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Abstract. While a wide range of Earth system processes
occur at daily and even subdaily timescales, many global
vegetation and other terrestrial dynamics models historically
used monthly meteorological forcing both to reduce com-
putational demand and because global datasets were lack-
ing. Recently, dynamic land surface modeling has moved
towards resolving daily and subdaily processes, and global
datasets containing daily and subdaily meteorology have
become available. These meteorological datasets, however,
cover only the instrumental era of the last approximately
120 years at best, are subject to considerable uncertainty, and
represent extremely large data files with associated computa-
tional costs of data input/output and file transfer. For periods
before the recent past or in the future, global meteorologi-
cal forcing can be provided by climate model output, but the
quality of these data at high temporal resolution is low, par-
ticularly for daily precipitation frequency and amount. Here,
we present GWGEN, a globally applicable statistical weather
generator for the temporal downscaling of monthly climatol-
ogy to daily meteorology. Our weather generator is param-
eterized using a global meteorological database and simu-
lates daily values of five common variables: minimum and
maximum temperature, precipitation, cloud cover, and wind
speed. GWGEN is lightweight, modular, and requires a min-
imal set of monthly mean variables as input. The weather
generator may be used in a range of applications, for exam-
ple, in global vegetation, crop, soil erosion, or hydrological
models. While GWGEN does not currently perform spatially
autocorrelated multi-point downscaling of daily weather, this
additional functionality could be implemented in future ver-
sions.

1 Introduction

The development of the first global vegetation models in
the 1970s (e.g., Lieth, 1975) brought about the demand for
meteorological forcing datasets with global extent and rel-
atively high spatial resolution, e.g., 1◦× 1◦. While a global
weather-station-based monthly climate dataset was available
at this time (Walter and Lieth, 1967), limitations in com-
puters and storage allowed only the simplest treatment of
these data. The first global simulations of the net primary
productivity of the terrestrial biosphere (Lieth, 1975) thus
used rasterized polygons of annual meteorological variables
that had been crudely interpolated from the station-based cli-
matology. The next decade saw the development of better
computers and more sophisticated global vegetation mod-
els (Prentice et al., 1992; Prentice, 1989) that recognized
the need for forcing at a subannual time step, and devel-
opment of these models was done in parallel with the first
global, gridded high-resolution (0.5◦) monthly climatology
(Leemans and Cramer, 1991). At the time, monthly meteo-
rological data were the only feasible global data that could
be produced in terms of the raw station data available to feed
the interpolation process, the processing time required to pro-
duce gridded maps, and the data storage and transfer ca-
pabilities of contemporary computer systems and networks.
Global gridded monthly climate data thus became the stan-
dard for not only large-extent vegetation modeling (Haxel-
tine and Prentice, 1996; Haxeltine et al., 1996; Kaplan et al.,
2003; Kucharik et al., 2000; Woodward et al., 1995) but also
for a wide range of studies on biodiversity and species distri-
bution (e.g., Elith et al., 2006), vegetation trace gas emissions
(e.g., Guenther et al., 1995), and even the geographic distri-
bution of human diseases (e.g., Bhatt et al., 2013).
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Over subsequent years, the global gridded monthly climate
datasets were improved (New et al., 1999, 2002), developed
with very high spatial resolution (Hijmans et al., 2005), and
expanded beyond climatological mean climate to cover con-
tinuous time series over decades (Harris et al., 2014; Mitchell
and Jones, 2005; New et al., 2000). The latter was an essen-
tial requirement for forcing dynamic global vegetation mod-
els (DGVMs) (e.g., Sitch et al., 2003). However, despite in-
creasing quality, spatial resolution, and temporal extent in
these datasets, the basic time step remained monthly, partly
for legacy reasons – models had been developed in an earlier
era subject to computational limitations and therefore used a
monthly time step for efficiency even if this was no longer
strictly a constraint – and partly because of the challenge in
developing a global, high-resolution climate dataset with a
daily or shorter time step still presented a major data man-
agement challenge.

On the other hand, there was increasing awareness that ac-
curate simulation of many Earth surface processes required
representation of processes at a shorter-than-monthly time
step. Global simulation of surface hydrology (Gerten et al.,
2004), crop growth (Bondeau et al., 2007), or biogeophysi-
cal processes (Krinner et al., 2005) needed submonthly forc-
ing to produce reliable results. To address this need for
better forcing data, two main approaches were taken: ei-
ther monthly climate data were downscaled online using
a stochastic weather generator (e.g., Pfeiffer et al., 2013),
or a subdaily, high-resolution, gridded climate time series
was generated directly by merging high-temporal-resolution
reanalysis data (e.g., NCEP, 6 h, 2.5◦) with high-spatial-
resolution monthly climate data (e.g., CRU, 0.5◦). The latter
process resulted in the CRUNCEP dataset (Viovy and Ciais,
2016; Wei et al., 2014), which, while global, is large even by
modern standards (approximately 350 GB), is not available
at spatial resolution greater than 0.5◦, and covers only the
period 1901–2014.

Forcing data for global vegetation and other models with
shorter-than-monthly resolution at higher spatial resolutions
than 0.5◦, or for any other period than the last approxi-
mately 120 years, e.g., for the future or the more distant past,
may therefore only be available through downscaling tech-
niques. One approach to overcome the limitations of cur-
rently available datasets could be to use general circulation
model (GCM) output directly; however, most GCM output
currently available does not have greater than 0.5◦ spatial
resolution, with the current generation of GCMs typically ap-
proaching 1◦× 1◦. Furthermore, there is a general observa-
tion that daily meteorology produced by GCMs is not realis-
tic, particularly for precipitation (Dai, 2006; Stephens et al.,
2010; Sun et al., 2006). An alternative approach is, therefore,
to perform temporal downscaling on monthly meteorological
data using a statistical weather generator.

Statistical weather generators were first developed primar-
ily for crop and hydrological modeling at the field to catch-
ment scale (Richardson, 1981; Woolhiser and Pegram, 1979;

Woolhiser and Roldan, 1982). The weather generator was pa-
rameterized using daily meteorological observations at one
or more weather stations close to the area of interest, al-
though some attempts were made to generalize the param-
eterization over larger, subcontinental regions (e.g., Wilks,
1999b, 1998; Woolhiser and Roldán, 1986). Locally param-
eterized weather generators have been applied to a very wide
range of studies (Wilks, 2010; Wilks and Wilby, 1999) and
enhanced to include additional meteorological variables be-
yond the original precipitation, temperature, and solar ra-
diation (e.g., Parlange and Katz, 2000). Applications of a
weather generator at continental to global scales was still
limited, however, because of the need to perform local pa-
rameterization.

The need to simulate daily meteorology in regions of the
world with short, unreliable, or unavailable daily meteoro-
logical time series brought about the realization that certain
features of weather generator parameterization might be gen-
eralized across a range of climates (Geng and Auburn, 1987;
Geng et al., 1986). This ultimately led to the development
of globally applicable weather generators (Friend, 1998) and
their incorporation in DGVMs (Bondeau et al., 2007; Gerten
et al., 2004; Pfeiffer et al., 2013). The original global param-
eterization (Geng et al., 1986) of these weather generators
was, however, limited to seven weather stations, mostly in
the temperate latitudes. Friend (1998) does not publish the
parameters used in his global weather generator, but we as-
sume these were the same as the original Geng and Auburn
(1987) and Geng et al. (1986) models. Given the availability
of (1) large datasets of daily meteorology and (2) computers
powerful enough to process these data, we therefore decided
that it would be valuable to revisit these parameterizations,
perform a systematic and quantitative evaluation of the re-
sulting downscaled meteorology, and potentially improve our
ability to perform monthly to daily downscaling of common
meteorological variables with a single, globally applicable
parameterization.

