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Abstract. This article extends a previous study (Seneviratne
et al., 2016) to provide regional analyses of changes in cli-
mate extremes as a function of projected changes in global
mean temperature. We introduce the DROUGHT-HEAT Re-
gional Climate Atlas, an interactive tool to analyse and dis-
play a range of well-established climate extremes and water-
cycle indices and their changes as a function of global warm-
ing. These projections are based on simulations from the
fifth phase of the Coupled Model Intercomparison Project
(CMIP5). A selection of example results are presented here,
but users can visualize specific indices of interest using the
online tool. This implementation enables a direct assessment
of regional climate changes associated with global mean tem-
perature targets, such as the 2 and 1.5◦ limits agreed within
the 2015 Paris Agreement.

1 Introduction

The 2015 United Nations Climate Change Conference in
Paris (COP21) recently set the goal of limiting global mean
temperature increases to “well below 2 degrees” and to pur-
sue efforts to limit warming to 1.5 ◦C above pre-industrial
levels. Despite this global agreement, the implications of
these global mean temperature thresholds have not been fully
assessed. Specifically, stakeholders, decision-makers, and
the public need more detailed information with respect to as-
sociated changes on regional scales, in particular for extreme

events and impacts on humans and ecosystems (e.g. Senevi-
ratne et al., 2016, hereafter S16; see also, e.g. Schleussner
et al., 2016; Guiot and Cramer, 2016; James et al., 2017).

Numerous approaches have recently been developed for
identifying regional climate signals associated with specific
global warming targets (James et al., 2017). The technique
used in S16 and this study is an empirical sampling ap-
proach, which, contrarily to pattern scaling (e.g. Hunting-
ford and Cox, 2000; Mitchell, 2003; Tebaldi and Arblaster,
2014; Lopez et al., 2014), does not require a priori assump-
tions on the dependency on global mean temperature (or
other climate variables; e.g. Frieler et al., 2012; Lynch et al.,
2017; Kravitz et al., 2017). Namely, the approach used in
S16 derives for predefined regions the empirical relationship
of changes in regional quantities (e.g. extremes or mean of
climate variables, possibly also impacts; S16) as a function
of global mean temperature changes based on a range of cli-
mate model projections. This approach can be viewed as an
“empirical global mean temperature relationship” (hereafter
referred to as “functional relationship”) technique, which is
a type of hybrid approach compared to the four main ap-
proaches described in James et al. (2017). S16 has shown
that for some extremes (annual maximum and minimum tem-
perature, heavy precipitation events), the ensemble mean re-
sponse of absolute changes was often found to be linear, con-
sistent with assumptions of some of the pattern scaling liter-
ature and results from other publications (e.g. Fischer et al.,
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Figure 1. Example of a plot displaying the functional relationship of a regional climate index (annual maximum of daily maximum temper-
ature, TXx ) on global mean temperature following the S16 approach, including explanatory annotations (adapted from S16).

2014). However, this approach also allows to visually assess
nonlinearities in the functional relationships.

We provide an illustration of the display used in S16 in
Fig. 1. The main advantage of this approach is that it pro-
vides, in a single figure, information on (a) the response of
a given regional quantity for different global mean temper-
ature (and greenhouse gas emissions) targets, (b) an empiri-
cal assessment of this functional relationship (allowing, e.g.
to identify its possible (non)linearity), and (c) the range of
model and scenario response around this value. Hence, com-
plex information can be more easily conveyed to regional
stakeholders, instead of being summarized in several global
analyses or provided as time- and scenario-dependent infor-
mation. While globally aggregated information also has ob-
vious value (e.g. O’Neill et al., 2017), regional information
is of critical importance for adaptation and communication.

The S16 study, which focused on temperature and precip-
itation extremes for two emissions scenarios (RCP8.5 and
RCP4.5), identified that much of the absolute changes in tem-
perature extremes and heavy precipitation events could be re-
lated almost linearly to the changes in global mean tempera-
ture for the time period 1860–2099 (see also Fig. 1), and that
this functional relationship was very similar for the two dif-
ferent emissions scenarios. In addition, it highlighted that –
in absolute terms – changes in regional temperature extremes
tended to be much larger than the global mean temperature
change. The regional model spread was found to be highly
variable depending on the considered quantity and region
(S16). We note that all analyses focused on the transient cli-
mate response and not on the response at climate equilibrium,
which is expected to be substantially different. In addition, it
does not consider aspects related to, e.g. overshooting of cli-
mate targets or irreversibility in the climate response (Knutti

et al., 2016). Moreover, S16 considered changes in absolute
temperature extremes and not in the probability of exceed-
ing a given temperature threshold, which by design would
tend to change exponentially when mean regional tempera-
ture approaches the set threshold (e.g. Fischer and Knutti,
2015), even in the case of a linear relationship of the changes
in absolute temperature extremes (Whan et al., 2015).

