Geosci. Model Dev., 10, 3679-3693, 2017
https://doi.org/10.5194/gmd-10-3679-2017

© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

GPU-accelerated atmospheric chemical Kinetics in the
ECHAM/MESSy (EMAC) Earth system model (version 2.52)

Michail Alvanos and Theodoros Christoudias
The Cyprus Institute, P.O. Box 27456, 1645 Nicosia, Cyprus

Correspondence to: Theodoros Christoudias (christoudias@cyi.ac.cy)

Received: 10 March 2017 — Discussion started: 5 April 2017

Revised: 30 August 2017 — Accepted: 3 September 2017 — Published: 10 October 2017

Abstract. This paper presents an application of GPU ac-
celerators in Earth system modeling. We focus on atmo-
spheric chemical kinetics, one of the most computationally
intensive tasks in climate—chemistry model simulations. We
developed a software package that automatically generates
CUDA kernels to numerically integrate atmospheric chemi-
cal kinetics in the global climate model ECHAM/MESSy At-
mospheric Chemistry (EMAC), used to study climate change
and air quality scenarios. A source-to-source compiler out-
puts a CUDA-compatible kernel by parsing the FORTRAN
code generated by the Kinetic PreProcessor (KPP) general
analysis tool. All Rosenbrock methods that are available in
the KPP numerical library are supported.

Performance evaluation, using Fermi and Pascal CUDA-
enabled GPU accelerators, shows achieved speed-ups of
4.5x and 20.4x, respectively, of the kernel execution time.
A node-to-node real-world production performance compar-
ison shows a 1.75x speed-up over the non-accelerated appli-
cation using the KPP three-stage Rosenbrock solver. We pro-
vide a detailed description of the code optimizations used to
improve the performance including memory optimizations,
control code simplification, and reduction of idle time. The
accuracy and correctness of the accelerated implementation
are evaluated by comparing to the CPU-only code of the ap-
plication. The median relative difference is found to be less
than 0.000000001 % when comparing the output of the ac-
celerated kernel the CPU-only code.

The approach followed, including the computational
workload division, and the developed GPU solver code can
potentially be used as the basis for hardware acceleration of
numerous geoscientific models that rely on KPP for atmo-
spheric chemical kinetics applications.

1 Introduction

One of today’s great scientific challenges is to predict how
climate will change locally as gas concentrations change
over time. The study of chemistry—climate interactions rep-
resents an important and, at the same time, difficult task of
global Earth system research. The emerging issues of climate
change, ozone depletion, and air quality, which are challeng-
ing from both scientific and policy perspectives, are repre-
sented in chemistry—climate models (CCMs). Understanding
how the chemistry and composition of the atmosphere may
change over the 21st century is essential in preparing adap-
tive responses or establishing mitigation strategies.

The global atmosphere—chemistry model ECHAM/
MESSy (EMAC) is a numerical chemistry and climate
simulation system that includes submodels describing
tropospheric and middle atmosphere processes and their
interaction with oceans, land, and human influences (Jockel
et al., 2010). It uses the second version of the Modular Earth
Submodel System (MESSy2) to link multi-institutional
computer codes. The core atmospheric model is the fifth-
generation European Centre Hamburg general circulation
model (Roeckner et al., 2006). The EMAC model runs on
several platforms, but it is currently unsuitable for massively
parallel computers due to its scalability limitations. In
climate simulation applications, the numerical integration by
chemical kinetics solvers can take up to 90 % of execution
time (Christou et al., 2016). To achieve realistic simulation
times, researchers are forced to limit the resolution of model
simulations.

This paper describes a method of accelerating the chem-
ical kinetics calculations on modern high-performance su-
percomputers using GPU accelerators. We present a source-
to-source parser, written in the Python programming lan-

Published by Copernicus Publications on behalf of the European Geosciences Union.

3680

guage, that transforms the MESSy chemical kinetics FOR-
TRAN source code to CUDA source code, suited for run-
ning on CUDA-enabled general purpose graphics processing
unit (GPGPU) accelerators. The parser transforms the auto-
generated FORTRAN code by the KPP (Sandu and Sander,
2006; Damian et al., 2002) into the CUDA-compatible accel-
erated code, allowing to offload all different numerical inte-
gration solvers to GPU accelerators. The parser also makes
the appropriate changes in the MESSy software distribu-
tion for linking the accelerated code during the compilation
phase.

The paper is organized as follows: Sect. 1.1 describes
the MESSy/MECCA frameworks and the parallelization ap-
proaches, and Sect. 1.2 the potential of GPU accelerators.
Section 1.3 discusses previous work that is related to this
research. In Sect. 2, we present our implementation of at-
mospheric chemical kinetics parallelization, the source-to-
source parser code, and GPU-specific optimizations, includ-
ing memory optimizations, the control code restructuring,
and the refactoring of the EMAC source code. An evalua-
tion of the resulting GPU-accelerated climate model appears
in Sect. 3. We summarize the main outcomes and present our
conclusions and planned future work in Sect. 4.

1.1 The EMAC framework

The numerical global atmosphere—chemistry model EMAC
(ECHAM/MESSy Atmospheric Chemistry) is a modular
global model that simulates the chemistry and dynamics of
the stratosphere and troposphere. The model includes differ-
ent submodels for the calculation of concentrations in the at-
mosphere, their interaction with the ocean and land surfaces,
and the anthropogenic influences. The EMAC model runs on
several platforms, but it is currently unsuitable for massively
parallel computers due to its scalability limitations and large
memory requirements per core.

The MESSy submodel MECCA executes independently
the gas-phase chemical kinetics because there are no de-
pendencies between physical neighbors and no limitations
by vertical adjacency relations. In a typical configuration
of MESSy with 155 species and 310 chemical reactions,
MECCA takes 70 % of the simulation execution time (Chris-
tou et al., 2016). The percentage of execution time can go up
to 90 % in simulations with more complex chemistry.

Currently, EMAC uses coarse-grained parallelism based
on the Message Passing Interface (MPI). However, the cur-
rent approach does not benefit from the accelerators that exist
in modern hybrid high-performance computing (HPC) archi-
tectures. This puts severe limitations on current global cli-
mate time-length atmospheric chemistry and pollution trans-
port simulations in terms of portability, complexity, and res-
olution.

EMAC uses the Kinetic PreProcessor (KPP) (Sandu and
Sander, 2006; Damian et al., 2002) open-source general anal-
ysis tool to formulate the chemical mechanism. KPP inte-

Geosci. Model Dev., 10, 3679-3693, 2017

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

grates very efficient numerical analysis routines and auto-
matically generates FORTRAN and C code that computes
the time evolution of chemical species from a specification
of the chemical mechanism in a domain-specific language.
Taking a set of chemical reactions and their rate coefficients
as input, KPP generates code of the resulting coupled ordi-
nary differential equations (ODEs). Solving the ODE system
allows the temporal integration of the kinetic system. Effi-
ciency is obtained by exploiting the sparsity structures of the
Jacobian matrix.