In the following sections, we describe Global-
WGEN (GWGEN), a weather generator parameterized
using more than 50 million daily weather observations
from all continents and latitudes. We demonstrate how
updated schemes for simulating precipitation occurrence
and amount, and for bias correcting wind speed, further
improve the quality of the model simulations. We perform
an extensive model evaluation and parameter uncertainty
analysis in order to settle on a parameter set that provides the
most accurate, globally applicable results. We comment on
the limitations of the model and priorities for future research.
GWGEN is an open-source, stand-alone model that may
be incorporated into any number of models designed to
work at global scale, including, e.g., vegetation, hydrology,
climatology, and animal distribution models.

Geosci. Model Dev., 10, 3771–3791, 2017 www.geosci-model-dev.net/10/3771/2017/



P. S. Sommer and J. O. Kaplan: The global weather generator GWGEN (v1.0) 3773

Smoothing

Weather generator day 1

Weather generator day 2

…

Weather generator day n

Precipitation criteria fully 
fulfilled?

No:
repeat month

Main program

Weather generator subroutine

Markov 
chain

Estimate 
gamma

Wet

Estimate GP

Daily 
precip.

Daily 
Wind 

speed

Daily 
cloud 

fraction

Daily 
max. 

temp.

Daily 
min. 

temp.

Calculate mean 
on wet/dry days

SD

Residuals

Cross correlation

Daily time series of precipitation, min. temp., max. 
temp., cloud fraction, and wind speed

Yes

N
   

o.
 

of
 wet  days

Mean cloud 
fraction

Mean wind 
speed

Mean max. 
temp.

Mean min. 
temp.

Total 
precipitation

N  o. of
 wet days

Total 
precipitation

Smoothed 
cloud 

fraction

Smoothed 
wind 

speed

Smoothed 
min. 

temp.

Smoothed 
max. 
temp

> µ 

< = µ 

Figure 1. Schematic workflow of GWGEN. After smoothing the monthly input, the Markov chain is used to decide whether it is a dry or a
wet day. If it is a wet day, we draw a random number from the gamma–GP (generalized Pareto) distribution. Furthermore, the other means
of the variables (Tmin/max,c,w) are adjusted and their daily values are calculated using the estimated standard deviations and residuals. The
wind speed furthermore undergoes a square root transformation before applying the cross correlation and in the end is corrected using the
bias correction. A quality check in the end restricts our model to be within a 5 % range of the observed total precipitation and to replicate the
number of wet days from the input.

2 Model description

GWGEN requires the following six monthly summary val-
ues as input: (1) total monthly precipitation, (2) the number
of days in the month with measurable precipitation (i.e., wet
days), (3, 4) monthly mean daily minimum and maximum
temperature, (5) mean cloud fraction, and (6) wind speed.
The model outputs are the same variables at daily resolution.
This section summarizes the basic workflow in the model
which is also shown schematically in Fig. 1 and Algorithm 1.

The first approximation of the daily variables comes from
smoothing the monthly time series using a mean-preserving
algorithm (Rymes and Myers, 2001).

For precipitation, we then first use the Markov chain ap-
proach (Sect. 3.2.1) to decide the wet/dry state of the day.
If it is a wet day, we calculate the gamma parameters using
Eqs. (7) and (8). The resulting distribution allows us to draw
a random number – the precipitation amount of the currently
simulated day. If we are above the threshold µ, we draw a
second random number from the generalized Pareto (GP) dis-
tribution parameterized via Eq. (9) and the chosen GP shape.

The next step modifies the means of temperature, wind
speed, and cloud fraction depending on the wet/dry state of
the day (lines 11 and 15 in Algorithm 1). After that, we
use the cross-correlation approach described in Richardson
(1981) (lines 18–20 and Sect. 3.2.6) and calculate the daily
values of these variables. Finally, we use the quantile-based
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bias correction described in Sect. 3.4 to correct the simulated
wind speed.
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rection described in Sect. 3.4 to correct the simulated wind
speed.

We restrict the weather generator to reproduce the exact
number of wet days (±1) as the input and to be within a 5 %
range of the total monthly precipitation (with a maximum5

allowed deviation of 0.5 mm). If the program cannot produce
these results, the procedure described above is repeated (see
line ??).

3 Model development

GWGEN is based on the WGEN weather generator (Richard-10

son, 1981), using the method of defining the model parame-
ters based on monthly summaries described by Geng et al.
(1986) and Geng and Auburn (1987). GWGEN diverges
from the original WGEN by using a hybrid-order Markov
chain to simulate precipitation occurrence (Wilks, 1999a),15

and a hybrid Gamma-GP distribution (Furrer and Katz, 2008;
Neykov et al., 2014) to estimate precipitation amount. Tem-
perature, cloud cover, and wind speed are calculated follow-
ing Richardson (1981), using cross correlation and depend-
ing on the wet/dry-state of the day. We further add a quantile-20

based bias correction for wind speed and minimum tempera-
ture, which improves the simulation results significantly.

In the following subsections, we first describe the global
weather station database used to develop and evaluate the
model, then describe the underlying relationships that we use25

to define GWGEN’s parameters.

3.1 Development of a global weather station database

To parameterize GWGEN, we assembled a global dataset
of daily meteorological observations. Precipitation and min-
imum and maximum daily temperature come from the30

daily Global Historical Climatology Network (GHCN-Daily)
database (Menne et al., 2012a, b). The GHCN-Daily consists
of observations collected at ca. 100 000 weather stations on
all continents and many oceanic islands. As the GHCN-Daily
stations are highly concentrated in some parts of the world,35

particularly in the conterminous United States, we selected
stations for our study using a geographic anti-aliasing filter
to avoid an especially strong geographic bias in the gener-
ation of the model parameters. Dividing the world up into
a 0.5◦ grid, we selected the single station with the longest40

record in each cell, if one was present. While the GHCN-
Daily units for precipitation have a nominal precision of
0.1 mm, several of the stations in the US reported precip-
itation in fractions of an inch, which were later converted
to mm. To ensure uniform precision across all of our calibra-45

tion stations – this was particularly important when generat-
ing the probability density functions for precipitation amount
– we selected only those GHCN-Daily stations where all pre-
cipitation amounts between 0.1 and 1.0 mm day−1 were re-
ported in the record. This resulted in 9508 stations covering50

Algorithm 1 Basic workflow of GWGEN.

