamics model (Regional Ocean Model-
ing System — ROMS), along with energy dissipation and re-
sultant hydrodynamic feedback from the wave model (Simu-
lating WAves Nearshore — SWAN).

The vegetation module requires the user to input a given
set of plant properties (stem density, height, diameter, and
thickness). These vegetation properties can be highly vari-
able depending on the season and environment, yet obtaining
a full set of measurements in realistic settings is impractical.
Identifying which properties have the greatest influence on
the resulting flow dynamics can reduce the amount of ob-
servational data required to robustly parameterize the model
and/or reduce the number of runs required in a model en-
semble to quantify the uncertainty associated with data gaps.
Our study aims to perform a systematic sensitivity analy-
sis to quantify the effect of changing the vegetation proper-
ties on the resulting hydrodynamic output. The results of the
sensitivity analysis can be used to select and rank the most
important parameters for calibration. Two conditions are re-
quired for the model to display a significant sensitivity: (1) a
sufficient modification of one of the forcing parameters and
(2) a change in the leading terms of the dynamic equations
of the model. While modifying the forcing parameters by a
sufficient amount is required, the modification should remain
within the natural range of variability of the parameters.

Several mathematical techniques have been utilized to per-
form sensitivity analysis. Bryan (1987) applied scaling anal-
ysis to an idealized domain and forcing, and found that clo-
sure parameters such as vertical diffusivity and wind stress
curl were important controlling factors in thermohaline cir-
culation. Bastidas et al. (1999) used multicriteria methods to
find the sensitivity of land surface scheme models that cou-
ple biosphere—atmosphere interactions. The input variables
(such as precipitation, air temperature and humidity, etc.)
predict the evolution of soil skin temperature, soil moisture,
etc. The input parameters obtained from the sensitivity analy-
sis of the model showed consistency with physical properties
for two different field sites and helped to identify insensitive
parameters that led to an improvement in model description.
Fennel et al. (2001) incorporated adjoint methods to perform
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sensitivity studies to refine ecological model parameters such
that the underlining model can be applied to a wider range of
conditions. Mourre et al. (2008) performed multiple simula-
tions based on realistic variation of a forcing field to calcu-
late the influence of model parameters on sea surface salinity.
The metric used to measure the sensitivity was based on rms
difference between the reference and modified model param-
eter. The results showed that lateral salt diffusivity had the
strongest impact on surface salinity model response. Rosero
et al. (2010) investigated the sensitivity of three different ver-
sions of a land satellite model (Noah LSM) applied to nine
different sites based on different conditions (soil, vegetation,
and climate). They utilized the Monte Carlo method to gen-
erate the first-order Sobol’ indices (Sobol’, 1993) to estimate
the model sensitivity. The results showed that the optimal pa-
rameter values varied between different versions of the mod-
els and for different sites along with quantifying the nature of
interactions between parameters. One of the challenges asso-
ciated with a Monte Carlo approach to computing the Sobol’
indices is the large number of model evaluations required for
approximating conditional variance.

All these studies highlight various approaches to perform
sensitivity analysis. Saltelli et al. (2008) provided a compar-
ison of different sensitivity analysis methodologies and the
optimal setup for specific combinations of parameters and
model. Ultimately, the choice of sensitivity analysis method-
ology depends on multiple factors such as the computa-
tional cost of running the model, the characteristics of the
model (e.g., nonlinearity), the number of input parameters,
and/or the potential interactions between parameters. Saltelli
et al. (2008) described variance-based techniques as provid-
ing the most complete and general pattern of sensitivity for
models with a limited number of parameters, such as the
vegetation module in COAWST. Sobol’ indices, as a form
of variance-based sensitivity analysis, provide a decompo-
sition of the variance of a model into fractions that can be
assigned to inputs or combinations of inputs. However, tech-
niques involving the estimation of Sobol’ indices (such as
Monte Carlo methods) are expensive.

