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Abstract. Retrieving total suspended solids (TSS) concen-
tration accurately is essential for sustainable management
of estuaries and coasts, which plays a key role in the in-
teraction between hydrosphere, pedosphere and atmosphere.
Although many TSS retrieval models have been published,
the general inversion method that is applicable to different
field conditions is still under research. In order to obtain
a TSS remote sensing model that is suitable for estimating
TSS concentrations with wide range in estuaries and coasts
by Landsat imagery, after reviewing a number of Landsat-
based TSS retrieval models and improving a comparatively
better one among them, this study developed a quadratic
model using the ratio of logarithmic transformation of red
band and near-infrared band and logarithmic transformation
of TSS concentration (QRLTSS) based on 119 in situ sam-
ples collected in 2006–2013 from five regions of China. It
was found that the QRLTSS model works well and shows
a satisfactory performance. The QRLTSS model based on
Landsat TM (Thematic Mapper), ETM+ (Enhanced The-
matic Mapper Plus) and OLI (Operational Land Imager) sen-
sors explained about 72 % of the TSS concentration variation
(TSS: 4.3–577.2 mg L−1, N = 84, P value< 0.001) and had
an acceptable validation accuracy (TSS: 4.5–474 mgL−1,
root mean squared error (RMSE)≤ 25 mgL−1, N = 35). In
addition, a threshold method of red-band reflectance (OLI:
0.032, ETM+ and TM: 0.031) was proposed to solve the

two-valued issue of the QRLTSS model and to retrieve TSS
concentration from Landsat imagery. After a 6S model-
based atmospheric correction of Landsat OLI and ETM+ im-
agery, the TSS concentrations of three regions (Moyangjiang
River estuary, Pearl River estuary and Hanjiang River es-
tuary) in Guangdong Province in China were mapped by
the QRLTSS model. The results indicated that TSS concen-
trations in the three estuaries showed large variation rang-
ing from 0.295 to 370.4 mgL−1. Meanwhile we found that
TSS concentrations retrieved from Landsat imagery showed
good validation accuracies with the synchronous water sam-
ples (TSS: 7–160 mgL−1, RMSE: 11.06 mgL−1, N = 22).
The further validation from EO-1 Hyperion imagery also
showed good performance (in situ synchronous measurement
of TSS: 106–220.7 mgL−1, RMSE: 26.66 mgL−1, N = 13)
of the QRLTSS model for the area of high TSS concentra-
tions in the Lingding Bay of the Pearl River estuary. Ev-
idently, the QRLTSS model is potentially applied to simu-
late high-dynamic TSS concentrations of other estuaries and
coasts by Landsat imagery, improving the understanding of
the spatial and temporal variation of TSS concentrations on
regional and global scales. Furthermore, the QRLTSS model
can be optimized to establish a regional or unified TSS re-
trieval model of estuaries and coasts in the world for differ-
ent satellite sensors with medium- and high-resolution simi-
lar to Landsat TM, ETM+ and OLI sensors or with similar
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red bands and near-infrared bands, such as ALI, HJ-1 A and
B, LISS, CBERS, ASTER, ALOS, RapidEye, Kanopus-V,
and GF.

1 Introduction

The amount of total suspended solids (TSS) is a critical fac-
tor of the ecological environment of water bodies, which di-
rectly and deeply affects their optical properties through ab-
sorbing and scattering of the sunlight (Chen et al., 2015b;
Pozdnyakov et al., 2005; Wang et al., 2016; Wu et al., 2013),
leading to impacts on the primary production of the water ar-
eas (May et al., 2003). Estuaries and coasts are the most im-
portant intermediate zones that connect hydrosphere, pedo-
sphere and atmosphere, which then pass on a deep and wide
impact on many aspects of our societal and natural environ-
ment (Nechad et al., 2010; Pozdnyakov et al., 2005). The top-
ics of TSS concentration monitoring and spatial and temporal
variation assessment have been paid great attention, and the
associated research work has been conducted frequently by
a variety of scholars, government branches and society com-
munities (Caballero et al., 2014; Giardino et al., 2015; Liu
et al., 2003; Lu et al., 2012; Montanher et al., 2014; Nechad
et al., 2010; Olmanson et al., 2013; Pozdnyakov et al., 2005;
Rao et al., 2009; Shen et al., 2008; Tang et al., 2004b;
Zhang et al., 2007). Many methods can be used to estimate
TSS concentrations of water bodies, including hydrological-
site monitoring, in situ investigation, physical models, nu-
merical simulation, remote sensing and so on (Chen et al.,
2015a). Retrieving TSS concentrations from remote sensing
data has unique advantages due to the wide spatial cover-
age and periodic revisit, such as the Land Observation Satel-
lite (Landsat), the Earth-Observing One satellite (EO-1), the
Moderate Resolution Imaging Spectroradiometer (MODIS),
the Medium Resolution Imaging Spectrometer (MERIS), the
Geostationary Ocean Color Imager (GOCI), the Sea Viewing
Wide Field of View Sensor (SeaWiFS), Systeme Probatoire
d’Observation dela Tarre (SPOT) and the Environment and
Disaster Monitoring and Forecasting Small Satellite Con-
stellation (HJ). Compared to other remote sensing data, the
Landsat series of imagery has an advantage in spatiotemporal
dynamics analysis of TSS concentrations (Wu et al., 2013)
due to the additional good quality, high spatial resolution and
inheritance, especially long-term historical data since 1972.

Many Landsat-based models have estimated the TSS con-
centration with empirical, semiempirical, semianalytical or
analytical algorithms (Chen et al., 2014; Doxaran et al.,
2003; Fraser, 1998; Islam et al., 2001; Li et al., 2010; Mon-
tanher et al., 2014; Nas et al., 2010; Oyama et al., 2009; Ra-
harimahefa and Kusky, 2010; Rao et al., 2009; Ritchie and
Cooper, 1991; Topliss et al., 1990; Volpe et al., 2011; Wang
et al., 2016; Wu et al., 2013; Zhang et al., 2014). Based on
the rigorous theoretical derivation, the semianalytical and an-

alytical models are likely more applicable to different water
bodies than the empirical or semiempirical methods (Binding
et al., 2012, 2010; Chen et al., 2015b; Giardino et al., 2007;
Ma et al., 2010; Sipelgas et al., 2009). However, there are
still limitations of the application due to the difficulties of re-
trieval or inaccuracies on initialization parameters (Binding
et al., 2012; Chen et al., 2015b; Ma et al., 2010; Wu et al.,
2013). Therefore, the empirical (especially semiempirical)
methods are still used to estimate TSS concentration and will
continue to be used for a long time due to their simplicity
and sufficient accuracies. It should be noted that the applica-
tions of empirical or semiempirical TSS models need to be
revalidated in different regions and periods because they are
largely region-, time- or environment-dependent (Wu et al.,
2013). We found that previous empirical or semiempirical
Landsat-based TSS retrieval models vary greatly in their
main forms of a single band or multiple bands for different
estuaries and coasts (Ma et al., 2010; Wu et al., 2013).