Output:
Require: monthly precipitation Pin [mm], cloud cover fraction cin,

minimum (Tmin, in [◦C]) and maximum (Tmax, in [◦C]) temper-
ature, wind speed win [m s−1], number of wet days nin

Ensure: daily Pi [mm day−1], ci , Ti [◦C], wi [m s−1] and the
wet/dry state si ∈ {0, 1}

1: for month m in input do
2: smooth the monthly data using Rymes and Myers (2001)
3: Set j = 0, χ = 0

4: while j ≡ 0 or

∣∣∣∣∣ ∑
di∈m

Pi − Pin

∣∣∣∣∣ > min (5 % · Pin, 0.5 mm) or

|nsim − nin| > 1 do
5: for day di in m do
6: Calculate p11, p101, p001 after Eqs. (1)–(3) using n

{Precipitation occurence after Wilks (1999a)}
7: Use the Markov chain to determine whether di is wet

(si = 1) or dry (si = 0)
8: if si = 1 then
9: Calculate θ , α and σ via Eqs. (7)–(9) {Precipitation

amount after Neykov et al. (2014)}
10: Draw a random number Pi from the Gamma-GP

distribution, Eq. (6)
11: Set Tmin, i = Tmin,wet, Tmax, i = Tmax,wet,

ci = cwet, wi = wwet from Eqs. (10) and (12)
and Tables 1–

12: Set σTmin, i = σTmin,wet, σTmax, i = σTmax,wet,
σw,i = σw,wet, σc, i = σc,wet from Eqs. (11), (13)
and (14) and Tables 1–3

13: else
14: Set Pi = 0 mm day−1

15: Set Tmin, i = Tmin,dry, Tmax, i = Tmax,dry,
ci = cdry, wi = wdry from Eqs. (10) and (12)
and Tables 1 and 3

16: Set σTmin, i = σTmin,dry, σTmax, i = σTmax,dry,
σw,i = σw,dry, σc, i = σc,dry from Eqs. (11), (13)
and (14) and Tables 1–3

17: end if
18: Draw 4 normally distributed random numbers ε ∈ R4

{Cross correlation after Richardson (1981)}
19: Set the residuals χi = (

χTmin χTmax χc χw

) =
Aχi−1 + Bε ∈ R4 with A and B from Eq. (17)

20: Calculate daily variables via
Tmin, i = χTmin · σTmin, i + Tmin, i ci = χc · σc, i + ci

Tmax, i = χTmax · σTmax, i + Tmax, i wi = (
χw · √σw,i + √

wi

)2

21: Apply bias correction w (Eq. 23)
22: j = j + 1
23: end for
24: end while
25: end for
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We restrict the weather generator to reproduce the exact
number of wet days (±1) as the input and to be within a 5 %
range of the total monthly precipitation (with a maximum
allowed deviation of 0.5 mm). If the program cannot produce
these results, the procedure described above is repeated (see
line 4).

3 Model development

GWGEN is based on the WGEN weather generator (Richard-
son, 1981), using the method of defining the model parame-

ters based on monthly summaries described by Geng et al.
(1986) and Geng and Auburn (1987). GWGEN diverges
from the original WGEN by using a hybrid-order Markov
chain to simulate precipitation occurrence (Wilks, 1999a)
and a hybrid gamma–GP distribution (Furrer and Katz, 2008;
Neykov et al., 2014) to estimate precipitation amount. Tem-
perature, cloud cover, and wind speed are calculated follow-
ing Richardson (1981), using cross correlation and depend-
ing on the wet/dry state of the day. We further add a quantile-
based bias correction for wind speed and minimum tempera-
ture, which improves the simulation results significantly.

In the following subsections, we first describe the global
weather station database used to develop and evaluate the
model, then describe the underlying relationships that we use
to define GWGEN’s parameters.

3.1 Development of a global weather station database

To parameterize GWGEN, we assembled a global dataset
of daily meteorological observations. Precipitation and min-
imum and maximum daily temperature come from the
daily Global Historical Climatology Network (GHCN-Daily)
database (Menne et al., 2012a, b). The GHCN-Daily consists
of observations collected at approximately 100 000 weather
stations on all continents and many oceanic islands. As the
GHCN-Daily stations are highly concentrated in some parts
of the world, particularly in the conterminous United States,
we selected stations for our study using a geographic anti-
aliasing filter to avoid an especially strong geographic bias in
the generation of the model parameters. Dividing the world
up into a 0.5◦ grid, we selected the single station with the
longest record in each cell, if one was present. While the
GHCN-Daily units for precipitation have a nominal precision
of 0.1 mm, several of the stations in the US reported precip-
itation in fractions of an inch, which were later converted
to mm. To ensure uniform precision across all of our calibra-
tion stations (this was particularly important when generating
the probability density functions for precipitation amount),
we selected only those GHCN-Daily stations where all pre-
cipitation amounts between 0.1 and 1.0 mm day−1 were re-
ported in the record. This resulted in 9508 stations cover-
ing all continents, although the distribution was strongly het-
erogenous, with the majority of the stations in North Amer-
ica, despite our geographic filter (Fig. 2, top panel). For cloud
cover, wind speed, and calculation of cross correlations be-
tween temperature, cloud cover, and wind speed, we used the
Extended Edited Cloud Report Archive (EECRA) database
(Hahn and Warren, 1999). The geographic distribution of
the 6978 EECRA stations we selected is different than the
GHCN-Daily, with more stations in Europe (Fig. 2, mid-
dle panel), but overall a relatively similar number of stations
were used from both datasets. For the observations from both
GHCN-Daily and EECRA, we made one additional filter-
ing step, selecting only complete months, i.e., months with
no days having missing observations, for further processing.
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Figure 2. Weather stations used for parameterization and evaluation of the weather generator. The uppermost panel shows the locations of
the stations used for parameterizing precipitation and temperature; the middle panel shows the stations for cloud fraction and wind speed, as
well as for calculating the cross correlations between temperature, cloud fraction, and wind speed. The lower plot shows the location of the
stations used to evaluate the model, which were excluded from the parameterization stations.

In total, our database of daily meteorological observations
used in the model parameterization contains approximately
69 million individual records.

Finally, we reserved some weather station records for
model evaluation that were not used for model parameteriza-
tion. These were individual stations or two stations separated
by a maximum distance of 1 km, where all of the daily meteo-
rological variables that GWGEN simulates (P , Tmin, Tmax, c,
w) were recorded on the same dates in the EECRA database.

This merged selection from EECRA and GHCN resulted in
a set of 921 stations representing approximately 15 million
daily records, with observations on all continents, although
the geographic distribution is once again highly heteroge-
nous, with a particularly high density of stations in Japan and
Germany (Fig. 2, bottom panel).

www.geosci-model-dev.net/10/3771/2017/ Geosci. Model Dev., 10, 3771–3791, 2017



3776 P. S. Sommer and J. O. Kaplan: The global weather generator GWGEN (v1.0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. w
et

 th
en

 w
et

p11 = 0.2549 + 0.7451 * wet, R2  = 0.986

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. w
et

 th
en

 d
ry

 th
en

 w
et p101 = 0.8463 * R 2 = 0.968

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of wet days

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. d
ry

 th
en

 d
ry

 th
en

 w
et p001 = 0.7240 * R 2 = 0.966

wet, 

wet, 

f

f

f

Figure 3. Transition probabilities vs. wet fraction. The red density plot in the background shows the density of the observations, and the blue
lines indicate the linear regression line of the probability against the wet fraction. The fit for the p11 transition probability was forced to the
point (1, 1); the others were forced to (0, 0). The underlying data for the fits correspond to the means of the multi-year series for each month
for each station.