The biggest challenge to address in the application is the
imbalance caused by the adaptive time-step integrator solv-
ing the differential equations that describe the chemical equa-
tions computed. The varying light intensity at sunrise and
sunset in combination with concentrations of precursors and
gases (such as NO, and O3) leads to photochemical reactions
(mostly over midlatitudes in the stratosphere) that heavily al-
ter the stiffness of the ODEs. For example, Fig. 1a presents
the cumulative number of execution steps required for the
integration process for each model column, and Fig. 1b
presents the maximum difference in the number of steps be-
tween cells in each column. The difference in the number
of steps inside and between columns provides an indication
of the strong imbalance created between execution times of
different processes.

The ECHAM atmospheric dynamical circulation phase
of EMAC only scales up to approximately a few hundred
cores (Christou et al., 2016) due to the heavy all-to-all
communication overhead of the spectral decomposition. At
higher levels of parallelism, at or beyond approximately 1000
cores, the MECCA load imbalance due to the photochemistry
also becomes a limiting factor.

1.2 GPU accelerators

A common trend in computing today is the utilization of
hardware accelerators that efficiently execute codes rich in
data parallelism to form high-performance heterogeneous
systems. Graphical processing units (GPUs) are commonly
used as accelerators due to high peak performance offered.
GPU accelerators are module extensions connected using
an interconnect to the CPU and memory subsystem. GPU
accelerators feature on-board memory that provides high-
bandwidth, medium-latency access to data. In contrast with
the general purpose CPUs, the GPU processors are designed
for massive parallelism by issuing thousands of simple par-
allel instructions. Programming a GPU accelerator can be
a hard and error-prone process that requires specially de-
signed programming models, such as the CUDA (NVidia,
2015b) and OpenCL (Munshi, 2009). To unlock the poten-
tial performance of accelerators, programmers often apply
incremental optimizations to their applications.

www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry 3681

1080 1250 1419 1589 1758

12 15 18 20 23 26

Figure 1. Number of integration steps for column MECCA kernel execution (a) and intra-column maximum difference in execution steps (b).
The adaptive time-step integrator shows a non-uniform runtime caused by stratospheric photochemistry and natural and anthropogenic

emissions.

1.3 Related developments

There are numerous efforts documented in the literature to
improve the performance of climate—chemistry model simu-
lations, specifically targeting chemical kinetics.

The adoption of intrinsic optimizations for sparse linear al-
gebra (Zhang et al., 2011; Jacobson and Turco, 1994) is one
of the first improvements implemented to speed up simula-
tions of chemical kinetics. In a chemical kinetic solver, the
majority of the time is spent solving the linear systems us-
ing implicit integration mechanisms. Only a fraction of the
matrices have values different than zero, allowing for more
efficient implementations using the sparsity of the structures.
The sparse structure depends on the chemical reactions, and
thus the linear algebra can be solved offline before the exe-
cution of the application. In a typical chemical mechanism,
the pattern of chemical interactions leads to a sparse Jaco-
bian with the majority of entries equal to zero. The KPP
uses sparse linear algebra to reduce the execution time. The
sparsity structure depends only on the chemical network and
not on the values of concentrations or rate coefficients. Thus,
the lookup tables are constant, allowing to KPP to unroll the
loops and remove the indirect memory accesses.

Researchers have also improved the performance of the
chemical kinetics portions of the code by using data- and
instruction-level parallelism (DLP and ILP) when solving the
chemical kinetics equations. Approaches include the intro-
duction of single instruction, multiple data (SIMD) instruc-
tions and annotation using the OpenMP programming model.
However, these approaches often rely on the ability of the
compiler to auto-vectorize the code that very often misses
opportunities (Zhang et al., 2011), and the OpenMP imple-
mentation heavily burdens the performance due to high over-
head of scheduling and managing threads.

A more coarse-grained approach is to use grid- or box-
level parallelization (Linford, 2009, 2010; Christoudias and
Alvanos, 2016). The application breaks the grid or box into
cells, allowing the calculation of concentrations indepen-

www.geosci-model-dev.net/10/3679/2017/

dently between cells. Thus, the application assigns an equal
number of cells to each thread to allow embarrassingly par-
allel execution of the chemical solvers. The biggest draw-
back of this approach is the limited parallelism and the im-
balance that is created due to the photochemical processes
in the lower stratosphere. A similar approach is used for the
parallelization of chemical kinetics in the cell processor and
GPU accelerators by Damian et al. (2002). However, these
approaches exhibit the same limitations: limited parallelism
and imbalance. Moreover, it is necessary for researchers to
effectively rewrite their applications every time they run on
the accelerators. Current commercial approaches of paral-
lelizing the chemical kinetics use fine-grained parallelism
that is suitable only when the number of elements and chem-
ical reactions are complex enough to justify the use of accel-
erators.

A different organization of the workload using adaptive
mesh refinement (AMR) was proposed as a way to increase
locally the resolution for an area of interest (Keppens et al.,
2003). The adaptive unstructured mesh representation in cli-
mate models can improve the overall performance of the
application (Schepke and Maillard, 2012; Schepke, 2014).
Compared to traditional horizontal partitioning, these solu-
tions offer greater scalability. However, the communication
demands are dominant in a high number of processes and the
potential imbalance created by the chemical reaction and the
heterogeneity of the modern HPC machines are ignored by
this approach.

An earlier prototype of the application in this paper is out-
lined in Christoudias and Alvanos (2016), focusing on the
challenges of using GPU accelerators to exploit node-level
heterogeneity. This paper significantly expands on the pre-
vious work, both in detailed implementation and optimiza-
tion. Moreover, this paper presents a performance evaluation
of the first public release of the source code (Alvanos and
Christoudias, 2017a).

Geosci. Model Dev., 10, 3679-3693, 2017

3682

CPU

Concentrations, temperature
pressure

(1) update_rconst<<<..>>> —PESU€ o pdate_rconst()——p| Reaction rate coefficlents

1 User prescribed accuracy
(2) rosenbrock<<<..>>> =———»p

Concentrations

rosenbrock() —>

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

GPU GPU memory

concentrations

Statistical data

(3) reduce_status<<<...>>> m——— reduce_status()

Statistics

}

Figure 2. Flow chart of the tasks’ offload execution on GPU accelerators.

2 Implementation

The section presents the implementation of the source-to-
source parser and the challenges addressed. The parser is
written in the Python programming language and generates
CUDA (NVidia, 2015b) compatible solvers, by parsing the
auto-generated FORTRAN code output by the KPP. This ap-
proach avoids the distribution of additional compiler frame-
work, such as the ROSE compiler framework (Quinlan and
Liao, 2011; Quinlan et al., 2012), that may contain additional
software dependencies under a different license, and at the
same time allows easy distribution and maintainability. The
process is automated and allows the parser to work with all
possible user-defined chemical mechanisms, without requir-
ing changes by the end user on the accelerated kernel code.
The FORTRAN compiler links the output CUDA object file
with the rest of the application.

The user executes the parser from the messy/util
directory to transform the code. The parser modi-
fies the messy/smcl/messy_mecca_kpp.£f90
file and places a single call to the CUDA
source file that contains the accelerated code
(messy/smcl/messy_mecca_Kkpp_acc.cu) and
a wrapper function for issuing the parallel kernels and
copying the data to and from the GPU. The solver supports
all five variations of Rosenbrock solvers available in KPP
(Ros2, Ros3, Ros4, Rodas3, and Rodas4). The parser is also
responsible for making the changes to the EMAC source
makefile for linking of object files during compilation. The
user must modify the configuration of the EMAC model to
include the CUDA runtime during linking phase. Similar to
the FORTRAN implementation, the computation is subdi-
vided in runtime-specified arrays of columns. The memory
of each array is transferred to the GPU global memory and
each grid box is calculated on individual GPU threads.