The TSS models of a single band include linear function
(Fraser, 1998; Islam et al., 2001; Nas et al., 2010; Rao et al.,
2009), exponential or logarithmic function (Keiner and Yan,
1998; Wu et al., 2013; Zhang et al., 2014), and quadratic
function (Chen et al., 2014). Those models have been eas-
ily applied to many regions because they not only have the
simple forms but also more choice of remote sensing data.
We know that the sensitivity of satellite sensor bands is dif-
ferent for different TSS concentrations. Many studies have
proven that reflectance in the red band increases with increas-
ing TSS concentrations, but tends towards convergence or
keeps stable due to saturation effect under high TSS concen-
trations (Ritchie and Zimba, 2006; Feng et al., 2014), while
the reflectance in the near-infrared band is more sensitive to
high TSS concentrations compared to low TSS concentra-
tions (Chen et al., 2015b; Feng et al., 2014; Hu et al., 2004;
Wang et al., 2010). Thus, those models of a single band have
limited applications in regions with a wide dynamic range of
TSS concentration.

Models that combined multiple bands worked better than
those with a single band in avoiding the effect of saturation
for water bodies of high TSS concentrations and have been
applied widely (Dekkera et al., 2001; Doxaran et al., 2003;
Feng et al., 2014; Montanher et al., 2014; Oyama et al., 2009;
Wang et al., 2016). Although the band combination includes
band ratio (Doxaran et al., 2003; Lathrop et al., 1991; Ritchie
and Cooper, 1991; Topliss et al., 1990; Wang et al., 2016) and
other complex forms (Dekkera et al., 2001; Li et al., 2010;
Oyama et al., 2009; Song et al., 2011; Zhang et al., 2015),
these models of multiple-band combination can be also clas-
sified into linear, exponential, logarithmic or quadratic func-
tion. Besides quadratic forms of models (Chen et al., 2014;
Ritchie and Cooper, 1991; Topliss et al., 1990), most of those
empirical or semiempirical TSS retrieval models are simple
monotonic functions. Monotonic function has some potential
issues. One is that the change of band reflectance corresponds
to the fixed change of TSS concentrations, which may be un-
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realistic, such as linear function. Another is that a very small
change of band reflectance can cause exaggerated estima-
tion of TSS concentrations, such as exponential and logarith-
mic function. Although some non-monotonic functions could
avoid the potential issues, it is widely believed that there is
no existing regional or universal empirical or semiempirical
TSS retrieval model for all water bodies (Ma et al., 2009;
Tang et al., 2005; Wu et al., 2013).

Recently, we published a short conference paper (Wang
et al., 2016), which stated that the quadratic TSS model could
be a new method for estimating the wide-range TSS concen-
trations of multiple estuaries and coasts. However, the model
lacks necessary analysis and discussion of results due to lim-
itation of space. Besides, our previous model (Wang et al.,
2016) could not be applied to remote sensing data for the
reason that each value of reflectance does not correspond to
a unique TSS concentration.

Based on the above analysis, this study intends to de-
velop a Landsat-based model with better adaptability and ro-
bustness for retrieving TSS concentrations in estuaries and
coasts. To achieve this goal, the applicability of more than 20
previous Landsat-based models was reviewed and further an-
alyzed. We focus on the models using a multiple-band com-
bination, and the form of models belongs to non-monotonic
function. This paper was organized as follows. In situ data,
pre-processing and Landsat imagery are described along with
the atmospheric correction method and assessment method
of simulation model accuracy in Sect. 2. The TSS retrieval
model, validation and the spatial analysis of TSS concen-
tration mapped from Landsat imagery and EO-1 Hyperion
imagery are presented in Sect. 3. Finally, the summary and
conclusions are given in Sect. 4.

2 Materials and methods

2.1 Study areas

The study areas, including five regions of China, are listed as
follows.

Region I, the Xuwen coast (Fig. 1b), located between lat-
itudes 20.1–20.5◦ N and longitudes 109.8–110.1◦ E, is the
important Coral Reefs National Nature Reserve with the
most plentiful coral species because of its less turbid waters.
The good water quality is due to less water discharge (8.6×
108 m3 year−1 on average) and sediment load (3× 104 t yr−1

on average) and the protection of coral reefs (Wang et al.,
2002). It was reported that the coral reefs are not growing as
well as before (Zhao et al., 2011). Researchers believe that
this is mainly caused by the increasing TSS concentration,
declination of water transparency, and decreasing water tem-
perature due to excessive fish farming, overfishing and indus-
trial pollution (Chen et al., 2015b). The coastal land develop-
ment is also an important reason.

Region II, the Moyangjiang River estuary (Fig. 1c), is lo-
cated between latitudes 21.65–21.9◦ N and longitudes 112–
112.2◦ E, southwest of Guangdong Province. The source
of the Moyangjiang River is in Yangchun County, and
it has a length of 199 km and a drainage area of more
than 6× 103 km2. The annual mean surface runoff of the
Moyangjiang River is 8.21× 109 m3 and sediment load is
3.27× 105 t yr on average. The Moyangjiang River crosses
Yangchun, Yangdong and Jiangcheng counties (districts) and
flows into the South China Sea.

Region III, the Pearl River estuary (Fig. 1d), is located be-
tween latitudes 21.9–23◦ N and longitudes 113.15–114.1◦ E.
The Pearl River is the fourth longest (2320 km) in China
with a drainage area of 4.53×105 km2, and its annual runoff
(3.26× 1011 m3) is only smaller than the Yangtze River.
The sediment load of the Pearl River is 7.53× 107 t yr−1

on average. The Pearl River crosses eight waterways (Hu-
men, Jiaomen, Hongqimen, Hengmen, Modaomen, Jitimen,
Hutiaomen and Yamen) located at six cities of Guangdong
Province and pours into South China Sea. As we all know,
the estuary of the Pearl River and the adjacent coast suf-
fer severely from combined pollution (Ma and Wang, 2003)
which mainly comes from industrial production, residential
life and seawater intrusion (Chen et al., 2009a).

Region IV, the Hanjiang River estuary (Fig. 1e), is lo-
cated between latitudes 23.2–23.6◦ N and longitudes 116.6–
117◦ E, east of Guangdong Province and southwest of Fu-
jian Province. The Hanjiang River has a length of 470 km
and has the second largest drainage area (3.01× 104 km2)
in Guangdong Province. The annual mean surface runoff of
the Hanjiang River is 2.45× 1010 m3 with sediment load is
6.93× 106 t yr−1 on average. The lower reaches of the Han-
jiang River include Beixi waterway located in the northeast,
Dongxi waterway located in the middle and Xixi waterway
located in the west. Xixi waterway also crosses with the three
waterways of Waishahe, Xinjinhe and Meixi and flows into
the South China Sea. Waishahe, Xinjinhe and Meixi water-
ways are located in east, middle and west of Longhu District,
Shantou, in Guangdong Province, respectively.

Region V, the Yangtze River estuary (Fig. 1f), is located
between latitudes 30.8–31.8◦ N and longitudes 121.55–
122.4◦ E. The Yangtze River is the largest river in China, and
has a length of 6280 km and a drainage area of 1.8×106 km2.
The annual mean surface runoff of the Yangtze River is
9.2×1011 m3, with a sediment load of 4.8×108 t yr−1 on av-
erage (Feng et al., 2014). Such huge terrestrial input not only
loads to its extremely turbid waters but also impacts on the
optical properties of this region. It is reported that the envi-
ronment of the Yangtze River estuary is getting worse due to
the rapid developments and urbanization in the surrounding
industrial areas (Chen et al., 2015a; Hsu and Lin., 2010). As
a result, there are more and more studies focusing on this re-
gion due to its important ecological and economic role (Chen
et al., 2015a; Feng et al., 2014; Shen et al., 2010).
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Figure 1. (a) Study areas and locations of in situ data (black dots and triangles). (b) Xuwen coast; (c) Moyangjiang River estuary; (d) Pearl
River estuary; (e) Hanjiang River estuary; (f) Yangtze River estuary.

