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Abstract. We develop a prognostic model called Pollen
Emissions for Climate Models (PECM) for use within re-
gional and global climate models to simulate pollen counts
over the seasonal cycle based on geography, vegetation
type, and meteorological parameters. Using modern surface
pollen count data, empirical relationships between prior-year
annual average temperature and pollen season start dates
and end dates are developed for deciduous broadleaf trees
(Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus,
Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae,
Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Am-
brosia). This regression model explains as much as 57 %
of the variance in pollen phenological dates, and it is used
to create a “climate-flexible” phenology that can be used to
study the response of wind-driven pollen emissions to cli-
mate change. The emissions model is evaluated in the Re-
gional Climate Model version 4 (RegCM4) over the con-
tinental United States by prescribing an emission poten-
tial from PECM and transporting pollen as aerosol tracers.
We evaluate two different pollen emissions scenarios in the
model using (1) a taxa-specific land cover database, phenol-
ogy, and emission potential, and (2) a plant functional type
(PFT) land cover, phenology, and emission potential. The
simulated surface pollen concentrations for both simulations
are evaluated against observed surface pollen counts in five
climatic subregions. Given prescribed pollen emissions, the
RegCM4 simulates observed concentrations within an order
of magnitude, although the performance of the simulations
in any subregion is strongly related to the land cover repre-
sentation and the number of observation sites used to cre-
ate the empirical phenological relationship. The taxa-based
model provides a better representation of the phenology of
tree-based pollen counts than the PFT-based model; how-
ever, we note that the PFT-based version provides a useful

and “climate-flexible” emissions model for the general rep-
resentation of the pollen phenology over the United States.

1 Introduction

Pollen grains are released from plants to transmit the male
genetic material for reproduction. When lofted into the at-
mosphere, they represent a natural source of coarse atmo-
spheric aerosols, ranging typically from 15 to 60 µm in di-
ameter, while sometimes exceeding 100 µm (Cecchi, 2014;
Sofiev et al., 2014). In the midlatitudes, much of the veg-
etation relies dominantly on anemophilous, or wind-driven,
pollination (Lewis et al., 1983), representing a closely cou-
pled relationship of pollen emissions to weather and climate.
Anemophilous pollinators include woody plants such as trees
and shrubs, as well as other non-woody vascular plants such
as grasses and herbs. Pollen emissions are directly affected
by meteorological (e.g., temperature, wind, relative humid-
ity) and climatological (e.g., temperature, soil moisture) fac-
tors (Weber, 2003). Aerobiology studies indicate that after re-
lease, pollen can be transported on the order of 10–1000 km
(Sofiev et al., 2006; Schueler and Schlünzen, 2006; Kupari-
nen et al., 2007) but there are still large uncertainties regard-
ing emissions and transport of pollen.

Prognostic pollen emissions are useful for the scientific
community and public, specifically for forecasting allergenic
conditions or predicting the flow of genetic material. The in-
terest and growing wealth of knowledge of allergenic pollen
have been recently reviewed by Beggs et al. (2017). To date,
most pollen emissions models focus on relatively short, sea-
sonal timescales and smaller locales for a limited selection
of taxa (Sofiev et al., 2013; Liu et al., 2016; R. Zhang et
al., 2014). Climatic changes in large-scale pollen distribu-
tions are mostly absent from scientific literature, though mul-
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tiple studies on phenological changes in the pollen season
have been published (Ziska, 2016; Yue et al., 2015; Y. Zhang
et al., 2015a). Only recently have regional-scale modeling
studies of pollen dispersion been conducted for Europe, and
they have been used to assess the impacts of climate change
on airborne pollen distributions (Sofiev and Prank, 2016;
Lake et al., 2017). In contrast to most meteorological pollen
models, climate models require long-term (e.g., decadal- to
century-scale) emissions at a range of resolutions covering
continental regions up to the global scale. This distinction
in both time and space requires a flexible model that can
account for emissions without taxon-specific emission data
(i.e., differentiation between genera or species) and can be
used within aggregated vegetation descriptions, such as plant
functional types (PFTs). Given recent interest in airborne bi-
ological particles and their role in climate (Després et al.,
2012; Myriokefalitakis et al., 2017), an emissions model that
captures longer temporal scales and broader spatial scales
is key to developing global inventories and understanding
pollen’s role in the climate system. Here, we develop a model
for use in the climate modeling community that can be used
specifically to simulate pollen emissions on the decadal or
centurial timescale for large regions using conventional cli-
mate or Earth system models.

Existing pollen forecasting models are often classified as
either process-based phenological models or observation-
based models (Scheifinger et al., 2013). Process-based phe-
nological models employ a parameterization of plant phys-
iology and climatic conditions (e.g., relating to the timing
of flowering to a chilling period, photoperiod, or water avail-
ability). Pollen season phenology in an anemophilous species
is inherently connected to its environment via relationships
in the growing season dynamics (e.g., bud burst and tem-
perature; Fu et al., 2012), and many models apply the same
techniques to flowering as for bud burst (Chuine et al., 1999).
This approach to phenology could be suited to climate mod-
els, given its flexibility for adaptive phenological events and
regional-scale studies. Typically, these types of phenologi-
cal models are taxa specific as well as regionally dependent,
e.g., Betula in Europe or ragweed in California (Sofiev et
al., 2013; Siljamo et al., 2013; R. Zhang et al., 2014). These
models are usually calibrated to local data only even though
distinct geographic differences exist for pollen phenology.
Thus, such models may not perform equally well in other
locations. Though process-based models draw a connection
between an atmospheric state variable, i.e., temperature, and
pollen emissions, at least three parameters are required for
optimization and they are susceptible to overfitting (Linkos-
alo et al., 2008). While some process-based models may be
scaled up to larger regions while maintaining appreciable ac-
curacy (García-Mozo et al., 2009), such models are generally
not practical for implementation in larger-scale climate mod-
eling with regional climate models (RCMs) and global cli-
mate models (GCMs) because sufficient land cover data are
not available at the appropriate taxonomic level.

In contrast to process-based models, observation-based
methods determine the phenology of vegetation with
statistical–empirical approaches (e.g., relating the start of the
pollen season with mean temperatures preceding the pollen
event) and often rely on regression models or time series
modeling (Scheifinger et al., 2013). Time series modeling
utilizes observations to define the deterministic and stochas-
tic variability of pollen count observations and is frequently
used in aerobiological studies (Moseholm et al., 1987; Box
et al., 1994). Regression models, either using a single or mul-
tiple explanatory variable(s), exploit past relationships to de-
fine the magnitude of emissions as well as timing variables
such as the start date and duration of the pollen season (Em-
berlin et al., 1999; Smith and Emberlin, 2005; Galán et al.,
2008). Using local pollen count data, Y. Zhang et al. (2015b)
completed a regional phenological analysis using multiple
linear regressions for pollen in southern California for six
taxa. Olsson and Jönsson (2014) show that empirical mod-
els based solely on spring temperature perform just as well
as process-based models using the temperature forcing con-
cept, and better than those including a chilling or dormancy-
breaking requirement.

Observation-based methods assume stationarity, or the
likelihood that the statistics of pollen counts or climate vari-
ables are not changing over time. For these models to apply
outside of calibration period, they require that the driving
pattern or relationship is maintained in the future (or past).
For example, as the Earth’s climate changes, these models do
not represent the complex connections between pollen emis-
sions and a warming world aside from the relationships de-
termined empirically. However, these models provide clear
and often simple formulations that have predictable behav-
iors and forgo the nuance of fitting ambiguous and uncertain
parameters. We therefore choose to employ elements of the
observational methods for this pollen emissions model for-
mulation, as described in Sect. 4.