As a follow-up to the S16 study, we provide several new
contributions and analyses. First, we introduce a new web-
based interactive plotting framework (hereafter referred to
as the DROUGHT-HEAT Regional Climate Atlas, available
via http://www.drought-heat.ethz.ch/atlas) for the visualiza-
tion of key functional relationships on global mean temper-
ature, so that the results can be easily shared with other re-
searchers and stakeholders. The DROUGHT-HEAT Regional
Climate Atlas has been augmented by several variables com-
pared to the analyses of S16, including responses in regional
mean temperature and precipitation and additional climate
extremes. In addition, the analyses are performed for all
four CMIP5 emissions scenarios (RCP2.6, RCP4.5, RCP6.0,
and RCP8.5). These results can be assessed interactively by
users online. An overview of the main functional relation-
ships and a comparison with the previous analyses of S16
are discussed in Sect. 3.1. We provide some detailed anal-
yses of specific features of interest for the interpretation of
the results. In particular, we assess differences in regional re-
sponses at 1.5, 2, and 3 ◦C global mean temperature increases
in Sect. 3.2. We also assess differences between intra-model
spread (i.e. from several realizations of the same model) and
inter-model spread for the derived functional relationships
in Sect. 3.3. Finally, we provide analyses for regional mean
temperature and precipitation based on simulations beyond
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2100 (Sect. 3.4) to assess the links between long-term vs.
short-term responses.

2 Methods and data

This section presents the data sources and methods used to
produce the DROUGHT-HEAT Regional Climate Atlas. It is
structured as follows: Sect. 2.1 and 2.2 introduce the set of
model simulations and climate and extremes indices which
the analyses are based on. The S16 empirical global mean
temperature relationship approach is presented in Sect. 2.3.
Finally, Sect. 2.4 describes the content and technical imple-
mentation of the DROUGHT-HEAT Regional Climate Atlas.

2.1 Model simulations

The presented regional-scale functional relationships be-
tween a range of indices and global mean temperature
are derived from global climate model (GCM) simulations
from the Coupled Model Intercomparison Project Phase 5
(CMIP5; Taylor et al., 2012). The subset of GCMs used in
this study includes all models for which (a) daily data are
available within CMIP5 and (b) climate change indices from
the joint CCl/CLIVAR/JCOMM Expert Team on Climate
Change Detection and Indices (ETCCDI) are available (Sill-
mann et al., 2013a, b).

To assess the impact of intra-model spread, we perform
our analysis in two steps: using (a) only one ensemble mem-
ber per model (r1i1p1) and (b) all members available. Simi-
lar to S16, we focus on model simulations over the time pe-
riod 1861–2099, as this is the period covered by virtually
all models. For the evaluation of the functional relationship
with global mean temperature beyond the end of the cen-
tury, we also analyse a subset of simulations spanning all
years from 1861 to 2299. For clarity of visual display, we ex-
cluded model simulations of the RCP8.5 scenario for which
no simulations exist in the historical period. To facilitate the
calculation of regional ensemble averages, all GCM output
has been bilinearly interpolated to a horizontal resolution of
2.5◦× 2.5◦. The final set of model simulations employed in
this study is listed in Table 1.

2.2 Climate and extremes indices

For the ensemble member e of each model m and emis-
sion scenario rcpx, we have analysed the 27 ETCCDI core
climate change indices Ircpx,m,e, which were downloaded
from the Canadian Centre for Climate Modelling and Anal-
ysis (CCMA) indices archive (http://www.cccma.ec.gc.ca/
data/climdex/; Sillmann et al., 2013a, b) on 19 May 2016.
Similar to the CMIP5 model data, the indices have been in-
terpolated to 2.5◦× 2.5◦ horizontal resolution.

In addition to the ETCCDI indices, we have computed
three drought indices (which can be used to monitor ei-
ther anomalously dry or anomalously wet conditions) based

on soil moisture, precipitation, and evapotranspiration from
CMIP5 model simulations (see Sect. 2.1) using the R sta-
tistical language and the Climate Data Operators (CDO).
The Standardized Precipitation Index (SPI) has been calcu-
lated using the SPEI package (https://cran.r-project.org/web/
packages/SPEI, based on Vicente-Serrano et al., 2010) for an
accumulation period of 12 months. Soil moisture anomalies
(SMAs, given in units of standard deviations in order to be
independent on model-specific parametrizations of soil mois-
ture depths) have been derived according to the procedure
used in Orlowsky and Seneviratne (2012, 2013), which in-
cludes a posterior filtering of SMAs using a median absolute
deviation filter. In addition, we provide analyses for changes
in precipitation minus evapotranspiration (P−E) as a further
measure of changes in land water availability (e.g. Greve and
Seneviratne, 2015).

We also include mean temperature (T ) and precipitation
(P ) in our analyses. We do this to assess whether the regional
response of extremes is related to the regional mean climate
response or rather reflects a specific behaviour of extremes in
the regions examined. For simplicity, we also refer to these
variables as indices. A complete list of all indices, their data
source, and associated units is provided in Table 2.

2.3 Derivation of the functional relationship between
changes in regional climate indices and global
mean temperature

Yearly global mean temperatures Tglob,rcpx,m,e for emission
scenario rcpx have been derived from each ensemble mem-
ber e of model m. Both Ircpx,m,e and Tglob,rcpx,m,e are treated
as anomalies relative to the pre-industrial reference period of
1861–1880 (subscript ref). For all time steps t , we thus com-
pute 1Tglob,rcpx,m,e,t = Tglob,rcpx,m,e,t − Tglob,rcpx,m,e,ref and
1Ircpx,m,e,t = Ircpx,m,e,t − Ircpx,m,e,ref. Note that Tglob refers
to a model estimate of past and projected future global
mean near-surface temperatures which is known to be biased
with respect to observation-based global mean temperature
records that merge air temperatures over land and sea surface
temperatures over the ocean (Cowtan et al., 2015).