To reduce the computational cost and have desirable ac-
curacy, techniques that involve approximating the global re-
sponse of the model with a polynomial and then using its co-
efficients to estimate the Sobol’ indices can be utilized (Su-
dret, 2008). In this paper, we use a set of least squares poly-
nomial tools based on subsampling to estimate our global
polynomial response (Seshadri et al., 2017). Then, the coef-
ficients of the polynomial are used to compute the Sobol’ in-
dices. These tools are implemented in the open-source pack-
age Effective Quadratures (EQ) method (Seshadri and Parks,
2017), and our current work provides one of the first applica-
tions of this methodology to quantify sensitivity of input pa-
rameters in coastal models. Therefore, the goal of the present
work is to take advantage of the EQ method to provide Sobol’
indices that quantify the sensitivity of the flow and wave dy-
namics to vegetation parameters in COAWST model. The
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Figure 1. Schematic showing the vegetation module implementation in the COAWST model (figure adapted from Beudin et. al, 2017).

paper is organized as follows: the methods are discussed in
Sect. 2, including the numerical model with vegetation model
(COAWST), the Effective Quadratures method to estimate
Sobol’ indices, and simulation design; in Sect. 3, we present
the results of sensitivity analysis from various simulations; in
Sect. 4, we discuss the impact of these results; and finally, in
Sect. 5, we summarize our work and outline areas of future
research.

2 Methods

2.1 COAWST implementation of vegetation model
parameterization

Beudin et al. (2017) implemented a hydrodynamic-
vegetation routine within the open-source COAWST numer-
ical modeling system. The COAWST framework utilizes
ROMS for hydrodynamics and SWAN for modeling waves
coupled via the Model Coupling Toolkit (MCT) (Warner et
al., 2008b).

ROMS is a three-dimensional, free surface, finite-
difference, terrain-following model that solves the Reynolds-
averaged Navier—Stokes equations using the hydrostatic and
Boussinesq assumptions (Haidvogel et al., 2008). The trans-
port of turbulent kinetic energy and generic length scale are
computed with a generic length scale (GLS) two-equation
turbulence model. SWAN is a third-generation spectral wave
model based on the action balance equation (Booij et al.,
1999). The effect of submerged aquatic vegetation in ROMS
is to extract momentum, add wave-induced streaming, and
generate turbulence dissipation. Similarly, the wave dissipa-
tion due to vegetation modifies the source term of the ac-
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tion balance equation in SWAN. Sub-grid-scale parameter-
izations account for changes due to vegetation in the water
column extending from the bottom layer to the height of the
vegetation in the flow model, while SWAN accounts for wave
dissipation due to vegetation at the seafloor. The parame-
terization of SWAN to account for wave dissipation imple-
mented by Suzuki et al. 2012 has the same effect as energy
dissipation.

The parameterizations used to implement the effect of veg-
etation in both ROMS and SWAN models are mentioned in
Table 1 and detailed in Beudin et al. (2017). The coupling
between the two models occurs with an exchange of water
level and depth-averaged velocities from ROMS to SWAN
and wave fields from SWAN to ROMS after a fixed number
of time steps (Fig. 1). The vegetation properties are sepa-
rately input in the two models at the beginning of the simu-
lations.

2.2 Method for sensitivity analysis: polynomial least
squares

Polynomial techniques are ubiquitous in the field of uncer-
tainty quantification and model approximation. They esti-
mate the response of some quantity of interest with respect
to various input parameters using a global polynomial. From
the coefficients of the polynomial, the mean, variance, skew-
ness, and higher-order statistical moments can be calculated
(see Smith, 2014; Geraci et al., 2016). In this paper, our in-
terest lies in statistical sensitivity metrics called first-order
Sobol’ indices (Sobol’, 1993) that are derived from the con-
ditional variances of the parameters of the model. These in-
dices are the same in number as the input parameters to the
model and quantitatively rank the input parameters based on
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Table 1. Processes in ROMS and SWAN to model the presence of vegetation. The different input parameters (stem density, ny; height, /;;
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diameter, by; and thickness, 1)) affecting model wave and hydrodynamics are included.

