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Abstract. This paper develops a multivariable integrated
evaluation (MVIE) method to measure the overall perfor-
mance of climate model in simulating multiple fields. The
general idea of MVIE is to group various scalar fields into a
vector field and compare the constructed vector field against
the observed one using the vector field evaluation (VFE) di-
agram. The VFE diagram was devised based on the cosine
relationship between three statistical quantities: root mean
square length (RMSL) of a vector field, vector field sim-
ilarity coefficient, and root mean square vector deviation
(RMSVD). The three statistical quantities can reasonably
represent the corresponding statistics between two multidi-
mensional vector fields. Therefore, one can summarize the
three statistics of multiple scalar fields using the VFE di-
agram and facilitate the intercomparison of model perfor-
mance. The VFE diagram can illustrate how much the overall
root mean square deviation of various fields is attributable to
the differences in the root mean square value and how much
is due to the poor pattern similarity. The MVIE method can
be flexibly applied to full fields (including both the mean and
anomaly) or anomaly fields depending on the application.
We also propose a multivariable integrated evaluation index
(MIEI) which takes the amplitude and pattern similarity of
multiple scalar fields into account. The MIEI is expected to
provide a more accurate evaluation of model performance
in simulating multiple fields. The MIEI, VFE diagram, and
commonly used statistical metrics for individual variables
constitute a hierarchical evaluation methodology, which can
provide a more comprehensive evaluation of model perfor-
mance.

1 Introduction

Climate models play a very crucial role in a variety of
climate-related studies including, e.g., climate dynamics, the
detection and attribution of climate change, the projection
of future climates and environments, and adaptation to fu-
ture climate change (IPCC, 2012, 2013). All these studies
strongly rely on the performance of climate models. Model
evaluation and intercomparison have become increasingly
important, especially because a number of climate models
are available at present. A total of 29 modelling groups and
60 climate models are involved in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) and more are expected
to be included in its next phase (Eyring et al., 2016). In addi-
tion, more and more regional climate models have been used
in regional model downscaling and intercomparison projects
(e.g., Fu et al., 2005; van der Linden and Mitchell, 2009;
Mearns et al., 2009; Giorgi and Gutowski, 2015). Thus, how
to concisely summarize and evaluate model performance is
extremely important for climate model intercomparison, de-
velopment, and application.

The Taylor diagram provides a very efficient way to sum-
marize multiple aspects of model performance in simulating
scalar fields (Taylor, 2001). Gleckler et al. (2008) introduced
a suite of metrics, e.g., decomposed mean square error, and
relative error metrics, which were used to characterize the
model performance for various applications. Xu et al. (2016)
devised a vector field evaluation (VFE) diagram, which can
be regarded as a generalized Taylor diagram, to evaluate the
model performance in simulating vector fields, such as vec-
tor winds and temperature gradients. Most metrics, e.g., root
mean square error, correlation coefficient, and standard devi-
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ation, measure the model performance in simulating an indi-
vidual variable (Gleckler et al., 2008). It is a common view
that no model performs better than others in every aspect. For
example, among various models, one model can show the
best performance in simulating air temperature but may have
a poor performance in simulating precipitation. In this case,
how can researchers select the best model if both tempera-
ture and precipitation are of great concern in a study? A pop-
ular approach is to show the relative errors of various vari-
ables from different models using a portrait diagram (e.g.,
Gleckler et al., 2008; Pincus et al., 2008). The portrait dia-
gram illustrates model errors for each individual variable and
can provide an overview of the model performance in simu-
lating various variables. However, the portrait diagram can-
not give a quantitative evaluation of the overall performance
of climate models in simulating multiple fields. To measure
the overall model performance, Gleckler et al. (2008) pro-
posed an exploratory index, termed the model climate per-
formance index (MCPI), by averaging each model’s relative
errors across multiple fields. Note that the MCPI only consid-
ers the root mean square errors (RMSEs) of various fields.
The RMSE can be interpreted as a function of the correla-
tion coefficient and standard deviation (Murphy, 1988; Tay-
lor, 2001; Pincus et al., 2008; Pierce et al., 2009). Therefore,
the RMSE takes both the correlation coefficient and standard
deviation into account. However, the RMSE cannot explic-
itly measure the correlation coefficient and standard devia-
tion. For example, the same RMSE can correspond to very
different correlation coefficients and standard deviations, es-
pecially for large RMSE values.

In this paper, we propose a more comprehensive multivari-
able integrated evaluation (MVIE) method, which can sum-
marize multiple statistics of model performance in terms of
multiple variables, for climate model evaluation. The general
idea is to groupM scalar fields into anM-dimensional vector
field with each dimension representing a scalar field. Such
a constructed vector field integrates multiple variables and
can be assessed using the VFE diagram. The VFE diagram
can concisely summarize the degree of correspondence be-
tween simulated and observed vector fields in terms of mul-
tiple statistics (Xu et al., 2016). Therefore, the VFE diagram
can be a powerful tool for the MVIE of model performance.
To achieve the goal of MVIE, in Sect. 2, we generalize the
VFE diagram to evaluate M-dimensional vector fields and
interpret three statistical quantities in the VFE diagram from
the viewpoint of MVIE. Section 3 presents the approach of
MVIE with the VFE diagram. A summary and discussion are
provided in Sect. 4.

2 Constructing the VFE diagram for multidimensional
vector fields

Xu et al. (2016) constructed the VFE diagram in terms
of two-dimensional vector fields. There are three statistical

quantities in the VFE diagram, i.e., root mean square length
(RMSL) of a vector field, vector similarity coefficient (VSC),
and root mean square vector deviation (RMSVD) between
two vector fields. In this section, each quantity will be de-
fined and interpreted from the viewpoint of MVIE. There-
after, we will construct the VFE diagram for multidimen-
sional vector fields.

2.1 Root mean square length of a vector field

Consider two vector fields A and B, which can be spatial
and/or temporal fields. Assume that vector fields A and B

are derived from a climate model simulation and observation,
respectively. Without loss of generality, vector fields A and
B can be written as a pair of vector sequences:

Aj =
(
a1j ,a2j , . . .,aMj

)
; j = 1,2, . . .,N

Bj =
(
b1j ,b2j , . . .,bMj

)
; j = 1,2, . . .,N.