We apply a common land–sea mask at 2.5◦× 2.5◦ to all
indices as we focus on (extremes) indices that are mean-
ingful over land. We then compute regionally averaged in-
dices 1Ireg,rcpx,m,e using the set of globally distributed re-
gions defined in Chap. 3 of the Special Report on Managing
the Risks of Extreme Events and Disasters to Advance Cli-
mate Change Adaptation (SREX; Seneviratne et al., 2012,
Fig. 3-1 therein), hereafter referred to as SREX regions. We
also average the indices over the additional regions defined
in S16 as well as over global land (including ice sheets).

To test the significance of the functional relationship be-
tween the regionally averaged indices and the global mean
temperature signal, we apply an ordinary least squares fit be-
tween 1Tglob,rcpx,m,e and 1Ireg,rcpx,m,e for each individual
model realization (focusing on 1Tglob,rcpx,m,e ≥ 1 ◦C, which

www.geosci-model-dev.net/10/3609/2017/ Geosci. Model Dev., 10, 3609–3634, 2017

http://www.cccma.ec.gc.ca/data/climdex/
http://www.cccma.ec.gc.ca/data/climdex/
https://cran.r-project.org/web/packages/SPEI
https://cran.r-project.org/web/packages/SPEI


3612 R. Wartenburger et al.: Regional climate extremes

Table 1. List of models used in this study (in alphabetical order). Crosses (circles) indicate availability of simulations of the ensemble
member r1i1p1 for the 1861–2099 (1861–2299) period. Note that the number of simulations of other ensemble members is considerably
smaller.

Model Modelling centre Historical RCP2.6 RCP4.5 RCP6.0 RCP8.5

ACCESS1-0 Commonwealth Scientific and Industrial Research Organi-
zation (CSIRO) and Bureau of Meteorology (BOM), Aus-
tralia

x x x

bcc-csm1-1 Beijing Climate Center, China x o o x o
bcc-csm1-1-m Meteorological Administration, China x x x x x
CanESM2 Canadian Centre for Climate Modelling and Analysis,

Canada
x x x x

CCSM4 National Center for Atmospheric Research, USA x o o o
CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici, x x x
CMCC-CMSa Italy x x x
CNRM-CM5 Centre National de Recherches Météorologiques/

Centre Européen de Recherche et Formation Avancées en
Calcul Scientifique, France

x x x x

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organi-
zation/Queensland Climate Change Centre of Excellence,
Australia

x x o x o

FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences, China

x x x x x

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA x x x x
GFDL-ESM2G x x x x x
GFDL-ESM2M x x x x x
HadGEM2-CC Met Office Hadley Centre, UK x x x
HadGEM2-ES x o x o
inmcm4 Institute for Numerical Mathematics, Russia x x x
IPSL-CM5A-LR Institut Pierre-Simon Laplace, France x o o x o
IPSL-CM5A-MR x x x x
IPSL-CM5B-LR x x x
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, x x x x x
MIROC-ESM- Atmosphere and Ocean Research Institute (The University x x x x x
CHEM of Tokyo), and National Institute for Environmental Studies,

Japan
x x x x x

MIROC5 x x x x x
MPI-ESM-LR Max Planck Institute for Meteorology, Germany x o o o
MPI-ESM-MR x x x x
MRI-CGCM3 Meteorological Research Institute, Japan x x x x x
NorESM1-M Norwegian Climate Centre, Norway x x x x x

a Not used for calculation of P −E.

roughly represents future projections in the individual model
simulations). The number of models for which the slope of
the regression line (i.e. the measure of the functional rela-
tionship) is significantly different from zero (p = 0.01, after
controlling the false discovery rate according to Benjamini
and Hochberg, 1995, as recently suggested by Wilks, 2016)
is used to indicate the robustness of the functional relation-
ship in the ensemble mean of the changes (see Sect. 3). Note
that a significant response of an individual model realization
implies that the corresponding relationship can be explained
by a linear model, though it does not guarantee superiority
of the linear model over other, higher-order polynomials. We
also test the significance of the differences of changes in be-
tween 1.5 and 2 ◦C global warming based on all model simu-
lations of a specific index and scenario, using a two-sided

paired Wilcoxon test (p = 0.01, after controlling the false
discovery rate according to Benjamini and Hochberg, 1995).

To filter out short-term climatic fluctuations, a decadal
running mean is applied to the anomalies, starting with
1871–1880 (note that the year associated with each run-
ning mean period refers to the last year of that period). We
then compute the unweighed ensemble mean change of the
smoothed indices 1Ireg,rcpx =1Ireg,rcpx,m,e and the corre-
sponding ensemble mean change of the global mean temper-
atures 1Tglob,rcpx =1Tglob,rcpx,m,e.