Water bodies of the study areas were extracted based
on a method developed by Jiang et al. (2014). The differ-
ence in spectral profile across water and clouds was used to
mask clouds (Chen et al., 2009b, 2011a). We find that the
reflectance of water is usually less than 0.05 in the near-
infrared band while the reflectance of cloud is usually higher
than 0.1 in the near-infrared band in the study areas. Thus,
the clouds were masked based on reflectance that is higher
than 0.05 in the near-infrared band.

2.2 In situ and satellite data

The 129 in situ samples were collected from the above-
mentioned five regions of China, and their positions were
recorded by Trimble global positioning system (real time)
with root mean square errors of 1–4 m (shown in Fig. 1).
Samples for the study were taken from a river downstream
towards the sea (including shoals, channels, maximum tur-
bidity zones), mainly based on the wide TSS changes of each
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Table 1. Information about the study areas and in situ data.

Location Hydrologic features Date Samples Measurements Number of
(length, drainage area, synchronous
mean surface runoff and samples with
sediment discharge) satellite

Region I –, – 3 Dec 2010 10 Reflectance, TSS No
8.6× 108 m3 yr−1, 13–14 Jan 2013 22 Reflectance, TSS No
3× 104 t yr−1

Region II 199 km, 6× 103 km2, 6 Dec 2013 11 Reflectance, TSS 7, OLI
8.21× 109 m3 yr−1,
3.27× 105 t yr−1

Region III 2320 km, 4.53× 105 km2, 19 Dec 2006 5 Reflectance, TSS No
3.26× 1011 m3 yr−1, 21 Dec 2006 18 8 samples with 13, Hyperion
7.53× 107 t yr−1 Reflectance and

TSS; 10 samples
with TSS only

27 Dec 2007 8 Reflectance, TSS No
2 Nov 2012 9 Reflectance, TSS 6, ETM+

Region IV 470 km, 3.01× 104 km2, 1 Dec 2013 12 Reflectance, TSS 9, OLI
2.45× 1010 m3 yr−1,
6.93× 106 t yr−1

Region V 6280 km, 1.8× 106 km2, 14–15 Oct 2009 34 Reflectance, TSS No
9.2× 1011 m3 yr−1,
4.8× 108 t yr−1

Figure 2. A total of 119 spectra were collected from study areas by
ASD.

estuary and coastal area for representing the wide variability
of TSS concentrations (Fig. 1b–f, dots and triangles). Among
the 129 samples, 32 samples were collected from the Xuwen
coast on 3 December 2010 and 13 to 14 February 2013; 11
samples were collected from the Moyangjiang River estuary
on 6 December 2013; 40 samples were collected from the
Pearl River estuary on 19 to 21 December 2006, 27 Decem-
ber 2007 and 2 November 2012; 12 samples were collected
from the Hanjiang River estuary on 1 December 2013; and

34 samples were collected from the Yangtze River estuary on
14 to 15 October 2009. The ASD field spectral measurements
and synchronous water samples of the abovementioned 119
samples were carried out from 10:00 to 15:00 LT (Fig. 1b–f,
dots, Table 1). Besides, another 10 samples with TSS concen-
trations from the Pearl River estuary on 21 December 2006
were collected synchronously with EO-1 Hyperion imagery
only (Fig. 1d, triangles, Table 1). The spectra were measured
based on above-water spectrum measurement method that
could effectively avoid the influence of sun and sky glint,
water vapor, aerosols, and vessel shadow (Tang et al., 2004a),
which was widely applied to the water bodies such as estu-
aries and coasts of China (Chen et al., 2015a; Feng et al.,
2014; Zhang et al., 2014). It should be noted that the dis-
tance from some samples (Fig. 1d) taken from Modaomen
waterway of the Pearl River to the surrounding land is usu-
ally more than 200 m. Thus, there is a small effect from the
surrounding land on the reflectance of water body. Finally,
the reflectance of water surface (Fig. 2) was calculated in the
same way as Zhang et al. (2014) and Chen et al. (2015b).
Water samples (about 1.5 L) were collected within the wa-
ter depth of 1 m, and TSS concentrations were measured by
a weighing method (Binding et al., 2012; Caballero et al.,
2014).

TM, ETM+ and OLI sensors onboard the Landsat 5, 7 and
8 satellites (USGS program, 1982), respectively, have a spa-
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Figure 3. The recalibration and validation of previous five TSS retrieval models based on 119 in situ samples. The models were developed
by (a) Chen et al. (2014), (b) Li et al. (2010), (c) Zhang et al. (2014), (d) Lathrop et al. (1991), (e) Ritchie and Cooper (1991), respectively.
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Figure 4. The calibration and validation results of TSS retrieval models: based on 119 in situ data for (a) OLI, (b) ETM+ and (c) TM.

Figure 5. Relationship between the Landsat red-band reflectance and corresponding TSS concentration. (a) OLI sensor; (b) ETM+ and TM
sensors.
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Figure 6. Scatter plot of Landsat measured reflectance vs. in situ reflectance. The former is calculated by averaging over a box of 3×3 pixel
centered samples. (a) Red band; (b) near-infrared band.

Figure 7. Estimated TSS concentrations based on the QRLTSS model in Moyangjiang River estuary at 11:00 (LT, OLI) on 6 December 2013
(a), Pearl River estuary at 10:48 (LT, ETM+) on 2 November 2012 (b), Hanjiang River estuary at 10:41 (LT, OLI) on 1 December 2013
(c), and comparison between the in situ measured and Landsat imagery inversed TSS concentrations of three estuaries (d). Color scale is the
legend of the TSS concentrations, in milligrams per liter (mgL−1).
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Figure 8. Estimated TSS concentrations based on the QRLTSS model from EO-1 Hyperion imagery in Pearl River estuary at 10:33 (LT), on
21st December 2006 (a) and comparison between the in situ measured and EO-1 Hyperion imagery inversed TSS concentrations (b). Color
scale is the legend of the TSS concentrations, in milligrams per liter (mgL−1).

tial resolution of about 30 m, with more than seven bands
spanning from a visible to infrared wavelength. The spectral
bands of the OLI sensor, while similar to TM and ETM+
sensor, provide enhancement of prior Landsat instruments,
with the addition of two new spectral bands: a deep blue
visible channel (band 1) specifically designed for water re-
sources and coastal zone investigation, and a new infrared
channel (band 9) for the detection of cirrus clouds. A new
quality-assurance band is also included with each data prod-
uct. This provides information on the presence of features
such as clouds, water, and snow (https://landsat.usgs.gov/,
USGS, 1982). The data quality (signal-to-noise ratio) and ra-
diometric quantization (12 bit) of the OLI and TIRS is higher
than previous Landsat instruments (8 bit for TM and ETM+),
providing significant improvement in the ability to detect
changes on the Earth’s surface. The principal functional dif-
ferences between the ETM+ and the former TM series are
the addition of a 15 m resolution panchromatic band and two
8 bit “gain” ranges. The ETM+ images are acquired in either
a low- or high-gain state. The goal of using two gain set-
tings is to maximize the sensors’ 8 bit radiometric resolution
without saturating the detectors, while the L4 and L5 TM
radiometric calibration uncertainty of the at-sensor spectral
radiances due to change of gains was around 5 % and was
somewhat worse (Chander et al., 2009). However, after the
revision of gains, Landsat imagery can basically be fit for
quantifying the optical properties in oceans, lakes, estuaries
and coasts which have been explored in many studies, al-
though they were originally designed for observation of land
targets (Montanher et al., 2014; Nas et al., 2010; Volpe et al.,
2011; Wu et al., 2013; Zhang et al., 2014).