Each vector field, e.g., A, consists of N discrete vectors (in
time and/or space). Each vector, e.g., Aj , in M-dimensional
Euclidean space is identified with the tuples of M real num-
bers (a1j ,a2j , . . .,aMj ). Each real number represents the po-
sition of the perpendicular projection of the vector onto in-
dividual axes of anM-dimensional Cartesian coordinate sys-
tem. The norms of vectors Aj and Bj , the intuitive notion of
length, are written as

∥∥Aj

∥∥= ( M∑
i=1

a2
ij

) 1
2

∥∥Bj

∥∥= ( M∑
i=1

b2
ij

) 1
2

.

The root mean square lengths (RMSLs) for vector fields A

and B are, respectively, defined as

LA =

√√√√ 1
N

N∑
j=1

∥∥Aj

∥∥2 (1)

and

LB =

√√√√ 1
N

N∑
j=1

∥∥Bj

∥∥2
. (2)

The square of LA is written as

L2
A =

1
N

N∑
j=1

∥∥Aj

∥∥2

=
1
N

N∑
j=1

M∑
i=1

a2
ij

=

M∑
i=1

(
1
N

N∑
j=1

a2
ij

)
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=

M∑
i=1

L2
ai . (3)

Similarly, we have

L2
B =

1
N

N∑
j=1

∥∥Bj

∥∥2

=
1
N

N∑
j=1

M∑
i=1

b2
ij

=

M∑
i=1

(
1
N

N∑
j=1

b2
ij

)

=

M∑
i=1

L2
bi, (4)

where

Lai =

√√√√ 1
N

N∑
j=1

a2
ij (5)

and

Lbi =

√√√√ 1
N

N∑
j=1

b2
ij (6)

are the rms values of the ith component of the vector fields
A and B, respectively. The RMSL of vector field A reflects
the total rms value across all components of the vector field
(Eq. 3). If we break down each variable into its mean and
anomaly, it is easy to prove that the mean square value equals
the square of the mean plus variance (Eq. A4). If the vector
field is grouped with various scalar fields, the RMSL repre-
sents the overall mean value and variance of all scalar fields.

2.2 Vector similarity coefficient between two vector
fields

In the same way as for the vector similarity coefficient (VSC)
for two-dimensional vector fields (Xu et al., 2016), the VSC
for M-dimensional vector fields can be defined as

Rv =

N∑
j=1

Aj ·Bj√
N∑
j=1

∥∥Aj

∥∥2
√

N∑
j=1

∥∥Bj

∥∥2
. (7)

The normalized vectors are written as

A∗j =
Aj

LA
=

(
a∗1j ,a

∗

2j , . . .,a
∗

Mj

)
; j = 1,2, . . .,N

B∗j =
Bj

LB
=

(
b∗1j ,b

∗

2j , . . .,b
∗

Mj

)
; j = 1,2, . . .,N.

With the aid of Eqs. (1) and (2), we have

N∑
j=1

∥∥∥A∗j∥∥∥2
=

N∑
j=1

∥∥∥B∗j∥∥∥2
=N. (8)

We can also represent Eq. (7) in the following form:

Rv =
1
N

N∑
j=1

A∗j ·B
∗

j

=
1
N

N∑
j=1

M∑
i=1

a∗ijb
∗

ij . (9)

VSC can be interpreted as the mean of inner products
between normalized and paired vectors A∗j and B∗j . The
squared Euclidean distance (SED) between A∗j and B∗j is de-
fined as follows:∥∥∥C∗j∥∥∥2

=

∥∥∥A∗j −B∗j

∥∥∥2
. (10)

With the aid of Eqs. (9) and (10), the sum of all SEDs can be
written as

N∑
j=1

∥∥∥C∗j∥∥∥2
=

N∑
j=1

∥∥∥A∗j −B∗j

∥∥∥2

=

N∑
j=1

M∑
i=1

(
a∗ij − b

∗

ij

)2

=

N∑
j=1

(
M∑
i=1

a∗ij
2
+

M∑
i=1

b∗ij
2
− 2

M∑
i=1

a∗ijb
∗

ij

)

=

N∑
j=1

∥∥∥A∗j∥∥∥2
+

N∑
j=1

∥∥∥B∗j∥∥∥2
− 2N ·Rv.

With the aid of Eq. (8), we obtain

Rv = 1−
1

2N

N∑
j=1

∥∥∥C∗j∥∥∥2
. (11)

Given the triangle inequality, 0≤
∥∥∥C∗j∥∥∥≤ ∥∥∥A∗j∥∥∥+∥∥∥B∗j∥∥∥, we

have

0≤
∥∥∥C∗j∥∥∥2

≤

(∥∥∥A∗j∥∥∥+ ∥∥∥B∗j∥∥∥)2
≤ 2

∥∥∥A∗j∥∥∥2
+ 2

∥∥∥B∗j∥∥∥2
.

Adding all SEDs together yields

0≤
N∑
j=1

∥∥∥C∗j∥∥∥2
≤ 2

N∑
j=1

∥∥∥A∗j∥∥∥2
+ 2

N∑
j=1

∥∥∥B∗j∥∥∥2
= 4N. (12)

Substituting Eq. (12) into Eq. (11), we obtain −1≤ Rv ≤ 1.
Thus, the VSC between two M-dimensional vector fields
varies from −1 to 1. The VSC reaches its maximum of 1
when each pair of normalized vectors has exactly the same
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length and direction, i.e., A∗j = B∗j for all i (1≤ i ≤N). The
VSC reaches its minimum value of −1 when each pair of
normalized vectors has exactly the same length but points in
opposite directions, i.e., A∗j =−B∗j for all i (1≤ i ≤N).

With the aid of Eqs. (1) and (2), Eq. (7) can be written as

Rv =
1

NLALB

N∑
j=1

Aj ·Bj

=
1

NLALB

N∑
j=1

M∑
i=1

aijbij

=
1

NLALB

N∑
j=1

M∑
i=1

aijbij

LaiLbi
LaiLbi

=
1

NLALB

M∑
i=1

N∑
j=1

aijbij

LaiLbi
LaiLbi

=
1

LALB

M∑
i=1

(
LaiLbi

1
N

N∑
j=1

aijbij

LaiLbi

)

=
1

LALB

M∑
i=1

LaiLbiRui, (13)

where Lai and Lbi are the uncentered rms values of the ith
component of vector fields A and B as defined in Eqs. (5) and

(6), respectively. Rui =

1
N

N∑
j=1

aij bij

LaiLbi
is the uncentered pattern

correlation coefficient between the ith paired components of
vector fields A and B. The uncentered pattern correlation
coefficient is a variant of Pearson’s correlation in which the
mean values are not removed. Rui can also be interpreted as
the normalized inner product of two N -dimensional vectors
ai = (ai1,ai2,. . .,aiN ) and bi = (bi1,bi2,. . .,biN ):

Rui =
< ai · bi >

‖ai‖‖bi‖
=

N∑
j=1

aijbij√
N∑
j=1

a2
ij

√
N∑
j=1

b2
ij

. (14)

The uncentered correlation coefficient can be represented by
the cosine of the angle between the N -dimensional vectors
ai and bi . Rui increases when the arguments of vectors ai
and bi approach each other (Eq. 14). Thus, the similarity co-
efficient between two vector fields A and B can be inter-
preted as a weighted average of uncentered correlation co-
efficients across all paired components between two vector
fields (Eq. 13).