In addition to understanding the release of pollen grains,
a second consideration is the large-scale transport of pollen.
Once emitted to the atmosphere, pollen is mixed within the
atmospheric boundary layer by turbulence and, depending on
large-scale conditions, can be transported far from the emis-
sion source. Prior studies have used both Lagrangian (Hunt
et al., 2002; Hidalgo et al., 2002) and Eulerian techniques
to simulate the transport of pollen, with the former typically
used for studies of crop germination and the latter primarily
for allergen forecasting. For example, Helbig et al. (2004)
used the meteorological model KAMM (Karlsruher Me-
teorologisches Modell) with the DRAIS (Dreidimension-
ales Ausbreitungs- und Immissions-Simulationsmodell) tur-
bulence component to simulate daily pollen counts for re-
gions over Europe. Schueler and Schlünzen (2006) use a
mesoscale atmospheric model (METRAS) to quantify the re-
lease, transport, and deposition of oak pollen for a 2-day pe-
riod over Europe. Sofiev et al. (2013) includes the long-range
transport of birch pollen over western Europe by developing
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Figure 1. Locations of American Academy of Allergy, Asthma and Immunology (AAAAI) station and geographic regions used in this study:
Northeast (NE; 38–48◦ N, 70–100◦W) in blue, Southeast (SE; 25–38◦ N, 70–100◦W) in green, Mountain (MT; 25–48◦ N, 100–116◦W) in
red, California (CA; 25–40◦ N, 116–125◦W) in orange, and Pacific Northwest (PNW; 40–48◦ N, 116–125◦W) in dark grey.

a birch pollen map and a flowering model to trigger release in
the Finnish System for Integrated modeling of Atmospheric
coMposition (SILAM). Efstathiou et al. (2011) developed a
pollen emissions model for use within the regional air qual-
ity model (the Community Multi-scale Air Quality model;
CMAQ) and tested their model with birch and ragweed taxa.
R. Zhang et al. (2014) implemented a similar pollen emis-
sions scheme with a regional numerical weather prediction
model (the Weather Research and Forecasting (WRF) mod-
eling system). Zink et al. (2013) developed a generic pollen
modeling parameterization for use with a numerical weather
prediction model (COSMO-ART) that is flexible to include
differing pollen taxa. Collectively, these relatively new de-
velopments suggest a growing interest in the prognostic esti-
mation of pollen in the short term for seasonal allergen fore-
casting on the weather (e.g., 1- to 2-week) timescale.

In this paper, we build on these coupled emissions–
transport models and develop a comprehensive emissions
model (Pollen Emissions for Climate Models; PECM) for
use at climate model timescales that covers the majority of
pollen sources in subtropical to temperate climes, including
woody plants, grasses, and ragweed. First, we summarize
the spatial distribution and seasonality of pollen counts for
various taxa in the United States based on current observa-
tions (Sect. 2). Then, we develop new pollen emissions pa-
rameterization for climate studies (Sect. 4), transport these
emissions over the continental United States (CONUS) us-
ing the Regional Climate Model version 4 (RegCM4) (Giorgi
et al., 2012), and evaluate the results using 8 years of ob-
served pollen count data (Sect. 5). We implement two dif-
ferent land cover classification schemes to illustrate the un-
certainties associated with vegetation representation for trees
including (1) detailed family- or genus-level tree distribu-
tions over CONUS, and (2) the use of PFT level distribu-

tions, which group vegetation types by physiological charac-
teristics (Sect. 3). As the latter provides a greater opportunity
for expansion into regional- and global-scale climate mod-
els over multiple domains, we discuss the effects that the
PFT-based categorization has on the total estimated source
strength of pollen. Finally, the limitations of this emissions
framework and suggestions for future developments are in-
cluded (Sect. 6).

2 Observed pollen phenology

2.1 Data description

The National Allergy Bureau (NAB) of the American
Academy of Allergy, Asthma and Immunology (AAAAI)
conducts daily pollen counts at 96 sites in cities across the
United States (US), its territories, and several locations in
southern Canada. All NAB sites implement a volumetric air
sampler and certified pollen count experts to conduct daily
pollen counts (grains m−3) for up to 42 plant taxa at either the
family level (e.g., Cupressaceae, Poaceae), genus level (e.g.,
Acer, Quercus), or for four generic categories termed “other
grass pollen”, “other tree pollen”, “other weed pollen”, or
“unidentified”. We use NAB pollen count data ranging from
2003 to 2010 at all stations in the continental United States
(Fig. 1) for selected taxa to develop and evaluate PECM, and
to determine the phenology of wind-driven pollen. Individual
station locations and descriptions are included in Table S1 in
the Supplement.

We evaluate the observed pollen counts to determine the
vegetation types that emit the largest magnitude of pollen
over the continental United States. Since many of the taxa
reported at the 96 NAB sites frequently have very low pollen
counts (e.g., less than 10 grains m−3), a threshold for the
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Figure 2. Daily observed average time series of daily pollen count data (2003–2010) for the four representative plant functional types
(deciduous broadleaf forest, DBF; evergreen needleleaf forest, ENF; grasses, GRA; and ragweed, RAG) averaged over the five regions in
Fig. 1: (a) Northeast, (b) Southeast, (c) Mountain, (d) California, and (e) Pacific Northwest.

grain count is set to select the taxa with the highest pollen
counts. We calculate the average of the annual maximum
pollen count across all years (2003–2010), Pavgmax, at each
site for each counted taxon. We then select taxa to include
in PECM using two criteria: (1) the maximum of Pavgmax
among all stations exceeds 100 grains m−3, and (2) the aver-
age Pavgmax among all stations exceeds 70 grains m−3 (Ta-
ble S2). Using these two criteria, 13 taxa are selected for
inclusion in the model, including Acer, Alnus, Ambrosia,
Betula, Cupressaceae, Fraxinus, Poaceae, Morus, Pinaceae,
Platanus, Populus, Quercus, and Ulmus. These 13 taxa ac-
count for about 77 % of the total pollen counted across the
United States during 2003–2010.

The 13 dominant pollen types are grouped into four main
categories by plant functional type: deciduous broadleaf
forest (DBF), evergreen needleleaf forest (ENF), grasses
(GRA), and ragweed (RAG). Plant functional type is a land
cover classification commonly used in the land surface com-
ponent of climate models, and this categorization will allow
flexibility to apply the emissions model to other climate mod-
els. The DBF category includes nine genus-level taxa (Acer,
Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus,
and Ulmus) and the ENF category includes two family-level
taxa (Cupressaceae and Pinaceae). The grass PFT utilizes
pollen count data from the Poaceae family, although we note

that the grass PFT classification may include herbs and other
non-woody species that may emit pollen as well. Ambrosia
(ragweed) is segregated as its own category (RAG), due to
its high pollen counts in the early autumn and unique land
cover features. Daily pollen counts were summed for each
PFT prior to calculating an 8-year average pollen time series.

2.2 Observed seasonality of pollen emissions

Pollen counts are analyzed over five subregions based on
their climatic differences (Fig. 1; Table S1) to identify emis-
sions patterns over the continental United States. These five
subregions are the “Northeast” (temperate; 38–48◦ N and 70–
100◦W; 34 stations), “Southeast” (temperate, subtropical;
25–38◦ N and 70–100◦W; 29 stations), “Mountain” (varied
climate; 25–48◦ N and 100–116◦W; 9 stations), “California”
(Mediterranean, varied climate; 25–40◦ N and 116–125◦W;
13 stations), and “Pacific Northwest” (temperate rainforest;
west of 116◦W and north of 40◦ N; 4 stations). Figure 2
shows the observed average PFT daily pollen counts aver-
aged over all stations within the defined subregions.

For deciduous broadleaf forest (DBF) taxa, the Southeast
has the highest average pollen maximum, reaching up to
about 700–1200 grains m−3 around day 100. In the North-
east, DBF is the dominant PFT, reaching up to an average
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of 400 grains m−3 and peaking slightly later (around day
120) than in the Southeast. California sites show an aver-
age peak around 150 grains m−3 occurring slightly earlier
around day 80. A sharp maximum of 775 grains m−3 appears
in the Mountain subregion at about day 80, with a secondary
emission reaching around 150 grains m−3 on day 125. In the
Northwest, DBF pollen has the earliest maximum (day 70) at
about the same magnitude as California (∼ 200 grains m−3).
In some locations, there is a secondary DBF peak in the
late summer and early fall due to the late flowering of Ul-
mus crassifolia and Ulmus parvifolia, located predominantly
in the Southeast and California (Lewis, et al.1983). In the
Southeast, this occurs between days 225 and 300, while in
California this occurs twice around day 245 and day 265.