Due to frequent cloud coverage in estuaries and coasts,
as well as the low temporal resolution (16 d) of the Land-
sat satellite (Bailey and Werdell., 2006), this study ob-
tained three Landsat images with good quality that can
only be matched with synchronous in situ measurements of
three study regions (Table 1). The first image from ETM+
(path/row= 122/45) was captured on 2 November 2012,
covering part of the Pearl River estuary (Fig. 1d). The second
image (path/row= 120/44) from OLI was captured on 1 De-
cember 2013, covering the Hanjiang River estuary (Fig. 1e).
The third image (path/row= 123/45) from OLI was cap-
tured on 6 December 2013, covering the Moyangjiang River
estuary (Fig. 1c). It should be noted that the scan line correc-
tor (SLC) of Landsat 7 ETM+ has failed since 31 May 2003.
However, there are still many research works using the SLC-
free data that are repaired using local self-adaptive regres-
sion analysis (Zhang et al., 2014). The repaired data in our
study are provided by the International Scientific Data Ser-
vice Platform, Computer Network Information Center, Chi-
nese Academy of Sciences (http://www.gscloud.cn/).

In addition, an EO-1 Hyperion (NASA, 2001) image
(path/row= 122/44) was captured on 21 December 2006,
covering part of the Pearl River estuary (Fig. 1d). With spec-
tral coverage ranging from 400 to 2500 and 10 nm (sampling
interval) of contiguous bands of the solar reflected spectrum,
Hyperion’s spatial resolution is 30 m with a 7.7 km imagery
swath and 185 km length (http://eo1.usgs.gov). Hyperion is
also well suited for retrieving spatial distributions of water-
color constituents in the Pearl River estuary (Chen et al.,
2009a). The Hyperion data were used for further validation
of TSS retrieval model here.

www.geosci-model-dev.net/10/4347/2017/ Geosci. Model Dev., 10, 4347–4365, 2017
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2.3 Atmospheric correction method

There are many signals at visible wavelengths from atmo-
spheric path radiance, which prevents the proper interpreta-
tion of original image (Chen et al., 2009b), especially for a
water body of low reflectance. Thus, the atmospheric correc-
tion is a necessary step before the remote sensing inversion
(Gordon and Wang., 1994; Zhang et al., 2014). The com-
monly used methods of atmospheric correction include the
simple dark object subtraction (DOS), fast line-of-sight at-
mospheric analysis of spectral hypercubes (FLAASH), and
second simulation of satellite signal in the solar spectrum
(6S) models. In addition, the regression analysis of spectral
bands is also a common method used for atmospheric correc-
tion (Chen et al., 2011a; Hedley et al., 2005; Hochberg et al.,
2003; Mei et al., 2001; Montanher et al., 2014). All in all,
each atmospheric correction method has its advantages and
disadvantages.

The 6S code the study used is the improved version of sim-
ulation of the satellite signal in the solar spectrum (5S), de-
veloped by the Laboratoire d’Optique Atmospherique (Ver-
mote et al., 1997). The 6S atmospheric correction model can
also correct the skylight reflection (sun and sky glint) fol-
lowing the Snell–Fresnel laws, environmental effects and di-
rectional target effects (Doxarana et al., 2002), and the Fres-
nel reflection is partially reduced by the presence of land in
estuarial and coastal waters (Vidot and Santer, 2005). The
6S code is frequently used for atmospheric correction of
Landsat imagery based on the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS, a Landsat at-
mospheric correction code base funded by NASA’s Terres-
trial Ecology Program) (Feng et al., 2013; Ju et al., 2012;
Maiersperger et al., 2013; Masek et al., 2006; USGS project,
2004). Compared to the MODIS daily surface reflectance
and normalized bidirectional distribution function-adjusted
reflectance measurements, the global surface reflectance
dataset from Landsat created by LEDAPS has a high accu-
racy (root mean squared deviation: 1.3–3.5 %) (Feng et al.,
2013; Maiersperger et al., 2013). Thus, the LEDAPS soft-
ware was chosen for atmospheric correction in this study. We
assumed the continental aerosol type because the northeast
monsoon was blowing from the land in the study. The aerosol
optical thickness was derived independently from each Land-
sat acquisition using the dark dense vegetation (DDV) ap-
proach (Kaufman and Tanré, 1996). Critical atmospheric pa-
rameters of the 6S model, including water vapor at a resolu-
tion of 2.5 by 2.5◦ (http://dss.ucar.edu/datasets/ds090.0/) and
ozone concentrations at a resolution of 1◦ latitude and 1.25◦

longitude, were collected from National Centers for Environ-
mental Prediction (NCEP) and Total Ozone Mapping Spec-
trometer (TOMS) and NOAA’s Television Infrared Observa-
tion Satellite Program (TIROS) Operational Vertical Sounder
(TOVS), respectively (Feng et al., 2013; Ju et al., 2012;
Masek et al., 2006). Rayleigh scattering was adjusted to local
conditions by a static 0.05◦ digital topography dataset (de-

rived from the 1 km GTopo30) and NCEP surface pressure
data (Feng et al., 2013; Masek et al., 2006). All the parame-
ters are automatically called corresponding to each Landsat
image when LEDAPS runs.

2.4 Band response function application of Landsat for
field spectra

Before establishing a TSS retrieval model, the water surface
reflectance measured in the field was convoluted with the
Landsat band response functions to derive the band-weighted
reflectance data using Eq. (1). It is also a critical step for the
application of TSS retrieval model from ground spectral data
to remote sensing imagery.

R(band)=

bandmax∑
bandmin

f (λband)r(λband)

bandmax∑
bandmin

f (λband)

, (1)

where bandmin and bandmax are the lower and upper lim-
its of the Landsat band in red and near-infrared bands, re-
spectively; r(λ) is the water surface reflectance, and f (λ)
is the spectral response function of Landsat sensors (http:
//Landsat.usgs.gov). The simulated “R (band)”, correspond-
ing to all bands of Landsat OLI, ETM+ and TM, was calcu-
lated for each spectrum.

2.5 Accuracy assessment method of models

In order to validate the accuracy of the TSS spectral models,
atmospheric correction and mapping of TSS concentrations,
the most frequently used methods (Chen et al., 2009b; Feng
et al., 2014; Zhang et al., 2014), including the determination
coefficient (R2), the RMSE and mean relative error (MRE),
were also used in the study for convenience of comparison
by different readers.

RMSE=

√√√√√ i=n∑
i=1

(
xi − x

′

i

)2
n

, (2)

MRE=

i=n∑
i=1

∣∣∣ xi−x′ixi

∣∣∣
n

× 100%, (3)

where xi is the observed value, x′i is the modeled value, i is
the ith element, and n is the number of elements.

3 Results and discussions

3.1 Evaluation of previous Landsat-based TSS models

The previous Landsat-based TSS retrieval models (Table 2)
were calibrated and validated again with the optimization of
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Table 2. Review of previous TSS or turbidity retrieval models using Landsat imagery.