2.3 Root mean square vector deviation

To measure the difference in vector fields A and B, a
RMSVD is defined as

RMSVD=

[
1
N

N∑
j=1

∥∥Aj −Bj

∥∥2

] 1
2

=

[
1
N

N∑
j=1

M∑
i=1

(
aij − bij

)2] 1
2

. (15)

The square of the RMSVD can be written as

RMSVD2
=

1
N

N∑
j=1

M∑
i=1

(
aij − bij

)2
=

M∑
i=1

(
1
N

N∑
j=1

(
aij − bij

)2)

=

M∑
i=1

RMSD2
i , (16)

where RMSDi = 1
N

N∑
j=1

(
aij − bij

)2 is the root mean square

deviation (RMSD) between the ith paired component of vec-
tor fields A and B. Thus, the RMSVD measures the overall
RMSDs of all components between the original vector fields
A and B.

2.4 Construction of VFE diagram for M-dimensional
vector fields

With the aid of Eq. (7), the square of the RMSVD can be
written as

RMSVD2
=

1
N

N∑
j=1

∥∥Aj −Bj

∥∥2

=
1
N

N∑
j=1

(∥∥Aj

∥∥2
+
∥∥Bj

∥∥2
− 2Aj ·Bj

)

=
1
N

N∑
j=1

∥∥Aj

∥∥2
+

1
N

N∑
j=1

∥∥Bj

∥∥2
− 2Rv

·

√√√√ 1
N

N∑
j=1

∥∥Aj

∥∥2

√√√√ 1
N

N∑
j=1

∥∥Bj

∥∥2
. (17)

With the aid of Eqs. (1), (2), and (7), Eq. (17) can be written
as

RMSVD2
= L2

A+L
2
B − 2Rv ·LALB . (18)

The RMSVD, LA, LB , and Rv are related by the law of
cosines (Eq. 18). We can construct the VFE diagram for M-
dimensional vector fields based on Eq. (18). The VFE dia-
gram and the geometric relationship between LA, LB , Rv,
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and the RMSVD are shown in Fig. 1. As for the case of two-
dimensional vectors (Xu et al., 2016), the RMSLs, i.e., LA
and LB , measure the mean and variance of the lengths of
vector fields A and B, respectively (Eqs. A4, A5). Rv re-
flects the pattern similarity between two vector fields. The
RMSVD describes the overall difference between two vector
fields. Thus, the three statistical quantities can be indicated
by a single point on the VFE diagram (Fig. 1).

3 Multivariable integrated evaluation with the VFE
diagram

3.1 Methodology

To evaluate model performance in terms of the simulation of
multiple variables, one can group various scalar fields into a
vector field and compare the constructed vector field against
the observed one using the VFE diagram. For example, we
can construct a vector field with temperature and precipita-
tion as its x and y components, respectively. One can cer-
tainly use more variables as needed to construct the vector
field. Note that the statistical quantities RMSL, VSC, and
RMSVD in the VFE diagram are defined in an orthogonal
coordinate system in which the axes are perpendicular to
each other. There is no requirement for the independence of
the variables to be evaluated, e.g., temperature and precipita-
tion which are represented by coordinate values of individual
axes. Thus, the VFE diagram can be applied to evaluate any
combination of modeled variables against corresponding ob-
servational estimates. Given the differences in units and or-
der of magnitude of various variables, we need to normalize
all variables before grouping them into a vector field. The
normalization can be done by dividing the rms value of each
observational estimate as follows:

A?
j =

(
a1j

Lb1
,
a2j

Lb2
, . . .,

aMj

LbM

)
=

(
a?1j ,a

?
2j , . . .,a

?
Mj

)
;

j = 1,2, . . .,N (19)

B?
j =

(
b1j

Lb1
,
b2j

Lb2
, . . .,

bMj

LbM

)
=

(
b?1j ,b

?
2j , . . .,b

?
Mj

)
;

j = 1,2, . . .,N, (20)

where Lbi =

√
1
N

N∑
j=1

b2
ij is the rms value for the ith compo-

nent of vector field B obtained from observational estimates.
Each component of the normalized vector field is dimension-
less and on the order of 1. Thus, the statistics of each compo-
nent are equally important to the total statistics of the vector
fields. The normalization is especially necessary when the
variables are of different orders of magnitude. For example,
the surface air temperature (SAT) is typically on the order of
100–101 ◦C, but the monthly mean precipitation rate is gen-
erally on the order of 10−5–10−4 mm s−1. Under this circum-

LA

LB

RMSVD

Vector similarity coefficient

RMSL of vector field

Figure 1. VFE diagram for displaying multiple statistics of two vec-
tor fields. The vector similarity coefficient between two vector fields
is given by the azimuthal position of the test field. The radial dis-
tance from the origin is proportional to the RMSL of the vector
field. LA and LB represent the RMSL of the test and reference vec-
tor fields, respectively. The RMSVD between the test and reference
fields is proportional to their distance (dashed contours are given in
the same units as those for the RMSL).

stance, the differences in the RMSL, VSC, and RMSVD be-
tween various models would be primarily determined based
on the SAT and barely impacted by the precipitation if no
normalization was applied. Therefore, in terms of the MVIE
of the model performance, the RMSLs, VSC, and RMSVD
should be computed using the normalized vector fields A?

and B?. As interpreted in Sect. 2, three statistical quantities
in the VFE diagram represent the overall statistics across all
components between two vector fields. If the vector fields
are grouped by various scalar fields, the VFE diagram can
summarize the three statistics of model performance in sim-
ulating multiple scalar fields.