The CUDA chemical kinetics solver comprises three steps,
also presented diagrammatically in Fig. 2. Each task is of-
floaded using three different calls:

Geosci. Model Dev., 10, 3679-3693, 2017

1. The first step is the calculation of the reaction rate coef-
ficients. The variable values are stored in a global array
inside the GPU and used in the second step.

2. The second step is the ODE solver that includes all lin-
ear algebra functions. The computational kernel con-
tains five optional variations of the Rosenbrock family
of numerical solvers, specified by the user at runtime, as
supported by KPP/KP4.

3. The third and final step of the solver is the statistical re-
duction of the results, which demands very limited com-
putational time compared with the other steps.

The parser replaces the code of integrator loops located
in the messy_mecca_kpp.£90 file with a single call to
the CUDA-accelerated code. The CUDA source file includes
an entry function that is responsible for moving the data to
and from the GPU accelerator and issuing the computation
kernels. Algorithm 1 presents the outline of the integrator
code and Algorithm 2 presents the outline of the GPU glue
code. Each GPU thread calculates the chemical concentra-
tions of an individual cell. The temporary arrays used be-
tween steps of the solver are allocated in the stack memory,
with the exception of the RCONST array. The RCONST ar-
ray contains the reaction rate coefficients that are recalcu-
lated in the first step of the integration process or at each
substep of the numerical solver. The developed source-to-
source parser automatically recognizes the coefficients that
are recalculated in the first step of the integration process or
at each substep of the numerical solver for an ODE system
with varying (rate) coefficients, which has to be integrated as
a non-homogeneous system.

The GPU solvers allocate stack memory for the interme-
diate results revealing good performance in the current and
forthcoming generations of GPU architectures due to sim-
pler indexing. However, the design architecture for mem-
ory allocation is subject to change when the impact of coa-
lesced memory access is more prominent in future GPU gen-
erations. During the application development, we discovered
that a large number of registers cause spillage to stack mem-
ory. Thus, the impact of memory coalescing is limited due

www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

3683

1: // VL_GLO is NVL X levels_atmosphere

2: for DOk=1to VL_GLO do

3: status « (;

4: C(:) « Conc(k,:)

5 update_rconst(C);

6: integrate(time_step_len, C, status) // Main kernel
7 Conc(k,:) + C(:)

Diagnostic Information

8: gstatus(k) < status

9: end for

kpp_integrate(time_step_len,Conc, gstatus,V L_GLO)

Algorithm 1. CPU Chemical Kinetics Solver.

1: status < 0;
Step 1: Initialize devices and allocate memory.
2: if initialized is FALSE then

4: end if

6: Blocking < 64;
Step 2: Call kernels.

Step 3: Copy back the results.

kpp_integrate_acc(time_step_len,Conc, gstatus,V L_GLO)

3: dev_conc_ptr,dev_rconst_ptr,dev_status_ptr < init_first_time(pe, VL_GLO);

5: cudaMemepy(Conc(:), device_conc_ptr, sizeof(double) X VL_GLO x NSPEC')
/I Blocking can be changed to 128 by modifying the produced file

7: update_rconst <<< VL_GLO/Blocking, Blocking >>>(device_conc_ptr, device_rconst_ptr, VL_GLO),
8: Rosenbrock <<< VL_GLO/Blocking, Blocking >>>(device_conc_ptr, device_rconst_ptr, dev_status_ptr, VL_GLO);
9: reduce_status <<< VL_GLO/Blocking, Blocking >>>(dev_status_ptr, VL_GLO);

10: cudaM emepy(device_conc_ptr, Conc(:), sizeof(double) x VL_GLO x NSPEC')
11: cudaMemcepy(dev_status_ptr, gstatus, sizeof(double) x VL_GLO)

Algorithm 2. GPU-accelerated chemical kinetics solver.

to stack occupancy by each CUDA thread. If the number of
available registers increases or the local memory becomes
larger, then the performance gain from coalescing memory
access can be significant. The trend in the GPU architectures
is the increase of the on-chip local memory.

The global GPU memory size suffices for offloading the
full set of data, and it is not a limiting factor for the present
and future projected nominal chemistry mechanism com-
plexity. The performance is also not limited by the overuse of
any function unit. Global and local memory are used to store
all required data, and local variables are used for each grid
box for temporary variables during computation, with cache
misses and register usage being the current performance lim-

www.geosci-model-dev.net/10/3679/2017/

iting factor. The block size of the GPU kernels is set to 64,
and it can be changed to 128 for increased efficiency for fu-
ture GPU architectures if applicable. The maximum number
of cells that can be offloaded to the GPU is 12 288. This sets
an upper limit to the value of the ECHAMS NVL runtime
parameter at 128, assuming 90 levels for the atmosphere.
The accelerated CPU process requires a chunk of the GPU
video RAM (VRAM) memory, whose size is dependent on
the number of species and reaction constants in the MECCA
mechanism. The required stack memory can be calculated as
follows: stack_allocated_memory = (number_of_elements x
13+ 1u_nonzero x 2+ spilled variables) x sizeof(double). For
example, in a workload with 155 species and 310 re-

Geosci. Model Dev., 10, 3679-3693, 2017

3684

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

<

?>15

810

c

L 5y

4] -

£ of - - = T I - I F = - =

5 +

G>J_

2 -10

f

g—15

—-20
s X & © & 2 5 £& & F & & £ £ & g & §F g
5 3 T o T o o z < o) o §
5 _ivgé? lgommr‘eéve s =
9

Figure 3. Aggregated mass difference between the accelerated and non-accelerated versions in the final month after 2 years of simulation
time for different chemical species with the SCAV (scavenging) submodel disabled.

40

30
204
104

0———5I{{ ¥

- -

i

Relative difference (%)

Hey

g o m
§ ¢ 8¢ g
' F F

CH-?C/ |
HCOOH |

S0 | ——=Sil—

m O N X M T
£2 9983

N2g |

i
&
<

LOSSOH i

Figure 4. Aggregated mass difference between the accelerated and non-accelerated versions in the final month after 1 year of simulation

time with the SCAV submodel enabled.

actions, the required stacked memory including the tem-
porary allocate arrays is (155 x 1342 x 1500 4 1200) x
8 =40120 approximately. Note that the size of spilled
variables depends on the complexity of the source code.
The total memory required for a kernel is calculated
for 12288 cells is 12288 x (stack_allocated_memory +
global_allocated_mem) = 12288 x52 000 ~ 638 MB. More-
over, during the GPU code loading, the GPU driver unrolls
the loops and expands the offloaded code making it a limit-
ing factor for allocated memory. For instance, the aforemen-
tioned chemistry workload requires at least 2 GB of VRAM
to be available on the Fermi architecture or more than 6 GB
in the newest Pascal architecture. We believe that the addi-
tional allocated memory is due to the driver side allocation
of additional caches and buffers to achieve the best perfor-
mance. Furthermore, to support the newest features, such as
the Unified Virtual Memory model, additional memory allo-
cation is required. Thus, the total memory required for each
process depends not only on the size of chemistry but also in
the complexity of the source code (number of reactions) and
the architecture of the GPU accelerator.

