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Abstract. Accurate model representation of land–
atmosphere carbon fluxes is essential for climate projections.
However, the exact responses of carbon cycle processes
to climatic drivers often remain uncertain. Presently,
knowledge derived from experiments, complemented by
a steadily evolving body of mechanistic theory, provides
the main basis for developing such models. The strongly
increasing availability of measurements may facilitate new
ways of identifying suitable model structures using machine
learning. Here, we explore the potential of gene expression
programming (GEP) to derive relevant model formulations
based solely on the signals present in data by automatically
applying various mathematical transformations to potential
predictors and repeatedly evolving the resulting model struc-
tures. In contrast to most other machine learning regression
techniques, the GEP approach generates “readable” models
that allow for prediction and possibly for interpretation. Our
study is based on two cases: artificially generated data and
real observations. Simulations based on artificial data show
that GEP is successful in identifying prescribed functions,
with the prediction capacity of the models comparable to
four state-of-the-art machine learning methods (random

forests, support vector machines, artificial neural networks,
and kernel ridge regressions). Based on real observations we
explore the responses of the different components of terres-
trial respiration at an oak forest in south-eastern England.
We find that the GEP-retrieved models are often better in
prediction than some established respiration models. Based
on their structures, we find previously unconsidered expo-
nential dependencies of respiration on seasonal ecosystem
carbon assimilation and water dynamics. We noticed that
the GEP models are only partly portable across respiration
components, the identification of a “general” terrestrial
respiration model possibly prevented by equifinality issues.
Overall, GEP is a promising tool for uncovering new
model structures for terrestrial ecology in the data-rich era,
complementing more traditional modelling approaches.

1 Introduction

One prerequisite to understand and anticipate the global con-
sequences of anthropogenic climate change is an accurate
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quantitative description of the terrestrial carbon cycle (Bo-
nan, 2008; Heimann and Reichstein, 2008; Luo et al., 2015).
However, the description of the mechanisms underlying the
total terrestrial efflux of CO2 (S. Peng et al., 2014), of-
ten referred to as “terrestrial ecosystem respiration” (Reco),
varies across the scientific literature and existing global mod-
els. This is partly because Reco does not originate from a
single process but is the sum of fluxes from different au-
totrophic and heterotrophic respiration processes that oper-
ate across different temporal and spatial scales and compart-
ments (e.g. soil depths). Hence, it is experimentally very dif-
ficult to disentangle the main abiotic and biotic factors driv-
ing respiratory processes at the ecosystem level (Trumbore,
2006) and to derive suitable models for the individual res-
piration processes. In the rest of the paper we use the term
“model” as an equivalent of “response functions”, i.e. some
analytic description of how environmental drivers influence
ecosystem fluxes.

Traditionally, respiration models have been based on some
theoretical considerations, but largely remain empirical in
nature (e.g. Reichstein and Beer, 2008; Gilmanov et al.,
2010; Hoffmann et al., 2015). Conventional model building
(Fig. 1) is primarily hypothesis driven and capitalizes both
on some understanding of the system and reported scaled ex-
periments (Migliavacca et al., 2012; Richardson et al., 2008).
Gupta et al. (2012) describe this common paradigm of model
development as a four-step approach involving observational,
conceptual, mathematical and computational phases (see also
e.g. Bennett et al., 2010; Williams et al., 2009). During the
observational phase, the system under scrutiny is monitored
and observations are assembled, ideally representing process
responses to hypothesized driving variables. Based on these
observations, a conceptual model is proposed, which subse-
quently guides the formulations of mathematical represen-
tations of the system states and dependencies. The mathe-
matical description then provides the basis for computational
models that are used for simulations (Jakeman et al., 2006).
Model–data integration may additionally lead to iterative
structural revisions or parameter optimizations (Williams
et al., 2009). This conventional approach to model devel-
opment is also characteristic of different kinds of ecological
model building, including the development of biogeochemi-
cal models (Williams et al., 2009).

We explore the possibility of reverse engineering offering
an automated alternative to model development for predict-
ing terrestrial carbon fluxes (Fig. 1). In reverse engineering,
the work flow is fundamentally different (Bongard and Lip-
son, 2007), comprising a database set-up phase, a computa-
tional phase, a mathematical phase and a conceptual phase
(Gupta et al., 2012). The rationale behind reordering the
key phases is firstly to minimize the human influence and
perception biases that might shape the formulation of new
hypotheses, and secondly to increase the chance of novel
model structures automatically emerging from the available
data and that would not be so obvious from a direct analysis.

Reverse engineering aims at identifying some mathematical
representation of a system that is to a large degree indepen-
dent of a priori conceptualizations: in the current case, the
respiratory response of terrestrial ecosystems to environmen-
tal drivers. Reverse engineering leaves the model construc-
tion up to an algorithm and is therefore a way to empirically
learn from observations with minimal user input.

Of course, expert knowledge still has a large influence on
the modelling process, as only a certain set of variables can
be measured and an even smaller subset is indeed available
for model development, which includes the restriction to a
certain plausible number of time lags, and hence full ob-
jectivity of automatic model development cannot be truly
achieved. Furthermore, expert knowledge comes into play
when the algorithm is set for running, by tuning the set of
parameters according to the problem needed to be solved and
as well during the observation collection and during the final
decision on whether the solution returned by the algorithm
actually makes sense at all and whether it can be used further.
Nevertheless, we believe that by shifting the moment when
the analyst makes the decision regarding the selected model,
a larger degree of objectivity in modelling is achieved.

Reverse engineering is close to machine learning based
regression techniques, where various candidate model for-
mulations and specifications are explored in order to mini-
mize the prediction error. The fundamental difference from
typical model building is that reverse engineering typically
provides a symbolic regression, that is, the resulting struc-
tures are ideally directly readable as mathematical functions
(i.e. response functions) and can be interpreted. The read-
able character of the returned solutions allows us to consider
the applicability of the derived structures in other system do-
mains (Ashworth et al., 2012).

Here, we focus on the gene expression programming
(GEP, Ferreira, 2001) reverse engineering approach. GEP is
an evolutionary algorithm that constructs mathematical re-
sponse functions. In its essence, GEP basically converges to
a solution after rejecting a large number of potential regres-
sion models over a certain number of evolutionary steps. Due
to its structural design, GEP can be applied in a wide range
of empirical modelling problems (Y. Peng et al., 2014; Khat-
ibi et al., 2013; Traore and Guven, 2013), including (soil)
hydrology (Fernando et al., 2009; Hashmi and Shamseldin,
2014). To the best of our knowledge the potential of GEP has
not yet been explored for modelling biogeochemical fluxes
in terrestrial ecosystems.

We seek to understand as well whether automating model
development can provide new insights into understanding the
dynamics of terrestrial respiration processes. We base our
study on data from a long-term monitoring experiment of
Reco components, i.e. above-ground respiration, root respi-
ration, mycorrhiza respiration, and soil autotrophic and soil
heterotrophic respiration. The monitoring was done sepa-
rately but in a time-synchronized way over 2 years and is
described in detail by Heinemeyer et al. (2012).
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Figure 1. Direct approach and reverse engineering in model development for describing dynamical systems. Existing and possible steps
needed in the process of building a model. For the direct approach, the process starts with the building of a hypothesis from existing
knowledge. The hypothesis is then the subject of abstraction and is summarized in a mathematical model that has two components: the
structure and the parameters. The mathematical model can be translated into a computational form that will generate predictions. Depending
on how well the predicted values manage to recreate the available observations, the model’s parameters are calibrated or, if the general trends
are missed, there might be a need for structural reformulation. On the other hand, in the reverse engineering approach, a machine learning
method is used to generate a set of candidate models that are then compared with the available observations and which according to the
prediction capacity may have to go through structural changes by automatic evolution or through a final parameter adaptation. From the set
of evolved models, the best model in terms of prediction capacity is chosen and its structure will be the basis for hypothesis building, as an
expert would try to explain why a specific structure was automatically evolved and whether the structure of the model can be explained from
the studied system-intrinsic processes. If that is the case, and the structure has not emerged randomly, the conclusions can be compared with
the existing knowledge which can be reconfirmed, or new aspects of the studied system might be brought to light.