3.2 Application of multivariable integrated evaluation
of model performance

Without loss of generality, we choose the climatological
mean SAT and precipitation as well as the temporal stan-
dard deviation of the SAT and precipitation as the variables
to interpret the MVIE method. Four variables derived from
climate models are examined against the corresponding ob-
servational estimates. The evaluation is based on the monthly
mean datasets derived from the first ensemble run of CMIP5
historical experiments during the period from 1961 to 2000
(Taylor et al., 2012). Three pairs of observed SAT and pre-
cipitation datasets are used in this study. The first pair of
datasets is the Climatic Research Unit (CRU) gridded SAT
and precipitation (Harris, et al., 2014). The second pair of
datasets is the University of Delaware air temperature and
precipitation (Willmott and Matsuura, 2001). The third pair
of datasets is composed of the Global Historical Climatol-
ogy Network (GHCN) temperature (Fan and van den Dool,

www.geosci-model-dev.net/10/3805/2017/ Geosci. Model Dev., 10, 3805–3820, 2017
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Table 1. Multiple statistics of CMIP5 models in simulating surface air temperature and precipitation in terms of climatological mean state
and interannual variability. Tm (Pm) is the climatological mean surface air temperature (precipitation) in summer (June–July–August). Ta
(Pa) is the temporal standard deviation of summer surface air temperature (precipitation). CMIP5 simulations and three individual groups of
observational datasets are compared with the ensemble mean of three groups of SAT and precipitation data observed during the period from
1961 to 2000. The rms is the ratio of modeled to observed root mean square values of the spatial pattern for each variable. CORR (RMSD) is
the uncentered spatial correlation coefficient (root mean square deviation) between model and observational fields. RMSL, Rv, and RMSVD
measure the statistics of two vector fields, which can represent the overall statistics of all fields (Eqs. 3, 13, 16). RMSL was shown as the ratio
of model simulated RMSL to the observed RMSL. The rms_std is the standard deviation of four rms values, which describe the dispersion of
rms values of Tm, Pm, Ta, and Pa (Eq. 23). MIEI is the multivariable integrated evaluation index (Eq. 24). Model performance is indicated
by the color scale; lighter colors denote better model performance.

rm
s_std

rms

2008) and Global Precipitation Climatology Centre (GPCC)
precipitation (Schneider et al., 2014). All observational data
are available at 0.5◦× 0.5◦ resolution. We take the average
of three pairs of SAT and precipitation values as the refer-
ence data in this study, unless stated otherwise. The obser-
vational uncertainty can be roughly estimated by comparing
each observational estimate to the reference data (Xu et al.,
2016). All datasets were regridded to a common resolution
of 2.5◦× 2.5◦ using a box-averaging (bilinear interpolation)
method that re-grids data to a coarse (fine) resolution. All
datasets were weighted by the area of the grid cell to make
the statistics more representative for the global mean val-
ues. Both the model and observational data are normalized
by the rms value of each observed field before computing
their statistics (Eqs. 19, 20).

Table 1 shows the various statistics of nine CMIP5 mod-
els in terms of the climatological mean summer (June–July–
August) SAT, precipitation, and the temporal standard de-
viation of SAT and precipitation over the global land area
(60◦ S–60◦ N). The standard deviation reflects the amplitude
of interannual variation. The models can generally well sim-
ulate the climatological mean SAT characterized by the close
correspondence of the rms values, high uncentered correla-
tions, and small RMSDs between the model and observation.
In contrast, models show a relatively poor performance in
simulating other variables, i.e., climatological mean precip-
itation, standard deviations of SAT and precipitation. These
statistics vary from one model to the next. It is difficult to

compare the overall performance of various models because
there are too many variables and models to distinguish one
from another (Table 1). It is very useful to summarize the
statistics of multiple variables with fewer indices, which en-
ables an objective evaluation of the overall model perfor-
mance in simulating multiple variables. To achieve this goal,
we grouped the four normalized scalar fields into a four-
dimensional vector field. Afterwards, we computed the sta-
tistical quantities, i.e., RMSL, VSC, and RMSVD, with the
four-dimensional vector fields derived from model and obser-
vational data. As interpreted in Sect. 2, the RMSL (RMSVD)
measures the overall rms values (RMSDs) of all scalar fields
(Eqs. 3, 16). The VSC represents the weighted average of
uncentered correlation coefficients across all scalar fields
(Eq. 13). Thus, each model’s performance in simulating mul-
tiple variables can be summarized by a single point that is
determined by 12 statistical quantities (4 variables× 3 statis-
tics) derived from various scalar fields (Table 1, Fig. 2).

As shown in Fig. 2, the VSC varies from 0.90 to 0.94, in-
dicating which models can better reproduce the overall spa-
tial pattern of various variables and which cannot. For ex-
ample, model 1 shows the maximum VSC, indicating that
model 1 can generally better reproduce the spatial pattern
of the four variables relative to other models. This can be
confirmed by Table 1. The uncentered pattern correlation co-
efficients for the four scalar fields are generally higher in
model 1 than in the other models. Figure 2 also clearly shows
which model overestimates or underestimates the overall rms
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Figure 2. VFE diagram describing the normalized climatological
mean SAT, precipitation, and interannual variabilities of SAT and
precipitation over a land area between 60◦ S and 60◦ N simulated
by nine CMIP5 models compared with three groups of SAT and
precipitation data observed during the period from 1961 to 2000.
The RMSL and the RMSVD have been normalized by dividing the
RMSL derived from the observed data. The line segment centered
at each plotted point along the azimuthal direction represents 2 stan-
dard deviations of the rms values of various fields. The value of the
MIEI for each model is also shown in the diagram.

values. For example, models 5 and 7 overestimate the RM-
SLs of the four-dimensional vector fields, suggesting that
both models generally overestimate the rms values of the
four scalar fields. This can also be confirmed by Table 1, as
model 5 clearly overestimates the rms values of Ta (1.43) and
Pa (1.19) and slightly underestimates the rms values of Tm
(0.99) and Pm (0.94). Model 7 overestimates all rms values
(1.06, 1.09, 1.14, and 1.07) of the four variables. Thus, the
RMSL of a constructed vector field can reasonably represent
the overall performance of a model in reproducing rms values
of multiple scalar fields. In contrast, model 9 clearly under-
estimates the RMSL of the vector field (Fig. 2). Correspond-
ingly, three out of the four rms values of scalar fields are
smaller than 1 for model 9 (Table 1). Similarly, the RMSVD
between two vector fields can also reasonably represent the
overall RMSDs of multiple scalar fields as shown in Fig. 2
and Table 1. Thus, one can evaluate the model performance
in simulating multiple variables with three statistical quanti-
ties. The three statistical quantities represent different aspects
of model performance, the knowledge of which can provide
a more comprehensive model evaluation. The VFE diagram
can clearly illustrate to what extent the overall RMSDs of
various scalar fields (represented by the RMSVD) are at-
tributable to the systematic difference in rms values (repre-

sented by the RMSL) and how much is due to the poor pat-
tern similarities (represented by Rv).