Process

Equation
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Cp = Plant drag coefficient

u,v= Horizontal velocity components at each vertical
level

X

X

Turbulence production
(Uittenbogaard, 2003)
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Turbulence dissipation
(Uittenbogaard, 2003)
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k
Tfree = 3
1
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1
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Pyeg = Turbulence production

Tfree = Dissipation timescale of free turbulence
k = Turbulent kinetic energy

& = Turbulence dissipation

Tyeg = Dissipation timescale of free turbulence

"
L = Typical length scale between the plants

c] = Lift coefficient of order unity

4
= (co) ~0.09

Wave dissipation
(Mendez  and
2004)
(Dalrymple et al., 1984)

Losada,

— =\3
Sd,veg = \/gngvanv (;l;’)
sinh? (kl, ) +3 sinh (kl,
§k035h3 (kh)( LBk 0,6)
6]3 = Bulk drag coefficient
k = Mean wave number
& = Mean wave frequency
h = Water depth
Eot = Total wave energy
E = Wave energy at frequency o and direction 6

Sd,veg.lolk

Wave-induced streaming 0o

(Luhar et al., 2010)

Fs,veg =

Sd,veg,tot = Total wave energy dissipation
k = Mean wave number

o = Mean wave frequency

po = Reference density of seawater

their contribution to the resultant model output. Thus, model
output is more sensitive to parameters that exhibit higher
first-order Sobol’ index value. Second-order and third-order
Sobol’ indices may also be computed. The sum of the first-
order, second-order, and third-order Sobol’ indices should be
equal to unity; therefore, if the first-order indices are them-
selves close to unity, it indicates the higher-order interaction
between model input parameters is weak.

In this paper, the first-order indices are computed from
a global polynomial model using the effectively subsam-
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pled quadratures method (ESQM v5.2; Seshadri and Parks,
2017). There are two attributes to any data-driven polyno-
mial model: the choice of the polynomial basis and the strat-
egy for estimating the coefficients of the polynomial. The ba-
sis used in Effective Quadratures is orthogonal polynomials,
i.e., orthogonal with respect to the weight of the input pa-
rameter. For example, if one of the input parameters is pre-
scribed with a Gaussian distribution, then a Hermite orthog-
onal polynomial basis would be used; likewise, for a uniform
distribution, Legendre polynomials are used. In the current
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Figure 2. Schematic showing the idealized domain (not drawn to scale): (a) plan view and (b) cross-sectional view.

work, a uniform distribution is assumed for the input param-
eter space. The rationale behind selecting polynomials that
are orthogonal with respect to the input weight is that it re-
duces the number of model evaluations required for estimat-
ing statistical moments. Details on the exponential conver-
gence in moments when matching the orthogonal polynomial
with its corresponding weight can be found in Xiu and Kar-
niadakis (2002).

The coefficients for the polynomial expansion are typi-
cally approximated using an integral over the input parameter
space using quadrature rules. When the number of input pa-
rameters is greater than one, tensor-grid or sparse-grid-based
quadrature rules may be used to approximate these integrals.
However, the cost of tensor grids grows exponentially with
dimension; i.e., a four-point quadrature rule in three dimen-
sions has 5 points, in four dimensions has 5* points, and
so on. While some alleviation can be obtained using sparse
grids, in this paper, a more efficient sampling technique is

www.geosci-model-dev.net/10/4511/2017/

used: the effectively subsampled quadratures method (abbre-
viated to Effective Quadratures).

The method of Effective Quadratures determines points
for approximating the integral by subsampling well-chosen
points from a tensor grid and evaluating the model at those
subsamples. These well-chosen points are obtained via a QR
column pivoting heuristic (Seshadri et al., 2017). Once the
coefficients are estimated, the Sobol’ indices can be readily
computed (Sudret, 2008).