The two ENF families exhibit pollen release at two
distinct but overlapping times, with Cupressaceae peak-
ing before Pinaceae. Cupressaceae in the Southeast emits
pollen earlier than in other subregions, with a maxima at
just over 400 grains m−3 around day 10 and counts above
200 grains m−3 in December of the prior year. Cupressaceae
dominates the total emissions for the Southeast, with a
smaller maximum from Pinaceae of about 180 grains m−3

near day 110. In the Northeast, the bimodality of ENF is ev-
ident with the Cupressaceae family reaching a maximum of
100 grains m−3 near day 85 with a secondary Pinaceae max-
imum approximately 65 days later at about half the magni-
tude (∼ 50 grains m−3). In the Mountain and Pacific North-
west subregions, the maximum occurs around days 50–80
and can reach up to 350 grains m−3 in the Mountain subre-
gion, but in both subregions it is generally much lower than in
the eastern United States (approximately 50 grains m−3). In
the California subregion, ENF emissions are comparatively
low (< 50 grains m−3) which is likely due to the bias in sam-
pling locations.

The grasses (Poaceae) have comparatively low aver-
age pollen counts (< 25 grains m−3) throughout the season
in all subregions except the Northwest, where the maxi-
mum reaches 75 grains m−3. However, the average maxi-
mum Poaceae pollen count at individual stations is close to
100 grains m−3, with the individual annual maxima reach-
ing several hundreds of pollen grains m−3. In the AAAAI
data, there are two distinct maxima in the Northeast Poaceae
count, and we attribute the first seasonal maximum to
C3 grasses (peak around day 155) and the second grass max-
imum mainly to C4 grasses (peak around day 250). Obser-
vations by Craine et al. (2012) of Poaceae in an American
prairie have indicated that C3 and C4 grass flowering occurs
at distinctly different times, with C3 in the late spring and
C4 in mid-to-late summer. Similarly, Medek et al. (2016) ob-
served two grass pollen peaks in Australia, with a stronger,
late-summer peak at lower southern latitudes where there is
higher incidence of C4 grass. However, the authors note that
sometimes this may be due to a second flowering of some
C3 grass species. Although the C3–C4 separation cannot be
confirmed in the AAAAI pollen count data because they are

not distinguished during pollen identification, this distinc-
tion is included in the model as discussed in Sects. 3.1 and
4.2 below. In the Southeast, this separation of the Poaceae
pollen counts is less apparent because both of the emission
maxima are broader and intersect one another. In the South-
east, the first observed pollen maximum (assessed as C3 grass
pollen) peaks earlier around day 140, while the second maxi-
mum (assessed as C4 grasses) has a similar, yet smaller, value
around day 250. In the Mountain subregion, the first grass
maximum occurs later in the year (day 175), and the second
grass maximum occurs around day 250 in the late summer.
Pollen counts in California are only substantial during the
earlier flowering time (C3 grasses) and have a similar dura-
tion to those in the Northeast, peaking at around day 135.
For the Pacific Northwest, there is one strong early peak
of grass pollen in the middle of the summer (day 170) and
a secondary maximum is negligible, although counts below
10 grains m−3 register around days 250–270.

Ragweed (Ambrosia) pollen is segregated from other
grasses and herbs because of the strong allergic response
in humans to this specific species and the unique timing of
emissions. Because it is a short-day plant (i.e., its phenol-
ogy driven by a shortening photoperiod and cold tempera-
tures; Deen et al., 1998), ragweed pollen seasons are gen-
erally constrained to the late summer with the exception of
the Mountain region where some counts occur in the spring.
Emissions in the Northeast reach a maximum around day
240 at 60 grains m−3, while they occur slightly later in the
Southeast, peaking around day 270 with twice the magni-
tude (120 grains m−3). In the Mountain subregion, ragweed
pollen has an expected peak at around day 245, but also an
earlier peak at around day 130 with no confirmed cause. Am-
brosia is not detected in the station averages for California
and the Pacific Northwest, although some individual sites in
these regions record relatively low counts on the order of
10 grains m−3.

3 Model input data

3.1 Land cover data

With a goal of developing regional to global pollen emis-
sions, one of the greatest limitations is the description of
vegetation at the appropriate taxonomic level and spatial
resolution. While land cover databases specific to species
level are available for some regions, they are not available
globally. Alternatively, vegetation land cover in regional to
global models can be represented by classifications based on
biophysical characteristics. For climate models, a common
approach to represent land cover is with PFTs, and global
PFT data are readily available and used by many regional
and global climate models to describe a variety of terres-
trial emissions (Guenther et al., 2006) and biophysical pro-
cesses in land–atmosphere exchange models. The creation
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Figure 3. Land cover fraction (% coverage) for 11 tree taxa from the Biogenic Emissions Landuse Database version 3 (BELD) regridded to a
25 km resolution grid, including (a) Acer (maple), (b) Alnus (alder), (c) Betula (birch), (d) Cupressaceae (cedar/juniper), (e) Fraxinus (ash),
(f) Morus (mulberry), (g) Pinaceae (pine), (h) Platanus (sycamore), (i) Populus (poplar/aspen), (j) Quercus (oak), and (k) Ulmus (elm).

of a pollen emissions model with PFT categorization would
be of use at a broad range of spatial scales and domains
while integrating more readily with climate models. In the
pollen emissions model development and evaluation (Sects. 4
and 5), we compare two different vegetation descriptions of
broadleaf deciduous and evergreen needleleaf trees including
(1) family- or genus-specific land cover and (2) land cover
categorized by PFT.

The Biogenic Emissions Landuse Database version 3
(BELD) provides vegetation species distributions at
1 km resolution over the continental United States
based on satellite imagery, aerial photography, and
ground surveys, as well as other land cover classifica-
tion data such as geographical boundaries (Kinnee et
al., 1997; https://www.epa.gov/air-emissions-modeling/
biogenic-emissions-landuse-database-version-3-beld3).
The BELD database includes 230 different tree, shrub, and
crop taxa across the United States as a fraction of the grid
cell area at either the genus or species level. For family- and
genus-level pollen emissions, the BELD land cover fraction
for the 11 dominant pollen-emitting tree taxa identified in

Sect. 2.1 is utilized (Table 1; Fig. 3). For species-level land
cover data, land cover fraction is calculated as the aggregate
of all species within a family or genus.

For the PFT land cover, we use the Community Land
Model 4 (CLM4) (Oleson et al., 2010) surface dataset that
employs a 0.05◦ resolution satellite-derived land cover frac-
tion from the International Geosphere-Biosphere Programme
(IGBP) classification (Lawrence and Chase 2007). We sum
all three biome PFT categories (temperate, tropical, and bo-
real) for deciduous broadleaf forests (DBF) and two biome
PFT categories (boreal and temperate) for evergreen needle-
leaf forests (ENF) to produce the model PFT land cover.

Figure 4a–d compares the BELD land cover (summed by
PFT) and CLM4 land cover for the two tree PFTs. Region-
by-region comparison of land cover for all BELD taxa and
each tree PFT (from both BELD and CLM4) is given in
Table 2. An important distinction is that CLM4 land cover
extends beyond US borders because it is derived from a
global dataset, whereas BELD is constrained to the conti-
nental United States. BELD and CLM4 land cover show gen-
eral agreement on the regional distribution of both tree PFTs.
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Table 1. Production factors (P ) and phenological regression coefficients for the start day of year (sDOY) and end day of year (eDOY) as a
function of temperature for the 13 individual pollen-producing taxa. Individual taxa and families are organized into the four PFTs, with the
two aggregated tree PFTs denoted as DBF and ENF. Regression slope (days ◦C−1) and coefficient of determination are provided for both
sDOY and eDOY (slope/R2).