Note that model performance does not change monoton-
ically with the increase or decrease in rms values. Specif-
ically, model performance improves as the normalized rms
values approach 1 but decreases as the normalized rms val-
ues approach either zero or infinity. As defined in Eq. (3),
the RMSL being equal to the sum of rms values of all com-
ponents of a vector field. Thus, even if the modeled RMSL
is equal to the observed one, it does not necessarily suggest
that the model well reproduces the rms values of various
scalar fields. This conclusion may result from the cancella-
tion between the overestimated and the underestimated rms
values. For example, as shown in Table 1, model 3 overesti-
mates the rms values of Tm (1.05) and Ta (1.26) but underes-
timates the rms values of Pm (0.80) and Pa (0.77). However,
the RMSL (0.99) is almost consistent with the observational
estimate. Under such a circumstance, the RMSL misrepre-
sents the model performance in simulating rms values of var-
ious scalar fields. To mitigate this shortcoming, one can add
a line segment centered at each plotted point along the az-
imuthal direction (Fig. 2). The length of the line segment is
equal to twice the standard deviation of rms values of mul-
tiple scalar fields. Thus, the length of the line segment can
measure the dispersion of various rms values relative to their
mean. A shorter line indicates that the rms values are close
to the mean. In contrast, a longer line segment indicates that
the rms values are spread out over a wider range. To measure
the accuracy of modeled rms values to that of those observed,
one can use the root mean square deviation of the rms values
of various variables:

RMSD2
L =

1
M

M∑
i=1

(
L?ai −L

?
bi

)2
, (21)

where L?ai =
1
Lbi

√
1
N

N∑
j=1

a2
ij and L?bi =

1
Lbi

√
1
N

N∑
j=1

b2
ij are

the rms values of the ith normalized component of vector
fields A and B, respectively. With the support of Eq. (6), we
have L?bi = 1 for all i (1≤ i ≤M). The RMSD2

L can be fur-
ther written as

RMSD2
L =

1
M

M∑
i=1

(
L?ai − 1

)2
=

1
M

M∑
i=1

L?ai
2
−

2
M

M∑
i=1

L?ai + 1

=
1
M

M∑
i=1

(
L?a +L

?
ai
′
)2
− 2L?a + 1

= L?a
2
+

1
M

M∑
i=1

L?ai
′2
− 2L?a + 1

=
(
L?a − 1

)2
+ σ 2

rms, (22)
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where L?a , and L?ai
′ are the mean and anomaly of L?ai , respec-

tively. The rms value of L?ai
′ is written as follows:

σrms =

(
1
M

M∑
i=1

L?ai
′2
) 1

2

. (23)

σrms is the centered rms value or the standard deviation of
L?ai . Thus, the RMSDL can be decomposed into the mean er-
ror and the variance of rms values of normalized scalar fields
(Eq. 22). RMSDL measures the overall deviation of modeled
rms values from the observed ones. The modeled rms values
of various scalar fields are exactly equal to the corresponding
observed ones only when the RMSDL is equal to 0.

3.3 Multivariable integrated evaluation index for
model performance

In general, the model results get closer to the observational
estimate as the RMSVD decreases. It is noteworthy that for
a given VSC at a relatively low value, the RMSVD does not
strictly decrease monotonically as the simulated RMSL ap-
proaches the observed one (Fig. 3). For example, model B
shows the same VSC as that of model A but a smaller bias in
the RMSL, which suggest that model B performs better than
model A. However, the RMSVD is greater in model B than in
model A (Fig. 3). Thus, the decrease in the RMSVD may not
necessarily indicate an improvement in model performance.
On the other hand, given the drawback of the RMSL in mea-
suring the accuracy of rms values, the model skill score, de-
fined based on the RMSL and VSC in Xu et al. (2016), is also
not well suited for measuring the model performance in sim-
ulating multiple scalar fields. To better measure model per-
formance, we define a multivariable integrated evaluation in-
dex (MIEI) based on the VFE diagram (Fig. 3):

MIEI2
= BC2

+BG2.

Based on the law of cosines, we have

BG2
= 2− 2Rv.

Thus, the MIEI can be written as

MIEI2
= RMSD2

L+ 2(1−Rv)

= σ 2
rms+

(
L?a − 1

)2
+ 2(1−Rv) . (24)

Clearly, the MIEI takes both the amplitudes and pattern sim-
ilarities of various variables into account and therefore can
provide a comprehensive evaluation of model performance
(Eq. 24). In contrast to the RMSVD, the MIEI satisfies the
monotonic property of an index with respect to model perfor-
mance. Specifically, for any given σrms and L?a , the MIEI de-
creases monotonically with the increase in Rv. For any given
σrms and Rv, the MIEI decreases monotonically as L?a ap-
proaches 1. For any given L?a and Rv, the MIEI decreases
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Figure 3. Schematic diagram displaying the relationship between
the RMSVD, RMSDL, and MIEI. The points A, B, and D represent
different models. The RMSDL measures the overall difference be-
tween the modeled rms values and the observed ones. The line seg-
ment BC is vertical with respect to the VFE diagram. The length of
line segment BG is determined based on the vector field similarity,
which measures the overall pattern similarity of various scalar fields
relative to the observed ones. Thus, the MIEI index takes both the
pattern similarities and the rms values of various scalar fields into
account.

monotonically with the decrease in σrms. The MIEI is equal
to 0 only when σrms = 0, L?a = 1, and Rv = 1, which define
a perfect model. In other words, modeled multiple fields are
exactly the same as the observed ones when the MIEI is equal
to 0.

As interpreted in Sect. 2, the RMSVD is determined
based on the sum of quadratic RMSDs of various scalar
fields (Eq. 16). Thus, the RMSVD is equivalent to the
model climate performance index used in previous studies
(e.g., Gleckler et al., 2008; Radić and Clarke, 2011; Chen
and Sun, 2015). In general, both the RMSVD and MIEI can
be used to measure the model performance. However, the
MIEI is expected to provide a more accurate evaluation of
model performance than the RMSVD. For example, model 3
shows a smaller RMSVD but a larger MIEI compared to
model 2 (Table 1, Fig. 2). The RMSVD and MIEI give an
opposite rank in the performance of models 2 and 3. Note
that model 3 shows a much greater standard deviation of rms
values (0.20) than that of model 2 (0.04), suggesting that
model 3 poorly simulates the relative amplitude of the four
variables. Such information is not considered by the RMSVD
but can be captured by the MIEI (Eqs. 18, 24). The values
of the MIEI derived from various models are also shown in
Fig. 2. A smaller MIEI generally indicates a better perfor-
mance of the climate model. For example, models 1 and 6
show smaller MIEIs than the other models. Models 1 and 6
show higher VSC values and a close correspondence of rms
values with the observed ones (Table 1, Fig. 2). The MIEI can
serve as an index to determine the rank of climate model per-
formance in simulating multiple fields. In comparison with
the MIEI, the VFE diagram can provide a more detailed eval-
uation of the model performance by explicitly showing mul-
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tiple statistics, i.e., pattern similarity, rms values and their
variances, and RMSVD.