2.3 Range of input vegetation properties for sensitivity
analysis

Prior to performing the simulations for estimating Sobol’
indices described above, a range of vegetation inputs that
would impact the model response needs to be chosen. Ken-
nish et al. (2013) constrained annual variation of three of the
four vegetation properties (stem density, height, diameter)
based on Zostera marina growth in the Barnegat Bay—Little

Geosci. Model Dev., 10, 4511-4523, 2017
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Egg Harbor estuary. The thickness of Z. marina is selected
to be an order of magnitude lesser than its diameter based on
Larkum et al. (2007). Based on this, the range of the vegeta-
tion model inputs evaluated is as follows:

1. Stem density (n,) is 38.2-250.4 stems m~2.
2. Height () is 0.16-0.32 m.

3. Diameter (b,) is 1.0-10.0 mm.

4. Thickness (t,) is 0.1-1.0 mm.

For the sensitivity analysis, a combination of these ranges
of inputs (Table 2) is chosen to configure different simula-
tions in an idealized test case (described below). In addition
to these four vegetation properties, the vegetative model re-
quires an input of drag coefficient (Cp) in the flow model
and the wave model. However, variations on Cp are unlikely
to be measured in the field, and thus users could rely on the
published literature for an appropriate choice based on the
type, shape, and flexibility of the vegetation under study.

2.4 Test case configuration

An idealized rectangular model domain of 10km by 10km
with a 3m deep basin is chosen. The grid is 100 by 100 in
the horizontal (100 m resolution) and has 60 vertical sigma-
layers (uniformly distributed) leading to 0.05 m resolution in
the vertical. The vertical resolution of 0.05 m allows a plant
height of 0.27m to be distributed over six vertical layers
while the shortest height is restricted to two vertical layers.
A square patch of vegetation (1 km by 1 km) is placed in the
middle of the domain (Fig. 2). The ROMS barotropic and
baroclinic time steps are, respectively, 0.05 and 1 s, while the
SWAN time step and the coupling interval between ROMS
and SWAN are 10 min. The friction exerted on the flow by the
bed is calculated using the Sherwood-Signell-Warner bot-
tom boundary layer (SSW-BBL) formulation (Warner et al.,
2008a). The bottom boundary layer roughness is increased
by the presence of waves that produce enhanced drag on the
mean flow (Madsen, 1994; Ganju and Sherwood, 2010). The
vegetative drag coefficients (Cp) in the flow model and the
wave model are set to 1 (typical value for a cylinder at high
Reynolds number). The bed roughness is set to 0.05 mm,
which corresponds to a mixture of silt and sand (Soulsby,
1997). The turbulence model selected is the k — & scheme
(Rodi, 1984).

The model is forced by oscillating the water level on the
northern edge with a tidal amplitude of 0.5 m and a period
of 12h. Waves are also imposed on the northern edge with
a height of 0.5 m, directed to the south (zero angle), with a
period of 2s. The test case setup is similar to the one used
by Beudin et al. (2017). The test case setup is simulated for
2 days to obtain a tidally steady state solution. These simula-
tions require 40 CPU hours on Intel Xeon® X5650 2.67 GHz
processors running on 24 parallel processors.
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Table 2. Plant property input combinations for different simulations
during sensitivity analysis.

Stem density Height Diameter Thickness
(stems m~2) (m) (mm) (mm)

ny Ly by fy

1. 144.3 0.24 6.0 0.6
2. 62.1 0.17 3.0 0.6
3. 226.5 0.3 6.0 0.3
4. 144.3 0.17 9.0 0.9
5. 144.3 0.3 3.0 0.9
6. 62.1 0.3 6.0 0.3
7. 226.5 0.17 6.0 0.3
8. 144.3 0.3 9.0 0.9
9. 144.3 0.24 9.0 0.3
10. 226.5 0.24 6.0 0.9
11. 144.3 0.24 3.0 0.3
12. 62.1 0.24 6.0 0.9
13. 62.1 0.17 6.0 0.3
14. 62.1 0.24 9.0 0.6
15. 144.3 0.17 3.0 0.9

2.5 Choice of COAWST model response to vegetation
inputs

The output parameters used to investigate the vegetation
model sensitivity are chosen to reflect the first-order effects
of vegetation on the hydrodynamics and waves. The results
for the model response are computed for the last tidal cycle
(a total of three tidal cycles are required for achieving steady
state). The presence of vegetation affects the output parame-
ters in different physical ways (Table 1).

1. Wave energy dissipation: vegetation dissipates wave en-
ergy by reducing wave height, increasing wavelength,
and reducing wave steepness.