2.1 Challenges and optimizations

To achieve the best possible performance and efficiency three
challenges had to be addressed. First, the biggest limitation in
the performance of the chemical kinetics kernel is the mem-

Geosci. Model Dev., 10, 3679-3693, 2017

ory required. To solve the ODEs and calculate the new con-
centrations, more memory is required in total than the avail-
able on-chip memory. For instance, a set of 155 species and
310 reactions requires the use of ~ 50 KB of stack memory
per cell. Thus, running multiple threads concurrently on the
GPU forces the use of global memory for storing the data.
Second, the source code complexity of the solver kernel in-
creases the usage of registers and limits the GPU streaming
multiprocessor (SM) utilization. Third, the number of steps
for solving the differential equations differs between differ-
ent cells. This creates thread divergence, limiting the perfor-
mance.

To address these challenges, we implemented incremental
improvements in the source code running on the GPUs. Our
aim is to improve the GPU occupancy, reduce the memory
impact, simplify the source code, and reduce the idle time.

2.1.1 Occupancy improvement

The high register pressure limits the occupancy, limits the
number of concurrent threads per SM, and increases the over-
all execution time of the kernel. There are two ways of over-
coming this challenge: either placing a flag during compila-
tion that limits the number of registers or using the launch
bound qualifier (__launch_bounds__) to a specific ker-
nel. Our implementation uses the second option as a generic,
future-proof approach. The downside of limiting the register

www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry 3685

CPU only (mol mol 1)

b Accelerated (mol mol1) Relative difference (%)
(a) (b) (c)
o
o
g H
< £
qa) £
—
3
=1
3
N Latitude (+N) Latitwde oy e e ° - " e -
3.00E-08 2.42E-06 4.82E-06 7.21E-06 9.61E-06 1.20E-05 3.00E-08 2.42E-06 4.82E-06 7.21E-06 9.61E-06 1.20E-05 -50.0 -30.0 -10.0 10.0 30.0 50.0
(d) (e) (f)
jast
o
)
Q
&
—
=
%
R e ————— N ——] 4 - >
3.80E-15 3.50E-14 6.63E-14 9.75E-14 1.29E-13 1.60E-13 3.80E-15 3.50E-14 6.63E-14 9.75E-14 1.29E-13 1.60E-13 -50.0 -30.0 -10.0 10.0 30.0 50.0
(9) (h) (i)
o \\ e z%::\S\«éf ®° it
SRy e TETRCH S
= el L N
@ < < e Rt W{i &
Q \ 7) By
£ O L d
= &y 4 o
= £
N e »,:«4#3“2 B et e e
1.00E-09 1.00E-08 1.00E-09 1.00E-08 -50.0 -30.0 -10.0 10.0 30.0 50.0
2l
o
73!
&}
Q
&
—
j=]
0

> -«
1.00E-10 1.00E-09 1.00E-08 1.00E-10

>
1.00E-09 1.00E-08 -50.0 -30.0 -10.0 10.0 30.0 50.0

Figure 5. Output of CPU-only (a, d, j, g), GPU-accelerated (b, e, h, k) 2-year simulations, and their relative difference (c, f, i, 1) for different
chemical species: O3 zonal mean (a—c) and surface level OH, NH3, and SO, concentrations (d—f, g—i, and j-1, respectively).

usage is the increase of register spilling, causing an increase
of stack memory usage. The compiler allocates additional
stack memory for spill loads and stores, creating additional
local memory traffic that does not fit into the on-chip mem-
ory. Thus, the application execution time is dominated by the
global memory access latency.

2.1.2 Memory optimizations

GPU accelerators employ a wide memory bus that allows
for high-bandwidth transfers at the cost of high latency. To
achieve the best execution efficiency on the GPU, we ap-
ply a number of memory optimizations: (i) better utilization
of the on-chip memory, (ii) privatization of each thread data
structure, and (iii) prefetching.

Each SM contains a small amount of local memory that
can be used as shared memory between threads or for Level-
1 (L1) cache. The size of temporary matrices is larger than

www.geosci-model-dev.net/10/3679/2017/

the available on-chip memory. Thus, only a small portion of
the memory can be used to store the data. In particular, the
concentrations of chemical species that remain unchanged
by chemical kinetics are stored in this memory. To increase
the utilization of the local memory, we increased the por-
tion of the L1 cache against the shared memory through the
cudaFuncCachePreferLl runtime call.

The solver must keep intermediate results in temporary ar-
rays during different steps of the solver. The temporary ar-
rays are larger than the available on-chip memory, forcing us
to declare the arrays in global memory. Although accesses
on these arrays can be coalesced, there is still overhead oc-
curring due to cache misses. Moreover, different execution
paths of the kernel can complicate and limit the coalescing
of the data. To overcome this, we privatized the majority of
the matrices by either replacing them with scalar variables or
by using stack-allocated arrays, allowing simplified tempo-
rary array indexing code.

Geosci. Model Dev., 10, 3679-3693, 2017

3686

The last modification of the memory optimizations is to
employ prefetching of data. Prefetching may lead to un-
predictable behavior, especially in massively parallel archi-
tectures, such as GPUs. There are four possible prefetch
instructions that can be applied to the chemical kinet-
ics. Microbenchmarks showed better results by using the
prefetch.global.Ll andprefetch.local.Ll in-
line Parallel Thread Execution (PTX) assembly for fetching
the data to the L1 caches.

2.1.3 Control code simplification

The GPU cores are relatively simple units and their compu-
tational efficiency depends on the absence of control code.
To increase the instruction-level parallelism and avoid possi-
ble branch divergence, the implementation adopts three com-
monly used techniques: (i) use of lookup tables, (ii) unrolling
loops, and (iii) branch elimination. The lookup tables are
used for selecting the solver and setting the proper values
in specific variables. The benefits of loop unrolling are most
profound in the preparation of the Rosenbrock solver ROS
when using the sparse matrix. Finally, limited branch elim-
ination by fusing loops or merging branches also improves
the execution time.

2.1.4 Decreasing the GPU idle time

The biggest challenge when using accelerators in hybrid
HPC architectures is the imbalance created by the uneven
workload of tasks. While the application uses GPUs as accel-
erators, only the CPU cores responsible for communication
and handling of GPUs are active, leaving the remaining cores
idle. Allocating more processes on the unused CPU core cre-
ates more imbalance between the accelerated processes and
the CPU-only processes. To address this, the goal is to in-
crease the GPU utilization by assigning more than one GPU
per process.

The are two ways to do this: (i) over-subscription and (ii)
using the Multi-Process Service (MPS) (Nvidia, 2015a). The
first way is to allow more than two CPU cores (MPI pro-
cesses) from one node to be offloaded to the accelerators.
The downside of this approach is that only one process can
access the GPU (exclusive access). Although there will be
some benefit compared to the case of using a single process,
it is possible that some of the tasks will underutilize the avail-
able hardware. The number of GPUs per node and VRAM
memory available in each GPU dictate the total number of
CPU cores that can run simultaneously. An alternative ap-
proach is to use the MPS that allows concurrent execution
of kernels and memory transfers from different processes on
the same node. The latter requires a GPU accelerator with
compute capability of 3.5 or higher.