Taxon or PFT
pannual

Reference for pannual

sDOY eDOY
107 grains (slope/R2) (slope/R2)
m−2 year−1 days ◦C−1 days ◦C−1

Deciduous broadleaf forest (DBF)

Acer 89.1 Tormo Molina et al. (1996) −1.78/0.15 −1.56/0.06
Alnus 210 Helbig et al. (2004) −8.82/0.46 −4.88/0.26
Betula 140 Jato et al. (2007) −3.46/0.54 −3.45/0.35
Fraxinus 45.1 Tormo Molina et al. (1996) −4.69/0.50 −2.92/0.32
Morus 10 N/A −4.00/0.53 −2.97/0.29
Platanus 121 Tormo Molina et al. (1996) −4.47/0.40 −2.65/0.20
Populus 24.2 Tormo Molina et al. (1996) −2.23/0.24 −0.31/< 0.01
Quercus 78 Tormo Molina et al. (1996) −4.09/0.53 −2.03/0.19
Ulmus (early, late) 3.55 Tormo Molina et al. (1996) −4.61/0.59, −2.37/0.16,

3.06/0.12 5.12/0.29
DBF 80.1 This paper −4.55/0.46 −1.94/0.13

Evergreen needleleaf forest (ENF)

Cupressaceae 363 Hidalgo et al. (1999) −5.67/0.48 −2.67/0.17
Pinaceae 22.2 Tormo Molina et al. (1996) −5.72/0.45 −5.03/0.41
ENF 193 This paper −5.95/0.40 −4.96/0.33

Grasses (GRA)

Poaceae (C3, C4) 8.5, 0.85 Prieto-Baena et al. (2003) −4.76/0.48, −1.08/0.04,
0.05/< 0.01 2.96/0.32

Ragweed (RAG)

Ambrosia 119∗ Fumanal et al. (2007) 1.08/0.08 3.42/0.37

∗ Ambrosia production factor in 107 grains plant−1.

Table 2. Total spatial coverage (km2) of tree taxa and PFTs from BELD and CLM4 land cover datasets in the five US subregions (Northeast,
NE; Southeast, SE; Mountain, MT; California, CA; Pacific Northwest, PNW). All individual tree taxa are from the BELD database. BELD
DBF and ENF land cover are the sums of the land cover of the taxa belonging to each PFT.

Land cover class NE SE MT CA PNW

Acer 6.79E+04 2.88E+04 1.89E+03 1.97E+02 3.09E+03
Alnus 3.37E+00 1.23E-01 6.49E+01 1.71E+02 9.56E+03
Betula 2.99E+04 2.68E+03 2.78E+02 2.64E+00 4.82E+02
Fraxinus 3.96E+04 1.10E+04 3.14E+03 3.94E+01 2.76E+02
Morus 3.99E+03 2.25E+03 3.89E+01 0.00E+00 0.00E+00
Platanus 3.18E+03 3.38E+03 1.33E+01 1.44E+02 0.00E+00
Populus 5.48E+04 1.23E+03 4.37E+04 1.96E+02 1.55E+03
Quercus 1.30E+05 2.25E+05 2.51E+04 2.82E+04 1.40E+04
Ulmus 4.96E+04 2.81E+04 1.37E+03 0.00E+00 0.00E+00
BELD DBF 3.79E+05 3.03E+05 7.56E+04 2.90E+04 2.90E+04
CLM4 DBF 6.67E+05 4.03E+05 1.72E+05 7.93E+03 4.18E+04
Cupressaceae 1.85E+04 2.11E+04 7.84E+04 9.64E+03 2.35E+04
Pinaceae 8.34E+04 1.58E+05 1.79E+05 2.95E+04 1.10E+05
BELD ENF 1.02E+05 1.79E+05 2.58E+05 3.91E+04 1.34E+05
CLM4 ENF 1.44E+06 4.26E+05 4.66E+05 4.57E+04 5.34E+05
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Figure 4. BELD (a, c) and CLM4 (b, d, e, f) land cover for the four PFT categories that produce pollen emissions, including (1) deciduous
broadleaf forest for (a) BELD and (b) CLM4, (2) evergreen needleleaf forest for (c) BELD and (d) CLM4, (3) grasses, including (e) C3
grasses and (f) C4 grasses, and (g) ragweed, represented by crop and urban CLM4 categories.

DBF is predominantly in the eastern portion of the United
States with a gap in the midwestern corn belt. ENF is present
in the Southeast, the Northeast along the US–Canadian bor-
der, along the Cascade and Coastal mountain ranges, and
throughout the northern Rockies. A notable difference is the
CLM4 representation of ENF, which shows a strong, dense
band extending from the Sierra Nevada through the Canadian
Rockies. The BELD ENF broadly covers the Rocky Moun-
tain range, yet more diffusely (land cover percentage up to
76 %), whereas the CLM4 dataset shows sparser and dense
ENF land cover (e.g., up to 100 %) in the same range. For the
DBF category, another notable difference is that the strong
band of oaks around the Central Valley of California, which
is evident in BELD but missing from the CLM4 dataset. Ad-
ditionally, the CLM4 has far greater densities of DBF along
the Appalachian range than BELD. Overall, the CLM4 land
cover fractions for forest PFTs are higher on average than the
summed BELD taxa, about 2 to 10 times as much in each re-

gion, with the exception of California subregion DBF where
CLM4 land cover is about half of that in the BELD dataset
(Table 2).

Grass spatial distributions are given by C3 (non-arctic) and
C4 grass PFT land cover classes from CLM4 (Fig. 4e, f),
which correspond to the observed family-level Poaceae
pollen subdivided into C3 and C4 categories (described in
Sect. 2.2). C3 coverage is evident across the United States,
with broad coverage throughout the Southeast, Midwest, and
Northern Great Plains (Fig. 4e). C4 coverage is concentrated
in the Southeast and Southern Great Plains at lower densities
(Fig. 4f).

Ragweed requires a different land cover treatment, as
land cover distributions are not available for ragweed across
the entire continental United States. Ragweed is known to
arise in areas of human disturbances (Forman and Alexander
1998; Larson 2003) and is found mainly in disturbed or de-
veloped areas such as cities and farms (Katz et al., 2014; Clay
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et al., 2006). Ambrosia land cover (Fig. 4g) is derived from
the urban and crop categories of the CLM4 land cover, which
are sourced from LandScan 2004 (Jackson et al., 2010) and
the CLM4 datasets, respectively. The urban data are subdi-
vided by urban intensity, which is determined by popula-
tion density. We assume that ragweed is unlikely to grow
in the densest of urban areas (such as city centers) and uti-
lize the lowest urban density category that is also the most
widespread. Ragweed land cover (plants m−2) in urban ar-
eas is determined by multiplying the average urban ragweed
stem density given by Katz et al. (2014) by the urban land
cover fraction. For crops, the CLM4 subdivides land cover
fraction into categories including corn and soybean crops,
and Clay et al. (2006) provide ragweed stem densities in soy-
bean and corn cropland. Thus, we calculate the ragweed land
cover in stems m−2 (frag):

frag = α
(
dsoyfsoy+ dcornfcorn

)
+β (durbfurb) , (1)

where dsoy, dcorn, and durb represent the stem density
(stems m−2) of ragweed in soybean, corn, and urban areas,
respectively, and the fsoy, fcorn, and furb represent the frac-
tional land cover for soybean, corn, and urban, respectively.
α and β are tuning parameters to that are determined by a
preliminary evaluation between modeled and observed rag-
weed pollen counts, where α = 0.01 for crop and β = 0.1.
Zink et al. (2017) show that a ragweed land cover representa-
tion developed by combining land use and local pollen count
information evaluates better against observed pollen counts
than even ragweed ecological models, giving confidence to
this choice of land cover representation.

All land cover data are regridded to a 25 km resolution
across the United States to provide emissions at the same
spatial resolution as the regional climate model (see Sect. 5).

3.2 Meteorological data for phenology

To develop the emissions model, we use two sources of mete-
orological data. The first is a high-resolution meteorological
dataset to develop the phenological relationships for the tim-
ing of pollen release. Because reliable measurements are not
available at all pollen count stations and there is uncertainty
in the siting of these stations (e.g., they may be in urban areas
with highly heterogeneous temperature), we use a gridded
observational meteorological product for consistency across
all sites (Maurer et al., 2002). The gridded Maurer dataset
interpolates station data to a 1/8◦ grid across the continen-
tal United States on a daily basis, representing a high spatial
resolution gridded data product where data from each me-
teorological station have been subject to consistent quality
control. Higher-resolution DayMet temperatures (daily 1 km)
(Thornton et al., 2014) were used in lieu of Maurer data
at NAB sites where the Maurer dataset did not provide in-
formation at the collocated grid cell (Table S1). For offline
emission calculations input into the regional climate model,
we use annual-average temperatures computed from monthly

Climate Research Unit (CRU) temperature data (Harris et
al., 2014). These data were interpolated from a 0.5◦× 0.5◦

grid to the 25 km regional climate model grid used for pollen
transport.