The fundamental question addressed in this paper is
whether regression models can be constructed more objec-
tively by leaving the task of proposing a final regression
model to an algorithm rather than directly to an analyst. The
need for human intuition during the actual process of con-
structing a regression model becomes reduced, and the input
of expert knowledge shifts towards identifying input vari-
ables, parameters, a suitable cost function and model plau-
sibility.

With the current study we investigate as well whether auto-
matically derived model structures differ substantially from
models conventionally used in the study of Reco and its com-

ponents or whether they are consistent with established the-
ory. The separation of Reco into its components also allowed
us to test the portability of individual model structures across
different respiration components. In this sense, we investi-
gate whether a generic “respiration” response can be derived
or whether specific formulations for a range of respiration
components are required.

Study structure

First, we introduce the GEP methodology and explore its
performance for symbolic regression types of problems us-
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Figure 2. The work flow used in solving symbolic regression problems with GEP. The process of evolving an optimal solution from ob-
servations starts with randomly generating a set number of evolution individuals called chromosomes. The chromosomes are composed of
genes that are sets of strings encoding expression trees that can be translated into mathematical expressions in the subsequent step. Following
the mathematical expression comes the evaluation of each emerging individual (model) against the target variable values and for each one a
fitness value is assigned. If the stopping criterion has not been reached (e.g. best fitness possible, highest number of generations allowed, con-
vergence) the best individual in terms of fitness is saved and the remaining set of chromosomes are selected for genetic manipulation. When
the stop criterion is reached, the parameters of the best chromosome is calibrated against the training data with an optimization approach, the
CMA-ES, and the best solution is returned.

ing an artificial experiment under varying degrees of noise
contamination designed to resemble Reco. Second, we apply
GEP to model the various respiration observations provided
by Heinemeyer et al. (2012).

The observational record provided by Heinemeyer et al.
(2012) is exceptional, because measurements of soil or
ecosystem respiration that are typically only integrated are
here continuously and regularly measured, and the compo-
nents measured offer a perfect test case for the GEP method-
ology.

For both the artificial experiment and real-world observa-
tions, we systematically confront the prediction error of GEP
with other state-of-the-art machine learning regression ap-
proaches. In addition, we adjust the modelling approach such
that the objective function (or fitness function) not only ac-
counts for absolute or relative error, but also reduces struc-
ture in the residuals. The discussion focuses on the compar-
ison of the various GEP-derived models, their equifinality,
and performance compared to widely used literature models.

2 Method

We rely on the GEP method (Ferreira, 2001) which automat-
ically constructs model structures based on a set of given ob-
servations. As the models we want to obtain are mathemati-
cal structures, their construction can be achieved by solving
a symbolic regression (Kotanchek et al., 2013) type of prob-
lem. That is, we are not only interested in determining an op-
timal set of parameters for a known regression, but here, we

want to discover the symbolic form of the regression itself by
identifying the most important predictors and their functional
transformations. The general GEP approach in solving sym-
bolic regressions is presented in the following section and is
illustrated in Fig. 2.

2.1 Gene expression programming, GEP

The process of finding the most suitable model structure
based on the signal present in data in GEP starts with an
initial generation of n possible model structures (Fig. 3a).
These can be called evolution individuals and in GEP they
are known as “chromosomes”. The chromosomes are com-
posed of a fixed number of “genes” that are connected by
a binary mathematical operator. Each gene is encoded in a
string with a fixed length that contains specific characters
that map to either a set of possible predictors, e.g. A={a,
b}→Am={x1, x2}, or a set of their possible functional
transformations, e.g. F ={+, −, L, E}→Fm={addition,
substraction, logarithm, exponential} (see Fig. 3a).

The choice of input functions used for applying mathemat-
ical transformations to the predictors depends on the type of
problem we try to solve with GEP. When the problem is a
symbolic regression type of problem, as here, most often a
set of primitive functions is proposed, such as addition, mul-
tiplication, or exponential. More complex functions could in-
crease model complexity too much and risk overfitting. How-
ever, if there are already known functional transformations of
certain predictors that could be part of the final desired solu-
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(a) (b)

(d)

(c)

Figure 3. GEP evolution process components. (a) Initial random generation of genes for creating chromosomes, the individuals evolved
by GEP. (b) GEP internal translation process from strings to expression trees and mathematical expressions. (c) Changes made in the
mathematical expression when applying the mutation operator to the genes of a GEP individual. (d) Types of genetic operators for changing
the GEP evolution individuals.
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tion, the user can define a new function and introduce it in
the set of input functions.

All genes are made up of a “gene head”, containing a
combination of characters mapping to both predictors and
functional transformations, and a “gene tail”, with charac-
ters that map only to predictors. The gene length is given by
gl=hl+ tl, where tl= (fmax− 1)×hl+ 1, with gl as gene
length, hl head length, tl tail length and fmax the maximum
parity of a functional transformation.

As in biology evolution, regardless of the actual length,
the GEP genes have active sections of variable length called
“open reading frames” (ORFs) that can encode various ex-
pression trees which can be evaluated into mathematical ex-
pressions (Ferreira, 2006). The lengths of the ORFs are de-
termined only after the encoded expression trees are trans-
lated using an internal reading language (see Fig. 3b). Fer-
reira (2001) argues that the power of GEP lies in its use of
fixed length linear strings for representing trees (ET) of var-
ied shapes and sizes that simplify the evolutionary process
and help reach a final solution faster.

The total number of chromosomes generated over each
evolution step make up the GEP population. The evolution
steps are also known as “generations”. The maximum num-
ber of generations allowed to run until reaching a solution is
often used as a stopping criterion.

One of the crucial components of model development
within an evolutionary algorithm is the selection process. In
GEP, the chromosomes can be translated into mathematical
expressions that can be evaluated, and a distance between
the current structure based predictions and the original tar-
get is computed. The measures are known as “fitness values”
and are assigned to all the chromosomes in the population
at each generation by means of a predefined fitness function.
The evolution of the final solution with GEP is done based on
optimizing the fitness function values after each generation,
usually by minimizing prediction error, but more complex
criteria can be taken into account as well.

Once all the fitness values have been computed and as-
signed, the chromosomes in a generation are sorted from best
to worst fit.

If no stop criteria have been met, preparations for the re-
production of new chromosomes for the next generation are
made. The chromosome with the best fitness value is repro-
duced unchanged in the first position of the new generation.
To fill the remaining n− 1 positions, chromosomes are se-
lected from the entire population for the new generation with
a tournament procedure n− 1 times.

In tournament selection, two chromosomes are randomly
selected from the entire population and the individual with
the better fitness value goes through.

To ensure that novel material is introduced in the pool
of possible model structures, n− 1 newly selected chromo-
somes are subject to genetic operators, such as mutation,
recombination, transposition and inversion as presented in

Fig. 3d, which can fully change the encoded mathematical
expressions (see Fig. 3c).

Once the population of chromosomes is ready for the new
generation, the evolution procedure is repeated until a stop
criterion is reached, such as best fitness achieved, maximum
number of unimproved generations reached, or time limit.

The hyper-parameter needed for a GEP run, i.e. the set
of all parameters that need to be fixed before a GEP run
is performed, has either components with recommended de-
fault values, especially for the genetic operator rates consid-
ered when applying the available genetic operators (Ferreira,
2006), or has components for which the values have been
established empirically after experience in working with the
GEP approach. The latter typically depend on the require-
ments of the problem to solve.

Such is the case for setting the length of the gene head or
the number of genes in a chromosome that can be lower if the
interest is in obtaining more compact solutions, with larger
values possibly leading to a fast expansion of solution length
which can easily overfit the initial target. When the lengths of
the chromosomes are kept too low, the structures in the pop-
ulation can converge too soon to a unique solution that might
lack the ability to capture meaningful signals present in the
training data, due to low diversity of the encoded expression
trees.