In order to yield common, model-independent values of
1Tglob and to provide a bidirectional uncertainty estimate
(i.e. including both the inter-model ensemble spread in
1Ireg,rcpx and 1Tglob,rcpx), we perform a spline interpolation
of 1Ireg,rcpx,m,e to a common temperature axis. The min-
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Table 2. List of indices (in alphabetical order) as presented in the DROUGHT-HEAT Regional Climate Atlas. Crosses denote indices
specifically discussed in this paper as well as indices expressed as percent changes relative to the pre-industrial reference period (1861–
1880).

Index Description Unit Expressed as Discussed in Reference for computation
% change this paper

CDD Maximum length of dry spell days x Sillmann et al. (2013a, b)
CSDI Cold speel duration index days Sillmann et al. (2013a, b)
CWD Maximum length of wet spell days Sillmann et al. (2013a, b)
DTR Daily temperature range ◦C Sillmann et al. (2013a, b)
FD Number of frost days days Sillmann et al. (2013a, b)
GSL Growing season length days Sillmann et al. (2013a, b)
ID Number of icing days days Sillmann et al. (2013a, b)
P −E Precipitation – evapotranspiration mm day−1 x Greve and Seneviratne (2015)
P Mean precipitation mm x x Taylor et al. (2012)
PRCPTOT Annual total precipitation in wet days mm x Sillmann et al. (2013a, b)
R10mm Annual count of days when PRCP≥ 10 mm days Sillmann et al. (2013a, b)
R1mm Annual count of days when PRCP≥ 1mm days Sillmann et al. (2013a, b)
R20mm Annual count of days when PRCP≥ 20 mm days Sillmann et al. (2013a, b)
R95pTOT Annual total PRCP when RR > 95 % mm Sillmann et al. (2013a, b)
R99pTOT Annual total PRCP when RR > 99 % mm Sillmann et al. (2013a, b)
Rx1day Monthly maximum 1-day precipitation mm x Sillmann et al. (2013a, b)
Rx5day Monthly maximum 5-day precipitation mm x x Sillmann et al. (2013a, b)
SDII Simple precipitation intensity index mm day−1 Sillmann et al. (2013a, b)
SMA Soil moisture anomalies 1 x Orlowsky and Seneviratne (2013)
SPI12 Standardized Precipitation Index (12-month

accumulation period)
1 x Vicente-Serrano et al. (2010)

SU Number of summer days days Sillmann et al. (2013a, b)
T Mean temperature ◦C x Taylor et al. (2012)
TN10p Percentage of days when TN < 10th percentile % days Sillmann et al. (2013a, b)
TN90p Percentage of days when TN > 90th percentile % days Sillmann et al. (2013a, b)
TNn Monthly minimum of daily min. temperature ◦C x Sillmann et al. (2013a, b)
TNx Monthly maximum of daily min. temperature ◦C x Sillmann et al. (2013a, b)
TR Number of tropical nights days Sillmann et al. (2013a, b)
TX10p Percentage of days when TX < 10th percentile % days Sillmann et al. (2013a, b)
TX90p Percentage of days when TX > 90th percentile % days Sillmann et al. (2013a, b)
TXn Monthly minimum of daily max. temperature ◦C x Sillmann et al. (2013a, b)
TXx Monthly maximum of daily max. temperature ◦C x Sillmann et al. (2013a, b)
WSDI Warm spell duration index days Sillmann et al. (2013a, b)

imum and maximum of the interpolated values (across all
model realizations and scenarios) are then used to determine
the overall spread of 1Ireg relative to 1Tglob.

2.4 Plotting framework

2.4.1 Content of the plotting framework

All plots of the regional-scale functional relationships with
global mean temperature and related figures similar to those
shown in the remainder of this paper are available through
the web interface of the DROUGHT-HEAT Regional Climate
Atlas. All plots available through this interactive interface
are based on the computation of the functional relationship
with global mean temperature using the S16 framework as
described in the previous section.

The layout and individual components of the DROUGHT-
HEAT Regional Climate Atlas are shown in Fig. 2. Plots are

drawn by making the appropriate selections in the data panel
(left-hand side of the screenshot). The first item to select is
the diagnostic (i.e. “Functional relationship with global mean
temperature” for the results of this study). After that, the data
source drop-down menu is populated with a list of available
data sets (i.e. CMIP5 model simulations for this study, for ei-
ther the period 1861–2099 or 1861–2299). Equivalently, the
drop-down menu labelled “Select Index or Variable” is filled
with available indices. Credits of the selected diagnostic and
data source are displayed on the right-hand panel.

The map in the data panel shows the set of regions for
which plots of the chosen diagnostic are available (SREX re-
gions for this study). Other region sets can be selected by
using the drop-down menu on top of the map (e.g. also fur-
ther regions used in S16, such as the contiguous US, central
Brazil, the Arctic, and southern Asia). Once the user has se-
lected a region (by either clicking on one of the polygons
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Figure 2. Screenshot of the DROUGHT-HEAT Regional Climate Atlas. For demonstration, this screenshot displays the functional relation-
ship of 1TXx on 1Tglob based on model simulations from 1861 to 2099 for the SREX region west North America (WNA).

in the map or by selecting a global domain), the requested
plot is displayed in the main panel of the website. When the
appropriate selections are made, a link appears allowing the
user to navigate to a set of box plots showing the distribu-
tion of the selected index for fixed global mean temperature
targets of 1.5, 2 and 3 ◦C (for more details, see Sect. 3.2).