Geosci. Model Dev., 10, 3679-3693, 2017

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

2.2 Future GPU Kkernel optimizations

The execution time of individual chemical kinetics tasks de-
pends on the input data of each cell grid. Different task ex-
ecution times create an imbalance between tasks running
on the same GPU. A promising approach to address this
challenge is the use of dynamic parallelism: the ability for
each GPU thread to call other kernels and spawn more GPU
threads to increase the available concurrency.

3 Results and evaluation

This section presents (i) the total impact on simulation time
and (ii) the accuracy and correctness of the accelerated
model. Three different hardware and software environments
were used to measure the impact of the code acceleration
(Table 1):

— The first was an iDataPlex dx360 M3 compute node that
contains two Intel® Xeon® X5650 six-core processors
running at 2.6 GHz coupled with two Tesla M-series
GPU M2070 accelerators (Fermi architecture). The ap-
plication is compiled using the Intel compiler (1 fort
ver. 14.0.2) for improved native performance.

— The second was a JURECA (Jiilich Research on Exas-
cale Cluster Architectures) computation node that con-
tains two Intel® Xeon® 12-core E5-2680 v3 proces-
sors running at 2.5 GHz coupled with two Tesla K80
(Kepler architecture) accelerators. The application is
compiled using the Intel compiler (i fort ver. 16.0.4)
for improved native performance. The runtime environ-
ment during execution includes —~cpus-per-task=2
to schedule the execution between actual CPU threads
and cores.

— The third was an IBM® S822LC compute node
equipped with two 10-core 2.92 GHz POWERS pro-
cessors (Fluhr et al., 2014; Stuecheli, 2013) with
turbo up to 4GHz. Simultaneous multithreading is
set to 4 for optimum performance in HPC applica-
tions. The application is compiled using the IBM com-
piler (x1£ ver. 15.1.5). The execution of the mpirun
command includes -map-by L2cache -bind-to
core:overload-allowed to reduce the con-
tention of the cache and function units.

To test the model scalability within a compute node, the
evaluation uses a representative benchmark simulation with
a horizontal resolution of 128 grid points in the longitudi-
nal direction and 64 grid points in the latitudinal direction
with 90 vertical levels. Table 2 details the experimental setup
for the results shown in this section. The chemical solver of
MECCA in EMAC has a default relative tolerance (rtol) of
1E-2 absolute tolerance (atol) of 1E1; for key short-lived
radicals, the atol = 1 is used. The default ESM2 KPP

www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

Table 1. Hardware configurations used for performance evaluation.

3687

Node CPU No.of RAM Accelerators Peak performance

cores GB NVIDIA GPU Cores VRAM GFlops (DP)
DELL® dx360 Xeon X5650 12 48 2xM2070 2 x448 2x6GB 1159 (128 CPU + 2 x 515 GPU)
JURECA node Xeon E5-2680 v3 24 128 2xK80 2x4992 4x12GB 7568 (3840 CPU + 2 x 1864 GPU)
IBM® S822LC POWERS 20 256 4xP100 4x3584 4x16GB 21667 (467 CPU + 4 x 5300 GPU)

Table 2. Experimental configuration of the simulation.

Number of columns

Number of grid points

Number of chemical species

Spectral resolution

Ordinary differential equations solver

T42L.90MA

8192 columns with 90 levels
737 280 grid points
155 species and 310 chemical reactions

Ros3: three-stage, L-stable pair of order 3(2) (Sandu et al, 1997)

chemistry batch option is used, along with model namelist
setup NML_SETUP=E5M2/02b_gctm, without dynam-
ics nudging and with the diagnostic submodels D14CO,
DRADON, S4D, and VISO switched off. The simulation
runs with the SCAV (scavenging) submodel disabled to re-
duce deviations for soluble species whose aqueous-phase
chemistry is solved with KPP1 by the submodel SCAV.

3.1 Application performance

This section compares the performance of the CPU-only and
the GPU-accelerated versions of the application. The evalu-
ation uses only one node to avoid any MPI communication
interference in the results and limits the period of simulated
time to 24 h. The execution time does not include the initial-
ization of the application and the file I/O operations.

The accelerated version of the kernel achieves an order
of magnitude performance improvement over the CPU-only
version, as shown in Table 3. We note that the theoretical per-
formance difference between the CPU core and the accelera-
tor is larger in the P100 platform. The performance improve-
ment of the kernel can provide an indication of the expected
application production performance improvement.

Table 4 presents the execution time in seconds and the gain
in performance between the GPU-accelerated and CPU-only
versions for the two platforms. The node-to-node comparison
allows us to compare the accelerated version with the best
performance achieved using the CPU-only version, using all
available cores. The performance gain of the application dif-
fers between the available platforms. The M2070 accelerator
unit contains only 6 GB of memory, limiting the number of
processes that can be offloaded in parallel to the accelera-
tor. Moreover, the M2070 accelerator does not support the
MPS (Nvidia, 2015a). Thus, in this experiment, we use the
CPU to run the remaining processes instead of accelerators.
Despite the significant 2.27 x performance gain over execu-
tion with two processes, the performance gain over using the

www.geosci-model-dev.net/10/3679/2017/

entire node is limited. The accelerated processes complete
each time step before the CPU-only processes, causing se-
vere load imbalance between different MPI processes. Thus,
the benefit of having additional accelerators is not reflected in
the total attainable performance and an advanced scheduling
approach is required between the CPU cores and accelera-
tors.

On the K80 and P100 platforms, the application uses the
MPS to interact with the accelerators using more than two
MPI processes. In the POWERS platform, the best CPU-only
performance is achieved using over-subscription to the CPUs
by using two MPI processes assigned to physical cores.
The accelerated version achieves 1.75x performance gain
over the best-performing CPU-only configuration, clearly
showing the benefit of accelerating the chemical kinetics
on GPUs. The accelerated version with 40 MPI processes
achieves lower performance than the 20 MPI processes (not
shown).

3.2 Numerical and model accuracy

The performance gain in ODE systems with varying rate co-
efficients is greater due to the recalculation of the coeffi-
cients inside the solver. The portion of accelerated workload
increases in the case of a non-homogeneous system, result-
ing in greater performance gain when GPU accelerators are
used due to the massively parallel architecture. Table 5 shows
the results for 24 h simulated time using the M2070 and K80
accelerators. The achieved performance gain increases from
1.19x to 1.56x when recalculating RCONST at each sub-
step. The changes required for the automatic recalculation of
RCONST at each substep are included under the dev branch
of the source-to-source parser.

To validate the correctness and evaluate the accuracy of
the accelerated implementation, we calculate the numerical
and modeling difference over 2 years of simulation time. The
expected level of relative accuracy (relative numerical dif-

Geosci. Model Dev., 10, 3679-3693, 2017

3688

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

Table 3. Median execution time and achieved speed-up for the non-accelerated (CPU-only) code on a single core and the accelerated version
of the kernel for the three platforms. The extracted execution timing results are for the time step after the initialization of the simulation.