Another important component of the hyper-parameter to
fix is the mutation rate, which is one of the genetic variation
operators. When the mutation rate is too large, it can become
disruptive and lead to loss of information acquired along the
previous evolutionary time steps, reducing the general con-
vergence of the GEP run. Conversely, if the rate is too low,
relevant structures may not be constructed in the given time
limit.

The current implementation of the GEP approach does not
contain an explicit population diversity management compo-
nent which could increase the confidence that a certain solu-
tion did not just appear by chance but was actually selected
over a larger pool of possible model structure types. In or-
der to reduce stochastic bias and avoid getting stuck in local
optima that would produce overfitted results, we chose the
practical approach of multi-start (multiple runs with the same
settings) as proposed by Ferreira (2006).

The version of the GEP method presented in this paper
was implemented by the first author in the C++ language
and is freely available upon request. All the experiments re-
ported in this work were executed on a cluster running SuSE
SLES 11 SP1 and StorNEXT (global file system running
on the IO nodes) and that contains 868 CPU cores, 14.5 TB
RAM, and 1.2 PB file space. The large performance capacity
of the cluster allowed for multiple parallel runs and speed in
reaching the final solutions.
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2.2 Fitness measure

In our study, the fitness measure is reported in terms of
the Nash–Sutcliffe modelling efficiency (MEF) coefficient
(Nash and Sutcliffe, 1970; Bennett et al., 2010) which is of-
ten used in the context of quantifying the performance of ter-
restrial biosphere models (Mitchell et al., 2009; Migliavacca
et al., 2015). The MEF is computed as

MEF= 1−

n∑
i=1
(oi −pi)

2

n∑
i=1
(oi − o)

2
(1)

where oi is the observed value at step i, pi is the predicted
value at step i and o is the mean of observed values. MEF
values range between −∞ and 1, where an MEF value of 1
corresponds to the case where the predicted and observed
values are identical. A negative MEF value means that the
predictions are worse than the mean of the observations in
recreating the observed signal. MEF= 0 indicates that the
model predictions are as good as a prediction by o.

During the GEP learning process, however, we use the
(1−MEF) measure as we want to minimize the fitness func-
tion values.

Although the MEF metric offers a straightforward inter-
pretation, it does not take the number of parameters of the
models into account. In real-world applications, it might be
desirable to derive models with fewer parameters if those are
not (much) worse in terms of prediction capacity than mod-
els with a higher number of free terms. Thus, we include in
our cost (fitness) function a normalized term related to the
number of parameters (ratio of the current number of param-
eters to the maximum number of possible parameters given
the GEP run settings).

Moreover, any systematic pattern in the model residuals
needs to be reduced as the latter should ideally only rep-
resent uncorrelated noise. To meet this criterion, we com-
plement the fitness function with a term related to the in-
formation content (entropy) in the residual time series. En-
tropy values would be maximized for data without structure
(i.e. white noise), and lower entropy values would be ob-
tained for structured data, e.g. correlated stochastic or de-
terministic processes (Rosso et al., 2007). The information
content in a time series is typically quantified by the Shan-
non entropy (SE, Shannon, 1948), i.e. a term of the form

SE(X)=−
N∑
i=1

pi ln
[
pi
]
. (2)

Here, X={pi ; i= 1, . . . , N} denotes a probability distribu-

tion with
N∑
i=1

pi = 1 and N possible states.

In short, the calculation of an entropy as a measure for ran-
domness from a time series (e.g. Shannon’s entropy) requires

us to determine a probability distribution that underlies the
time series (or dynamical system), which is usually done by
a partitioning step (also called phase space reconstruction in
other contexts). This is a fundamental step in the method-
ology, and various methods have been used to arrive at this
probability distribution, for instance frequency or histogram-
based measures, procedures based on amplitude statistics, or
symbolic dynamics (see e.g Kowalski et al., 2011, for an
overview).

As our aim is to minimize structure in the residuals,
the temporal order becomes important. In recent years, the
Bandt–Pompe approach has become popular, because it di-
rectly takes time sequences into account: the technique hence
divides the time series into ordinal sequences (i.e. ordinal
patterns, or symbolic sequences), and then computes entropy
measures directly from the probability distribution of these
ordinal patterns (Bandt and Pompe, 2002).

This approach has a number of advantages, namely that it
is robust to noise (no sensitivity to numeric outliers) and to
trends or drift in the data, it is an (almost) non-parametric
method and no prior assumptions about the data are needed
(the only parameter that has to be specified is the embedding
dimension, i.e. window length), and it allows us to disentan-
gle various possible states of the system that are then encoded
in the probability distribution (see e.g. Zanin et al., 2012, for
a review of the method and applications).

The single parameter that needs specification is the win-
dow length. This parameter is fixed to ndemb= 4 throughout
the entire paper following previous work on ecosystem gross
primary productivity dynamics by Sippel et al. (2016).

The final normalized form of the fitness function further
used in our work is

CEM=

√
(1−MEF)2+

(
P

Pmax

)2

+ (1−SE)2, (3)

Pmax = ng× l, (4)

where CEM stands from here on for “complexity corrected
efficiency in modelling”, P is the number of parameters
present in a model structure, Pmax is the maximum number
of parameters possible for each individual from a GEP run
set-up, ng is the number of genes in a chromosome and l is
the length of a gene.

To assess the effect of adding the entropy component for
the residuals in the CEM fitness function, we introduce as
well a fitness measure containing elements regarding only
the MEF and the number of parameters.

MEF+NP=

√
(1−MEF)2+

(
P

Pmax

)2

(5)

For all experiments reported in this paper, the optimization
is done by minimizing the CEM fitness function values. The
best value that can be reached for all presented fitness func-
tions is 0.
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2.3 Parameter optimization

The GEP algorithm does not have a specific treatment of con-
stants in the building of model formulations, but mutations
can change both the model structure and constants. However,
the scaling of constant values (model parameters) might be
a decisive factor in adequately determining the fitness of a
formulation. Without this, a model structure might be dis-
carded regardless of potentially being a very powerful candi-
date. Furthermore, model parameters are often very informa-
tive regarding a system’s sensitivity to some modifications of
the drivers. These aspects have led to the addition of a final
parameter optimization step at the end of each GEP run.

In order to obtain an optimal set of parameters for the
GEP-extracted model structures, an approach that would be
applicable in a large set of generated search spaces was nec-
essary. Here we use the covariance matrix adaptation evolu-
tion strategy (CMA-ES, Hansen et al., 2003) for optimiza-
tion. The CMA-ES is a stochastic optimization algorithm
that seeks to minimize a fitness function by estimating and
adapting a covariance matrix according to a sampling from a
multivariate normal distribution (Beyer and Schwefel, 2002;
Auger and Hansen, 2005). According to Hansen (2006), one
of the main arguments in favour of the CMA-ES approach is
that it has shown good results even in the case of ill-posed
problems (Kabanikhin, 2008), which may very well be the
case for some of the GEP structures that are automatically
generated.

The CMA-ES version used for the final step of optimiza-
tion is the Hansen Python implementation found at https:
//pypi.python.org/pypi/cma.

3 Experimental design

To explore the possibility of using GEP in developing rel-
evant model structures for describing the terrestrial carbon
fluxes, two case studies were designed: firstly, an experiment
based on artificially generated data to better understand and
present the general properties and capacities of GEP. Sec-
ondly, we explored the use of GEP on real measurements of
various respiratory flux components monitored continuously
over 2 years in an oak forest (Heinemeyer et al., 2011).