The atlas has been designed to be self-explanatory. Each
item in the drop-down lists is accompanied by a short help
text that shows up when hovering over it with the mouse. In
addition, a pop-up window has been added to provide help
for first-time users. Users interested in reusing the results
shown in a specific plot can download the related data in
comma-separated value (CSV) format.

2.4.2 Technical implementation of the plotting
framework

The DROUGHT-HEAT Regional Climate Atlas is based
on a number of web modules served through the Guni-
corn web application server (http://gunicorn.org/) and the

NGINX reverse-proxy server (https://www.nginx.com/). The
website is built within the Django web framework (https:
//www.djangoproject.com/). It is hosted on a web server at
ETH Zurich.

The map shown in the data panel of the DROUGHT-
HEAT Regional Climate Atlas (see Fig. 2) is based on Leaflet
(http://leafletjs.com/). The background (world) layer is based
on tilesets served via Mapbox (https://www.mapbox.com/).
The region boundaries are read from text files in GeoJSON
format.

There are two processing layers required to produce plots
within the framework. First, a locally hosted ncl script serves
static CSV files to the web server. The script writes the
data points of each plot series into files inside a unique
folder which represents the diagnostic, region and index. It
also generates two customizable files containing plot and se-
ries configuration parameters for each index. In the second
(server-sided) layer, the CSV files are read and processed
by JavaScript code. Finally, the Highcharts charting library
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(http://www.highcharts.com/) parses the input files to gener-
ate the desired plot.

3 Results and discussion

In the following, we demonstrate the capabilities of the
DROUGHT-HEAT Regional Climate Atlas by presenting
some selected results. We also discuss some more in-depth
analyses considering specific features of the assessed func-
tional relationships between regional climate and global
mean temperature changes.

3.1 Functional form of the relationship

Figure 3 displays the relations of regional changes in
temperature-based climate and extremes indices in various
SREX regions to global mean temperature (1Tglob). The
indices show an apparent linear scaling with 1Tglob when
solely considering the ensemble mean change (the signifi-
cance of the functional relationship of individual ensemble
members is tested below; see Table 3). Moreover, the rela-
tionship is apparently not influenced by differences in 1Tglob
among the model simulations (see Fig. A8 in the Appendix).
As all indices in Fig. 3 are derived from temperatures, the
scaling of changes in these indices shows similar linear fea-
tures to the scaling of changes in regional mean temperatures
(1T , first row of Fig. 3). Besides this, the relationship of
these indices to global mean temperature involves the least
uncertainties (as measured by the ensemble spread) when
compared to the other indices shown in Fig. 4. For all of the
indicated regions, the slope of the temperature-based indices
is consistently above 1 (although only by a small margin for
1TXn in the Amazon region, AMZ, which is also the case in
other tropical regions, not shown), indicating a larger change
of the regional indices compared to 1Tglob. For instance, at
2 ◦C global warming, the warming in hot extremes (TXx) in
the Mediterranean (SREX region MED) amounts to 3.2 ◦C.
The largest departures from the identity line are found for
changes in the annual minimum of both daily maximum and
minimum temperatures (1TXn and 1TNn) in north Europe
(NEU), which is very well in line with the observed recent
decrease in temperature variance in the northern mid-to-high
latitudes due to Arctic amplification (Screen, 2014).

For the precipitation-based indices discussed here, the
responses are often less pronounced and subject to larger
inter-model uncertainties (Fig. 4). Nevertheless, the ensem-
ble mean changes of the purely precipitation-based indices
(1P , 1Rx5day, 1CDD, and 1SPI12) still show a distinct
linear scaling with 1Tglob in some regions. For example,
there is a clear tendency for a positive scaling of heavy pre-
cipitation (1Rx5day) with 1Tglob in NEU, central Europe
(CEU), central North America (CNA), and east Asia (EAS).
Moreover, MED displays a remarkable increase in the max-
imum dry spell lengths (1CDD) by the end of the century

(i.e. the decade in which global mean temperature anoma-
lies are projected to reach 1Tglob = 4.75 ◦C in the RCP8.5
scenario). This is consistent with the response of the drought
indices (1SPI12, 1SMA, and 1P −E) in this region to-
wards drying, although the large uncertainties in 1SMA near
the end of the century must not be ignored. The trends in
1SPI12, 1SMA, and 1P −E in AMZ point towards a dry-
ing in this region, which is unique among other tropical re-
gions (not shown). However, it must be noted that – apart
from the positive scaling of 1SPI12 in NEU and EAS and the
wetting signal indicated by 1P −E in NEU – the responses
are connected with large uncertainties and both an increase
and a decrease of these indices is within the projected range
even for large values of 1Tglob. Note that the differences be-
tween the scaling of mean precipitation and heavy precipita-
tion could possibly be explained by different sensitivities to
aerosol loading (Pendergrass et al., 2015).

Overall, the functional relationship is very similar for
the four emission scenarios (Figs. 3 and 4). Thus, regional
changes in the indicated indices can be usefully related to
given cumulative CO2 targets (according to S16), indepen-
dently of the emission pathway.