3.2 Parameterization

3.2.1 Precipitation occurrence

Following Geng et al. (1986), we expect to find a good re-
lationship between the fraction of days in a month with
measurable precipitation and the probability that any given
day will be wet. Following Wilks (1999a), we use a hybrid-
order model that retains first-order Markov dependence for
wet spells but allows second-order dependence for dry se-
quences; this hybrid-order scheme has been shown to be a
good compromise between performance and simplicity. To
parameterize the precipitation occurrence part of the model,
we thus calculated transition probabilities for a wet day being
followed by a wet day (p11), for a wet day being followed by
a dry day being followed by a wet day (p101), and for two
dry days being followed by a wet day (p001). We perform
this analysis on a station- and month-wise basis: we first ex-

tract each of the (complete) Januaries, Februaries, etc. for a
given station and then merge all of the Januaries (Februaries,
Marches, etc.) for this station into a single series represent-
ing each month. Merging months over several years is partic-
ularly important for stations that have relatively little precip-
itation in a given month; for example, it could take several
years of observations to observe a single p101 event. The fi-
nal transition probabilities were then regressed against the
fraction of days in the month with precipitation, which show
the characteristic linear relationship described by Geng et al.
(1986) (Fig. 3).

Because the transition probabilities (p001 and p101) must
be zero by definition when the fraction of wet days (fwet)
is zero, i.e., a completely dry month, we force the linear re-
gression between these quantities to pass through the origin.
Likewise, we require the regression line for p11 to equal 1
when fwet is 1. One has to note, however, that this methodol-

Geosci. Model Dev., 10, 3771–3791, 2017 www.geosci-model-dev.net/10/3771/2017/
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ogy artificially increases the R2 coefficient for the fit because
we fix the intercept (see, for example Gordon, 1981).

The analysis results in the following relationships:

p11 = 0.2549+ 0.7451 · fwet (1)
p101 = 0.8463 · fwet (2)
p001 = 0.7240 · fwet. (3)

In the weather generator (see line 6 in Algorithm 1), we de-
termine if any given day will have precipitation by calcu-
lating the appropriate probability density function selected
from Eqs. (1)–(3) on the basis of the precipitation state of the
previous day (or two). Comparing the calculated probability
from the selected equation with a random number u∈ [0, 1],
a precipitation day is simulated if u is greater than its corre-
sponding probability.

3.2.2 Precipitation amount

Following the original WGEN (Richardson, 1981), GWGEN
disaggregates precipitation amount using a statistical distri-
bution. A number of different probability density functions
have been used to estimate precipitation amount in weather
generators including, e.g., single exponential or mixed ex-
ponential, one- or two-parameter gamma, or Weibull distri-
bution (Wilks and Wilby, 1999). The strong relationship be-
tween the gamma scale parameter and the mean precipita-
tion on wet days noted by Geng et al. (1986) makes gen-
eration of precipitation amounts with only monthly input
data feasible. It is based upon the fact that the expected
value of a gamma random variable equals the product of
its two parameters, i.e., E(0)=αθ . The gamma distribu-
tion, however, shows poor performance in simulating high-
precipitation events consistent with observations. Furrer and
Katz (2008) and Neykov et al. (2014) suggest that a hybrid
probability density function, based on both gamma and the
GP distribution, has superior accuracy in simulating extreme
precipitation events when compared to gamma alone. Be-
cause of its superior accuracy and ease of implementation,
we therefore adopt the hybrid gamma–GP distribution for
simulating precipitation amount in GWGEN.

The probability density function (pdf) of the gamma dis-
tribution is defined as

f (x)=
{
xα−1e

− x
θ

θα0(α)
for x > 0

0 for x = 0
, (4)

where α > 0 is the shape and θ > 0 the scale parameter. The
pdf of the GP distribution is defined via

g(x)=
 1
σ

(
1+ ξ(x−µ)

σ

)− 1
ξ
−1

for ξ 6= 0
1
σ
e−

x−µ
σ for ξ = 0

, (5)

with σ > 0 being the scale parameter and ξ ∈R the shape
parameter. µ is the location parameter.

Following Furrer and Katz (2008), we define the hybrid
gamma–GP pdf as

h(x)=
{
f (x) for x ≤ µ
(1−F(µ))g(x) for x > µ

, (6)

where F(µ) describes the cumulative gamma distribution
function at the threshold µ. In our weather generator, how-
ever, we first draw a random number from the gamma dis-
tribution and, if we are above the threshold, we draw an-
other random number from the GP distribution. Thus, the
frequency of precipitation events larger than µ is determined
by the gamma distribution, but the actual amount of precip-
itation simulated when above the threshold µ is determined
by the GP distribution (Furrer and Katz, 2008).

To determine the parameters of the hybrid distribution for
precipitation, we started with the simple strategy by Geng
et al. (1986). As above, when calculating the Markov chain
parameters, we created multi-year series for each of the pa-
rameterization stations for each month and extracted the days
with precipitation. If a series contained more than 100 en-
tries, we fit a gamma distribution using maximum likelihood
to it in order to estimate the α and θ parameters.

Following Geng et al. (1986), we then fit a regression line
of the gamma scale parameter against the mean precipitation
on wet days pd (see Fig. 4) and found the relationship

θ = 1.262pd. (7)

As proposed by Geng et al. (1986), we use this relationship
in our model to estimate the scale parameter of the distribu-
tion. Using this approach, the gamma shape parameter α is a
constant, given via

α = pd

θ
= 1

1.262
. (8)

The GP scale parameter σ on the other hand is calculated
during the simulation following Neykov et al. (2014) via

σ = 1−F(µ)
f (µ)

. (9)

The other parameters of the GP distribution are obtained
through a sensitivity analysis described in Sect. 3.5.

3.2.3 Temperature

Following the standard WGEN methodology (Richardson,
1981; Geng et al., 1986), daily temperature is determined
through two processes: first, the wet/dry state of the day and
then the cross correlation (Sect. 3.2.6).

In the weather generator, we know from the Markov chain
(Sect. 3.2.1) whether the current simulated day is a wet or
dry day. Based upon the simple linear relationships

xwet = c0, x,wet+ c1, x,wet · x
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Figure 4. Mean precipitation–gamma scale relationship. The blue line represents the best fit line of the mean precipitation on wet days to the
estimated gamma scale parameter of the corresponding distribution. Each data point corresponds to one multi-year series of 1 month for one
station.

Table 1. Fit results of temperature correlation for wet and dry days
for Figs. 5, 6, 10, and 11. The coefficients c0 to c3 correspond to the
coefficients used in Eqs. (10) and (14).

Plot Variable R2 c0 c1 c2 c3

6 Tmax,dry 0.9969 0.0727 1.0211 0 0
6 Tmax,wet 0.9752 −0.5204 0.9459 0 0
5 Tmin,dry 0.9972 −0.5100 1.0188 0 0
5 Tmin,wet 0.9840 1.0411 0.9685 0 0
11 wsd,dry 0.4243 0 1.0860 −0.2407 0.0222
11 wsd,wet 0.5003 0 0.8184 −0.1263 0.0093
10 wdry 0.9930 0 0.9437 0 0
10 wwet 0.9723 0 1.0937 0 0

xdry = c0, x, dry+ c1, x, dry · x, (10)

we adjust the monthly mean x of the variable x ∈ {Tmin,
Tmax}.