3.1 Artificial experiments

These experiments were designed to explore whether our im-
plementation of the GEP method is suitable for symbolic re-
gression types of problems, and how robust/vulnerable it is
across various signal-to-noise ratios. We explored a set of
functions with increasing levels of non-linearity to generate
data points.

f (x1)= 2x1+ 1 (6)

f (x1)= x
2
1 + 3x1+ 5 (7)

f (x1)= e
x1 + 1 (8)

f (x1)= e
−x1 − x1 (9)

f (x1)= x
2
1 − 4sin(x1) (10)

f (x1)= x
3
1 + 6x2

1 + 11x1− 6 (11)
f (x1,x2)= x2x1 (12)
f (x1,x2)= x2x1− 3cos(x1) (13)

f (x1,x2)= 2x2
1 + 3x2

2 (14)

f (x1,x2,x3)= 2x2
1 + 3x2

2 + 2sin(x3) (15)

Two-thousand data points were randomly generated with
x1 ∈ [1, 20], x2 ∈ [1, 5], and x3 ∈ [1, 100], and all the func-
tional transformations were done based on the same ini-
tial set of 2000 data points. Out of the 2000 data points,
1000 data points were used for training, while 1000 data
points were reserved for validation. The GEP settings used
for each of the 20 runs are given in Table 1. If a returned
structure was identical to the originally prescribed function
or if (1−MEF)≤ 10−5 at validation, the retrieval of the orig-
inal structure was considered to be a success. To allow the ap-
proaches to do an automatic feature selection, all three vari-
ables, x1, x2, and x3, were used for learning and validation
for all 10 functions in the benchmark set.

To investigate the capacity of GEP to reconstruct a simple
model used in the ecology field as well, we introduced as
well an artificial test for the “Q10” model that is used in the
field for simulating the response of ecosystem respiration to
change in air temperature of 10 ◦C at a reference temperature
of 15 ◦C. The formulation we used for the “Q10” model is

Reco = 2(0.1Tair−1.5) (16)

with Reco the ecosystem respiration flux and Tair the air tem-
perature. Again, we generated 2000 data points for both pre-
dictor and target and we used half for training 100 runs and
half for validation. The modelling capacity of the best struc-
ture in terms of fitness value at validation is reported.

In order to investigate the response of the GEP approach to
noise-contaminated data, we simulated Gaussian noise that
scales with signal amplitude as often observed in the case
of terrestrial ecosystem (Lasslop et al., 2012) and soil respi-
ration (Lavoie et al., 2015) fluxes. The signal-to-noise ratio
(SNR, measured as ratios of standard deviations) was varied
between 10 and 1 in six steps.

For each of these functions and SNR levels, we sampled
100 validation data points 10 times; 20 GEP runs were per-
formed on the 1000 training data points and the GEP model
structure with the highest mean MEF value over the 10 vali-
dation sets was chosen.

As the choice of fitness function was crucial for the con-
struction of structures in a GEP type of approach, we also
investigated in one experiment the effects of minimizing the
CEM values (Eq. 3) as opposed to using only MEF (Eq. 1)
or MEF+NP (Eq. 5) as a fitness function.
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Table 1. GEP settings.

Parameter Artificial data Real observations

Number of chromosomes 2000 2000
Number of genes 3 2
Head length 5 6
Functions +, −, /,∗, xy ,√, ln, exp, sin, cos +, −, /, ∗, xy ,√, ln, exp
Terminals x1, x2, x3 GPPs, TAir, T−10, SWC
Link function + +

Max run time 1200 s 1800 s
Fitness function CEM CEM
Selection method for replication tournament (Coello and Montes, 2002) tournament
Mutation probability 0.2 0.2
IS and RIS transposition probabilities 0.05 0.05
Two-point recombination probability 0.3 0.3
Inversion probability 0.05 0.05
One-point recombination probability 0.4 0.4

Alternative machine learning methods

The prediction performance of the best GEP-derived mod-
els based on the data in Sect. 3.1 was compared with the
prediction performance of four commonly used state-of-the-
art machine learning methods (MLMs), i.e. artificial neural
networks, ANNs (Yegnanarayana, 2006), support vector ma-
chines, SVMs (Hearst, 1998), random forests, RFs (Breiman,
2001) and kernel ridge regressions, KRRs (Hoerl and Ken-
nard, 1970).

The toolboxes and settings used for generating the predic-
tions by the ANN and KRR methods are described by Tra-
montana et al. (2016) and found in the “simple R” regression
toolbox (Lazaro-Gredilla et al., 2014). The predictions of the
SVM were obtained by using the “LIBSVM” library (Chang
and Lin, 2011) from the “SimpleR” regression toolbox where
the regularization term, the insensitivity tube (tolerated error)
and a kernel length scale were automatically adjusted dur-
ing each run. Lastly, the RF predictions were obtained after
running the MATLAB statistics toolbox implementation with
default settings. The hyper-parameters of all MLMs were es-
timated to avoid overfitting during each run as presented in
Sect. S6 of Tramontana et al. (2016).

All the present machine learning approaches have been ap-
plied to the same training data sets as those used for building
the GEP models, and their predicted values were compared
with the validation sets used for determining the best GEP
solution.

3.2 Measured ecosystem CO2 fluxes

In the second experiment we assessed the possibility of
reverse-engineering model structures Reco and its compo-
nents based only on real measured data. Specifically, we ex-
plored GEP-derived model structures for various components
of terrestrial ecosystem respiration fluxes measured in an 80-

year old deciduous oak plantation in the Alice Holt forest
in south-eastern England as described in Heinemeyer et al.
(2012) and Wilkinson et al. (2012).

3.2.1 Alice Holt in situ data

The Alice Holt data set contains observations of Reco and the
total influx of CO2 to the ecosystem as mediated via photo-
synthesis (gross primary production, GPP) and various soil
respiration components.
Reco and GPP were estimated from eddy covariance mea-

surements of the forest net CO2 exchange (NEE, Eq. 17)
and were obtained from a micro-meteorological measure-
ment tower at the same site that reports half-hourly integrals
of NEE with the eddy covariance (EC) methodology (Mon-
crieff et al., 1997). The Reichstein et al. (2005) procedure
was used for gap-filling and separation of NEE into GPP and
Reco. Given that Rsoil is a fraction of Reco, above-ground res-
piration can be calculated as the difference between Reco and
Rsoil. For an in-depth description of other site conditions and
measurements, see Heinemeyer et al. (2012).

A multiplexed chamber system was used for separately
measuring soil respiration (Rsoil) and its components, using a
continuous sampling method at fixed locations during 2 years
at an hourly resolution. In order to partition the Rsoil flux
into its components, mesh bags that are not penetrable by
roots but allow for mycorrhizal hyphae development were in-
stalled. Deep steel collars were applied to stop both root and
mycorrhizae in-growth. As a result, root respiration (Rroot) is
given by the difference of Rsoil and the respiration recorded
in the mesh bag chambers, mycorrhiza respiration (Rmyc) is
given by subtracting the steel collar flux from the mesh bag
chamber flux, and the soil heterotrophic respiration (Rsoilh ) is
given by the CO2 efflux at the steel collar chambers. Lastly,
soil autotrophic respiration (Rsoila ) is estimated as the sum of
Rmyc and Rroot (Eqs. 18 and 20).
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The above-ground respiration (Rabove) was given as well
and was estimated by difference (Eq. 17). Additionally, di-
rect measurements of soil moisture (SWC), air temperature,
surface temperature, and soil temperature taken at 2, 10 and
20 cm depths are present in the data set.

Reco = NEE+GPP (17)
Rabove = Reco−Rsoil (18)
Rsoila = Rroot+Rmyc (19)
Rsoil = Rsoila +Rsoilh (20)

The computation of Rabove as the difference between Reco
and Rsoil might be highly uncertain because of the different
techniques used to compute the two respiration components,
the completely different footprints, and the typical high flux
underestimation and low flux overestimation of Reco from
EC (Wehr et al., 2016). The limitations of the separation of
Reco into its components and the uncertainty of the estimates
are further discussed by Heinemeyer et al. (2011, 2012) and
Wilkinson et al. (2012).