2. Kinetic energy: a drag force is generated by plants. This
leads to a decrease in kinetic energy within and behind
the vegetation patch.

3. Water level: as the wave energy (and momentum) flux
decreases due to bottom friction, the mean water level
increases to balance the decrease in wave and kinetic
energy. The flow decelerates in front of the patch and
in the wake of the patch while it accelerates around the
edges of the patch, leading to a water level gradient.

4. Turbulent kinetic energy (TKE): this refers to reduced
turbulent kinetic energy in front and within the patch.
The enhancement of TKE inside the boundary layer is
not captured with the current resolution.

The response impact to change in the inputs during each
simulation is computed by calculating the percentage differ-
ence of model response for each simulation from the mini-
mum value of all the simulations. The model response is ob-
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tained in and around the vegetation patch and averaged over
the last tidal cycle. The change in model response of water
level is computed by finding the maximum water level dif-
ference in and around the vegetation patch. In addition, the
variability of model response with given vegetation inputs in
different simulations is calculated through standard deviation
of model response in and around the vegetation patch over
the last tidal cycle. The standard deviation in TKE is depth
averaged to provide a 2-D field.

3 Results

3.1 Setting up simulations with different vegetation
inputs

Using the range of input parameters described above
(Sect. 2.3), and assuming all the inputs are uniformly dis-
tributed over their ranges, a matrix of design of experiment
values (Table 2) was determined using Effective Quadratures.
A total of 15 simulations were found to be required, corre-
sponding to the number of coefficients in a 4-D polynomial
with a maximum order of 2. In general, the number of coef-
ficients, n, is given by the formula

d+o
n= 7 )
where d is the number of dimensions and o is the maximum
order (assuming it is isotropic across all dimensions).

www.geosci-model-dev.net/10/4511/2017/

3.2 Model response from all the simulations

The 15 simulations (parameter choice of each simulation in
Table 2) are performed to provide model response from the
four chosen output variables.

1. Wave dissipation: the percentage change in wave dis-
sipation from all simulations relative to the minimum
value of wave dissipation varied between 75 and 600 %
(Fig. 3a). Simulation 2, which includes the combina-
tion of smallest stem density (1, = 62.1 stems m~2) and
shortest height (0.174 m), incurred the least wave dissi-
pation, while simulation 3, which involved the combi-
nation of greatest stem density (1, = 226.5 stems m™~2)
and tallest height (0.295 m), resulted in greatest wave
dissipation. The greatest amount of variability in wave
dissipation occurs in front of the vegetation patch
(Fig. 4), where the greatest amount of wave energy is
dissipated due to the presence of the vegetation patch.

2. Kinetic energy: the percentage change in kinetic energy
from all simulations relative to the minimum kinetic en-
ergy varied between 5.0 and 34.0 % (Fig. 3b). Simula-
tion 8, performed with an intermediate value of stem
density along with the largest values of height, diame-
ter, and thickness, results in the least amount of kinetic
energy (lowest velocities). Simulation 2 causes the least
amount of extraction of momentum with a combina-
tion of smallest plant stem density, height, and diameter
values, resulting in the greatest kinetic energy in and

Geosci. Model Dev., 10, 4511-4523, 2017



4518

around the vegetation patch. The variability in kinetic
energy from all the simulations is observed at a cross
section along the vegetation patch (Fig. 5). Variability is
observed throughout the water column where the veg-
etation patch exists. Similar to the variability in wave
dissipation, the greatest amount of variability occurs in
front of the vegetation patch. The region of maximum
variability occurs at a distance of 0.25—1.25 m above the
bed.

3. Water level: the percentage change in maximum wa-
ter level difference from all simulations relative to
the minimum of the maximum water level difference
varied between 3.0 and 18.0 % (Fig. 3c). The mini-
mum water level gradient is obtained from simulation
13 that includes a combination of plant inputs (n, =
62.1stemsm~2 (minimum), [, = 0.174m (intermedi-
ate), diameter =6 mm (minimum), and ¢, = 0.3 mm
(minimum). Simulations 2, 6, and 11 also give relatively
low values of water level gradient. Simulations 2 and
6 both involve the smallest plant stem density values
(i.e., ny, = 62.1 stems m’2). On the other hand, simula-
tion 8 (n, = 144.3 stemsm~2, [, = 0.3 m (maximum),
by, =9mm, and t, = 0.9 mm) accounts for the greatest
value of maximum water level difference. The variabil-
ity in water level (Fig. 6) is highest around the lobes of
the vegetation patch where the water level adjusts due to
changes in velocity around the patch. Behind the vege-
tation patch, the variability increases as the water level
adjusts to the change in flow conditions.