4 PECM model description

4.1 Emission potential

The pollen emissions model is a prognostic description of the
potential emissions flux of pollen (Epot; grains m−2 d−1) for
an individual taxon i:

Epot,i (x,y, t)= fi (x,y)
pannual,i

365∫
0
γphen,i (x,y, t) dt

γphen,i (x,y, t), (2)

for a model grid cell of location x and y at time t . In
this expression, f (x,y) is the vegetation land cover fraction
(Sect. 2.1; m2 vegetated m−2 total area), pannual is the daily
production factor (grains m−2 year−1), and γphen is the phe-
nological evolution of pollen emissions that controls the re-
lease of pollen (description below). Equation (2) can apply
to either a single taxa or PFT, depending on the prescrip-
tion of land cover through f (x,y). In the simulations de-
scribed here, emissions are calculated offline based on this
equation and provided as input to a RCM. This emission po-
tential is later adjusted based on meteorological factors in
the RCM where the pollen grains are transported as aerosol
tracers (Sect. 5.1.1). In the future, Eq. (2) can be coupled
directly within the climate model for online calculation of
emissions. The phenological and production factors are de-
scribed in greater detail below.

4.2 Phenological factor (γphen)

Based on the observed pollen counts, a Gaussian distribution
is used to model the phenological timing of pollen release
(γphen):

γphen,i (x,y, t)= e
−
(t−µ(x,y))2

2σ(x,y)2 , (3)

where µ(x,y) and σ(x,y) are the mean and half width of
the Gaussian, respectively, and can be determined based on
the start day of year (sDOY) and end day of year (eDOY)
calculated by an empirical phenological model:

µ(x,y)=
sDOY(x,y)+ eDOY(x,y)

2
(4)

σ (x,y)=
eDOY(x,y)− sDOY(x,y)

a
. (5)

The fit parameter, a, accounts for the conversion between
the empirical phenological dates based on a pollen count
threshold and the equivalent width of the emissions curve.
Based on evaluation versus observations, a = 3 was selected
for initial offline simulations.
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Linear regressions of observed sDOY and eDOY from in-
dividual pollen count stations versus temperature are used to
empirically determine sDOY and eDOY that drive γphen. An
important criterion is the grain count used to determine the
sDOY and eDOY, and we utilize a count threshold adaptable
to bimodal emission patterns such as those noted for Ulmus
and Poaceae. Sofiev et al. (2013) selected dates on which the
5th and 95th percentiles of the annual index (annual sum of
pollen counts) were reached, while Liu et al. (2016) com-
bined a 5 grains m−3 threshold with the additional condition
that 2.5 % (97.5 %) of the annual sum of pollen was reached
before the start (end) date. Here, we implement a pollen
count threshold of 5 grains m−3 and found this was suffi-
cient to reproduce the observed seasonal cycle. To account
for smaller signals that may be due to count errors (e.g., an
exceedance of the 5 grains m−3 threshold but not followed by
an increase in emissions), we used a moving window with a
threshold of 25 grains m−3 for the sum of pollen counts in
the nearest 10 neighboring days; when the sum of the neigh-
bors failed to meet this threshold, the data point was omitted.
In this manner, we calculated the sDOY and eDOY for the
full 8-year time series for each taxon at each station. If more
than one start or end date was found in a single year at a sin-
gle station for a taxon that was not clearly bimodal, only the
first set of dates was retained for the linear regression. For
taxa with an observed bimodal peak, the second peak was
treated as a separate taxon (e.g., early and late Ulmus, C3
and C4 Poaceae) with a separate phenology. Once the sDOY
and eDOY were determined, outliers in these dates were de-
termined by bounding the data for each taxon at 4 times the
mean absolute deviation of sDOY and eDOY.

Near-surface atmospheric temperature (e.g., 2 m height) is
an important factor of vegetation phenology. In the interest of
having a regional model of emissions that prognostically cal-
culates the start dates, the previous-year annual average tem-
perature (PYAAT) based on near-surface atmospheric tem-
perature from Maurer et al. (2002) and Thornton et al. (2014)
(Sect. 2.2) is the explanatory variable in the linear regres-
sions. For example, for a start date of 2 February 2007, the
PYAAT would be the mean temperature for the year 2006.
For Pinus and Cupressaceae, PYAAT is calculated differ-
ently from 1 July 2005 to 30 June 2006 because emissions
of these families begin in the early winter (December). Prior
studies have shown that the meteorology of the year previous
to the pollen season influences pollen production, especially
temperature, suggesting that PYAAT may be a good predic-
tor variable (Menzel and Jochner, 2016). While emissions in
this study are calculated using offline meteorological data,
this also could be coupled to a dynamic land surface model
to predict reasonably accurate pollen phenological dates.

To exemplify this method, Fig. 5 shows the phenological
dates and regression lines for the Betula (birch) genus, with
all 13 modeled taxon shown in Figs. S1 and S2 in the Sup-
plement. The sDOY and eDOY of the pollen season show a
moderate and considerable trend with temperature for most

Figure 5. Phenological regressions for Betula (birch) pollen for (a)
sDOY and (b) eDOY versus previous-year annual average temper-
ature (PYAAT; ◦C). Each point signifies one station per year for
pollen count data from 2003 to 2010 (total denoted as N).

taxa and PFTs (Table 1; Figs. S1, S2). The linear regression
models for sDOY explain 41 % of the variance on average
for DBF taxa, 47 % on average for ENF taxa, 48 % for C3
Poaceae, and 8 % for Ambrosia, while having a negligible
R2 for C4 Poaceae. For eDOY, the linear regression mod-
els explain 21 % of the variance on average for DBF taxa,
29 % for ENF, 4 % for C3 Poaceae, 32 % for C4 Poaceae, and
37 % for Ambrosia. All trends except C4 Poaceae, late elm,
and Ambrosia are negative, indicating that warmer previous-
year temperatures result in earlier start and end dates. For
most tree taxa, the trend of both sDOY and eDOY are nega-
tively correlated with PYAAT, with a steeper negative slope
for sDOY. The correlation for the duration of the pollen sea-
son (eDOY–sDOY) is then positive for all taxa except Cu-
pressaceae. This suggests that warmer climates have earlier
pollen season start and end dates but longer season lengths.

Trends for grass in Australasia show that the correlation of
the end date of the pollen season with average spring temper-
ature is positive, while the same relationship for the start date
is negative, suggesting also that season start dates are earlier
and season duration increases with warmer climates (Medek
et al., 2016). The apparent trend in the season end date for
Ambrosia with PYAAT could be due to the increased num-
ber of frost-free days, consistent with global warming, and
a strong relationship between frost-free days and changes of
ragweed season length (Easterling 2002; Ziska et al., 2011).

This agrees with earlier findings that suggest the pollen
season will, on average, start earlier with a warmer global cli-
mate and have a longer duration (Confalonieri et al., 2007).
The spatiotemporal heterogeneity of climate change may
affect which regions and seasons will be most influenced
by climate change (Ziska 2016). In fact, there is imperfect
agreement that earlier start dates and longer seasons will
occur unanimously throughout the United States region, at
least for trees (Yue et al., 2015). It is understood that pho-
toperiod and the dormancy-breaking process controlled by
chilling temperatures play a significant role in the phenol-
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Figure 6. Monthly average emissions potential (E; Eq. 1) for BELD model DBF (2003–2010) in grains m−2 day−1. (a) January, (b) February,
(c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, and (l) December.

ogy of trees (Myking and Heide 1995; Ziska 2016), and it
is generally accepted that a plethora of other factors, such as
plant age, mortality, and nutrient availability, also affect ob-
served phenological dates (Jochner et al., 2013). However,
even without these factors, the current phenological model
is applicable to large regions and provides a clear response
of plants to interannual climate variability as well as long-
term climate changes. For this first assessment of PECM, we
assume that the pollen production factor (pannual) does not
change with time and that the phenological model described
above captures the main features of pollen emissions.