Data Model Study area Reference

TM Bands 2, 4 TSS= 29.022 · exp(0.0335 · (B4/B2)) Gironde and Loire
Estuaries

Doxaran et al. (2003)

MSS Bands 5, 6 ln(TSS)= 1.4 · (B5/B6)2− 6.2 · (B5/B6)+ 10.8 The Bay of Fundy and
the Beaufort Sea

Topliss et al. (1990)

TM Bands 1, 3, 4 Turbidity= 11.31 · (B4/B1)− 2.03 ·B3− 16.42 Chagan Lake Song et al. (2011)

TM Band 4 Turbidity= 16.1 ·B4− 12.7 Nebraska Sand Hills
Lakes

Fraser (1998)

TM Band 3 Turbidity= 10 ·B3− 24.8

TM Band 1 Turbidity= 19 ·B1− 97.9

TM Band 2 Turbidity= 6.4 ·B2− 28

TM Band 3 TSS= 69.39 ·B3− 201 Ganges and Brahmapu-
tra rivers

Islam et al. (2001)

MSS Bands 1, 2 ln(TSS)= 2.71 · (B1/B2)2− 9.21 · (B1/B2)+ 8.45 Enid Reservoir in
north–central Missis-
sippi

Ritchie and Cooper (1991)

TM Band 3 log(TSS)= 0.098 ·B3+ 0.334 Delaware Bay Keiner and Yan (1998)

TM Bands 2, 3 TSS= 0.7581 · exp(61.683 · (B2+B3)/2) Southern Frisian lakes Dekkera et al. (2001)

TM Bands 1, 3 TSS= 0.0167 · exp(12.3 ·B3/B1) An embayment of Lake
Michigan

Lathrop et al. (1991)

TM/ETM+ Band 3 log(TSS)= 44.072 ·B3+ 0.1591 Yellow River estuary Zhang et al. (2014)

TM Band 3 TSS= 2.19 · exp(21.965 ·B3) Poyang Lake Wu et al. (2013)

TSS=−9275.78 · (B3)3+ 8623.19 · (B3)2

−810.04 ·B3+ 23.44

TM Bands 3, 4 TSS= 5829.8 · (B3−B4)3+ 4165.09 · (B3−B4)2

−189.88 · (B3−B4)+ 5.43

TSS= 3.411 · exp(21.998 · (B3−B4))

OLI Bands 2, 3, 8 TSS=−191.02 ·B2+ 36.8 ·B3+ 172.66 ·B8+ 4.57 Xin’anjiang Reservoir Zhang et al. (2015)

TM Band 2 B2= 0.0044 ·TSS+ 2.5226 Bhopal Upper Lake Rao et al. (2009)

TM Band 2, 3 log(TSS)= 6.2244 · (B2+B3)/B2 ·B3+ 0.892 Yangtze estuary Li et al. (2010)

TM Band 3 TSS= 0.543 ·B3− 7.102 Beysehir Lake Nas et al. (2010)

TM Band 4 TSS= 229457.695 · (B4)2+ 146.462 ·B4+ 5.701 Bohai gulf Chen et al. (2014)

parameters based on the 119 in situ samples (84 in situ sam-
ples for calibration, the other 35 for validation). There were
five comparatively better results of the simulation presented
in Fig. 3 only due to the limitation of page space. The results
indicated that the previous Landsat-based TSS models did
not explain the TSS variation so well. The determination co-
efficient of calibration models in the five better TSS models
(Fig. 3) was between 0.58 and 0.784, corresponding to linear
(Fig. 3c1) and quadratic (Fig. 3a1) models of single bands,
respectively.

The five TSS retrieval models were further validated based
on another 35 in situ samples within the range of 4.5–
474 mgL−1. The results showed that minimum MRE was
39.4 % from an exponential single-band model (Fig. 3d2),
but its RMSE was 50.26 mgL−1. The quadratic single-band
model (Fig. 3a2) got minimum RMSE (35.73 mgL−1) but
with a high MRE value of 144.2 %. Obviously, the quadratic
single-band model is difficult to adapt for this study. How-
ever, for the exponential single-band model, the high RMSE
prevented this form of model from applying as well, espe-
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cially when we took the TSS concentration of 22 validation
data (lower than 36 mgL−1, Fig. 3 in triangles) into account.
The RMSEs and MREs of the other three forms of mod-
els were 69.3 mgL−1 and 45 %, 82.7 mgL−1 and 48 % for
the linear model (Fig. 3b2 and c2), 68.7 mgL−1 and 41.3 %
for the quadratic model (Fig. 3e2), respectively. In contrast,
the non-monotonic function, quadratic model of the ratio of
bands (Fig. 3e) had a better performance among the five ex-
amined TSS models. But, we still expect that there would be
a TSS model with high calibration and validation accuracy
simultaneously for estuaries and coasts of China by Landsat
imagery.

3.2 Development of QRLTSS model

In order to develop a Landsat-based model with higher cal-
ibration and validation accuracy, some MODIS-based TSS
retrieval models (Chen et al., 2009b, 2011a, b, 2015b; Wang
et al., 2010) were referred to. These models made full use
of the relationship between the ratio of logarithmic transfor-
mation of the red band and near-infrared band and logarith-
mic transformation of TSS concentration. Thus, following
the feature of these MODIS-based models, we improved the
model (Fig. 3e1) developed by Ritchie and Cooper (1991),
under the MATLAB environment, shown in Fig. 4.

From Figs. 3 and 4a1, b1 and c1, we found that the
quadratic model of the ratio of logarithmic transformation
of red band and near-infrared band and logarithmic transfor-
mation of TSS concentration (QRLTSS, Eq. 4) has a higher
calibration accuracy than most of the previous TSS models,
no matter whether it is Landsat OLI, ETM+ or TM sensor.

log(R1)

log(R2)
= a · (log(TSS))2+ b · log(TSS)+ c, (4)

where R1 and R2 represent the near-infrared band and red
band of OLI, ETM+ and TM sensors. Parameters a, b and c
refer to Fig. 4a, b and c, respectively. The unit of TSS con-
centration is in milligrams per liter (mgL−1).

Compared to the previous model developed by Ritchie
and Cooper (1991), we improved the input with logarithmic
transformation of bands and made full use of the different
sensitivity of red and near-infrared bands to TSS concentra-
tions that have been proved by many studies (Chen et al.,
2015b; Feng et al., 2014; Wang et al., 2010; Hu et al., 2004).
Compared to the MODIS-based models developed by Chen
et al. (2011b) and Wang et al. (2010), the QRLTSS model
established in this paper seems more complicated. The mod-
els (Chen et al., 2011b; Wang et al., 2010) are in linear or
exponential form, belonging to a simple monotonic func-
tion that can cause unreliable estimation in some spectral
ranges. Although the QRLTSS model developed in our study
is similar to previous studies (Chen et al., 2009b, 2011a,
2015b), there are some differences among them. They are in-
deed all quadratic models, but the models developed by Chen
et al. (2009b) and Chen et al. (2011a) are part of the curves. It

is different from the form developed by Chen et al. (2015b)
and this study, which are all complete quadratic curves. It
should be noted that the partial quadratic curve has some lim-
itations in estimating TSS concentration with the wide range.
Some regions with lower or higher TSS concentration could
not be retrieved accurately. In fact, TSS concentrations in the
study area (Apalachicola Bay, USA) of Chen et al. (2009b)
and Chen et al. (2011a) are not as high as TSS concentra-
tions in the study areas of this paper and Chen et al. (2015b).
The maximum TSS concentration in the previous studies
was about 200 mgL−1 (Chen et al., 2009b, 2011a), but the
maximum TSS concentration was higher than 500 mgL−1