4. Turbulent kinetic energy (TKE): the percentage change
in TKE from all simulations relative to the minimum
TKE varied between 0.5 and 10.0 % (Fig. 3d). Simu-
lation 8 (combination of plant n, = 144.3 stems m~2,
l,=03m, b, =9mm and 7, =0.9mm) gives the
greatest amount of TKE, similar to what was ob-
served with kinetic energy change. The smallest value
of TKE is obtained in and around the vegetation patch
in simulation 2 with a combination of plant inputs
(ny, = 62.1 stems m~2, l,=02m,b, =3mm, and t, =
0.6 mm). Simulation 2 causes the least amount of dis-
sipation of turbulence with a combination of smallest
plant stem density, height and diameter. The variability
in TKE peaks occurs in front of the vegetation patch
(Fig. 7) where the different simulations dissipate turbu-
lence to substantially different degrees. The changes in
turbulence mixing caused by the presence of the vege-
tation patch are close to zero inside the patch (all simu-
lations dissipate similar amounts of turbulence).

3.3 Quantifying sensitivity using Sobol’ indices

Following the variability in model response from differ-
ent simulations, the sensitivity to input vegetation parame-
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is highlighted in the middle of the domain.
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Figure 5. Standard deviation in kinetic energy (cm?s~ 1) in the
presence of vegetation (cross-sectional view).

ters can be quantified with the use of first-order Sobol’ in-
dices that are obtained by taking advantage of the Effective
Quadratures approach. Sobol’ indices are individually com-
puted for all the model responses. The first-order Sobol’ in-
dices for all the model responses (Table 3) add up to more
than 0.9. This result indicates they account for 90 % of the
variability in model response for the given vegetation prop-
erty inputs, and the variability captured by second-order and
third-order indices is relatively low. The model is most sensi-
tive (Table 3) to plant stem density (n,) and height (,)) over
the range of parameters considered; these two inputs account
for over 80 % of the sensitivity to all model outputs. The veg-
etation diameter (b,) accounts for 12—15 % of model sensi-
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Figure 6. Standard deviation in water level in the presence of veg-
etation (plan view). The area of the vegetation patch is highlighted
in the middle of the domain.

tivity to kinetic energy, water level change, and turbulent ki-
netic energy. Thickness (¢,) showed the least impact on all
the chosen model outputs.

4 Discussion

4.1 Variability in model response from sensitivity
analysis

From the different simulations performed during sensitivity
analysis, there is a great amount of variability in front of the
vegetation patch in wave dissipation, kinetic energy (KE),
and TKE (Figs. 4, 5, and 7). This is a result of large amount
of wave dissipation and flow deceleration in front of the veg-
etation patch. The cross-sectional plane of the domain illus-
trates that the variability in KE occurs throughout the water
column (Fig. 5), highlighting the 3-D impact of vegetation
inputs. Interestingly, the greatest amount of variability in KE
(Fig. 5) occurs at distance above the bed between 0.4 and
1.3m at y = 5.6 km, while the maximum vegetation height
in all the simulations is 0.3 m. This result indicates that vari-
ation in vegetation height results in the greatest amount of
KE variability above the vegetation patch. The variability in
water level change is large around the lobes and behind the
vegetation patch (Fig. 6). The variability in these regions is
because the change in local flow velocity is adjusted by a
change in water level around the vegetation patch. This is
further confirmed by observing the variation in velocity pro-
files with depth (Fig. 8a) at a particular time instance dur-
ing flood tide. Simulation 8 results in the lowest velocity of
0.06 ms™!, while simulation 2 results in the peak flood ve-
locity of 0.11 ms™!. Consequently, the gradient of velocity
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Table 3. Sobol’ indices for all the outputs.