4.3 Annual pollen production (pannual)

Annual production factors (grains m−2 year−1, where m−2

refers to vegetated area, or grains stem−1 year−1 for rag-
weed) for each modeled taxon are provided in Table 1. The
annual pollen production factor (pannual) defines the amount
of pollen produced per vegetation biomass per year based

on literature values. Tormo Molina et al. (1996) report the
annual pollen productivity in grains tree−1 year−1 measured
from three representative trees from several taxa. Morus has
no known reference for production factor and was assumed
to be 10 × 107 grains m−2 year−1, conservatively at the low
end of the range for other deciduous broadleaf taxa. Other
tree taxa and grasses are reported in grains m−2 year−1,
while ragweed is reported in grains stem−1 year−1 (Hel-
big et al., 2004; Jato et al., 2007; Hidalgo et al., 1999;
Prieto-Baena et al., 2003; Fumanal et al., 2007). To con-
vert the production factors from Tormo Molina et al. (1996)
(grains tree−1 year−1), the production factors for each repre-
sentative tree are multiplied by the tree crown area, calcu-
lated as the circular area of the tree crown diameter given in
Table II of Tormo Molina et al. (1996). The resulting individ-
ual production factors (grains m−2 year−1) are then averaged
for each taxa.
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Figure 7. Same as Fig. 6 but for PFT model DBF.

After sensitivity experiments of running pollen emissions
in RegCM4, we find that the literature value of pannual for
Poaceae provides better agreement with observations for C4
grass when reduced by a factor of 10; thus, we use this value.
To obtain the coefficient of daily pollen production over the
duration of the phenological curve, γphen, the integral of the
daily pollen production is normalized to pannual as demon-
strated by Eq. (2).

4.4 Offline emission simulations

We calculate emissions offline for two versions of PECM
that differ in the land cover input data for woody plants.
The first uses the detailed BELD tree database (Fig. 3) for
tree pollen emissions (hereinafter, the “BELD” simulation),
and the second uses globally based PFT data for tree pollen
emissions (Fig. 4b, d) (hereinafter, the “PFT” simulation).
For the grass and ragweed taxa, the emissions calculations
are identical between the two simulations as the input land

cover is the same for these two categories. While the fam-
ily and genus levels are useful for the allergen community,
the respective taxon land cover databases needed to develop
a global, adaptable model are not always available. While
many plant traits are found to vary quite strongly within in-
dividual PFTs (Reichstein et al., 2014), the PFT convention
is accepted and remains in use in climate models, particu-
larly because of the lack of species-level land cover data at
large scales. For the PFT version, pollen counts from individ-
ual taxa were summed within each PFT prior to calculation
of the phenological regression (Table 1). We exclude the bi-
modality in Ulmus for the PFT version because it is the only
tree taxon that exhibits this behavior, and late Ulmus pollen
emissions are relatively small compared to the major DBF
season. The production factors for each PFT are calculated
as the unweighted average of the production factors for all
the taxa within the PFT (Table 1).

Figures 6–11 show the monthly averages of the 2003–
2010 emissions potential calculated by the offline models
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Figure 8. Same as Fig. 6 but for BELD model ENF.

described in Sect. 4.1 (Epot; Eq. 2). The seasonal cycle can
be clearly identified in the emissions’ potential, with the on-
set of pollen emissions beginning in the warmer south and
moving northward along the gradient of annual average tem-
perature. Colder locales such as those at high elevations can
interrupt this general trend. Though pollen seasons generally
end later in the colder parts of the domain just as they start
later, modeled pollen emission seasons tend to be shorter at
colder locations for most taxa (about 1 day per 1 ◦C, on av-
erage). The highest maximum emissions for DBF occur over
the Appalachian range between April and May for both the
BELD and PFT versions (Figs. 6, 7). For ENF, the maximum
occurs in April in the American west for the BELD version
where Cupressaceae land cover is dominant, while it is con-
sistent in magnitude between the Southeast and west coast
for the PFT-based version (Figs. 8, 9). The grass PFT max-
imum emissions occur in June in the northern Rockies for
C3 and in September in the south-central Great Plains for C4
(Fig. 10). Ragweed pollen emissions reach their maximum

during September throughout the Corn Belt where soybean
and corn crops dominate the land surface, with local maxima
apparent in urban centers (Fig. 11).

5 Emissions’ implementation and evaluation

5.1 Emissions’ implementation in a regional climate
model

To evaluate PECM, emissions calculated offline are included
within a regional climate model to compare simulated at-
mospheric pollen concentrations with ground-based obser-
vations from the NAB pollen network. The two phenological
pollen emissions estimates (BELD and PFT) described above
are prescribed as daily emissions, after which they are scaled
by meteorological factors and undergo atmospheric trans-
port. We use the Regional Climate Model version 4 (Giorgi
et al., 2012), which is a limited-area climate model that in-
cludes a coupled aerosol tracer module (Solmon et al., 2006)
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Figure 9. Same as Fig. 6 but for PFT model ENF.

that readily accommodates pollen tracers (Liu et al., 2016).
The pollen tracer transport scheme is extended from one to
four bins in this study to simulate the four PFTs (DBF, ENF,
GRA, and RAG), with tracer bin particle effective diame-
ters of 28, 40, 35 and 20 µm, respectively. Additionally, the
temporal emissions input is updated to accommodate daily
pollen emissions (grains m−2 day−1).

RegCM4 is based on the hydrostatic version of the Penn
State/NCAR mesoscale model MM5 (Grell et al., 1994)
and configured for long-term climate simulations. In our
RegCM4 configuration, we use the Community Land Model
version 4.5 (CLM4.5; Oleson et al., 2010), the Emanuel cu-
mulus precipitation scheme over land and ocean (Emanuel,
1991), and the SUBEX resolvable scale precipitation (Pal et
al., 2000). The horizontal resolution is 25 km with 144× 243
grid cells on a Lambert conformal projection, centered on
39◦ N, 100◦W, with parallels at 30 and 60◦ N (Fig. 1). The
vertical resolution includes 18 vertical sigma levels. Bound-
ary conditions are driven by ERA-Interim reanalysis while

sea surface temperatures are prescribed from NOAA op-
timum interpolation SSTs (Dee et al., 2011; Smith et al.,
2008). Two 8-year simulations of pollen emissions and trans-
port in RegCM4 were conducted from 2003 to 2010 with the
BELD and PFT versions of the offline emissions model. A
total of 6 months of spin-up (July–December 2002) are run
for both simulations that we exclude from the following anal-
ysis.

In the model, we calculate the fate of four pollen tracers
corresponding to the four PFTs (DBF, ENF, GRA, and RAG)
from the PECM offline emissions. Because individual trac-
ers add to the computational cost of the simulations, BELD-
based tree emissions are summed into DBF and ENF PFTs
before they are emitted into the model atmosphere. To calcu-
late the emissions, the emission potential calculated offline
for each PFT (Epot) is scaled according to surface meteorol-
ogy following the methods of Sofiev et al. (2013):

Epollen,i (x,y, t)= Epot,i (x,y, t)fwfrfh (6)
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Figure 10. Same as Fig. 6 but for C3 and C4 grass.

fw = 1.5− e−
u10+uconv

5 (7)

fr =


1,pr< prlow

prhigh− pr

prhigh− prlow
,prlow < pr< prhigh

0,pr> prhigh

(8)

fh =


1, rh< rhlow

rhhigh− rh
rhhigh− rhlow

, rhlow < rh< rhhigh

0, rh> rhhigh

, (9)

where fw, fr, and fh are the wind, precipitation, and hu-
midity factors, respectively. The meteorological parameters
in these equations are from online RegCM4 variables, in-
cluding u10 and uconv as the 10 m horizontal wind speed and
vertical wind speed, and pr and rh are precipitation and rel-
ative humidity with low and high thresholds. These scaling
factors account for the effects of wind, precipitation, and hu-
midity on the emission of pollen from flowers and cones. The
humidity and precipitation factors are piecewise linear func-

tions of the near-surface (10 m) RH and total precipitation
and range from 0 (high precipitation or humidity) to 1 (no
precipitation or low humidity). The wind factor ranges from
0.5 to 1.5, as even in calm conditions turbulent motions can
trigger pollen release with high winds releasing more pollen.
These scaled emissions are then transported according to the
tracer transport equation (Eq. 10) of Solmon et al. (2006)
that includes advection, horizontal and vertical diffusion (FH
and FV), and convective transport (Tc), as well as wet (RWls
and RWc, representing large-scale and convective precipita-
tion removal) and dry deposition (Dd) of an individual tracer
(χ), represented by i = 1 to 4 for each PFT pollen emission:

∂χ i

∂t
= V̄ ·∇χ i+F iH+F

i
V+T

i
C+S

i
−RiWls−R

i
Wc−D

i
d. (10)
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Figure 11. Same as Fig. 6 but for ragweed.