(Yangtze River estuary) for the previous study (Chen et al.,
2015b) and this study. In addition, the study areas of Chen
et al. (2015b) only include Xuwen Coral Reef National Na-
ture Reserve, a less turbid region, and the Yangtze River
estuary, an extremely turbid region, which might make the
model developed by Chen et al. (2015b) perform worse in
the middle of the quadratic curve than both ends of the
quadratic curve. The QRLTSS model in this study is better
in the continuity of calibration and validation data than Chen
et al. (2015b). The reason is that the study areas of this pa-
per include not only their regions (Chen et al., 2015b) but
also the other three main estuarine regions in Guangdong
Province (Moyangjiang River estuary, Pearl River estuary
and Hanjiang River estuary). In general, the TSS concentra-
tions in the three additional regions are higher than the those
at Xuwen coast, but lower than those at the Yangtze River
estuary. These data are a good supplement for a test of the
robustness and accuracy of the model in the study.

It should be noted that a band value corresponds to two
TSS concentration values based on the QRLTSS model
(Eq. 4). We should make the unique choice when validating
or retrieving TSS concentration by the model. Unfortunately,
we had not been aware of this problem and did not solve it
in our previous work (Wang et al., 2016). It meant that our
previous results (Wang et al., 2016) were not complete. In
this study, the TSS concentrations of the vertex correspond-
ing to the three quadratic models based on Landsat OLI,
ETM+ and TM sensors have been obtained through solving
the Eq. (4) as follows. Firstly, the derivatives were calculated
from Eq. (4) by calculus. Then, we can obtained the vertex
point through solving the root of the derivative by the param-
eters (Fig. 4a–c for OLI: −0.3575, 1.1135, 0.7162; ETM+:
−0.2844, 0.8578, 0.8278; TM: −0.2821, 0.8506, 0.8295).
Finally, the vertex values were calculated. The vertex value
for OLI is about 36.1 mgL−1. The vertex values for ETM+
and TM are about 32.2 mgL−1, which can be attributed to
their almost-equal spectral band features (Table 4).

(
log(R1)

log(R2)

)′
= 2a · (log(TSS))+ b

⇒ log(TSS)=−
b

2a
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⇒ TSS= 10−
b

2a

For the QRLTSS model based on an OLI sensor, we found
that the values of OLI red-band weighted reflectance of all
validation data are lower than 0.032 when TSS concentra-
tions are less than 36.1 mgL−1 (Fig. 5a, blue dots) apart from
one exceptional datum (Fig. 5a, black dot). The reflectance is
higher than 0.032 when TSS concentrations are higher than
36.1 mgL−1 (Fig. 5a, red dots). The QRLTSS models based
on ETM+ and TM sensors have similar situations. But the
values of TSS concentration and reflectance at the vertex are
32.2 mgL−1 and 0.031, shown in Fig. 5b (dots for ETM+
and triangles for TM). The findings are different from the re-
sult found in a MODIS-based model by Chen et al. (2015b).
In a previous study (Chen et al., 2015b), the values of TSS
concentration and reflectance of the MODIS red band at the
vertex are 31 mgL−1 and 0.025, respectively. We believe that
the difference was caused by different spectral characteristics
of satellite sensors (Table 4). This is also why multi-source
satellite remote sensing has become more and more impor-
tant in recent years. Monitoring TSS concentrations from
multiple data sources could make full use of the advantages
of all kinds of satellite sensors. According to the above anal-
ysis, TSS concentration can be retrieved by using Eq. (5) in
the form of a positive squared root if the reflectance of red
band is lower than 0.032 (OLI sensor) or 0.031 (ETM+ and
TM sensors) and by using Eq. (5) in the form of a negative
squared root if the reflectance of red band is greater than
0.032 (OLI sensor) or 0.031 (ETM+ and TM sensors), re-
spectively.

log(TSS)=
−b±

√
b2− 4a

(
c−

log(R1)
log(R2)

)
2a(

b2
− 4a

(
c−

log(R1)

log(R2)

)
≥ 0

)
(5)

We validated the QRLTSS model based on the 35 in situ
samples and the selection criteria (Eq. 5). The results in-
dicated that the QRLTSS model has a better performance
than the previous five TSS models, although the QRLTSS
model explained about 72 % of the TSS concentration vari-
ation only. The RMSEs and MREs of all validation data
for QRLTSS model are 21.5 mgL−1 and 27.2 % for OLI
(Fig. 4a2), 25 mg L−1 and 32.5 % for ETM+ (Fig. 4b2),
and 24.9 mgL−1 and 31.5 % for TM (Fig. 4c2), respectively.
All of the simulated results from the QRLTSS model have
higher validation accuracies than the best of the five previous
TSS models (RMSE: 35.7 mgL−1, MRE: 39.4 %). Accord-
ing to the vertex location of the quadratic model, the wide
range of validation data (TSS: 4.5–474 mgL−1) was divided
into two parts of low (4.5–32.2 mgL−1, triangles in Figs. 3
and 4) and high (36.2–474 mgL−1, squares in Figs. 3 and 4)
TSS concentration for further validation. For the data of low
TSS concentrations, the RMSEs and MREs of validation are

3.5 mgL−1 and 31.1 % for OLI, 4.6 mgL−1 and 38.3 % for
ETM+, and 4 mgL−1 and 35.3 % for TM. For the data of
high TSS concentrations, the RMSEs and MREs of valida-
tion are 35.1 mgL−1 and 20.7 % for OLI, 40.7 mgL−1 and
20.3 % for ETM+, and 40.6 mgL−1 and 25.1 % for TM. The
validation accuracies of the two parts are still better than the
best of the previous five TSS models (RMSEs and MREs:
5.6 mgL−1 and 39.4 % for the low-concentration part and
53.5 mgL−1 and 23.5 % for the high-concentration part). De-
tailed information on the calibration and validation in Figs. 3
and 4 are shown in Table 3.

From Table 3 we could also find that the calibration and
validation accuracy of the OLI-based QRLTSS model is a lit-
tle higher than ETM+ and TM (R2: 0.7181 vs. 0.708 and
0.7079, RMSE: 21.5 mgL−1 vs. 25 and 24.9 mgL−1, MRE:
27.2 % vs. 32.5 and 31.5 %). We attribute this mainly to
the improvement of the Landsat OLI sensor’s design. Es-
pecially for OLI band_5, the band of water vapor absorp-
tion at 825 nm was removed from the near-infrared band
range, whose wavelength is 845–885 nm now (http://Landsat.
usgs.gov/). However, the near-infrared band wavelengths of
ETM+ and TM are 775–900 nm and 760–900 nm, respec-
tively. In addition, the red-band wavelength of OLI is 630–
680 nm, and the correspondence of ETM+ and TM is 630–
690 nm. The small difference between ETM+ and TM sen-
sors determines a small difference in QRLTSS model based
on ETM+ and TM. The performance (red band and near-
infrared band) of different sensors and the vertexes of the
QRLTSS model based on these sensors are shown in Table 4.