The issue of how to take the observational uncertainties
into account is of particular importance in model evaluation
and ranking, especially when more and more observational
datasets provide estimates of the observational uncertainty.
The statistics derived from each group of observational esti-
mates are also shown in Table 1, which can roughly quantify
the observational uncertainties and its impact on model eval-
uation. Generally, the colors are clearly lighter for the statis-
tics of individual observed variables in contrast to the mod-
eled variables (Table 1). This indicates that the observational
uncertainties are relatively small and should have less im-
pact on the evaluation of model performance. To further
quantify the impacts of observational uncertainty on rank-
ing model performance, we calculate the MIEIs of various
climate models by taking each group of observational esti-
mates as the reference data. Three groups of observational es-
timates generate three groups of MIEIs. Afterwards, we cal-
culate Spearman’s rank correlation coefficient of each group
of MIEIs with those derived from models and the ensemble
mean of multiple observational estimates. The Spearman’s
rank correlation coefficients are 0.996, 0.996, and 0.904, re-
spectively, suggesting that the ranks are very close to each
other no matter which group of observational estimates is
used as reference data. Thus, the observational uncertainty
should have less impact on ranking model performance in
this case. One can use the average of Spearman’s rank cor-
relation coefficients to quantify the consistency of various
ranks when a number of observational estimates are avail-
able.

4 Summary and discussion

The MVIE method proposed here provides a concise way
of representing the multiple statistics of multiple fields on a
two-dimensional plot, i.e., the VFE diagram. The VFE dia-
gram includes three statistical quantities, i.e., RMSL, VSC,
and RMSVD, representing different aspects of model per-
formance. Specifically, the RMSL (RMSVD) represents the
total mean value and variance (total RMSDs) of all scalar
fields. The VSC measures the overall pattern similarity
across all scalar fields. As shown in the example, each of the
three statistical quantities can reasonably represent the cor-
responding statistics of multiple scalar fields. Moreover, the
VFE diagram can illustrate how much the overall RMSD of
various fields is attributable to the difference in rms values
and how much is due to poor pattern similarity. Thus, one
can summarize multiple statistics of multiple variables for
various models in a diagram and facilitate the intercompari-
son of model performance in simulating multiple variables.
The MVIE method can be applied to spatial and/or temporal
fields. It can also simultaneously evaluate various temporal
variabilities simulated by models, e.g., climatological mean

state and the amplitude of interannual variability as shown
in Sect. 3.2. Based on the VFE diagram, we also developed
a MIEI which takes the amplitude and pattern similarity of
multiple fields into account. The MIEI satisfies the criterion
that a model performance index should vary monotonically
as the model performance improves. The MIEI provides a
more concise evaluation than the VFE diagram of model per-
formance in simulating multiple fields.

The statistical metrics presented in this paper can be di-
vided into three different levels and their relationships are
summarized in a pyramid chart (Fig. 4). The first level of
metrics, i.e., correlation coefficient, rms value, and RMSD,
measures model performance in terms of individual vari-
ables. These metrics can be illustrated by a table of met-
rics (Table 1), which can provide detailed information on
model performance in simulating individual variables but
cannot give a quantitative evaluation of the overall model
performance in simulating multiple fields. The second level
of metrics, i.e., the VSC, RMSL, standard deviation of rms
values, and RMSVD, is derived from the first level of met-
rics and represents the overall statistics of multiple variables.
The second level of metrics can be presented as a VFE dia-
gram, which provides an integrated evaluation of model per-
formance in terms of simulating multiple fields. The MIEI
belongs to the third level of metrics, which is defined based
on the VFE diagram. The MIEI further summarizes the three
statistical quantities of the VFE diagram into a single in-
dex and can be used to rank the performance of various cli-
mate models. A higher level of metrics provides a more con-
cise evaluation of model performance compared to a lower
level of metrics, which facilitates model intercomparison.
Unavoidably, the higher level of metrics loses detailed statis-
tical information in contrast to the lower level of metrics. To
provide a more comprehensive evaluation of model perfor-
mance, one can show the VFE diagram together with a table
of statistical metrics (Table 1) or other model performance
metrics as needed.

As shown in Sect. 2, the VFE diagram can be constructed
by using uncentered statistics, which are computed using the
full scalar fields, including both mean and anomaly. The VFE
diagram can also be constructed by using centered statis-
tics (Appendix A). The centered RMSL of a vector repre-
sents the overall variance of all components of a vector field
(Eq. A3). The centered VSC can be interpreted as weighted
average of Pearson’s correlation coefficients, which mea-
sures the overall pattern similarity across all paired anomaly
fields (Eq. A9). The centered RMSVD measures the sum of
centered RMSDs across all paired components between two
vector fields (Eq. A12). The type of statistics, i.e., centered
or uncentered statistics, that should be used depends on the
application. The uncentered statistics should be used if both
the mean and anomaly need to be evaluated. In contrast, the
centered statistics should be used if the anomaly fields are the
primary concern. The centered correlations alone are not suf-
ficient for detection studies (Legates and Davis, 1997). It has
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Figure 4. Pyramid chart showing the relationship between three levels of metrics. The first level of metrics, i.e., correlation coefficient
(CORR), rms value, and RMSD, measures the model performance in terms of individual variables. The second level of metrics, i.e., VSC,
RMSL, standard deviation of rms values (σrms), and RMSVD, is derived from the first level of metrics and summarizes the overall perfor-
mance of a climate model in simulating multiple fields. The MIEI further summarizes the VSC, RMSL, and σ 2

rms into a single index to rank
various climate models in terms of simulating multiple fields.

been argued that the uncentered statistics are better suited for
detection because they incorporate the response of the mean
value. In contrast, the centered statistics are more appropri-
ate for attribution because they better measure the similarity
between spatial patterns (Hegerl et al., 2001). The VFE dia-
gram provides us flexibility in model evaluation. In terms of
model evaluation aimed at a detection study, one can com-
pute the uncentered statistics with full fields. In contrast, one
can use centered statistics by computing the statistical quan-
tities with vector anomaly fields if an attribution study is the
major concern of the model evaluation.