5.2 Model evaluation against observations

We evaluate the efficacy of PECM in simulating the tim-
ing and magnitude of pollen emissions across the continental
United States by evaluating RegCM4 tracer concentrations
versus observations. We compare the average daily simu-
lated near-surface pollen counts and observed, ground-based
pollen counts for each of the four modeled PFTs (Fig. 12).
The observed pollen time series in Fig. 12 are the spatial av-
erages of the average daily pollen counts at all pollen count-
ing stations comprising each of the five major US subregions
(Sect. 2.2) and are compared with the modeled average daily
pollen counts, which averages the individual grid cells that
contain the pollen counting stations. Interannual variability is
assessed using the relative mean absolute deviation for each
day of the average time series. The interannual variability in
observed daily pollen counts throughout the year is, on av-
erage, 81, 78, 78, and 77 % of the mean (DBF, ENF, GRA,
and RAG, respectively), while this variability from the sim-

ulations is 53 % for the BELD version of the DBF model
and 61 % for the PFT version, 55 and 92 % for the BELD
and PFT versions of the ENF model, 43 % for grasses, and
49 % for ragweed (Fig. 12). This indicates that the model
is capturing the relative interannual variability of the pollen
counts between PFTs but not all of the variability in pollen
counts from season to season. The unexplained variability
in pollen concentrations could be due to the lack of sensi-
tivity of annual pollen production factor to the environment,
as this may be closely tied with precipitation (Duhl et al.,
2013) or temperature (Jochner et al., 2013). Additionally, the
average observed and simulated pollen counts are analyzed
using box-and-whisker plots to assess the models’ represen-
tativeness of pollen count magnitude in spite of phenology
(Fig. 13). These metrics are discussed in detail by PFT and
US subregion below.
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Figure 12. Average (2003–2010) time series of daily pollen counts comparing model and observations for four PFTs (a–e, deciduous
broadleaf, DBF; f–j, evergreen needleleaf, ENF; k–o, grasses, GRA; p–t, ragweed, RAG) across five US subregions (columns from left
to right: Northeast, NE; Southeast, SE; Mountain, MT; California, CA; Pacific Northwest, PNW). Shading for the observations and model
represents the mean absolute deviation from the average for each day of the time series. Note that the scale of the y axes varies by region and
PFT.

5.2.1 DBF

In the Northeast, the BELD model captures both the observed
seasonal timing and the magnitude of DBF pollen counts
(Fig. 12a). Observed DBF phenology is also simulated by
the PFT-based emissions with even greater statistical accu-
racy in reproducing the observed pollen counts, though the
BELD model more accurately reproduces the annual maxi-
mum (Fig. 13a). The accuracy in this subregion is not sur-
prising, as northeastern pollen counting stations contributed
the greatest number of data points to the phenological regres-
sion analyses. Observed DBF pollen counts in the Southeast
have a large maximum that is greater than the average sea-
sonal maximum of all four other subregions and all three
other PFTs (Fig. 12b), which is predominantly from Quercus.
Neither the BELD nor PFT version of the simulation recre-
ates this sharp peak, but they do simulate a large majority of

the pollen count distribution (Fig. 13b), especially the PFT-
based model for which the lower 75 % of simulated average
pollen counts agrees well with the lower 75 % of observed
average pollen counts. The PFT model does not specifically
resolve Quercus, and while the BELD model does resolve
Quercus, it fails to model this maximum. This may be be-
cause the linear regression producing the phenological dates
is an average, where a longer season may result from ear-
lier start dates and/or later end dates that will reduce the
maximum of the Gaussian distribution of pollen counts in
the time series. In the Mountain region, there is an observed
maximum early in the spring that is not simulated by either
model because the DBF phenology at several cold Moun-
tain sites is exceptionally early and falls well below the re-
gression lines (Figs. S1, S2). However, both the BELD and
PFT model simulate the second Mountain subregion peak
with the correct magnitude. The BELD-simulated maximum
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Figure 13. Box-and-whisker plots showing the statistical spread of the pollen count magnitudes from the regional averages presented in
Fig. 12. Columns from left to right: Northeast, NE (a, f); Southeast, SE (b, g); Mountain, MT (c, h); California, CA (d, i); Pacific Northwest,
PNW (e, j). DBF and ENF PFTs are shown in the top row (a–e) and grass and ragweed PFTs are shown in the bottom row (f–j). Boxes and
whiskers from bottom to top represent the minimum, lower quartile, median, upper quartile, and maximum. Maxima that are not visible in
panels (b, c, and e) are 1177, 1233, and 766 gains m−3, respectively. All y axes are the same scale for each row.

DBF in California is about 40 days later than the observed
peak, also due to the regionally anomalous phenology in Cal-
ifornia as compared with the rest of the US, and though the
PFT model peaks much closer to the observations, it under-
estimates DBF pollen counts. In the Pacific Northwest, the
observed pattern is quite similar to the DBF pollen phenol-
ogy in the Mountain subregion, with only a slightly weaker
early spring peak due to low-elevation pollen. The observed
phenological pattern (Fig. 12e) and pollen count magnitudes
(Fig. 12e) are both more accurately simulated by the BELD
model, likely due to the earlier spring maximum that does
not appear in the PFT simulation.

5.2.2 ENF

Like DBF, the BELD ENF in the Northeast is well repre-
sented by simulating two distinct Cupressaceae and Pinaceae
maxima, although the model slightly underestimates ob-
served Pinaceae pollen counts (Fig. 12f). The PFT model
ENF phenology emits from the start of the earlier Cupres-
saceae season to the end of the later Pinaceae season, while
overestimating the maximum pollen count by about a factor
of 2. In the Southeast, the winter peak is not captured by the
model phenology (Fig. 12g). However, the spring Pinaceae
maximum is accurately captured by the BELD simulation.
The PFT model follows the observed Pinaceae phenology
more closely, though overestimating pollen counts by a fac-
tor of 2 to 3 and estimating a later ending date by about 40
days. In the Mountain subregion, ENF start and end dates are
simulated by the BELD model with improved accuracy than
the DBF phenology in this subregion, though the predicted
spring maximum is later than observed (Fig. 12h). As with

DBF, there is good agreement between the BELD model with
the later part of the season in this subregion. The PFT model,
again, simulates the peak ENF emissions in the later part of
the season and overpredicts the pollen counts by a factor of
2 to 3. In the California subregion, the tails of the pollen dis-
tributions by both models closely resemble the pollen count
magnitudes, yet the majority of these pollen counts (the top
75 %, Fig. 13i) lie above the observed maximum (Fig. 12i).
Finally, in the Pacific Northwest, the BELD model phenol-
ogy shows some agreement with the model mean (Fig. 13j),
with the simulated pollen count showing a stronger Gaussian
distribution than observed (Fig. 12j). In contrast, the PFT
model grossly overpredicts the observed pollen counts by up
to a factor of 10 at its maximum, likely due to the greater
representation of the ENF PFT than the BELD model in this
region. The simulated average start date of the PFT model is
within a few days of the observed average start date, while
the end date is about 20 days later than observed.

5.2.3 Grasses

Grass phenology across all subregions for both C3 and C4
types is captured by the emissions estimates (Fig. 12k–o).
However, the pollen count magnitude in northeastern C3
grass peak is overestimated by about a factor of 7, even when
using the minimum value of the annual production factor in
the range estimated by Prieto-Baena (2003) (Fig. 12k). The
secondary peak, which we attribute to C4 grasses and is only
about half as large, is well represented. In the Southeast, the
simulated pollen count magnitudes are much closer to obser-
vations, while the C3 peak is overestimated here by only a
factor of 2 and the C4 peak is within 5 grains m−3 (Fig. 12l).