Plant stem Plant Plant Plant

density  height diameter thickness

ny Iy by ty

Wave dissipation 0.68 0.24 0.032 0.01
Kinetic energy 0.36 0.44 0.12 0.03
Maximum water level change 0.38 0.43 0.15 0.01
Turbulent kinetic energy 0.35 0.42 0.12 0.03

with respect to depth is greatest at all depths for simulation 8,
while it is lowest for simulation 2 (Fig. 8b). The gradient
reaches a maximum value at the bottom layer.

4.2 Understanding vegetation parameterization to
interpret Sobol’ indices

The parameterizations involving extraction of momentum,
turbulence production, and turbulence dissipation are directly
affected by vegetation stem density (n,), diameter (b,), and
thickness (#,) (Table 1). Because these mechanistic processes
occur at the blade scale, the dependence on vegetation height
(ly) is implicitly included in the parameterizations. Sobol’
indices provide quantifiable information and show that veg-
etation height, stem density, and diameter (in decreasing or-
der of importance) are pertinent in accurately computing KE,
TKE, and water level. An accurate representation of KE and
TKE has direct ramifications on estimating sediment trans-
port while water level estimates can affect storm surge pre-
dictions.

The high sensitivity of wave dissipation to vegetation stem
density highlights the need for accurate density representa-
tion to attain wave attenuation estimates, especially in open
coasts. SWAN computes wave dissipation due to vegetation
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a particular time instance during flood for different simulations.

as a bottom layer effect. Therefore, the height of the veg-
etation does not affect wave dissipation to the same extent
as other model outputs: KE, TKE, and water level. In addi-
tion, the equation representing the wave dissipation process
in SWAN is independent of vegetation thickness, thus cor-
responding to the lowest Sobol’ index. Vegetation thickness
only appears in the turbulence dissipation term (Table 1);
modifying the turbulence length scale has the least effect on
any of the model responses.

4.3 Linear curve fitting to complement Effective
Quadratures based sensitivity analysis

To complement the results of the Sobol’ indices’ calculation,
linear fits to the data are conducted. The main parameter con-
tributing to the wave dissipation variability is the stem den-
sity, explaining over 80 % of the variability (R?> = 0.81). The
least squared fit to wave dissipation that included all param-
eters combined explains 98 % of the variability. When fitting
models, it is possible to increase the explained variance by
using more complex fitting models adding parameters, but
doing so may result in overfitting. The Bayesian informa-
tion criterion (BIC; Schwarz, 1978; Aretxabaleta and Smith,
2011) provides a non-subjective metric for the best fit by
penalizing overparameterization. BIC resolves overfitting by
introducing a penalty term for the number of parameters in
the model. For wave dissipation, the BIC approach identi-
fied a fit based exclusively on density as the model that best
matches the data while preventing overfitting. The selection
of density as the single most relevant parameter is consistent
with the Sobol’ indices’ result (Table 3).

The kinetic energy variability is also associated with stem
density changes, but the percentage of explained variability

Geosci. Model Dev., 10, 4511-4523, 2017

(42 %) is smaller than for wave dissipation. Diameter and
height also contributed to changes in kinetic energy. The
combination of stem density, height, and diameter provided
the optimal fit of the data (selected by minimizing BIC) and
explained 89 % of variability in kinetic energy. Similar re-
sults were obtained for TKE, with density explaining 45 %
of the variability but the combination of stem density, height,
and diameter providing the optimal fit to TKE (selected by
minimizing BIC) and explained 87 % of the variability. The
model response of water level variability is also best ex-
plained by a combination of stem density, height, and diam-
eter (96 % of water level variance explained). Thickness was
not correlated with wave dissipation, kinetic energy, or TKE
and only contributed to water level gradient variability.