3.2.2 Data processing

We used the following candidate driver variables: soil
volumetric moisture measurements, air temperature (from
micro-meteorological stations), temperatures at different soil
depths, and GPP. A number of recent studies have shown a
tight linkage between GPP and Rsoil, reflecting dynamics of
respiratory substrate supply to roots and mycorrhizal fungi
from recently assimilated C in plants. (Moyano et al., 2008;
Mahecha et al., 2010; Migliavacca et al., 2011, amongst
others). We use GPP obtained from EC measurements at
the site, but acknowledge the conceptual problem that Reco
and GPP were derived from the same observations of NEE.
In order to minimize the potential spurious correlation be-
tween Reco and GPP as well as redundancy of possible
GPP influence with the meteorological drivers, we consid-
ered low-frequency variability of GPP only (i.e. low-pass fil-
tered modes of GPP which correspond to variability beyond
a 60-day periodicity only; see Mahecha et al., 2010). Singu-
lar spectrum analysis (SSA, Broomhead and King, 1986) as
described and implemented by Buttlar et al. (2014) was used
to obtain a smooth GPP signal. The seasonal cycle was ex-
tracted with the SSA method as the assumption is that GPP
affects mainly the seasonality of the respiration, while the
variability at the high frequency is assumed to be more re-
lated to meteorological drivers (e.g. temperature, Mahecha
et al., 2010). The SSA method is a tool used mainly in time
series analysis with the purpose of decomposing a time series
signal into its independent sum components, such as trends,
seasonality and high-frequency components based on a sin-
gular value decomposition of trajectory matrices computed
after embedding the time series (Buttlar et al., 2014).

To reduce the skewness and the search space that the GEP
evolution would have to cover in order to construct valuable

solutions (Keene, 1995), we log-transformed the seven tar-
get respiration data sets (see Fig. S1 in the Supplement) and
applied a back-transformation when reporting the respective
model structures. Manning (1998) and Newman (1993) show
that when regressions are built based on log-transformed
targets, the back-transformation of the regressions to non-
transformed target needs to include a bias correction that
refers to the residuals of the log models.

As such, if the log model is logy=αx+ ε, the back-
transformation to y should not simply be y= e(αx), but
should include a correction of the bias induced by ε, and
depending on the distribution of the residuals, the back-
transformation can be

– y= e
(
αx+0.5σ 2

ε

)
, when the residuals are log-normal dis-

tributed;

– y= e(αx)E(eε), where E is the mean of the sample,
when the residuals show heteroscedasticity, as was the
case for most of the residuals computed for the GEP
models as seen in Fig. S2; and

– y= e(αx) if no bias correction is desired, or a naive ap-
proach.

The time series used for the candidate driver observations
remain unchanged.

3.2.3 GEP set-up

For each combination of respiration target and possible
drivers, 50 subsets of 500 target time steps each were ran-
domly selected and used for the training of GEP models us-
ing the settings found in Table 1. The 50 subsets of the re-
maining 113 time steps are used for cross-validation and the
model with the lowest average validation CEM value is fi-
nally selected for each respiration type. For all runs the ob-
servations are given as records of daily mean values.

We were particularly interested in determining the general
character of each extracted model with respect to the differ-
ent respiration fractions. We therefore re-optimized the pa-
rameters of all extracted model structures when applying one
extracted model as the candidate function for a different res-
piration term. For example, the model formulation extracted
for Reco is re-calibrated for all the other types of respiration,
creating six parameter sets (one for each respiratory flux) per
equation. To cross-validate parameter sets, we computed per-
formances for each train–validation data set pair and report
averaged MEF values.

As in the artificial example, we compared the returned
GEP solution prediction performance with that of other com-
mon MLMs such as SVN, KRR, ANNs, and RF. All methods
were used to generate 50 subsets of 113 prediction values,
after training on the 50 subsets of 500 time steps of obser-
vations presented at the start of Sect. 3.2.3. Then, a mean
MEF value was computed for all methods for all respiration
components and the best mean MEF values were reported
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Table 2. Respiration model formulations commonly used in the environmental science community.

Model Formulation Reference

Arrhenius a× e−E0/RT Lloyd and Taylor (1994)

Q10 φ1×φ

(
T−Tref

10

)
2 Reichstein and Beer (2008)

Water Q10 φ1×φ

(
T−Tref

10

)
2 ×

SWC
SWC+φ3

×
φ4

SWC+φ4
Richardson et al. (2008)

LinGPP (R0+ k2GPP)× e
E0

(
1

Tref−T0
−

1
TA−T0

)
×
αk+SWC(1−α)
k+SWC(1−α) Migliavacca et al. (2011)

ExpGPP
[
R0+R2

(
1− ek2GPP

)]
× e

E0

(
1

Tref−T0
−

1
TA−T0

)
×
αk+SWC(1−α)
k+SWC(1−α) Migliavacca et al. (2011)

addLinGPP R0× e
E0

(
1

Tref−T0
−

1
TA−T0

)
×
αk+SWC(1−α)
k+SWC(1−α) + k2GPP Migliavacca et al. (2011)

addExpGPP R0× e
E0

(
1

Tref−T0
−

1
TA−T0

)
×
αk+SWC(1−α)
k+SWC(1−α) +R2

(
1− ek2GPP

)
Migliavacca et al. (2011)

a, E0, φ1, φ2, φ3, φ4, R0, R2, k, k2 and α are model parameters that can be optimized.

(a) (b)

Figure 4. Effect of adding noise to the original signal on the prediction capacity for GEP, KRR, RF, SVM and ANN. The first panel contains
the evolution of mean modelling efficiency (MEF) values from 20 independent runs for each increasing level of noise. MEF is computed after
learning from a data set of 200 data points and validating against 1000 data points containing noise. The second panel shows the evolution
of mean MEF values from 20 independent runs for each increasing level of noise where MEF is computed after learning from a data set of
200 data points and validating against noise-free 1000 data points generated from Eq. (14).

and compared with those of the GEP-extracted models. The
comparison is done in terms of MEF as a number of model
parameters were not available and CEM could not be com-
puted.

3.2.4 GEP in the context of other known ecological
models: real observational data

A comparison was done between the GEP-built models and
some common literature respiration models with different
structures and driving variables that were also optimized us-
ing CMA-ES. The optimization was performed for each res-
piration data set and its candidate drivers and parameters
(Table 2). The structures and prediction performances of the
GEP models were then compared with those of the optimized
literature models.

4 Results

4.1 Artificial experiments

In the first artificial experiment the GEP approach is used to
verify whether it can reconstruct prescribed functions. Fol-
lowing the training of the 20 independent GEP runs, the ini-
tial functions were successfully reconstructed for all 10 equa-
tions defined in Sect. 3.1.

For the Q10 model artificial test, the following structure
was finally selected:

Reco = 0.35× 2.5(0.01Tair), (21)

with a validation MEF value> 0.99.
MEF values for the GEP-extracted models and for the

predictions generated by ANN, RF, KRR and SVM are
illustrated in Fig. 4. These MEF values were obtained
through cross-validation against independent yet equally
noise-contaminated data points (the SNR values are given on
the x axis in reverse order to visualize the increase in noise
levels). There is a clear pattern of decreasing MEFs with in-
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(a) (b)

(c)

Figure 5. Effects on modelling performance and parameter number caused by choice of fitness function during GEP training for artificial
noisy data generated by Eq. (14), where MEF is defined in Eq. (1) and CEM is defined in Eq. (3). (a) Mean MEF when validated against
noisy data after 20 GEP runs with different fitness functions. (b) Mean MEF when validated against noise-free data after 20 GEP runs with
different fitness functions. (c) Ratio of predicted number of parameters to true number of parameters after 20 GEP runs with different fitness
functions.

creasing noise contamination. This was expected, as none of
the methods should fit the noise added to the signal.

Figure 4b shows MEF values equivalent to Fig. 4a but ap-
plied to noise-free data points of the validation set, in order to
compare GEP outputs to the “true” structure underlying the
artificial data set. In this set-up, the MEF values remained
relatively constant across SNR values above 2. When the
SNR level was set to 1, predictions for all investigated ma-
chine learning methods, except for GEP predictions, show
decreased fitness, with MEF values decreasing to a minimum
of 0.8.