Geosci. Model Dev., 10, 4105–4127, 2017 www.geosci-model-dev.net/10/4105/2017/



M. C. Wozniak and A. L. Steiner: A prognostic pollen emissions model for climate models (PECM1.0) 4123

In this region, the observed duration of the pollen emissions
is not fully captured by the simulated grass phenology in the
Southeast, and this is probably due to the non-Gaussian shape
of the observed time series. In the Mountain subregion, the
C3 pollen count is overestimated by the model, but the phe-
nology is represented by a gradual rise in low emissions be-
ginning in March to match the maximum burst of emissions
in June (Fig. 12m). C4 grass pollen counts are not simulated
in the Mountain region due to the relatively low C4 land cover
in the CLM4 dataset (Fig. 4f). In California, there is a single
observed grass peak, which the model attributes to C3 pollen,
and the peak count in the simulation is about 5 days late and
about 2 to 10 times too large (Fig. 12n). In the Pacific North-
west, the average C3 season is accurately simulated with the
exception that the phenology is shifted 20 days earlier than
observed (Fig. 12o). A small C4 peak in the observations at
around day 260 is not simulated in this region due to negli-
gible land cover for C4 grasses in the CLM4 land cover data
(Fig. 4f).

5.2.4 Ragweed

Simulated ragweed phenology in the Northeast, Southeast,
and Mountain subregions follows the observed phenology of
late-summer ragweed very closely, where the peaks of both
the simulated and the observed time series averages occur
within a day of each other (Fig. 12p–t). Close evaluation of
each regional phenological time series reveals that many of
the observed features, like those determined by the rate of
increase or decrease of the pollen count, are reproduced by
the model. The magnitude of the modeled ragweed maxima
in the Northeast and Mountain subregions is slightly greater
than observed (Fig. 12p and r), while there is a clear under-
estimation by a factor of 4 or 5 in the Southeast (Fig. 12q).
There is a yet unidentified observed spring peak of ragweed
pollen at about day 125 in the Mountain subregion, pos-
sibly due to an identification error. The observed average
ragweed pollen counts in California and the Pacific North-
west are negligible, though the simulation predicts them to
be similar in magnitude and timing to the other three sub-
regions (Fig. 12s and t). These discrepancies may be due to
the land use description developed for ragweed (Sect. 3.1),
which may overestimate the ragweed potential in the west-
ern United States, or potentially the relatively spare observa-
tional stations in these regions may be poorly placed relative
to emissions sources.

6 Conclusions

We have developed a climate-flexible pollen emissions
model (PECM) for the 13 most prevalent wind-pollinating
taxa in the United States based on observed pollen counts.
PECM was adapted to the PFT categorization common to
climate and Earth system models with four major temperate-

zone PFTs (DBF, ENF, grasses and ragweed); thus, it is
possible to apply this model to larger geographic regions
where specific taxon-level data are unavailable. We evaluated
PECM using a regional climate model (RegCM4) to trans-
port emissions and evaluated resulting pollen counts versus
observations. PECM generally captures the observed phenol-
ogy, and observed surface pollen concentrations can be sim-
ulated within an order of magnitude. While many emissions
models to date have focused on smaller geographical regions
with more detailed land cover information and pollen infor-
mation, this model represents the first of its kind to simulate
multiple taxa over broad spatial areas. This transition to a
larger scale does have its disadvantages, and we define sev-
eral major sources of uncertainty to consider when scaling
up pollen emissions to the regional or global scale: (1) pollen
production factors, (2) climatic sensitivities in phenological
timing, (3) land cover data, and (4) taxa specificity. We dis-
cuss each of these uncertainties in greater detail.

A large source of uncertainty is the use of a constant an-
nual production factor for pollen (Sect. 4.3). It has been re-
ported that wind-driven pollen production has increased his-
torically and is expected, potentially, to increase in the near
future (R. Zhang et al., 2014; Lake et al., 2017; Confalonieri
et al., 2007; Ziello et al., 2012). Some of more effective
improvements to the emissions model would be to create a
pollen production model that is sensitive to multiple environ-
mental factors such as soil moisture, temperature, and nutri-
ent status (Jochner et al., 2013). The interannual variability
in observed daily pollen counts is, on average, substantially
greater than that of the modeled pollen counts, which is likely
due to this lack of production sensitivity. The current produc-
tion factors for woody plants could be enhanced by studies
that extend the number of representative units (i.e., individ-
ual trees) of vegetation used to determine the average pollen
production. In a PFT representation, there is an inevitable
limitation to the accuracy of any single PFT’s ability to ac-
count for taxa differences within the PFT. Furthermore, the
current model also assumes that there are no interspecies dif-
ferences that affect the performance of the BELD model as
well as the PFT model, whereas in reality it may vary by an
order of magnitude within a genus (Duhl et al., 2013). How-
ever, despite the assumption of a constant production factor,
observed surface pollen counts for all PFTs are typically re-
produced within a single order of magnitude, as apparent in
emissions model evaluation.

Second, the use of observed relationships between pollen
count and temperature to determine the phenological pollen
start and end dates also adds uncertainty to our modeling
framework. Firstly, we assume stationarity in the phenologi-
cal relationships, and this assumption may be violated. Sec-
ondly, based on the subregions defined for the analysis, there
appears to be a bias in the linear regressions toward subre-
gions with more available pollen counting stations, therefore
affecting performance differences in these regions. Lastly,
even though generally the Gaussian time series model of the
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pollen phenology performs well in our analysis, in the PFT
representation, the Gaussian absorbs or misses some of the
phenological details in the observed pollen seasonality, and
in some cases taxa (e.g., grasses in the Southeast subregion)
may not be captured by the existing phenology.

Third, the specificity of land cover data provides an im-
portant constraint in the overall simulation of emissions. The
representation of land cover is a key factor to accurately cap-
turing regional features, especially in areas with a high de-
gree of topographical variation and therefore greater vari-
ance in the land cover. For example, we notice large differ-
ences in the two model simulations when considering tree-
specific taxa, such as in the western United States for ENF
(Sect. 5.2.2). Also, our definition of the land cover available
for ragweed used assumptions based on crop cover and urban
area, which overestimated emissions in the western United
States (Sect. 5.2.4). Interestingly, even though ragweed lacks
an exact spatial distribution, distinct observed features of the
ragweed phenology in three of the five subregions emerged
using the current ragweed land cover parameterization.

Fourth, the aggregation of emissions to the PFT level af-
fects the representativeness of the production factors, phe-
nology, and land cover. When comparing the two models of
the tree pollen (BELD versus PFT), the individual phenology
of each of the 11 tree taxa is resolved by the BELD simula-
tion, whereas they are either folded into or excluded from
the single phenology modeled by the PFT simulation. This
results from either treating the taxa in the phenological re-
gressions individually, as in the BELD model, or as a sum,
as in the PFT model. With a few exceptions (e.g., the ENF
family distinctions), the PFT model does generally reproduce
the regional phenology throughout the United States domain,
which is a priority of this study.

Despite these limitations, the empirical formulation pre-
sented here is the first of its kind to predict a broad range of
different pollen emissions across a large geographic region.
Even with univariate phenology and invariable pollen pro-
duction factors, the model includes seasonal dynamics sen-
sitive to climate change consistent with observations and is
also able to simulate observed pollen magnitudes. As a re-
sult, the model can be useful for estimation of how allergenic
risk or plant reproductive potential will be redistributed by
climate change, as well as studying pollen as an aerosol in
the climate system. While the empirical phenological mod-
els can be reproduced for any set of regional pollen counting
stations, PECM as a whole can be easily adapted to various
community climate and Earth system models, global and re-
gional, to extend research on the relationships and interac-
tions between pollen and climate.

Code and data availability. Source code for Pollen Emissions for
Climate Models (PECM) is written as FORTRAN90 (*.f90) and
available in the Supplement as plain text. For all model input data,
please refer to Sect. 3 of this paper and its references.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-4105-2017-
supplement.
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