Table 3 displays the significant linear trends of the previ-
ously discussed indices of the RCP8.5 scenario for 1Tglob ≥

1 ◦C. Models generally agree that changes in global mean
temperatures translate into enhanced changes both in re-
gional mean temperatures over land as well as in regional
temperature extremes. The scaling with precipitation-derived
indices shows a much more diverse pattern. Heavy precipi-
tation events (as reflected by Rx5day) are projected to in-
tensify over several of the selected regions, most strikingly
over NEU, EAS, and EAF (east Africa). Dry spells are pro-
jected to become longer mainly over MED and AMZ, which
is in line with both a decrease in precipitation and enhanced
soil moisture depletion as shown by 1SMA (although pro-
jections of CDD are generally dominated by larger uncertain-
ties, which is in part due to high model sensitivities related to
the binary cut-off of 1 mm used to distinguish dry days from
days with precipitation). The Mediterranean region (MED) is
the only region for which all relevant indices point towards
a distinct drying. In contrast, precipitation is projected to in-
crease with increasing global mean temperatures over NEU,
EAS, and EAF. While this signal is consistent with the trend
in SPI12 in each of the three regions, soil moisture anomalies
are projected to only increase in EAF. Apart from MED, the
model agreement on trends in P −E is mostly poor.

3.2 1.5 vs. 2 ◦C response

Figures 5 and 6 present the CMIP5-based distributions of the
changes in the various indices for 1.5, 2, and 3 ◦C global
warming, and for the four emission scenarios (Appendix A
shows the same type of plots for all other SREX regions
as well as for global land; not discussed). Significant differ-
ences between 1.5 and 2 ◦C global warming (see Sect. 2.3)
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Figure 3. Functional relationships with global mean temperature for the indices 1T , 1TXx , 1TXn, 1TNx , and 1TNn, based on CMIP5
simulations of ensemble member r1i1p1 and averaged over the SREX regions MED, CEU, NEU, CNA, AMZ, and EAS. See Table 2 for
a description of the indices.
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Figure 5. Response of indices 1T , 1TXx , 1TXn, 1TNx , 1TNn, 1P , 1Rx5day, 1CDD, 1SPI12, 1SMA, and 1P −E to a global mean
temperature increase of 1.5, 2, and 3◦C based on CMIP5 simulations of ensemble member r1i1p1 and averaged over the European SREX
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the median value. Values outside this range are displayed as dots.
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Figure 6. Like Fig. 5 but for SREX regions CNA, AMZ, and EAS.
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Table 3. Scaling slopes of the RCP8.5 scenario for 1Tglob ≥ 1◦C and percent of models with a statistically significant linear scaling (in
brackets, p = 0.01) for various SREX regions, based on CMIP5 simulations of ensemble member r1i1p1. Bold values indicate significance
for at least 50% of the contributing models for which the sign of the trend is identical to the sign of the ensemble mean trend. See Table 2
for a description of the indices.

Index Regions

MED CEU NEU CNA AMZ EAS SAU EAF

1T/1Tglob (◦C ◦C−1) 1.24 (100) 1.26 (100) 1.36 (100) 1.39 (100) 1.30 (100) 1.36 (100) 0.96 (100) 1.15 (100)
1TXx/1Tglob (◦C ◦C−1) 1.65 (100) 1.77 (100) 1.30 (96) 1.66 (100) 1.59 (100) 1.49 (100) 1.10 (100) 1.19 (100)
1TXn/1Tglob (◦C ◦C−1) 1.11 (100) 2.00 (100) 2.53 (100) 1.86 (100) 1.03 (100) 1.45 (100) 0.85 (100) 0.92 (100)
1TNx/1Tglob (◦C ◦C−1) 1.55 (100) 1.52 (100) 1.21 (100) 1.48 (100) 1.52 (100) 1.34 (100) 1.08 (100) 1.24 (100)
1TNn/1Tglob (◦C ◦C−1) 1.11 (100) 2.35 (100) 2.77 (100) 2.05 (100) 1.24 (100) 1.61 (100) 0.81 (100) 1.28 (100)
1P/1Tglob (% ◦C−1) –5.87 (65) 0.62 (23) 4.53 (92) 0.93 (12) −1.67 (23) 4.13 (92) −2.10 (8) 5.38 (65)
1Rx5day/1Tglob (% ◦C−1) −0.83 (8) 3.59 (85) 5.10 (100) 3.42 (77) 3.20 (73) 6.52 (100) 2.10 (12) 7.73 (85)
1CDD/1Tglob (days ◦C−1) 10.73 (96) 1.31 (50) 0.15 (12) 0.68 (8) 3.78 (62) −0.91 (31) 2.75 (58) −0.93 (8)
1SPI12/1Tglob (1 ◦C−1) –0.32 (72) 0.05 (28) 0.35 (92) 0.06 (20) −0.15 (36) 0.23 (92) −0.10 (24) 0.22 (64)
1SMA/1Tglob (1 ◦C−1) –0.62 (88) −0.07 (28) −0.12 (28) −0.13 (36) –0.36 (52) −0.10 (40) −0.01 (28) 0.34 (68)
1P −E/1Tglob (mm ◦C−1) –0.05 (80) −0.01 (8) 0.05 (56) −0.00 (0) −0.04 (16) 0.03 (32) −0.01 (8) 0.05 (40)