3.3 Comparison of Landsat-measured reflectance with
in situ reflectance

In order to analyze the spatial and temporal variation of TSS
concentrations in our study areas and further verify accuracy
of QRLTSS model, the acquired Landsat imagery was used
to calculate the TSS concentrations by the QRLTSS model
described in Sect. 3.2 (Eq. 5). Atmospheric correction is crit-
ical for working with multi-scene imagery and empirical or
semiempirical methods. Thus, the atmospheric correction ac-
curacy of 6S was calculated firstly based on the reflectance of
synchronous in situ measurements, a total of 22 samples from
three regions within a 2 h time window of satellite overpass
(Bailey and Werdell. 2006; Chen et al., 2015; Zhang et al.,
2014). Among them, 6 of the total 22 samples were collected
from the Pearl River estuary on 2 November 2012, 9 samples
were collected from the Hanjiang River estuary on 1 Decem-
ber 2013 and the other 7 samples were collected from the
Moyangjiang River estuary on 6 December 2013. In deriving
the reflectance comparison, the water-leaving radiances from
Landsat imagery were averaged by window of 3×3 pixels of
the location of the sample of the image. We then calculated
RMSE and MRE of the reflectance result after atmospheric
correction with in situ reflectance. RMSEs (MREs) of red
and near-infrared bands are 0.0033 (9.58 %) and 0.00092
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Table 3. The comparison of calibration and validation accuracy of several of the best TSS retrieval models.

Model form Calibration (R2) Validation (RMSE (mgL−1), MRE)

Whole Low range High range

Chen et al. (2014) 0.7842 35.7, 144.2 % 18.35, 215.58 % 53.56, 23.5 %
Li et al. (2010) 0.6167 69.3, 45 % 5.66, 52.6 % 113.48, 32.1 %
Zhang et al. (2014) 0.5804 82.8, 48 % 6.56, 53.9 % 135.54, 38.15 %
Lathrop et al. (1991) 0.6661 50.3 39.4 % 6.12, 44.6 % 82.09, 30.57 %
Ritchie and Cooper (1991) 0.6983 68.7, 41.3 % 7.24, 44 % 112.32, 36.6 %

This study OLI 0.7181 21.5, 27.2 % 3.5, 31.1 % 35.1, 20.7 %
ETM+ 0.708 25, 32.5 % 4.6, 38.3 % 40.7, 20.3 %
TM 0.7079 24.9, 31.5 % 4, 35.3 % 40.6, 25.1 %

Table 4. The performance of different sensors and the vertices of QRLTSS model based on these sensors.

TM ETM+ OLI MODIS

Red band, Red band, Red band, Red band,
near-infrared near-infrared near-infrared near-infrared

band band band band

Wavelength (nm) 630–690, 630–690, 630–680, 620–670,
760–900 775–900 845–885 841–874

Spatial resolution (m) 30 30 30 250

Radiometric resolution (bit) 8 8 12 12

Signal/noise (dB and 140, 244 140, 244 340, 460 128, 201
specified level of high)

The vertex of quadratic model 0.031, 0.031, 0.032, 0.025,
32.2 mgL−1 32.2 mgL−1 36.1 mgL−1 31 mgL−1

(this study) (this study) (this study) (Chen et al., 2015b)

(21.5 %), respectively, which showed an acceptable accuracy.
The results in Fig. 6 show that the 6S model was sufficiently
stable and accurate for deriving the reflectance at visible and
near-infrared bands from Landsat satellite data for the pur-
pose of remote sensing applications in estuarine and coastal
waters.

3.4 Validation of QRLTSS model from Landsat
imagery

After atmospheric correction of 6S, the TSS concentrations
of the Moyangjiang River estuary, part of the Pearl River es-
tuary, and the Hanjiang River estuary were estimated from
ETM+ or OLI imagery (Fig. 7). Figure 7a show the TSS
concentrations in the Moyangjiang River estuary (11:00 LT)
on 6 December 2013 with a large variation ranging from
0.557 to 203.9 mg L−1. It is clear that the TSS concentra-
tions are higher inside and outside of the Moyangjiang River
estuary than the outer shelf area, especially in the down-
stream estuary, with a mean value of 154.2 mgL−1 (Fig. 7a).
The region of high TSS concentrations in the Moyangjiang

River estuary looks lung-shaped. The outer shelf area has low
TSS concentrations, where the TSS concentrations less than
35 mgL−1 were frequently found and the maximum is not
higher than 60 mgL−1. So, there are sharp fronts that could
be seen clearly between coastal area and outer shelf area. The
TSS distribution in the Moyangjiang River estuary is mainly
attributed to the interaction between tide and runoff. In this
study, the remote sensing imagery covering the Moyangjiang
River estuary was obtained at 11:00 LT in the morning when
the tide had begun to ebb and runoff with large amounts of
sediment flowed into the South China Sea.

Different from TSS concentrations in the Moyangjiang
River estuary, the TSS concentrations in eastern Zhuhai and
Macao and Hong Kong coastal water bodies have much
lower TSS values, with a mean value of 12 mgL−1 (Fig. 7b,
blank areas without synchronous image). There was a signif-
icant decreasing trend of TSS concentration from the north-
west to southeast of the Pearl River estuary. It was mainly
due to the interaction between runoff (flowing southwest)
and tide (flowing northwest). The maximum TSS concentra-
tion was about 29 mgL−1. The reason why the water bod-
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ies in the outer Lingding Bay of the Pearl River estuary
had a low-level TSS concentration was probably because of
strong management protection and less human activity. Most
parts of the eastern Zhuhai water bodies have belonged to the
Pearl River estuary Chinese White Dolphin National Nature
Reserve (NNR) since 2003 (http://www.gdofa.gov.cn/). The
NNR has an area of about 460 km2 located between latitudes
21.18–22.4◦ N and longitudes 113.66–113.87◦ E, shown in
Fig. 7b (region with black dotted line). The low TSS con-
centrations in this region confirm the protection effect of the
Chinese White Dolphin NNR.

Compared to the Moyangjiang River estuary and eastern
Zhuhai and Macao coastal water bodies, the TSS concen-
trations in the Hanjiang River estuary had wider variables,
ranging from 0.295 to 370.4 mgL−1. The water bodies with
high TSS concentrations in this region were mainly in two
zones where the sharp fronts of TSS were clearly visible
(Fig. 7c, zones 1 and 2). The TSS concentrations in zone 1
were almost higher than 100 mgL−1, with a maximum value
of 370.4 mgL−1 and a mean value of 167.91 mgL−1. For
zone 2, the TSS concentrations mostly ranged from 20 to
110 mgL−1, and the maximum and mean value were 127.14
and 61.57 mgL−1, respectively. The results also showed that
the turbid river runoff flows into South China Sea along east
coast of Dahao District, Shantou City. The high TSS con-
centrations in this region were caused by different factors. In
zone 1 at the opposite bank of Dahao District, Shantou, it was
mainly caused by the runoff of the Xixi waterway in the Han-
jiang River and flow guiding line (dam, solid black line in
Figs. 1e and 7c) connected to Longhu District, Shantou City.
While in zone 2, the high TSS concentrations resulted from
the interaction between tide current and runoff, which is the
potential location of estuarine barrier bar. The TSS concen-
trations in an estuary of the Xinjinhe waterway in the Han-
jiang River were less than 50 mgL−1. The results are similar
to the results of Ding and Xu (2007), which showed TSS con-
centrations ranged from 0.1 to 300 mgL−1 in the Hanjiang
River estuary.