To estimate the values of the parameters c0 and c1 in the
above equations, we follow the same procedure as for the pa-
rameters of the Markov chain (Sect. 3.2.1). We extracted the
complete months for Tmin and Tmax from the GHCN-Daily
dataset and created a multi-year series for each month and
station. We then regressed the mean on wet and dry days
separated against the overall mean of each month (Figs. 5
and 6). Through this procedure, we estimate the parameters
necessary for Eq. (10) (see Table 1).

To estimate residual noise, we also need an estimate of the
standard deviation of the variable (see Sect. 3.2.6). Figure 7
shows the correlation between standard deviation on wet and
dry days and the corresponding mean. The means of the stan-
dard deviations (black bars in Fig. 7) indicate a strong but
nonlinear relationship between the standard deviation and the

corresponding mean. The correlation changes particularly at
0 ◦C. We therefore use two different polynomials of order 5
for the values below and above the freezing point. Further-
more, to account for the sparse data below−40 ◦C and above
25 ◦C for minimum temperature (or −30 and 35 ◦C for max-
imum temperature), we use an extrapolation for the extremes
as indicated by the blue and violet lines in Fig. 7. The formu-
lae for the standard deviations σ of minimum and maximum
temperature are therefore a combination of four polynomials:

σTmin,wet/dry =


p1
(
T min,wet/dry

)
, for T min,wet/dry ≤−40 ◦C

p5
(
T min,wet/dry

)
, for − 40 ◦C< T min,wet/dry ≤ 0 ◦C

p5
(
T min,wet/dry

)
, for 0 ◦C< T min,wet/dry ≤ 25 ◦C

p1
(
T min,wet/dry

)
, for 25 ◦C < T min,wet/dry

σTmax,wet/dry =


p1
(
T max,wet/dry

)
, for T max,wet/dry ≤−30 ◦C

p5
(
T max,wet/dry

)
, for − 30 ◦C< T max,wet/dry ≤ 0 ◦C

p5
(
T max,wet/dry

)
, for 0 ◦C< T max,wet/dry ≤ 35 ◦C

p1
(
T max,wet/dry

)
, for 35 ◦C< T max,wet/dry

. (11)

p1 in Eq. (11) denotes a polynomial of order 1; p5 a polyno-
mial of order 5. The coefficients of the different polynomials
are shown in Table 2.

These coefficients are based on the means of the standard
deviation (black bars in Fig. 7). We chose this procedure to
give the same weight to all temperatures. Otherwise, the fit
would be dominated by the temperature values around the
freezing points.

3.2.4 Cloud fraction

Monthly mean cloud fraction is disaggregated, as for tem-
perature, using the standard WGEN procedure of adding sta-
tistical noise to a wet- or dry-day mean and accounting for
cross correlation among the different weather variables. For
the parameterization of the cloud fraction equations, we used
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Table 2. Fit results of the correlation of temperature standard deviation with the corresponding mean on wet/dry days for Fig. 7. The
underlying equations are shown in Eq. (11).

Variable Interval R2 c0 c1 c2 c3 c4 c5

Tmax, sd,dry (−∞, −30] 0.0125 7.3746 0.0154 0 0 0 0
(−30, 0.0] 0.6721 4.6170 −0.3387 −0.0188 −0.0003 0.000003 0.0000001
(0.0, 35] 0.9744 4.7455 −0.0761 0.0189 −0.0013 0.00003 −0.0000002
(35,∞) 0.0390 3.2554 −0.0218 0 0 0 0

Tmax, sd,wet (−∞, −30] 0.0366 6.6720 0.0364 0 0 0 0
(−30, 0.0] 0.7362 3.8601 −0.2186 0.0039 0.0015 0.00006 0.0000007
(0.0, 35] 0.9508 3.7919 −0.0313 0.0161 −0.0012 0.00003 −0.0000002
(35,∞) 0.2530 5.5529 −0.0973 0 0 0 0

Tmin, sd,dry (−∞, −40] 0.6006 10.8990 0.1271 0 0 0 0
(−40, 0.0] 0.9509 3.5676 −0.1154 0.0282 0.0020 0.00004 0.0000003
(0.0, 25] 0.9825 3.7941 0.0330 −0.0150 0.0019 −0.0001 0.000002
(25,∞) 0.7784 −4.6194 0.2261 0 0 0 0

Tmin, sd,wet (−∞, −40] 0.1661 9.7272 0.1011 0 0 0 0
(−40, 0.0] 0.9285 3.0550 −0.2116 0.0137 0.0014 0.00004 0.0000003
(0.0, 25] 0.9633 3.2187 −0.0451 0.0209 −0.0026 0.00010 −0.000001
(25,∞) 0.0089 0.5571 0.0244 0 0 0 0
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Figure 5. Correlation of minimum temperature on wet and dry days to the monthly mean. The y axes show the mean minimum temperature
on wet or dry days, respectively; the blue line corresponds to the best fit line. Parameters of the fits are also shown in Table 1.

the EECRA dataset. The original dataset contains eight mea-
surements per day of the total cloud cover in units of octas,
i.e., values ranging from 0 (clear sky) to 8 (overcast). Hence,
to calculate the daily cloud fraction, those values were aver-
aged and divided by 8 to produce a daily mean.

To adjust the monthly mean depending on the wet/dry state
of the day, we could not use a simple linear relationship as
we used for temperature because cloud fraction is bounded
by a lower limit of 0 and an upper limit of 1. Furthermore,
we observed that cloud cover on wet days is usually greater
than or equal to the monthly mean cloud cover, whereas the
cloud cover on dry days is usually less than or equal to the
monthly mean cloud cover. This results in a concave curve
for the wet case and a convex curve for dry days. We used a
qualitative graphical analysis to develop “best guess” equa-

tions that had the desired shape and propose the following
formulae for the regression linking cloud cover on wet or dry
days to the overall mean:

cwet = −ac,wet− 1
a2

c,wet · c− a2
c,wet− ac,wet

− 1
ac,wet

cdry = −ac, dry− 1

a2
c, dry · c− a2

c, dry− ac, dry
− 1
ac, dry

, (12)

with ac,wet< 0 and ac, dry> 0.
The standard deviation of cloud cover fraction becomes 0

when the mean monthly cloud fraction reaches both the min-
imum or maximum limits of 0 and 1. Hence, for csd, dry
and csd,wet we have an concave parabola with the formula

σc,wet = a2
c,wet · cwet · (1− cwet)
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Figure 6. Correlation of maximum temperature on wet and dry days to the monthly mean. The y axes show the mean maximum temperature
on wet or dry days, respectively; the blue line corresponds to the best fit line. Parameters of the fits are also shown in Table 1.
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Figure 7. Correlation of standard deviation of the minimum and maximum temperature on wet and dry days to the monthly mean. The y axes
show the standard deviation; the x axes the mean on wet or dry days, respectively. The bars have a width of 0.1 ◦C (the data accuracy) and
indicate the mean standard deviation for a given mean minimum temperature in 1 month. The lines are fitted to these bars where the green
and red polynomials of order 5 use all the data below or above 0 ◦C, respectively, and the blue and violet lines indicate a linear extrapolation
of the data below −40 ◦C (or −30 ◦C for Tmax) or above 25 ◦C (or 35 ◦C), respectively. The red density plot in the background indicates the
spread of the data. The bars and the density plot are based on the single month for each station (i.e., not the multi-year monthly series as for,
e.g., mean temperature; Figs. 5 and 6). Parameters of the fits are also shown in Table 1.