are observable for virtually all of the temperature-based in-
dices, when excluding the RCP2.6 scenario (where only
6 out of 18 models reach 1Tglob = 2 ◦C). These findings
are mostly independent from the Representative Concentra-
tion Pathway (RCP) scenario chosen. For the precipitation-
based indices, the differences in the response between the
two global mean temperature targets are mostly insignificant.
MED is projected to experience the strongest drying, as in-
dicated by the significant increase in 1CDD (RCP4.5 and
RCP8.5) and the corresponding decrease in water availabil-
ity, as reflected by the decrease in 1SMA (RCP8.5) and a de-
crease in 1P −E (RCP4.5), confirming that this region is
a potential hotspot for future drought-related changes (Or-
lowsky and Seneviratne, 2013; Guiot and Cramer, 2016;
Schleussner et al., 2016). On the other hand, NEU and EAS
(Fig. 6) experience a significant increase in wet extremes.
The other non-temperature indices show mostly no statis-
tically significant distinction in the response between the
two global mean temperature targets. The large spread in
the precipitation-based indices in AMZ indicates that pre-
cipitation projections in this region are subject to substan-
tial uncertainties. The number of significant results for the
precipitation-based indices shows some dependency on the
scenario, with a slight dominance of significant differences
in the RCP8.5 scenario.

A broader overview of the significance in differences be-
tween 1.5 and 2 ◦C global warming (using the same approach
as above) considering all ETCCDI indices and SREX regions
is provided in Fig. 7. Note that we focus on the RCP8.5 sce-
nario here, as (1) the simulations of this scenario all reach
the 2◦ global warming level and (2) this scenario constitutes
the largest ensemble of simulations (see Fig. A8). There is
an obvious dominance in significant differences for virtually
all of the temperature related indices except from FD (frost

days), GSL (growing season length), and ID (icing days), for
which the changes are (nearly) zero in all (sub)tropical re-
gions. Precipitation changes are mostly significant in mid- to
high-latitude regions, as reflected by the various related in-
dices. The drought indices (P −E, SMA, and SPI12) show
significant changes only in a few regions, either pointing to-
wards a distinct wetting (e.g. SPI12 in east North America –
ENA) or drying (e.g. SMA in south Africa – SAF).

3.3 Intra-model variability

The functional relationships and uncertainty ranges dis-
cussed so far are based on one ensemble member (r1i1p1)
of the applied models (see Table 1). In order to investigate
any impact of intra-model variability on this range, Fig. 8
displays the ensemble mean and uncertainty ranges based
on all ensemble members available for each model vs. the
one-member-based ensemble mean and uncertainty range on
the example of the precipitation-based indices discussed ear-
lier. The regional signal of the functional relationship of
1SMA based on all ensemble members of the RCP4.5 sce-
nario shows some inconsistencies with the other scenarios,
which was found to be due to biases in one individual model
simulation. Apart from this, the consideration of all mem-
bers (and thus intra-model variability) results in a marginally
enhanced uncertainty range (the largest enhancements were
found for 1CDD and 1SMA), while the ensemble mean is
nearly identical to the ensemble mean of the one-member-
based indices. Thus, the uncertainty ranges based on one
member seem to be appropriate to also cover intra-model
variability. However, a number of models provide only the
r1i1p1 simulation, potentially resulting in an underestima-
tion of the true inter-model variability. Moreover, including
only one run per model avoids models which provide more
runs having a higher weight in the ensemble results.
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3.4 Beyond 2100

While most CMIP5 model simulations end by the end of the
21st century, a few simulations are available up to the year
2299 (see Table 1). These allow us to analyse the functional
relationship beyond 2100 and to assess their longer-term be-
haviour.

The long-term functional relationship of changes in
temperature-related indices to changes in global mean tem-
perature is similar (i.e. mostly linear in the ensemble mean)
to the one shown in Fig. 3 (not shown). For the other indices,

the linear scaling assumption for the 1861–2299 period ap-
parently only holds for a subset of indices and differs among
regions (Fig. 9). Regions in which the indices scale linearly
with 1Tglob in the RCP8.5 scenario are also often character-
ized by a near-linear response in the other scenarios, which is
remarkable given the fact that 1Tglob is projected to remain
constant or to decrease over time in these scenarios. In the
RCP8.5 scenario, the trend towards more extreme dry condi-
tions in MED (and partly in AMZ) is projected to continue
also beyond 2100, while NEU and EAS are characterized by
a continuation of the intensification in wet extremes on both
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short (1Rx5day) and longer-term (1SPI12) timescales. Ir-
respective of the changes in 1P , 1Rx5day continues to in-
crease in a near-linear fashion in all regions except MED.