In practice, one may want to weight different fields based
on their relative importance. If some variables to be evalu-
ated are dependent on each other, e.g., skin temperature and
surface air temperature, one may also want to weight these
variables properly because the dependent variables contain
redundant information. Otherwise, the evaluation of equally
weighted variables may overestimate the importance of the
dependent variables. Determining the weight coefficient de-
pends on the application and therefore is beyond the scope
of this study. Here, we only discuss how the weight can be
considered in the multivariable integrated evaluation (Ap-
pendix B). The MVIE method presented in this study re-
quires the normalization of each modeled and observed vari-
able by dividing the corresponding rms value of the observed
variable (Eqs. 19, 20). Therefore, one should weight differ-
ent variables after the normalization (Eqs. B1, B2); otherwise
the normalization process will remove the weight coefficient.
Weighting each normalized field leads to a quadratic weight-
ing of the quadratic rms values, quadratic RMSDs, and cor-
relation coefficients (Eqs. B1, B5, B8, B11).

The VFE diagram and MIEI may also provide some
guidance in weighting various climate models to constrain
future climate projection. A recent study suggested that
model weighting should take both model performance and
model interdependencies into account to improve climate
projections (Knutti et al., 2017). The VFE diagram can sum-
marize model performance in terms of multiple statistics
of multiple fields, on one hand. On the other hand, the
VFE diagram can also clearly show the differences between
model and observation as well as the differences between
various models. This information provided by the VFE di-
agram may be used in weighting climate models, which war-
rant further studies.

Code availability. The code used in the production of Fig. 2 and
Table 1 is available in the Supplement.

Data availability. CRU data are provided by Climatic Research
Unit from their web site at https://crudata.uea.ac.uk/cru/data/hrg/
(last access: 16 October 2017). UDel_AirT_Precip, GPCC precip-
itation data (Schneider et al., 2011), and GHCN gridded v3 data
are provided by the NOAA/OAR/ESRL PSD (Boulder, Colorado,
USA) from their web site at https://www.esrl.noaa.gov/psd/data/
gridded/ (last access: 16 October 2017).

Geosci. Model Dev., 10, 3805–3820, 2017 www.geosci-model-dev.net/10/3805/2017/

https://crudata.uea.ac.uk/cru/data/hrg/
https://www.esrl.noaa.gov/psd/data/gridded/
https://www.esrl.noaa.gov/psd/data/gridded/


Z. Xu et al.: Multivariable integrated evaluation of model performance 3815

Appendix A: Decomposition of RMSL, VSC, and
RMSVD

To further interpret the RMSL, VSC, and RMSVD, we break
down the full vector fields A and B into the mean and
anomaly:

Aj = A+A
′

j =

(
a1+ a

′

1j ,a2+ a
′

2j , · · ·,aM + a
′

Mj

)
;

j = 1,2, . . .,N

Bj = B +B
′

j =

(
b1+ b

′

1j ,b2+ b
′

2j , · · ·,bM + b
′

Mj

)
;

j = 1,2, . . .,N,

where

A= (a1,a2, · · ·,aM) ,
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(
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)
,
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(
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,
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(
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)
,
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aij ; i = 1,2, . . .,M

bi =
1
N

N∑
j=1

bij ; i = 1,2, . . .,M

a′ij = aij − ai; i = 1,2, . . .,M

b′ij = bij − bi; i = 1,2, . . .,M.

The squared RMSL of vector field A is written as follows:
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Given
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a′ij = 0, L2
A can be written as
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where
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is the RMSL of the mean vector field,

LA′ =

(
1
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N∑
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) 1
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M∑
i=1

σ 2
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is the RMSL of the vector anomaly field, and

σai =

(
1
N

N∑
j=1

a′ij
2

) 1
2

; i = 1,2, . . .,M

is the centered rms value (or standard deviation) of the ith
component of vector field A.

Equation (A1) can be written as

L2
A = L

2
A
+L2

A′ =

M∑
i=1

(
ai

2
+ σ 2

ai

)
. (A4)

The RMSL of vector field A, LA, measures the overall mean
value and variance of all components of the vector field.

Similarly, we have

L2
B = L

2
B
+L2
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(
bi

2
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)
, (A5)

where

σbi =

(
1
N

N∑
j=1

b′ij
2

) 1
2

; i = 1,2, . . .,M

is the centered rms value (or standard deviation) of the ith
component of vector field B.

With the support of Eq. (13), the VSC can be written as
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Given that
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b′ij = 0 for all i (1≤ i ≤M), we ob-

tain
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where

Rv =
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aibi (A7)

Rv′ =
1

NLA′LB ′

N∑
j=1

M∑
i=1

a′ijb
′

ij . (A8)

Given the Cauchy–Schwarz inequality, Eq. (A7) can be
rewritten as
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when a1
b1
=

a2
b2
= . . .= aM

bM
< 0. Rv measures the extent of

correlation between modeled and observed mean values
across all components of two vector fields.

Equation (A8) can be rewritten as
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where σai and σbi are the centered rms values (or standard
deviation) of the ith component of vector field A and B, re-
spectively.

ri =
1
N

N∑
j=1

a′ijb
′

ij

σaiσbi

represents the centered correlation coefficients between the
ith paired components of vector fields A and B. Rv′ can be
interpreted as a weighted average of the centered correlation
coefficients across all paired components between two vector
fields. The weight coefficients are proportional to the product
of standard deviations between paired variables. Clearly, the
VSC is simultaneously determined based on the correlation
of various mean fields and the overall correlation of anomaly
fields across all paired components between two vector fields
(Eqs. A6, A7, A9).

The RMSVD between two vector fields can also be repre-
sented by the mean and anomaly fields:
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(
ai + a

′

ij − bi − b
′

ij

)2

=
1
N

M∑
i=1

N∑
j=1

(
ai − bi + a

′

ij − b
′

ij

)2

=
1
N

M∑
i=1

(
N∑
j=1

(
ai − bi

)2
+

N∑
j=1

(
a′ij − b

′

ij

)2

+2
(
ai − bi

) N∑
j=1

(
a′ij − b

′

ij

))
.