σc, dry = a2
c, dry · cdry ·

(
1− cdry

)
, (13)

with ac,wet, ac, dry≥ 0. Results of the fits can be seen in
Figs. 8 and 9 and the parameters in Table 3.

3.2.5 Wind speed

The parameterization of the mean wind speed is based upon
the same linear Eq. (10) as temperature. For the standard
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Figure 8. Correlation of cloud fraction on wet and dry days to the monthly mean. The y axes show the mean cloud fraction on wet or dry
days, respectively; the blue line corresponds to the best fit line. Parameters of the fits are also shown in Table 3.

0.0 0.2 0.4 0.6 0.8 1.0
On wet days

0.0

0.2

0.4

0.6

0.8

1.0

SD
 o

f c
lo

ud
 fr

ac
tio

n
on

 w
et

 d
ay

s

Mean cloud fraction

0.0 0.2 0.4 0.6 0.8 1.0
On dry days

0.0

0.2

0.4

0.6

0.8

1.0

O
n 

dr
y 

da
ys

Figure 9. Correlation of standard deviation of the cloud fraction on wet and dry days to the corresponding monthly mean. The y axes show
the standard deviation; the x axes the mean on wet or dry days, respectively. The blue line corresponds to the best fit line. Parameters of the
fits are also shown in Table 3.

Table 3. Fit results of cloud correlation for wet and dry days for
Fig. 8. SE indicates standard error.

Plot Variable a SE of a R2

8 cdry 0.4302 0.0013 0.8745
8 cwet -0.7376 0.0006 0.3881
9 csd,dry 1.0448 0.0004 0.2803
9 csd,wet 0.9881 0.0006 0.0802

deviation, however, we use a third-order polynomial that is
forced through the origin, given via

σw,wet (wwet)= c1, w,wetwwet+ c2, w,wetw
2
wet+ c3, w,wetw

3
wet

σw, dry
(
wdry

)= c1, w, drywdry+ c2, w, dryw
2
dry+ c3, w, dryw

3
dry. (14)

This better resolves the complex behavior close to 0 m s−1

compared to a linear fit. The plots are shown in Figs. 10
and 11 and the parameters for the fits are shown in Table 1.

3.2.6 Cross correlation

Following Richardson (1981) we use cross correlation to
add additional residual noise to the simulated meteorological
variables, which provides more realism in the daily weather
result. This methodology, based on Matalas (1967), preserves
the serial and the cross correlation between the simulated
variables. It implies that the serial correlation of each vari-
able may be described by a first-order linear autoregressive
model.

Given the cross-correlation matrix M0 ∈R4×R4 and the
lag-1 correlation matrix M1 ∈R 4×R4, we calculate

A=M1M−1
0 BBT =M0−M1M−1

0 MT
1 . (15)

The matrices A, B, M0, and M1 are calculated using the sta-
tions from the EECRA database in Fig. 2. The results are

M0 =


1. 0.565 0.041 0.035

0.565 1. −0.089 −0.043
0.041 −0.089 1. 0.114
0.035 −0.043 0.114 1.
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Figure 10. Correlation of wind speed on wet and dry days to the monthly mean. The y axes show the mean cloud fraction on wet or dry
days, respectively; the blue line corresponds to the best fit line. Parameters of the fits are also shown in Table 1.
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M1 =


0.933 0.55 0.016 0.03
0.557 0.417 −0.066 −0.043
0.004 −0.095 0.599 0.093
0.011 −0.063 0.061 0.672

 , (16)

leading to

A=


0.916 0.031 −0.018 0.001
0.485 0.135 −0.069 −0.047
0.004 −0.043 0.592 0.023
0.012 −0.043 −0.02 0.672



B=


0.358 0. 0. 0.
0.112 0.809 0. 0.
0.142 −0.06 0.785 0.
0.077 −0.016 0.061 0.733

 . (17)

The columns and rows in the two matrices correspond to
minimum and maximum temperature, cloud fraction, and
square root of wind speed, respectively.

In the weather generator, the variables Tmin, Tmax, c, andw
are then calculated using a combination of residual noise χi
(where i denotes the current simulated day) and the mean of

the variables. χi is determined by the other variables and the
previous day using A and B from above (Richardson, 1981;
Matalas, 1967). Hence, χi is given via

χi =
(
χTminχTmaxχcχw

)= Aχi−1+Bε ∈ R4. (18)

The daily values for the variables are then calculated via

Tmin, i = χTmin · σTmin,wet/dry+ T min,wet/dry

ci = χc · σc,wet/dry+ cwet/dry (19)

Tmax, i = χTmax · σTmax,wet/dry+ T max,wet/dry

wi =
(
χw ·√σw,wet/dry+

√
wwet/dry

)2
, (20)

with σTmin,wet/dry, σTmax,wet/dry from Eq. (11), σc,wet/dry from
Eq. (13), σw,wet/dry from Eq. (14), T min,wet/dry, T max,wet/dry,
wwet/dry from Eq. (10), and cwet/dry from Eq. (12).

Since this procedure always requires the residuals from
the previous day, χi−1, we initialize χ0 with 0, simulate the
month, and then simulate it again.

Note that, through the entire procedure, wind speed is sub-
ject to a square-root transformation (also when calculating
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Figure 12. Q–Q plots for all variables with all quantiles (1, 5, 10, 25, 50, 75, 90, 95, and 99) for µ= 5.0 mm and ξ = 1.5. The blue lines
indicate linear regression from simulation to observation. The red line shows the ideal fit (the identity line). Blue shaded areas represent the
95 % confidence interval. The plots compare the simulated quantile from the list above one year of one station to the corresponding observed
quantile of the same year and station. The plot for wind speed used the bias correction from Sect. 3.4.

M0 and M1) to account for the fact that it is not normally
distributed.

3.3 Model evaluation

To evaluate GWGEN, we started with the daily meteorol-
ogy at the evaluation stations described above and calculated
monthly summaries. We used these monthly data to drive the
model and simulate daily meteorology. The resulting daily
series now has the same length as the observed meteorology
from the GHCN and EECRA databases. Because we cannot
expect the weather generator to reproduce the weather ex-
actly as observed (for example, the number of rainy days in
a month may be the same as observed but they may not oc-
cur in precisely the same order), our evaluation is restricted
to comparing the statistical properties of the input observed
versus the output simulated daily meteorology.

Figure 12 shows the comparison of simulated versus ob-
served values for each of the five meteorological variables
handled by GWGEN. For temperature, wind, and cloud frac-
tion, the model does an excellent job of downscaling monthly
input to daily resolution.1 The comparison between pre-
cipitation amounts looks good when considering all of the

1Note that the plot for wind speed has been bias corrected using
the approach in Sect. 3.4.

data; however, a closer look into the results (Fig. 13) shows
that while the higher-precipitation percentiles are well cap-
tured using the hybrid gamma–GP distribution, the lower
percentiles show somewhat worse results. This observation
of poor performance for very low values also holds true
for wind speed (not shown here). The lower values of the
two variables, however, are very close to the precision of
the observation (0.1 mm for precipitation and 0.1 m s−1 for
wind speed). Very small precipitation amounts and low wind
speeds are also less biophysically and ecologically important
compared to the higher percentiles. We therefore consider the
results of the evaluation largely acceptable.