4 Conclusions

We have developed the “DROUGHT-HEAT Regional Cli-
mate Atlas”, a new interactive web interface available via
http://www.drought-heat.ethz.ch/atlas, which provides plots
of the functional relationship between changes in regional
climate indices and global mean temperature for 26 larger
IPCC predefined regions. Besides acting as a platform to fos-
ter scientific discussion, the aim of this web interface is to in-
crease the accessibility of peer-reviewed scientific results to
the general public, which is of major concern for the commu-
nication of climate science findings (e.g. Harold et al., 2016).
This is particularly relevant for the critical evaluation of the
regional-scale implications of considered global mean tem-
perature limits, such as the 1.5 and 2 ◦C temperature goals
established in the 2015 Paris Agreement.

With the selected results presented here, we have demon-
strated that a number of regionally averaged climate indices
show a distinct linear relationship with global mean temper-
atures both in the ensemble mean and in individual CMIP5
model realizations, as also illustrated in S16 for a more lim-
ited set of indices and emissions scenarios. The linear rela-
tionship is particularly obvious for the analysed temperature-
derived indices and still present for a number of drought and
water-cycle indices. We note, however, that some analyses
display departures from such linear relationships, in partic-
ular in the case of indices showing a low signal to noise
in projections (e.g. in several regions for mean precipita-
tion, dry spell lengths, soil moisture anomalies, and precip-
itation minus evapotranspiration). Such departures are gen-
erally more pronounced in the RCP2.6 scenario, because of
the weak overall forcing in that emission scenario, and possi-
bly also because of differences in aerosol forcing in RCP2.6
compared to the other emission scenarios (Pendergrass et al.,
2015). These cases of non linearities illustrate the advantage
of the applied S16 approach compared to traditional pattern
scaling approaches, as the derived functional relationships
are purely empirical and not assessed from a priori deter-
mined mathematical relationships.

Projected changes in the indices are overall larger in a 2 ◦C
world (i.e. 1Tglob = 2 ◦C relative to pre-industrial levels)
compared to a 1.5 ◦C world (i.e. 1Tglob = 1.5 ◦C relative to
pre-industrial levels). The differences between the two global
mean temperature limits are particularly large and generally
significant for regional mean and extreme temperatures. Re-
sults tend to be less robust for water-cycle indices, in par-
ticular for those related to water availability (soil moisture
anomalies or precipitation minus evapotranspiration). We en-
courage the reader to use the DROUGHT-HEAT Regional
Climate Atlas to evaluate these regional functional relation-
ships using other indices or other regions than those pre-
sented in this study.

The DROUGHT-HEAT Regional Climate Atlas has been
designed to be easily expanded both in terms of functionality
(e.g. adding support for additional plot types) and in terms
of the number and type of supported data sets and diagnos-
tics. By these means, we facilitate an easy extension of the
platform to include graphical material from upcoming pub-
lications within the scope of the DROUGHT-HEAT project
and beyond.

Code availability. All code used to prepare the results discussed
within this study is available upon request from the first author.

Data availability. All data produced within this study are available
via the website http://drought-heat.ethz.ch/atlas/ through the export
functions of the plots (not including individual ensemble members).
Raw data are available upon request from the first author.
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Appendix A: Supplementary figures
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Figure A1. Response of indices 1T , 1TXx , 1TXn, 1TNx , 1TNn, 1P , 1Rx5day, 1CDD, 1SPI12, 1SMA, and 1P −E to global mean
temperature increases of 1.5, 2, and 3◦C based on CMIP5 simulations of ensemble member r1i1p1 and averaged over the SREX regions
ALA, CAM, and CAS. The upper and lower hinges of the box plots represent the first and third quartiles. The whiskers extend to the highest
(lowest) value that is within 1.5 times the interquartile range of the upper (lower) hinge. The central line of each box plot indicates the median
value. Values outside this range are displayed as dots. See Table 2 for a description of the indices.

www.geosci-model-dev.net/10/3609/2017/ Geosci. Model Dev., 10, 3609–3634, 2017



3626 R. Wartenburger et al.: Regional climate extremes

CGI

RCP2.6

CGI

RCP4.5

CGI

RCP6.0

CGI

RCP8.5

EAF

RCP2.6

EAF

RCP4.5

EAF

RCP6.0

EAF

RCP8.5

ENA

RCP2.6

ENA

RCP4.5

ENA

RCP6.0

ENA

RCP8.5

2
4
6

0
2
4
6

2.5
5.0
7.5

10.0
12.5

1
2
3
4
5

2.5
5.0
7.5

10.0
12.5

-10
0

10
20
30
40

-20
0

20
40

-10
0

10
20

0

1

2

-10
-5
0
5

0.0

0.4

0.8

T
T

X
x

T
X

n
T

N
x

T
N

n
P

%
R

x5
da

y
%

C
D

D
da

ys
SP

I1
2

SM
A

P
E

1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3

o significant difference in between the distributions of for and
ignificant difference in between the distributions of for and

N
S

Figure A2. Like Fig. A1 but for SREX regions CGI, EAF, and ENA.
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Figure A3. Like Fig. A1 but for SREX regions NAS, NAU, and NEB.
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Figure A4. Like Fig. A1 but for SREX regions SAF, SAH, and SAS.
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Figure A5. Like Fig. A1 but for SREX regions SAU, SEA, and SSA.
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Figure A6. Like Fig. A1 but for SREX regions TIB, WAF, and WAS.
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Figure A7. Like Fig. A1 but for SREX regions WNA and WSA, and for global land.
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