Given that
N∑
j=1

a′ij =
N∑
j=1

b′ij = 0 for all i (1≤ i ≤M), we ob-

tain

RMSVD2
=

1
N

M∑
i=1

(
N∑
j=1

(
ai − bi

)2
+

N∑
j=1

(
a′ij − b

′

ij

)2
)

=
1
N

N∑
j=1

M∑
i=1

(
ai − bi

)2
+

1
N

N∑
j=1

M∑
i=1

(
a′ij − b

′

ij

)2

=
1
N

N∑
j=1

∣∣A−B
∣∣2+ 1

N

N∑
j=1

∣∣∣A′j −B ′j

∣∣∣2
= (RMSVDm)2+ (RMSVDa)2, (A10)

where

(RMSVDm)2 =
M∑
i=1

(
ai − bi

)2
(A11)

is the RMSVD between mean vector fields A and B, which
represents the mean difference of all fields.

(RMSVDa)2 =
M∑
i=1

(
1
N

N∑
j=1

(
a′ij − b

′

ij

)2
)

=

M∑
i=1

RMSD′i
2 (A12)

is the centered RMSVD between two vector fields, which
represents the overall RMSD across all paired components
of vector anomaly fields A′ and B ′. From the viewpoint of
MVIE, the RMSVD can be interpreted as the overall mean
difference of all fields plus the overall RMSD of all anomaly
fields.

The statistics can be computed based on the full vector
fields or anomaly vector fields depending on the concern of
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evaluation. The statistical quantities, i.e., RMSL, VSC, and
RMSVD, computed based on the full vector fields represent
the uncentered pattern statistics, which include the statistics
from both the mean and anomaly fields. Alternatively, three
statistics can also be computed based on the anomaly fields,
yielding centered statistics, which only measure the anomaly
fields. The full vector fields should be used if both the mean
and anomaly need to be evaluated. In contrast, the anomaly
vector fields should be used if anomaly fields are the primary
concern.

Appendix B: Weighted multivariable integrated
evaluation with VFE diagram

In terms of model evaluation, one may care for some vari-
ables more than other variables, although all variables are
of great concern. In such a circumstance, it would be use-
ful to weight different variables to make the VSC, RMSL,
and RMSVD more sensitive to some variables than to others.
Without loss of generality, the weighted- and normalized-
vector fields Aw and Bw can be written as a pair of vector
sequences:

Aw
j = w ·A?

j =

(
w1a

?
1j ,w2a

?
2j , . . .,wMa

?
Mj

)
;

j = 1,2, . . .,N (B1)

Bw
j = w ·B?

j =

(
w1b

?
1j ,w2b

?
2j , . . .,wMb

?
Mj

)
;

j = 1,2, . . .,N, (B2)

where a?ij and b?ij (1≤ i ≤M) are the same as in Eqs. (19)
and (20). wi is the weight coefficient for the ith component
of the vector field and satisfies the constraint

M∑
i=1

wi =M.

Note that the weighting should be applied to the normalized
model and observational data (Eqs. B1, B2). Otherwise, the
normalization would remove the weight coefficient (Eqs. 19
and 20). Based on Eq. (3), the square of the RMSL of the
normalized vector field A? can be written as follows:

L?A
2
=

M∑
i=1

L?ai
2
, (B3)

where L?ai =

(
1
N

N∑
j=1

a?ij
2

) 1
2

denotes the rms value of the ith

component of the normalized vector field A?. Similarly, the
quadratic RMSL of weighted- and normalized-vector fields
can be written as follows:

Lw
A

2
=

M∑
i=1

Lw
ai

2
, (B4)

where Lw
ai =

(
1
N

N∑
j=1

w2
i a
?
ij

2

) 1
2

= wiL
?
ai is the rms value of

the ith component of vector field Aw. With the support of
Eqs. (B1), (B3), and (B4), it is easy to obtain

Lw
A

2
=

M∑
i=1

Lw
ai

2
=

M∑
i=1

w2
i L

?
ai

2
. (B5)

The RMSL of vector field Aw is determined based on the
weighted rms values across all components of the vector
field. The contribution of the ith rms value, L?ai , to the
quadratic RMSL of the vector field is weighted by w2

i . The
rms value accounts for more of the RMSL when its weight
coefficient is greater.

Based on Eq. (16), the square of the RMSVD between nor-
malized vector fields A? and B? can be written as follows:

RMSVD?2
=

M∑
i=1

RMSD?i
2
, (B6)

where RMSDi =

(
1
N

N∑
j=1

(
a?ij − b

?
ij

)2
) 1

2

is the RMSD of

the ith paired components between normalized vector fields
A? and B?. Similarly, the square of the RMSVD between
weighted vector fields Aw and Bw can be written as follows:

RMSVDw2
=

M∑
i=1

(
RMSDw

i

)2
. (B7)

RMSDw
i =

(
1
N

N∑
j=1

(
wia

?
ij −wib

?
ij

)2
) 1

2

is the RMSD of the

ith paired components between weighted vector fields Aw

and Bw. With the aid of Eqs. (B1), (B2), (B6), and (B7), we
obtain

(
RMSVDw)2

=

M∑
i=1

(
RMSDw

i

)2
=

M∑
i=1

w2
i RMSD?i

2
. (B8)

The RMSVD between two vector fields is determined based
on the weighted RMSDs across all paired components of
two vector fields. The contribution of the ith RMSD to the
quadratic RMSVD between two vector fields is weighted by
w2
i .
Based on Eq. (13), the VSC between normalized vector

fields A? and B? can be written as follows:

R?v =
1

L?A ·L
?
B

M∑
i=1

L?aiL
?
biR

?
ui, (B9)

where L?ai =

(
1
N

N∑
j=1

a?ij
2

) 1
2

and L?bi =

(
1
N

N∑
j=1

b?ij
2

) 1
2

are

the rms values for the ith normalized components of vector
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fields A and B, respectively. R?ui =

1
N

N∑
j=1

a?ij b
?
ij

L?aiL
?
bi

is the uncen-
tered correlation coefficient for the ith components between
two vector fields. Similarly, the VSC between weighted fields
can be rewritten as

Rw
v =

1
Lw
A ·L

w
B

M∑
i=1

Lw
aiL

w
biR

w
ui, (B10)

where Lw
ai , L

w
bi , and Rw

ui are the same as L?ai , L
?
bi , and R?ui ,

respectively, except they are computed based on the weighted
vector fields Aw and Bw. With the aid of Eqs. (B1), (B2),
(B9), and (B10), we obtain

Rw
v =

1
Lw
A ·L

w
B

M∑
i=1

w2
i L

?
aiL

?
biR

?
ui . (B11)

The VSC is determined based on the sum of the products
of the uncentered correlation coefficients and the rms values.
The contribution of the ith product term, L?aiL

?
biR

?
ui , to the

VSC is weighted by w2
i .
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