Configuration Median CPU Median acce- Performance
exec time lerated exec over

(s) time (s) CPU

Intel Xeon X5650 + M2070 4.502 0.999 4.50x
Intel Xeon E5-2680 v3 + K80 1.476 0.283 5.21x
IBM POWERS + P100 3.040 0.149 20.40x

Table 4. Application execution time and achieved speed-up of the three node configurations for 24 h simulated time.

Configuration MPI Processes CPUexec Accelerated Performance

time (s) exec time (s) over CPU
2 x 6-core Intel Xeon X5650+ 2 MPI processes 5199 2358 2.27 x
2 x NVIDIA M2070 12 MPI processes 1388 1368 1.01 x
2 x 12-core Intel E5-2680 v3 4+ 4 MPI processes 7362 3384 2.17 x
2 x NVIDIA K80 24 MPI processes 1756 1473 1.19 x
2 x 10-core IBM POWERS + 4 MPI processes 2294 918 2.50 x
4 x NVIDIA P100 20 MPI Processes 814 437 1.86 x

ference) for the chemical kinetics calculation is 0.1 %, i.e.,
about three accurate digits (Zhang et al., 2011). To calcu-
late the relative difference, we compare the output of chemi-
cal element concentrations between the CPU-only and GPU-
accelerated versions after the first time step. The results show
a median difference less than 0.000000001 % with the maxi-
mum difference value depending on the number of iterations
for solving the equations. This is well within the accuracy
criterion, asserting the numerical correctness of the GPU ker-
nel.

The variance in floating point results between different
architectures is well known and observed in scientific ap-
plications that require high-precision floating point opera-
tions (Corden and Kreitzer, 2012; Langlois et al., 2015). The
ifort compiler produces intermediate results stored with
an extended precision that provide greater precision than the
basic floating point formats of 64 bit. On the other hand,
the GPU accelerators do not support the extended precision
values, reducing the floating point accuracy in the results.
Furthermore, the REAL (16) declaration in FORTRAN pro-
grams is implemented in software for the POWERS archi-
tecture. Despite the small difference in the results, the model
remains stable when running over a 2-year simulation time
period.

To examine the impact of the inherent data difference on
the model accuracy, we compare the results of aggregated
mass of chemical species between the CPU-only and GPU-
accelerated versions over 2 years of simulation time. Figure 3
presents the chemical species aggregated mass difference
distributions between the accelerated and non-accelerated
versions. For simplicity, we include 19 important chemical

Geosci. Model Dev., 10, 3679-3693, 2017

species. The results show that the median value of the dif-
ference in aggregated mass is less than 5% for 18 out of
19 species and higher for HCOOH. The differences are well
within the expected margin of differences stemming from
architecture and compiler implementations (not specific to
GPU). The impact of scavenging amplifies the minor errors
created by the different architecture. Figure 4 presents the
relative difference after 1 year simulation with the SCAV
module enabled. In this case, median values fall within the
5 % limits, with a wider range of extreme values compared to
the simulation with the SCAV module disabled. The largest
deviations from zero seem to be for soluble species whose
aqueous-phase chemistry is very important and solved with
KPP1 by the submodel SCAV. The ODE system for aqueous-
phase chemistry is notoriously much stiffer than the one for
the gas phase.

Figure 5 compares the output results of the CPU and GPU
simulations and their relative difference for zonal mean O3
and surface concentrations of SO,, NH3, and OH. The rela-
tive difference is calculated as the difference over the mean
of the two simulations. The largest relative differences ap-
pear in areas with the lowest (close to zero) concentrations
of chemical elements. The results show the correctness of
the accelerated code and its numerical accuracy.

4 Conclusions
The global climate model ECHAM/MESSy Atmospheric

Chemistry (EMAC) is used to study climate change and
air quality scenarios. The EMAC model consists of a non-

www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

3689

Table 5. Application execution time in seconds and achieved speed-up with/without recalculation of RCONST at each KPP substep.

Configuration Rate coefficients CPU time Acc.time Speed-up
2 x (6-core X5650+M2070) Constant 1388 1368 1.01x
Varying (substep RCONST) 7061 5921 1.19x
2 x (12-core E5-2680 + K80) Constant 1756 1473 1.19x
Varying (substep RCONST) 2600 1662 1.56 %

local dynamical part with low scalability and local physi-
cal/chemical processes with high scalability. Advancements
in hardware architectures over the last three decades have
greatly improved not only the spatial and temporal resolu-
tion of climate models but also the representation of key pro-
cesses. The slow adoption of accelerators in the climate and
weather models has positioned the climate simulation com-
munity behind other scientific communities (Nvidia, 2017).

In this paper, we presented the acceleration of the KPP
chemical kinetics solver in the EMAC chemistry—climate
model using a source-to-source parser to transform the solver
to CUDA-accelerated code. The parser supports all Rosen-
brock family numerical solvers (Ros2, Ros3, Ros4, Rodas3,
Rodas4) that are available in the KPP numerical library.
A performance evaluation, using two CUDA-enabled accel-
erators shows an achieved speed-up of up to 20.4x the ker-
nel execution time and up to 1.75 x node-to-node application
performance gain. A comparison of the aggregated global
mass of 19 chemical elements between the CPU-only and
GPU-accelerated versions of the application to verify the cor-
rectness of the transformation. The numerical accuracy was
also ascertained with the relative difference found to be less
than 5 % when comparing the output of the accelerated ker-
nel to the CPU-only code for 19 chemical elements after
2 years of simulation time.

The approach followed, including the computational
workload division, and the developed GPU solver code can
potentially be used as the basis for hardware acceleration of
numerous geoscientific models that rely on KPP for atmo-
spheric chemical kinetics applications. This work is a marked
step forward to increase the resolution of climate simulations
using chemical kinetics and expand the usage of GPU accel-
erators in Earth system modeling.

www.geosci-model-dev.net/10/3679/2017/

Code availability. A consortium of institutions continuously de-
velops the Modular Earth Submodel System (MESSy). The us-
age of MESSy and access to the source code are licensed to all
affiliates of institutions which are members of the MESSy Con-
sortium. Institutions can become a member of the MESSy Con-
sortium by signing the MESSy Memorandum of Understanding.
More information can be found on the MESSy Consortium website
(http://www.messy-interface.org).

The FORTRAN to CUDA code-to-code compiler is developed
in CUDA and Python and it is included in the EMAC model devel-
opment release. In addition, the source code is included in public
repository under open license to allow the developer community to
contribute (Alvanos and Christoudias, 2017b; The Cyprus Intitute,
2016). It parses the auto-generated MECCA KPP solver code and
produces a CUDA library that can be linked to and called directly
from within the MESSy FORTRAN code at the time of compila-
tion. In addition, the source code contains a test script to validate
the correctness of the transformation and evaluate the performance
using the five available Rosenbrock solvers. When executed, the test
script (i) checks if the parser executes without errors, (ii) checks if
the produced file compiles without errors, (iii) executes the applica-
tion to detect runtime errors and memory violations, and (iv) com-
pares the output of the accelerated version with the output of the
serial FORTRAN version for possible differences of the output.