The accuracy of TSS concentration estimated from Land-
sat imagery of two OLIs and one ETM+ was further vali-
dated with 22 quasi synchronous in situ samples that were
collected from the Pearl River estuary, Hanjiang River es-
tuary and Moyangjiang River estuary. The validation accu-
racy is shown in Fig. 7d. The RMSE and MRE of compar-
ison between 22 field TSS concentrations (7–160 mgL−1)
and Landsat satellite inversion are 11.06 mgL−1 and 24.1 %,
respectively. In addition, the RMSEs and MREs of valida-
tion for the low range (7–28.2 mgL−1, N = 18) and the high
range (37–160 mg L−1, N = 4) of TSS concentrations in the
three estuaries are 3.75 mgL−1 and 22 % and 24.69 mgL−1

and 33.2 %, respectively. These results indicate that the
QRLTSS model is applicable to the mapping of TSS in all
of three estuaries from Landsat imagery.

3.5 Further validation of QRLTSS model from EO-1
Hyperion imagery

We were fortunate to acquire EO-1 Hyperion imagery at
10:33 LT with 13 synchronous samples (Fig. 1d, 10 sites with
symbol of triangles and 3 sites with symbol of dots. TSS:
106–220.7 mgL−1) on 21 December 2006 covering part of
the Pearl River estuary from northeast to southwest in the
Lingding Bay. The dataset gives us an opportunity to further
validate the accuracy of the QRLTSS model. After similar
pre-processing steps with Landsat imagery, the EO-1 Hype-
rion imagery was also used to retrieve TSS concentrations
using the QRLTSS model. The results of TSS concentration
mapping and validation accuracy are shown in Fig. 8.

The TSS concentration mapping from Hyperion image on
21 December 2006 ranged from 1.79 to 361.6 mgL−1, with
a mean value of 124.4 mgL−1 (Fig. 8a). The mapping re-
sults of TSS showed large variation from northeast to south-
west in the Pearl River estuary. The areas of low TSS con-
centration were detected near the southwest of Lingding Bay
(mostly in the NNR, Fig. 7b) and in deep channels (east chan-
nel and west channel, Fig. 8a) of Lingding Bay. The areas
of high TSS concentration were in accordance with the out-
lets of different waterways (Humen, Jiaomen, Hongqimen
and Hengmen) of the Pearl River estuary frequently or the
foreshores, which indicate that it is the maximum turbid-
ity zones of the estuary. The 13 synchronous samples (TSS:
106–220.7 mgL−1) were mostly collected from the north-
ern zone of high TSS concentrations (Fig. 1d). Comparisons
of accuracy validation between in situ and Hyperion im-
agery inversed TSS concentrations are produced in Fig. 8b.
The RMSE and MRE of comparison are 26.66 mgL−1 and
12.6 %, respectively. It showed that the QRLTSS model also
worked well in area of high TSS concentrations from Hype-
rion mapping result of the Pearl River estuary.

Based on the evaluation and analysis of all the above re-
sults (Figs. 3, 4, 7 and 8, Tables 3 and 4), we conclude that
the QRLTSS model has the advantage for quantitative in-
version of TSS concentrations with a high dynamic range
in estuaries and coasts. These results explained the usability
of QRLTSS model by the validation of multi-spectral Land-
sat OLI, ETM+ and hyperspectral EO-1 Hyperion imagery
compared to our previous work (Wang et al., 2016).

4 Summary and conclusions

This study developed a QRLTSS model with high adaptabil-
ity and robustness for estimating wide TSS concentration
variables of estuaries and coasts from Landsat imagery (TSS:
4.3–577.2 mgL−1, R2: ∼ 0.72, N = 84, P value < 0.001).
The QRLTSS model got a reasonable validation accuracy
by the independent in situ samples (TSS: 4.5–474 mgL−1,
RMSE ≤ 25 mgL−1, N = 35). Compared to the 22 previ-
ous Landsat-based models (Table 2), the QRLTSS model has
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better performance (Table 3). In addition, we found that the
QRLTSS model based on the bands of OLI showed a higher
accuracy than those based on bands of ETM+ and TM (Ta-
ble 3 and Fig. 4), which can be explained by the adjusted
band design of OLI sensor in reducing the effect of water
vapor absorption compared to ETM+ and TM sensors (Ta-
ble 4).

The QRLTSS model showed good performance when ap-
plied to estimate TSS concentrations from Landsat OLI
and ETM+ imagery (Fig. 7). The RMSEs and MREs of
validation from Landsat imagery (Moyangjiang River es-
tuary, 6 December 2013; part of the Pearl River estuary,
2 November 2012; and Hanjiang River estuary, 1 Decem-
ber 2013) are 11.06 mgL−1 and 24.1 % for the whole range
(7–160 mgL−1), 3.75 mgL−1 and 22 % for the low range
(7–28.2 mgL−1), and 24.69 mgL−1 and 33.2 % for the high
range (37–160 mgL−1) of TSS concentrations, respectively.
Besides, the high validation accuracy of TSS mapping from
Hyperion imagery of the Pearl River estuary (21 Decem-
ber 2006) with in situ data (106–220.7 mgL−1) using the
QRLTSS model had also been obtained (Fig. 8, RMSE:
26.66 mgL−1, MRE: 12.6 %).

Landsat imagery could be one of the best choices in terms
of the availability of data sources for remote sensing of
TSS in estuaries and coasts, considering the spatial resolu-
tion and acquirement of long time series (30 m Landsat TM,
ETM+ and OLI beginning in 1982, 80 m MSS, Multispec-
tral Scanner System, since 1972). The research shows that
the QRLTSS model can quantify the TSS concentration vari-
ation of estuaries and coasts by Landsat series of imagery
with applicable accuracies (R2: 0.71–0.72, 30 m), which can
be compared to the accuracies of previous Landsat-based
studies (R2: 0.67–0.92, 30 m, Chen et al., 2014; Nas et al.,
2010) and MODIS-based studies (R2: 0.61–0.86, 250 m,
Chen et al., 2011a; Wang et al., 2010). The TSS concentra-
tions at the vertex of the QRLTSS model based on Landsat
sensors are different from MODIS (Table 4). Based on the
vertex of QRLTSS model, we proposed a threshold (corre-
sponding to the vertex of quadratic function) of red-band re-
flectance (Fig. 5, OLI: 0.032, ETM+ and TM: 0.031) which
can be used to divide the quadratic function for solving the
QRLTSS model under two kinds of squared roots (Table 4).

For a lot of medium- and high-resolution remote sensing
sensors similar to Landsat series satellites, such as HJ-1 A
and B, LISS, CBERS, ASTER, ALOS, RapidEye, Kanopus-
V, and GF, we deduce that there is potential to optimize the
QRLTSS model for mapping the wide range of TSS con-
centrations of estuaries and coasts from multi-source satel-
lite remote sensing. It will be beneficial to the understanding
of the spatial and temporal variation of TSS concentrations
on regional and global scales and provide great help in es-
tablishing regional or unified TSS remote sensing models of
estuaries and coasts throughout the world.

Code and data availability. The LEDAPS code used for at-
mospheric correction is freely available at https://github.com/
usgs-eros/espa-surface-reflectance (USGS, 2004) and all the re-
mote sensing imagery can be downloaded freely at https://glovis.
usgs.gov/ (USGS, 1982; NASA, 2001).
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