In Table 4, we also compare the simulated versus the ob-
served frequencies for very light rain (≤ 1 mm), light rain
(1–10 mm), heavy rain (10–20 mm), and very heavy rain
(> 20 mm). As we can see, our model underestimates the oc-
currence of very light rain events (28.6 % instead of 36.4 %)
and overestimates the light rain events (58.3 % instead of
48.6 %) but generally performs much better than GCMs (Dai,
2006; Sun et al., 2006), especially when it comes to the heavy
rain events.

3.4 Bias correction

After evaluating the results of GWGEN for wind speed for
the different quantiles (see Sect. 3.3), we found a strong, sys-
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Figure 13. Q–Q plot for different quantiles for precipitation for µ= 5.0 mm and ξ = 1.5. The blue lines indicate linear regression from
simulation to observation. The red line shows the ideal fit (the identity line). Blue shaded areas represent the 95 % confidence interval. The
plots compare the simulated quantile of one year of one station to the corresponding observed quantile of the same year and station.

Table 4. Simulated and observed precipitation frequencies for cer-
tain ranges. The frequency is defined as the number of precipitation
occurrences in the specified range divided by the total number of
precipitation occurrences.

Precip. range (mm) Simulated Observed

(0, 1] 0.285688 0.364014
(1, 10] 0.583330 0.486415
(10, 20] 0.074063 0.090178
(20,∞] 0.056920 0.059392

tematic bias between the simulated and the observed values.
This observation led us to adopt a further measure to improve
the quality of the model output by implementing a quantile-
based bias correction.

We use an empirical distribution correction approach
(quantile mapping) (Lafon et al., 2012) to a posteriori cor-
rect the simulated data. In the quantile evaluation (Sect. 3.3),
we saw that the simulated wind speed is a linear function of
the observed wind speed, i.e., wsim= intercept+ slope ·wobs
(best fit line in Fig. 12). Therefore, we use two steps here:
one is for the difference between simulation and observa-
tion (ideally 0); the other one is the fraction of observation
and simulation (ideally 1). The first one corresponds to the
intercept with the y axis in Fig. 12, the second one to the
slope of the best fit line. The analysis is based on every sec-
ond percentile between 1 and 100 (i.e., 1, 3, 5, and so on)
and mapped to its corresponding random number u∈R from
a normal distribution as it is used for the cross correlation

in the weather generator (Sect. 3.2.6; x axis in Fig. 14 and
Richardson, 1981).

Regarding the intercept (Fig. 14, left panel), we see that it
strongly follows an exponential function given through

fexp(u)= eau+b, a,b,u ∈ R. (21)

The slope (Fig. 14, right panel), on the other hand, can be
described by a simple third-order polynomial given by

p3(u)= c0+ c1u+ c2u
2+ c3u

3, c0,c1,c2,c3,u ∈ R. (22)

Hence, given the best fit lines in Fig. 14, the simulated wind
speed is corrected via

w′sim =
wsim− fexp(u)

p3(u)
, (23)

with a= 1.1582, b=−1.3359, c0= 0.9954, c1= 0.8508,
c2= 0.0278, and c3=−0.0671.

3.5 Sensitivity analysis

The generalized pareto part of the hybrid gamma–GP distri-
bution, which we used to simulate precipitation amount, has
two parameters: the GP shape and the threshold parameter.
Unlike the gamma parameters, we were unable to relate these
GP parameters to any of the monthly summary data we use as
input to GWGEN. Hence, we decided to set fixed values for
these parameters, and determine them through a sensitivity
analysis.

To select the “best” values of the GP parameters, we com-
pared simulated with observed precipitation amounts, run-
ning GWGEN with a wide range of realistic parameter val-
ues. To quantitatively assess the model performance, we used
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Figure 14. Basis for the wind bias correction. For the left plot, each data point corresponds to the difference of a simulated percentile to the
observed percentile. For the right plot (wind speed), each data point corresponds to the fraction of simulated to the observed wind speed for
a given percentile. The random number on the x axis represents the residual value from a normal distribution centered at 0 with standard
deviation of unity, as it is used in the cross-correlation approach (Richardson, 1981).

two metrics: (1) direct comparison of the quantiles (see pre-
vious section) and (2) a Kolmogorov–Smirnov (KS) test that
evaluates whether two data samples come from significantly
different distributions. Our criteria were

1. the R2 correlation coefficient between simulated and
observed quantiles;

2. the fraction simulated precipitation
observed precipitation from the slopes in Fig. 13

and its deviation from unity;

3. the fraction of simulated (station-specific) years that are
significantly different (KS test) from the observation;
and

4. the mean of the above values.

We tried two different approaches to select the gamma–GP
crossover threshold: first, we tried a fixed crossover point;
second, we used a quantile-based crossover point. For the
latter, the model chooses to use the GP distribution if the
quantile of the random number drawn from the gamma dis-
tribution is above a certain quantile threshold. This intro-
duces a flexible crossover point in our hybrid distribution
which, however, did not improve the results significantly. We
therefore show here only the results using the fixed crossover
point.

The values of the crossover point for our sensitivity analy-
sis were 2, 2.5, 3, 4, and from 5 to 20 in steps of 2.5, and 20
to 100 in steps of 5. Furthermore, we varied the GP shape
parameter from 0.1 to 3 in steps of 0.1 (810 experiments in
total). The results of this sensitivity analysis are shown in the
Supplement (Fig. A1).

In general, we found that the three criteria (1–3) could not
be optimized all together at the same time. The R2 is best for

high thresholds and low GP shape parameters, the slope is
best for low to intermediate thresholds and a low GP shape,
and the KS statistic is best for low threshold and intermediate
GP shape parameters.

However, R2 did not vary that much (from 0.68 to 0.74),
and from a visual evaluation of the corresponding quantile
plots we saw that the higher quantiles (> 90) were much bet-
ter represented for a better KS result. Hence, we chose to
follow the KS test criteria, which is also the strictest of our
evaluation methods but again compared the different quantile
plots to get good results for the higher quantiles. Finally, we
chose a threshold of 5 mm and a GP shape parameter of 1.5.
For this setting, 81.7 % of the simulated years do not show a
significant difference compared to the observation, the mean
R2 of the plots in Fig. 13 is 0.81, and the mean deviation of
the slope from unity is 0.10 and for the upper quantiles (90
to 100) it is 0.017.

Nevertheless, in total, the results seem to be fairly inde-
pendent of the two parameters since even the amount of
years without significant differences varies from 73 % to only
83 %. It is, however, better than the gamma distribution alone
which still has 78.6 % of station years not differing signif-
icantly but with a slope deviation from unity for the upper
quantiles of 0.16. Thus, using the hybrid gamma–GP dis-
tribution improves the simulation of high-amount precipita-
tion events by roughly a factor of 10 compared to a standard
gamma approach.

4 Limitations

As demonstrated above, GWGEN successfully downscales
monthly to daily meteorology with good correlation and
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low bias when compared to observations. However, there
are a few limitations of the model as currently described
that should be noted. Importantly, this version of GWGEN
neither downscales all conceivable meteorological variables,
nor does it provide a mechanism for generating daily me-
teorological time series across multiple points that are spa-
tially autocorrelated. Concerning the former point, while
GWGEN simulates daily precipitation, temperature, cloud
cover, and wind speed, it does not currently handle other
variables that might be important in land surface model-
ing, such as humidity or wind direction. On the latter point,
the lack of explicit simulation of spatial autocorrelation may
make GWGEN unsuitable for certain applications, e.g., re-
gional high-resolution hydrological modeling in small catch-
ments (<∼ 2500 km2), where having the capability to sim-
ulate flood and other extremes is important. This is because
the weather generator could, e.g., simulate rainfall on differ-
ent days in different parts of the catchment, where in real-
ity storm events would be highly autocorrelated in space and
controlled by mesoscale meteorological conditions.