Geosci. Model Dev., 10, 3679-3693, 2017

http://www.messy-interface.org

3690 M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

Appendix A: Optimization flags

For completeness, we include the optimization flags for the
compilers used in the two systems:

— For the Intel platform, we used the ifort com-
piler with the following optimization flags:
-03 —-g —-debug full -traceback
—fp-model precise —-fp-model source
—fp-speculation=safe -fpp -align all

— For the IBM PowerPC platform, we used the xIf
compiler version 15.1.5 with the following optimiza-
tion flags: -03 -g —-gnohot -garch=auto
—gcache=auto —-gsource —gtune=auto
—gsimd=auto
—ginline=auto:level=10
—gprefetch=aggressive:dscr=7

Appendix B: Impact of optimizations

The evaluation uses a microbenchmark based on the acceler-
ated kernel to demonstrate the effectiveness of the code trans-
formations. The microbenchmark uses the input concentra-
tions extracted from the execution of one time step of the ap-
plication. We use five different variations of the Rosenbrock
solver and two GPU accelerators, the M2070 and the P100,
and we record only the GPU execution time. Tables B1-B3
of the evaluation present the results of the kernels for each
group of optimizations applied.

The occupancy optimization and the change of the cache
organization (“Prefer L1”) have minor performance gains.
Furthermore, the performance gain of these optimizations in
the P100 accelerators is limited within the margin error. The
most notable negative impact (—18 %) in the performance
is the usage of the prefetch intrinsics inside the source code
in the P100 accelerator. The newest accelerators contain ad-
vanced hardware prefetchers that decrease the impact of the
memory optimization. Thus, this forced us to modify the
source code for the P100 platform by disabling the software
prefetcher.

On the other hand, the “privatization” of global arrays us-
ing shared memory, registers, and stack-allocated arrays gave
the biggest benefit by reducing the off-chip memory traf-
fic. The performance gain for the memory optimizations is
less pronounced in the newest CUDA-enabled architectures,
as they provide a better memory subsystem compared with
the M2070 accelerator. The simplification of the source code
has the greatest impact on the newest architectures due to re-
duced control dependencies inside the accelerated code.

Geosci. Model Dev., 10, 3679-3693, 2017 www.geosci-model-dev.net/10/3679/2017/

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry 3691

Table B1. Execution time in seconds and speed-up running the kernel on a M2070 CUDA-enabled accelerator placed in a node equipped
with two Intel Xeon X5650 processors at 2.67 GHz with synthetic input.

Solver Base (s) Occupancy (s) Prefer L1 (s) Privatization (s) Prefetch (s) Simplification (s) Total speed-up
Ros2 9.60 9.348 941 6.77 6.42 6.05 +58.48 %
Ros3 10.71 10.43 10.43 7.79 7.39 7.16 +49.58 %
Ros4 12.54 12.28 12.24 9.52 9.18 9.05 +38.65 %
Rodas3 12.58 12.31 12.28 9.51 9.17 9.01 +39.59 %
Rodas4 17.67 17.31 17.27 14.16 14.06 14.10 +25.33 %
Mean speed-up - 4221% +03 +40.22% +£0.43 +29.18% + 6.35 +3.69% + 193 +2.58% +£2.59 +19.14% £ 5.12

Table B2. Results running the kernel on a K80 CUDA-enabled accelerator hosted in a node equipped with an Xeon E5-2680 v3 processor at
2.5 GHz.

Solver Base (s) Occupancy (s) Prefer L1 (s) Privatization (s) Prefetch (s) Simplification (s) Total speed-up
Ros2 3.77 4.09 4.48 3.20 2.94 2.96 22.40 %
Ros3 4.21 4.61 4.55 3.71 3.71 343 19.11 %
Ros4 5.06 5.50 5.46 4.58 4.29 4.27 16.50 %
Rodas3 5.09 5.52 5.45 4.57 4.29 4.26 17.12 %
Rodas4 741 8.05 7.94 6.93 6.61 6.58 12.09 %
Mean speed-up - =79%+039 125% +0.21 1512% +2.77 3.15% £ 1.81 0.21% £0.19 +17.12% + 3.78

Table B3. Results running the kernel on a P100 CUDA-enabled accelerator hosted in a node equipped with two POWERS processors. In the
P100 platform, we removed the prefetch optimization, as it decreases the performance in all cases.

Solver Base (s) Occupancy (s) Prefer L1 (s) Privatization (s) Prefetch (s) Simplification (s) Total speed-up
Ros2 1.23 1.26 1.18 0.98 1.20 0.90 37.24 %
Ros3 1.39 1.39 1.39 1.14 1.36 1.04 34.17 %
Ros4 1.75 1.74 1.74 1.44 1.70 1.29 40.79 %
Rodas3 1.74 1.75 1.76 1.39 1.70 1.23 41.23 %
Rodas4 2.75 2.74 2.75 2.12 2.66 1.95 40.57 %
Mean speed-up — 40.06% £ 1.09 —0.14% £2.81 +22.48% +3.87 —18.14% + 2.03 4+9.62% + 3.30 +40.57% + 3.04

www.geosci-model-dev.net/10/3679/2017/ Geosci. Model Dev., 10, 3679-3693, 2017

3692 M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author and do not
necessarily reflect the views of the funding agencies.

Special issue statement. This article is part of the special issue
“The Modular Earth Submodel System (MESSy) (ACP/GMD inter-
journal SI)”. It does not belong to a conference.

Acknowledgements. The research leading to these results has
received funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no.
287530 and from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement nos. 675121 and
676629. This work was supported by the Cy-Tera Project, which is
co-funded by the European Regional Development Fund and the
Republic of Cyprus through the Research Promotion Foundation.

Edited by: David Ham
Reviewed by: two anonymous referees

References

Alvanos, M., and Christoudias, T.. MEDINA: MECCA de-
velopment in accelerators — KPP Fortran to CUDA
source-to-source Pre-processor, J. Open Res. Softw., 5,
https://doi.org/10.5334/jors.158, 2017a.

Alvanos, M., and Christoudias, T.. MECCA - KPP For-
tran to CUDA source-to-source pre-processor, available at:
https://doi.org/10.5281/zenodo.546811, 2017b.

Christou, M., Christoudias, T., Morillo, J., Alvarez, D., and Merx,
H.: Earth system modelling on system-level heterogeneous ar-
chitectures: EMAC (version 2.42) on the Dynamical Exascale
Entry Platform (DEEP), Geosci. Model Dev., 9, 3483-3491,
https://doi.org/10.5194/gmd-9-3483-2016, 2016.

Christoudias, T., and Alvanos, M.: Accelerated chemical kinet-
ics in the EMAC chemistry-climate model, in: High Per-
formance Computing &Simulation (HPCS), 2016 Interna-
tional Conference on, IEEE, Innsbruck, Austria, 886-889,
https://doi.org/10.1109/HPCSim.2016.7568427, 2016.

Corden, M. J., and Kreitzer, D.: Consistency of Floating-Point Re-
sults using the Intel® Compiler, Intel Corporation, 2012.

Damian, V., Sandu, A., Damian, M., Potra, F., and
Carmichael, G. R.: The kinetic preprocessor KPP-a soft-
ware environment for solving chemical kinetics, Comput. Chem.
Eng., 26, 1567-1579, 2002.