In order to verify the effects of changing the fitness func-
tion from MEF to CEM, we compare the distributions of
MEF values for all runs for all studied SNRs. Figure 5 ex-
emplifies outputs for Eq. (14); Fig. 5a shows a drop in the
prediction capacity of the GEP models with noise increase
for all types of fitness functions when compared with noise-
infused data. This contrasts with the reduced MEF assessed
against original data, where a slight drop in MEF with noise
increase for the MEF optimization structures was seen, and
where the CEM optimized structures show stability in MEF
with noise. The new CEM leads to a reduced number of re-
turned parameters compared to MEF (Fig. 5c), as well.

4.2 Measured ecosystem CO2 fluxes

Applying GEP to the Alice Holt data set yielded a series
of model structures for each respiration type. The returned

model structures after bias corrected back-transformation are
illustrated in Eqs. (22)–(28).

Reco = 1.2log(T−10)
0.8
× e

(
GPPs
T−10

)
, (22)

Rabove = 1.1SWC0.3
× e(0.1GPPs), (23)

Rsoil = 0.04e
(

1.1T 0.4
−10+1.6SWC

)
, (24)

Rroot = 1.1e
0.9GPPs−6.8

T−10 , (25)

Rmyc = 0.001T 1.2
−10× e

(1.6T−10)
SWC
, (26)

Rsoila = 0.01e
(

0.8T 0.6
−10+2.6SWC

)
, (27)

Rsoilh = 0.8e
0.6GPPs−2.4

T−10 , (28)

where GPPs is gross primary production that has been
smoothed using the SSA method with a 60-day window;
T−10 is soil temperature measured at 10 cm depth; and
SWC is volumetric soil water content. The corresponding
cross-validation MEF values are given in Table 3, indicating
a range of capacities for GEP models to represent different
respiration types.

Whilst GEP-derived models may differ between respira-
tion types, there are a number of equivalent models for differ-
ent respiration components. Rsoil and Rsoila were described
by identical model structures (but distinctive parameter val-
ues), and Rroot and Rsoilh were described by similar (but not
identical) models. Overall, the most common selected drivers
were T−10, SWC and GPP.
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Figure 6. Observed and predicted outgoing CO2 fluxes; 613 time steps of daily averaged CO2 effluxes for 2 years at the Alice Holt oak forest
site. The predicted values are generated with the models automatically built by the GEP approach with the settings given in Table 1 for the
following types of respiration, Reco, Rabove, Rsoil, Rroot, Rmyc, Rsoila , and Rsoilh , and back-transformed with a smear term bias correction.
The models are given in Eqs. (22)–(28).

Table 3. Modelling performance for all extracted model structures
after cross-validation over 90 cases.

Respiration type MEF σMEF Equation

Reco 0.57 0.13 (22)
Rabove 0.31 0.23 (23)
Rsoil 0.79 0.04 (24)
Rroot 0.59 0.08 (25)
Rmyc 0.39 0.28 (26)
Rsoila 0.82 0.05 (27)
Rsoilh 0.52 0.08 (28)

The highest performance in terms of MEF value was
recorded for Rsoila and for Rsoil, that is, 0.82 and 0.81 respec-
tively. The lowest capacity of process representation, with an
MEF value of 0.28, was recorded for Rabove (Table 3), pos-
sibly because this specific component would need to include
active versus inactive periods determined by dormancy and
leaf fall (i.e. seasonality in this deciduous forest). A compar-
ison of the predicted values and observed fluxes for all types
of respiration can be seen in Figs. 6 and 8. Figures 7 and 9
show the effects of the three different types of bias correc-

tion on the global signal reconstruction and prediction capac-
ity with MEF values computed in a cross-validation manner.
For all respiration types, except Rsoil, doing the second type
of bias correction with a smear term improved the predic-
tion capacity. Although for Rsoil it seems that doing no bias
correction gives a higher MEF value, we chose to keep the
model including the smear term.

In order to explore the capacity of the GEP models gener-
ated for the Reco components to recreate the larger, across-
compartmental summed fluxes, we summed the predictions
of the models and compared them with the original fluxes
(Fig. 10). Based on a modelling performance comparison of
the models defined as sum models of the initial GEP models
trained on the component fluxes with the original GEP mod-
els trained on the summed fluxes, we found no significant dif-
ferences after performing a Student’s t-test (h= 0, p= 0.5).
However, we found that the total number of parameters is
much larger for the sum models. This can be a result of the
GEP approach eliminating the “low impact” drivers due to
complexity pressure. We can see as well that the sensitiv-
ity of the sum fluxes to certain drivers can strongly manifest
itself only in certain components, which is why the drivers
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Figure 7. Observed and predicted outgoing CO2 fluxes; 613 time steps of daily averaged CO2 effluxes for 2 years at the Alice Holt oak
forest site. The predicted values are generated with the models automatically built by the GEP approach with the settings given in Table 1
for the following types of respiration, Reco, Rabove, Rsoil, Rroot, Rmyc, Rsoila , and Rsoilh , and back-transformed with three types of residual
bias correction terms: smear term, naive, and log-normal term.

only get selected in the models built for those specific com-
ponents.

The residuals depict some remaining patterns (Figs. 11
and S3) and the null hypothesis of normal distribution was
rejected for all seven respiration component residuals at the
5 % significance level with the one-sample Kolmogorov–
Smirnov test. Hence, we might expect additional information
that could be extracted from the residuals. In order to check
whether the remaining structure was missed in the first train-
ing routine because of imposing a multiplicative form in the
models by log-transforming the target data, we performed
GEP runs on the residuals and combined the models. The im-
provement in overall modelling performance is minimal, yet
model structures become overly complex. The capacity of the
GEP approach to retrieve new information from the residu-
als is illustrated in Fig. 13 in comparison with that of the
other MLM presented in Sect. “Alternative machine learning
methods”. When correlation values were computed between
the candidate drivers and the residuals, no significant linear
correlations were found (Figs. S5 and S6).

4.2.1 Model transferability

We investigated the capacity of each extracted model struc-
ture (Eqs. 22–28) to represent a component of Reco not
seen in the training procedure. This was done by means of
new CMA-ES optimization steps. The new prediction per-
formances are illustrated in Table 4.

After optimization, none of the structures show an overall
best MEF for all the Reco components (i.e. we clearly can-
not identify an optimal general model). However, we iden-
tify certain model structures that tend to perform overall bet-
ter than others. This is the case for the Rmyc model (Eq. 26).
It can also be seen that after the individual model optimiza-
tions, the structures for Reco and that for Rsoila have similar
prediction capacities.

The prediction capacity of the GEP-generated models in
the context of other commonly utilized MLMs was assessed
as well. KRR, ANN, SVM and RF were used for generating
113 predicted data points as described in Sect. 3.2 (Fig. 12).
The prediction performances of GEP, KRR, ANN, SVM and
RF are shown in Fig. 13. Figure 13a contains the average
MEF values computed for all MLM methods’ predicted val-
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Table 4. Average validation MEF performance for all extracted model structures when re-optimized against all other respiration CO2 flux
observations.