4.4 Limitations of the current sensitivity methodology

The model configuration chosen includes vegetation cover-
ing a small fraction of the water column to allow for proper
wave dissipation. Many species of seagrass have a larger ver-
tical footprint and can also exhibit much higher shoot densi-
ties. The goal of the study is to provide estimates on the rel-
ative importance of the different parameters through a robust
sensitivity approach. The current work assumed rigid vegeta-
tion blades, while the model is capable of including flexible
vegetation by altering the blade scale. The expected effect of
flexible blades would be to reduce the relative importance of
vegetation length (/,)) on the model outputs. In addition, the
present work assumes a constant drag coefficient for cylindri-
cal vegetation shape; the influence of a variability drag coef-
ficient can be a subject of a future sensitivity study. Other
model parameters such as vertical and horizontal resolution,
mixing parameterization, and wave and hydrodynamic forc-
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ings will also affect model results but were beyond the scope
of the current study.

5 Conclusions

The coupled wave-flow—vegetation module in the COAWST
modeling system provides a tool to study vegetated flows
in riverine, lacustrine, estuarine, and coastal environments.
The resulting flow field in the presence of vegetation de-
pends on its properties, including vegetation stem density,
height, diameter, and thickness. The sensitivity of the hy-
drodynamic and wave conditions to changes in vegetation
parameters is investigated. The sensitivity analysis helps in
understanding the multi-parameter/multi-response of various
interactions within the model. We use an existing tool that
formulates the Effective Quadratures method to quantify the
sensitivity of plant input properties for the vegetation mod-
ule in COAWST model. The decomposition of the variance
of the model solution given by the Sobol’ indices is assigned
to plant parameters.

The method of using Sobol’ indices to quantify sensitivity
can be computationally expensive. One of the goals of this
work is to demonstrate a robust, practical, and efficient ap-
proach for the parameter sensitivity analysis. We show that
the approach of using the Effective Quadratures method to
select a parameter space that is consistent with physical un-
derstanding significantly reduces the computational time re-
quired to obtain the Sobol’ indices.

The evaluation of Sobol’ indices shows that the input val-
ues of plant stem density, height, and, to a lesser degree, di-
ameter are consequential in determining kinetic energy, tur-
bulent kinetic energy, and water level changes. Meanwhile,
the wave dissipation is mostly dependent on the variation in
plant density.

The sensitivity analysis for the vegetation model in
COAWST presented herein provides guidance for observa-
tional and modeling work by allowing future efforts to fo-
cus on constraining the most influential inputs without hav-
ing to explore the entire parameter space. An accurate rep-
resentation of processes causing kinetic energy and turbu-
lent kinetic energy leads to enhanced understanding of sedi-
ment processes while accurate water level computations help
to predict coastal flooding caused by storm surge. Similarly,
wave attenuation measurements in open coasts are better un-
derstood with a correct representation of wave dissipation. In
the future, we intend to perform a similar sensitivity analy-
sis with the inclusion of a biological model that will affect
plant growth, thus allowing a time dependence of model in-
put and response. In addition, the influence of vegetation on
sediment transport will be explored. As model complexity
increases with more parameters representing additional pro-
cesses, input parameter sensitivity is required for the model
to be applied in practical applications.
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Code availability. The Effective Quadratures methodology is an
open-source Python-based tool designed to perform sensitivity
analysis for a given physical system. The instructions to in-
stall the code along with all the open-source files for this
tool are detailed here: https://github.com/Effective-Quadratures/
Effective-Quadratures (Seshradi, 2017; Seshadri and Parks, 2017).
For any further inquiries about the Effective Quadratures method-
ology, please contact the corresponding author, Pranay Seshadri
(ps583@cam.ac.uk).

The COAWST model is an open-source coupled hydrody-
namics and wave model containing vegetation effects mainly
coded in Fortran 77. This model provided the physical set-
ting to perform the sensitivity analysis. The code is avail-
able from https://coawstmodel-trac.sourcerepo.com/coawstmodel
COAWST (Warner, 2017; Warner et al., 2010) after registration via
email with J. C. Warner (jewarner @usgs.gov).

Data availability. The model output from various simulations
used to perform sensitivity analysis in this study is available
at  http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/tkalra/
senstivity_study/catalog.html (USGS/WHCMSC, 2017). The link
contains a “README.txt” file that explains how the folder is
organized to contain model output.
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