Fluhr, E. J., Friedrich, J., Dreps, D., Zyuban, V., Still, G., Gon-
zalez, C., Hall, A., Hogenmiller, D., Malgioglio, F., Nett, R.,
Paredes, J., Pille, J., Plass, D., Puri, R., Restle, P., Shan,
D., Stawiasz, K., Toprak Deniz, Z., Wendel, D., and Ziegler,
M.: 5.1 POWERS TM: A 12-core server-class processor in
22nm SOI with 7.6 Tb/s off-chip bandwidth, in: Solid-
State Circuits Conference Digest of technical Papers (ISSCC),

Geosci. Model Dev., 10, 3679-3693, 2017

2014 IEEE International, San Francisco, CA, USA, 96-97,
https://doi.org/10.1109/ISSCC.2014.6757353, 2014.

Jacobson, M. Z., and Turco, R. P.. SMVGEAR: a sparse-matrix,
vectorized Gear code for atmospheric models, Atmos. Environ.,
28,273-284, 1994.

Jockel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede,
H., Baumgaertner, A., Gromov, S., and Kern, B.: Development
cycle 2 of the Modular Earth Submodel System (MESSy2),
Geosci. Model Dev., 3, 717-752, https://doi.org/10.5194/gmd-3-
717-2010, 2010.

Keppens, R., Nool, M., Téth, G., and Goedbloed, J.: Adaptive
mesh refinement for conservative systems: multi-dimensional ef-
ficiency evaluation, Comput. Phys. Commun., 153, 317-339,
2003.

Langlois, P., Nheili, R., and Denis, C.: Numerical reproducibility:
Feasibility issues, in: New Technologies, Mobility and Security
(NTMS), 2015 7th International Conference on, Paris, France,
1-5, IEEE, https://doi.org/10.1109/NTMS.2015.7266509, 2015.

Linford, J. C.: Accelerating Atmospheric Modeling through Emerg-
ing Multi-Core Technologies, May 5, 2010 Blacksburg, Virginia,
PhD Thesis, 2010.

Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.:
Multi-core acceleration of chemical kinetics for sim-
ulation and prediction, in: Proceedings of the Con-
ference on High Performance Computing Networking,
Storage and Analysis, IEEE, Portland, OR, USA, p. 7,
https://doi.org/10.1145/1654059.1654067, 2009.

Munshi, A.: The opencl specification, in: 2009 IEEE Hot Chips
21 Symposium (HCS), 1-314, IEEE, Stanford, CA, USA,
https://doi.org/10.1109/HOTCHIPS.2009.7478342, 2009.

Nvidia: Multi-Process ~ Service, Nvidia, available at:
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_
Service_Overview.pdf (last access: 4 October 2017), 2015a.

Nvidia: Programming guide, availabe at: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html (last access: 4 Oc-
tober 2017), 2015b.

Nvidia: GPU Accelerated Applications, available at: http://www.
nvidia.com/object/gpu-applications.htm (last access: 4 October
2017), 2017.

Quinlan, D. and Liao, C.: The ROSE source-to-source compiler in-
frastructure, in: Cetus Users and Compiler Infrastructure Work-
shop, in conjunction with PACT, vol. 2011, p. 1, Galveston Is-
land, Texas, USA, available at: http://rosecompiler.org/?page_
1id=182 (last access: 4 October 2017), 2011.

Quinlan, D., Liao, C., Too, J., Matzke, R. P., and Schordan, M.:
ROSE Compiler Infrastructure, available at: https://www.cs.rice.
edu/~ken/autotuning/05/slides/quinlan.pdf (last access: 4 Octo-
ber 2017), 2012.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S.,
Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.:
Sensitivity of simulated climate to horizontal and vertical reso-
lution in the ECHAMS atmosphere model, J. Climate, 19, 3771—
3791, 2006.

Sandu, A. and Sander, R.: Technical note: Simulating chem-
ical systems in Fortran90 and Matlab with the Kinetic
PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187-195,
https://doi.org/10.5194/acp-6-187-2006, 2006.

Sandu, A., Verwer, J., Blom, J., Spee, E., Carmichael, G., and Po-
tra, F.: Benchmarking stiff ODE solvers for atmospheric chem-

www.geosci-model-dev.net/10/3679/2017/

https://doi.org/10.5334/jors.158
https://doi.org/10.5281/zenodo.546811
https://doi.org/10.5194/gmd-9-3483-2016
https://doi.org/10.1109/HPCSim.2016.7568427
https://doi.org/10.1109/ISSCC.2014.6757353
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.1109/NTMS.2015.7266509
https://doi.org/10.1145/1654059.1654067
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.nvidia.com/object/gpu-applications.htm
http://www.nvidia.com/object/gpu-applications.htm
http://rosecompiler.org/?page_id=182
http://rosecompiler.org/?page_id=182
https://www.cs.rice.edu/~ken/autotuning/05/slides/quinlan.pdf
https://www.cs.rice.edu/~ken/autotuning/05/slides/quinlan.pdf
https://doi.org/10.5194/acp-6-187-2006

M. Alvanos and T. Christoudias: EMAC GPU-accelerated atmospheric chemistry 3693

istry problems II: Rosenbrock solvers, Atmos. Environ., 31, The Cyprus Intitute: MECCA - KPP Fortran to CUDA

3459-3472, 1997. source-to-source pre-processor, available at: https:
Schepke, C.: Improving Multi-level Parallelism and Online Mesh /lgithub.com/CyIClimate/medina (last access: 4 October
Refinement for Atmospheric Models, Nova Science Publishers 2017), https://doi.org/10.6084/m9.figshare.4294880.v3, 2016.

Inc, New York, 2014. Zhang, H., Linford, J. C., Sandu, A., and Sander, R.: Chemical
Schepke, C. and Maillard, N.: Exploring Multi-level Parallelism mechanism solvers in air quality models, Atmosphere, 2, 510—
in Atmospheric Applications, in: Computer Systems (WSCAD- 532,2011.

SSC), 2012 13th Symposium on, 41-48, Petropolis, Brazil,
IEEE, https://doi.org/10.1109/WSCAD-SSC.2012.13, 2012.

Stuecheli, J.: Power8, in: Hot Chips, vol. 25, Stanford, Palo
Alto, CA, available at: https://www.hotchips.org/wp-content/
uploads/hc_archives/hc25/HC25.20-Processors 1-epub/HC25.
26.210-POWER-Studecheli-IBM.pdf (last access: 4 October
2017), 2013.

www.geosci-model-dev.net/10/3679/2017/ Geosci. Model Dev., 10, 3679-3693, 2017

https://doi.org/10.1109/WSCAD-SSC.2012.13
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.210-POWER-Studecheli-IBM.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.210-POWER-Studecheli-IBM.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.210-POWER-Studecheli-IBM.pdf
https://github.com/CyIClimate/medina
https://github.com/CyIClimate/medina
https://doi.org/10.6084/m9.figshare.4294880.v3

	Abstract
	Introduction
	The EMAC framework
	GPU accelerators
	Related developments

	Implementation
	Challenges and optimizations
	Occupancy improvement
	Memory optimizations
	Control code simplification
	Decreasing the GPU idle time

	Future GPU kernel optimizations

	Results and evaluation
	Application performance
	Numerical and model accuracy

	Conclusions
	Code availability
	Appendix A: Optimization flags
	Appendix B: Impact of optimizations
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	References