Trained for/opt. for Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Reco (Eq. 22) 0.57 0.27 0.77 0.58 0.10 0.68 0.42
Rabove (Eq. 23) 0.56 0.31 0.69 0.44 0.07 0.60 0.46
Rsoil (Eq. 24) 0.50 0.20 0.79 0.47 0.38 0.82 0.39
Rroot (Eq. 25) 0.23 0.27 0.57 0.59 0.01 0.65 0.51
Rmyc (Eq. 26) 0.54 0.22 0.82 0.50 0.39 0.84 0.52
Rsoila (Eq. 27) 0.50 0.20 0.79 0.47 0.38 0.82 0.39
Rsoilh (Eq. 28) 0.55 0.26 0.76 0.56 0.06 0.67 0.52

Figure 8. Observed and predicted outgoing CO2 fluxes; 613 time steps of daily averaged CO2 effluxes for 2 years at the Alice Holt oak forest
site. The predicted values are generated with the models automatically built by the GEP approach with the settings given in Table 1 for the
following types of respiration, Reco, Rabove, Rsoil, Rroot, Rmyc, Rsoila , and Rsoilh , and back-transformed with a smear term bias correction.
The models are given in Eqs. (22)–(28).

ues when compared to the original observations for Reco,
Rabove, Rsoil, Rroot, Rmyc, Rsoila , and Rsoilh . For all other
cases, the performance is in the same range for all methods,
but the GEP-derived models have the lowest mean MEF val-
ues. Figure 13b shows that when all MLMs were trained on
the residuals obtained from comparing the GEP outputs with
the observations, the GEP approach has the lowest capacity

to capture new relevant signals and is strongly outperformed
by the rest of the MLM, indicating that the amount of infor-
mation retrievable by GEP with the current fitness and set-
tings is limited and captured already in the first run.
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Table 5. Average validation MEF performance for CMA-ES optimized selected literature model formulations when compared with respira-
tion CO2 flux observations.

Model formulation Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Arrhenius 0.41 0.15 0.65 0.50 0.07 0.61 0.38
Q10 0.47 0.19 0.69 0.52 0.09 0.62 0.46
Water Q10 0.50 0.20 0.79 0.55 0.40 0.81 0.43
LinGPP 0.55 0.25 0.74 0.57 0.17 0.70 0.49
ExpGPP 0.58 0.30 0.76 0.57 0.20 0.72 0.54
addLinGPP 0.55 0.27 0.73 0.56 0.12 0.67 0.48
addExpGPP 0.56 0.27 0.73 0.54 0.20 0.69 0.49

Figure 9. Observed and predicted outgoing CO2 fluxes; 613 time steps of daily averaged CO2 effluxes for 2 years at the Alice Holt oak
forest site. The predicted values are generated with the models automatically built by the GEP approach with the settings given in Table 1
for the following types of respiration, Reco, Rabove, Rsoil, Rroot, Rmyc, Rsoila , and Rsoilh , and back-transformed with three types of residual
bias correction terms: smear term, naive, and log-normal term. The figure contains the MEF values for each type of bias correction in each
respective colour.

4.2.2 Comparing with literature models

Lastly, the GEP-generated models were compared with some
of the most commonly used literature models for describing
respiration. The resulting MEF values obtained after indi-
vidual parameter optimization using the CMA-ES procedure
for each literature model are given in Table 5. The literature

model structure that performed best overall in terms of pre-
diction capacity measured as MEF is the WaterQ10 model
(Fig. 14). Figure 14 shows as well that certain types of res-
piration are easier to represent by all models, including the
models GEP generated, whilst other types of respiration are
poorly predicted by all models. Nevertheless, for all respira-
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Figure 10. Observed versus predicted Reco component fluxes, where predicted values are computed as derived fluxes based on the GEP
models given in Eqs. (22)–(28) that were trained on 500 data points (d.p.) of daily mean values of various Reco components.
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Figure 11. Residuals computed for smear term bias corrected back-transformed GEP models for various types of CO2 respiration fluxes after
training against log-transformed targets with the settings given in column 2 of Table 1.
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Figure 12. Observed CO2 fluxes and one set of 113 predicted values given by the some common machine learning methods (MLMs) after
training on 500 data points and after smear term bias corrected back-transformation.

(a) (b)

Figure 13. Machine learning methods (MLM) prediction performance for all respirations components (a) and for the residuals (b) resulting
from the GEP trained models after smear term bias corrected back-transformation. The MEF values obtained for validation by all the MLM
methods for Reco, Rabove, Rsoil, Rroot, Rmyc, Rsoila , Rsoilh .

tion types, the highest MEF values are generally recorded by
the GEP models.

As the studied literature models performed best in mod-
elling Rsoil, we focus on contrasting GEP model results
with literature model outcomes for this ecosystem respira-
tion component. Of all models included, the GEP model
and Q10 model including SWC dependency captured sea-
sonal variability best, but no model satisfactorily represented

short-term CO2 flux variations (Fig. 15a). All models show
the largest range of residuals for the months May to July
in 2008, and June/July in 2009 (Fig. 15b), with the two best-
performing models (GEP and WaterQ10) having the narrow-
est range of absolute residuals. Monthly mean average errors
(MAEs) indicate as well a systematic underestimation of soil
CO2 efflux in the first year (Fig. S4).
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Figure 14. MEF validation values for literature models and for the
best GEP model in terms of MEF at each respiration level. Each
Reco flux component is shown in a separate colour.

5 Discussion

5.1 On the GEP method

In this work, the primary reason for the artificial experiments
was to obtain a better understanding of the capacity of GEP
to solve symbolic regression types of problems. We put an
emphasis on GEP performance in the presence of noise. This
aspect was important, given that monitoring data from ter-
restrial ecosystem CO2 effluxes are typically contaminated
by sometimes substantially large random uncertainties and
measurement noise. In the case of NEE flux measurements,
Lasslop et al. (2008) and Richardson et al. (2008) show that
the measurement error typically scales with the magnitude
of the flux, leading us to simulate that type of situation by
adding noise that scales with signal to an already known
function, Eq. (14). The results show that all the studied meth-
ods are stable in the presence of noise in the training set.
These results increase our confidence in the predictions gen-
erated by studied machine learning methods; in particular,
GEP-derived modes can tolerate SNRs of 1. Considering that
the SNR in the Reco observations (if noise is only considered
as a random error) is probably larger than 4, which is where
the curve starts decreasing in Fig. 4, the noise presence in the
data should not influence the automated model construction
process and the real signals should be accurately captured
when data uncertainties follow the pattern described here.
On the other hand, for Rsoil and other CO2 fluxes measured
with other techniques, the magnitude and the distribution of
the uncertainty can be different (Ryan and Law, 2005; Pérez-
Priego et al., 2015), and we cannot state what the response
of the present MLM is in the presence of different types of
uncertainties and measurement noise.

Our findings illustrate that the selection of CEM over MEF
as a fitness function for optimization has a minor effect on the
global mean MEF (Fig. 5). We also notice that due to apply-

ing constraints on the presence of structures in the residuals
and the length of the parameter vector, the final mean number
of parameters is lower when CEM is chosen.

Limitations

One of the critical aspects in our work is that GEP, as imple-
mented here, can only represent and derive “n→ 1” types
of response functions. We are not able to generate model
structures that encode e.g. system-intrinsic dynamics like
feedback loops, which are expected from our current under-
standing of biogeochemical cycles in terrestrial ecosystems
(Ehrenfeld et al., 2005; Friedlingstein et al., 2006). Hence,
we believe GEP is suitable for e.g. understanding and de-
scribing the sensitivities and non-linear responses to changes
in hydro-meteorological drivers, but fails to represent more
complex carbon or soil water dynamics. Pools and pool trans-
fers cannot be introduced currently in the input, unless the
inflow–outflow equations are known and can be included in
the set of functions that can participate in the evolution.

Lagged responses can only be detected if the number of
lags from a driver is correctly included in the input, which
already implies sufficient knowledge of their existence and
behaviour. Whilst in the current implementation of the GEP
algorithm, shifts in conditions and responses cannot be en-
coded or detected, these could be addressed with the inclu-
sion of a conditional operator in the set of functions encoded
in the GEP evolution individuals.

Nevertheless, it would be fair to mention that the same lim-
itations can affect the results of the other MLM and empiri-
cal models presented in this paper. A clear advantage ANN,
RF and SVM have though over the GEP symbolic regression
construction is the fact that when the target variable presents
a skewed distribution, log-transforming of the target data is
recommended for regression types of methods, such as GEP
(Keene, 1995), whereas there is no effect on the prediction
capacity of the other MLM as far as we are aware. Moreover,
such a log-transformation needs a back-transformations that
might induce a bias if the right correction is not performed
(Manning, 1998). For these reasons, in cases where less steps
in obtaining predictions are desired and no mathematical ex-
pression of the models needed to obtain the predictions are
needed, non-GEP approaches might be recommended.