5 Discussion and outlook

GWGEN successfully downscales monthly to daily meteo-
rology for any point on the globe, in any climate, in any sea-
son, and in any time in recent Earth history and in the near
future (e.g., next century). It extends the original Richardson-
type weather generators to simulate wind speed along with
precipitation, temperature, and cloud cover. The model re-
quires only monthly values of the meteorological variables
to be downscaled and does not rely on any other spatial in-
formation, e.g., whether or not the location is in the tropics.

In general, the results of our downscaled meteorology are
excellent, with all simulated variables showing both very
high correlation and limited bias when compared to obser-
vations. We improved the simulation of daily precipitation
amount by replacing the gamma distribution used in the
original Richardson-type weather generators with a hybrid
gamma–GP distribution, which results in the improved sim-
ulation of heavy precipitation events. The GP distribution is
based upon a globally fixed shape and location parameter,
which may be an oversimplification, but is still 10 times more
accurate than traditional methods that used gamma alone.
Our extensive sensitivity analysis to determine the best co-
efficients for the shape and location parameters of the GP
distribution suggest that further improvements might come
through correlating the GP parameters to geographic region
and/or seasonality (Maraun et al., 2009; Rust et al., 2009)
or by introducing a dynamical location parameter (Frigessi
et al., 2002). Finally, we introduced a step to correct for
systematic bias in the downscaling of temperature and wind
speed.

Despite the limitations noted above, GWGEN will be use-
ful in a wide range of applications, from global vegeta-

tion and crop modeling to large-scale hydrologic analyses,
to understanding animal behavior, to forecasting of fire, in-
sect outbreaks, and other ecosystem disturbances. GWGEN
may even be envisaged as a potential replacement for very
large and cumbersome gridded datasets of high-temporal-
resolution meteorology such as CRUNCEP (Viovy and Ciais,
2016), especially for models that use meteorological forc-
ing at a daily time step. The weather generator is particularly
suited for the incorporation into models that run on a spatial
grid; for example, GWGEN can readily be incorporated into
existing DGVMs such as LPJ-LMfire (Pfeiffer et al., 2013) or
LPJ-ML (Bondeau et al., 2007) that already rely on a weather
generator to provide daily meteorology for certain processes.

While GWGEN does not handle spatial autocorrelation,
in most DGVMs there is no lateral connection between grid
cells, and therefore an explicit representation of spatial au-
tocorrelation in the driving daily meteorological data would
have no effect on the model output. We further note that if the
monthly data used to drive the model are spatially autocorre-
lated (this would be the case when using gridded climatology,
for example) then the result of the weather generator will also
preserve this autocorrelation, at least when the model results
are analyzed on monthly or longer timescales.

The limitations present in this version of GWGEN could
be addressed in future versions. Methods for simultaneous
multi-site weather generation exist (Wilks, 1998, 1999b, c)
and could be adapted to GWGEN. However, even simpler
methods to approximate spatial autocorrelation could be pos-
sible. Running GWGEN with gridded monthly meteorology
(this is the primary application we foresee for the current
version of the model) means that the input variables are al-
ready highly correlated in space, i.e., the monthly climate in
one grid cell generally closely resembles neighboring cells
outside of complex terrain containing sharp, monotonic cli-
mate gradients, e.g., rain shadows. Thus, one simple way of
achieving a measure of spatial autocorrelation in GWGEN
would be to impose a spatial autocorrelation field on the se-
quence of random numbers used to impose stochastic noise
in the downscaling functions. If the random number sequence
is similar between grid cells, then, e.g., rain is likely to fall on
the same day, given that the transition probabilities will likely
also be similar. Over moderate distances (< 50 km), it might
even be sufficient to use the same random seed across all grid
cells in a neighborhood. This would have the effect of pro-
ducing strongly autocorrelated daily meteorology in space,
with the only variations being imposed by the underlying in-
put monthly climatology.

Furthermore, it would be straightforward to include ad-
ditional meteorological variables in the model framework,
handling, e.g., humidity in the same way that temperatures,
cloud cover, and wind speed are disaggregated. Other vari-
ables, such as pressure and wind direction, might be more
difficult using the basic GWGEN structure because of the im-
portance of autocorrelation, particularly at high spatial reso-
lution, and might benefit from a different approach towards
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weather generation. Finally, GWGEN only downscales mete-
orology from monthly to daily values; for models that require
an even shorter time step, e.g., 6 hourly, some extension of
the model functionality would be required. For certain vari-
ables, e.g., temperatures, subdaily downscaling could be eas-
ily implemented (Cesaraccio et al., 2001); for other variables,
such as precipitation, a large literature on downscaling meth-
ods exists (e.g., Bennett et al., 2016), and global datasets of
hourly meteorology for model calibration are available (e.g.,
the Integrated Surface Database; Smith et al., 2011).

6 Conclusions

Compiling a global database of daily precipitation, tem-
perature, cloud cover, and wind speed measurements, we
explored the relationship between daily meteorology and
monthly summaries first described in the context of weather
downscaling by Geng and Auburn (1987). Our analysis of
more than 50 million individual records showed that daily to
monthly relationships are relatively stable in space and time,
and constant across a very wide range of stations from all
latitudes and climate zones. With the resulting relationships,
we parameterized a WGEN/SIMMETEO-type weather gen-
erator, with the intention of creating a generic scheme that
could be applied anywhere over the Earth’s land surface for
the past, present, and (near) future.

Code availability. GWGEN is open-source software, and the code,
utility programs for parameterization, evaluation, and manipula-
tion of the raw weather station data, along with complete docu-
mentation, are available in Sommer and Kaplan (2017). The orig-
inal weather station database can be made available upon request
to the authors or downloaded from Hahn and Warren (1999) and
Menne et al. (2012b). The weather generator module is programmed
in FORTRAN; the parameterization, evaluation, and other supple-
mentary tools are written in Python mainly using the numerical
python libraries NumPy and SciPy (Jones et al., 2001), StatsMod-
els (Seabold and Perktold, 2010), as well as Matplotlib (Hunter,
2007) and psyplot (Sommer, 2017) for the visualization. Detailed
installation instructions can be found in the user manual (https:
//arve-research.github.io/gwgen/).

www.geosci-model-dev.net/10/3771/2017/ Geosci. Model Dev., 10, 3771–3791, 2017
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Appendix A: Sensitivity analysis

Figure A1. Results of the sensitivity analysis for the (a) correlation coefficient R2, (b) deviation from a slope of unity, (c) the fraction of
significant different station years, and (d) the mean of (a)–(c). For the plots in panels (a) and (b), we used the means of the 25th, 50th, 75th,
90th, 95th, and 99th percentiles. In general, 1 (dark green) is best; 0 (white) is worst. The dark red fields indicate experiments that failed
because of a too-low threshold and too-high GP shape parameter. Note the logarithmic scale on the y axis.
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