5.2 The value of GEP for modelling ecosystem
respiration fluxes

We automatically generated a series of model structures
to describe terrestrial CO2 respiration fluxes (Eqs. 22–28)
with the GEP approach. Most of these structures (five out
of seven) were of rather low complexity, requiring only
four free parameters and allowing for further interpretation.
The most complex structure is found for theRmyc representa-
tion, which is in line with previous findings (Shi et al., 2012).
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(a)

(b)

Figure 15. Daily Rsoil fluxes (a) illustrated in the context of the 2 studied years and residual values (b) of the total soil daily CO2 outgoing
fluxes as simulated by the investigated literature models and the GEP emerged model after smear term bias corrected back-transformation.
The fluxes shown here are the real flux measured at the site and the predicted fluxes generated according to the GEP model and some of the
models used in the environmental science community. The centre of the plots in the second row is −1. The scale of the fluxes is given in
gC m−2 day−1.

Interestingly, the models derived for Reco and Rsoil are
structurally very similar. That is also the case of Rroot and
heterotrophic respiration, where the difference lies in the set
of parameters and the added presence of an intercept in the
formulation of the Rsoilh model. This finding suggests a con-
sistency in the response of the Rsoil components to their
drivers, considering that the separation of the Rsoil into its
components might still lack accuracy (e.g. Hanson et al.,
2000; Kuzyakov, 2006; Subke et al., 2006; Heinemeyer et al.,
2011).

When we compared the GEP-derived models with the
community established semi-empirical models from a struc-
tural point of view, we found that they shared some key fea-
tures for temperature dependencies of CO2 fluxes, which are
typically captured by exponential relationships, but reveal
some previously unconsidered dynamics as well.

A major difference was in the response of the respiration
components to SWC, where the GEP models often chose
SWC as one of the drivers. Moreover, the GEP models of-
ten contained an exponential dependency, i.e. there are only
certain parts of the signal that are strongly sensitive to vary-
ing SWC. We believe that the exponential dependency of ter-

restrial ecosystem respiration components on SWC is a very
intuitive pattern that has not yet been reported in the literature
and requires further exploration.

Another difference we found was the strongly seasonal re-
sponse of the respiration components to GPP, possibly as a
proxy to light and vegetation availability which were not in-
cluded in the set of candidate predictors.

Considering that GEP identified plausible models that are
very different structurally from previously reported semi-
empirical models, still yielding equivalent or better mod-
elling performance, the validity of the conventional semi-
empirical models can be questioned. Nevertheless, we do be-
lieve that there is a need for more in-depth analysis for de-
termining whether the GEP described processes make actual
biological sense and whether the selected drivers and their
interactions represent true processes and responses.

5.3 Data quality

During our study, it was apparent that the highest MEF values
were obtained for all the studied methods in the case of the
respiration types that had direct measured observations and
were not derived. It might be the case that when fluxes are
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obtained from derivations, the measurement error will also
increase, and the partition of a clear signal existing in the
observations is not sufficient for constructing a good model
with GEP.

5.4 High-frequency variability

All GEP-generated models underestimated the high respi-
ration fluxes (Fig. 8) and typically did not capture the fast
responses. This phenomenon was in some cases a system-
atic pattern, and sometimes affected only certain times of
the year. Similarly, semi-empirical models struggled to ade-
quately simulate CO2 flux peaks and in some cases monthly
flux averages (Fig. 15).

A more in-depth comparison of all the GEP and conven-
tional respiration models, based on a timescale-dependent as-
sessment of model–data mismatch (Mahecha et al., 2010),
could help to further elucidate the problem and clarify some
of the strengths and weaknesses of the different modelling
approaches, especially when seasonal mismatches appear.
Nevertheless, a detailed timescale-dependent assessment is
beyond the scope of this study, and for such an analysis, the
current time series are simply too short.

The question is whether the GEP method lacks the abil-
ity to build models that correctly represent the processes
and their fast dynamic responses, or whether the candidate
drivers and the observations used for their representation are
simply not sufficient for generating representative models. In
the end, the response of Rsoil and Reco to external drivers
might be too complex to describe solely with the currently
available measurements and with the selected drivers.

We believe that the consistent underestimation of fast re-
sponses was partly due to surface moisture affecting litter
decomposition and fungal activity, as soil moisture was only
monitored over the average 8 cm surface, with the top few
centimetres most likely presenting the highest activity and
partly due to some potential processes/drivers like lags be-
tween GPP and respiration (Hölttä et al., 2011) or phenology
(Migliavacca et al., 2015) that were not specifically included
in the learning process.

Another explanation for missing some of the (high flux)
variability could be in our choice of fitness function. As we
decided to penalize during the learning process for structures
with many parameters, it is likely that some structures were
eliminated early on during this process, even though they
may be well suited for describing a given process from a
modelling efficiency point of view. However, this is a case of
trade-off between a good fit and structural simplicity, and in
our approach, we decided that simplicity of structure, i.e. the
possibility of interpretation, is a very important asset.

We explored as well the possibility of the underestima-
tion of the carbon flux variability being caused by the log-
transformations applied to the observations. It could have
been the case that the log-transformations excluded inter-
esting components of the model structures by forcing the

method to build multiplicative models. Nevertheless, when
the GEP was run again on the residuals, without log-
transforming, no new meaningful information was retrieved,
indicating that multiplicative models were sufficient for re-
constructing the Reco components present in this study.

5.5 Equifinality

Table 4 shows that when optimizing the parameters for
all structures, the prediction performance becomes similar,
which leads to the question of equifinality of dynamical sys-
tems, where different models that try to capture their struc-
ture might have different formulations but represent the same
response.

A critical question for the applicability of any ecosys-
tem model is whether the model structure is more important
than the parameterization of a given “best” model. For this
question to be addressed, however, we need a larger sam-
ple of ecosystem types representative of different types of re-
sponses where we can explore the importance of the obtained
structures and their parameter sets.

5.6 GEP models in the context of other machine
learning methods

The comparison of GEP-generated models and machine
learning methods showed a narrow range of predicted fluxes
(Fig. 13). The analysis of training all the MLMs on the GEP
residual output showed that the GEP approach is not able
to retrieve any new meaningful structural components, but
that the remaining MLMs are much better at reconstructing
the signal left in the residuals. This indicates that although
the GEP is actually a reliable MLM when it comes to re-
constructing the underlying Reco fluxes and is not prone to
overfitting, it could be that the current set-up of the GEP is
not sufficient for an exhaustive description of those fluxes,
or that it might be overly strict on the complexity of models
compared to other MLMs. The GEP approach has, neverthe-
less, the benefit of producing mathematical model structures
that can be the basis for future interpretation.

6 Conclusions and outlook

Overall, our results suggest that the GEP approach is a poten-
tially powerful tool of reverse engineering, particularly help-
ful for building ecological models when there is a minimum
of a priori system understanding. We exemplified this con-
ceptually using artificial data, but also show that GEP always
yields as good or better results compared to conventionally
used models in the case of ecosystem respiration. Based on
data from a long-term monitoring site of different respira-
tory fluxes, and using GEP as a reverse engineering tool, we
found new structures for modelling Reco components. The
GEP-derived models outperform conventionally used models
and generally differ by the way temperature and GPP but also
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SWC are interpreted, indicating that conventional respiration
models might have to be revised. At the same time, we found
that when the GEP-derived models are mutually compared,
there are sufficient structural particularities for each terres-
trial respiration type so as to not allow for the formulation of
a general Reco law. More research is needed on a larger set of
sites to identify widely usable models and for their interpre-
tation. A particular matter of concern is the apparent equifi-
nality of selected model structures, indicating that many re-
sponse functions are yielding predictions of almost similar
quality. A study of multiple sites would enable an investi-
gation of whether specific ecosystem types result in similar
model structures, or whether response functions apply across
contrasting ecosystem types.

The current study has also revealed methodological as-
pects that could be improved. In particular, we found the
inclusion of a parameter optimization step very helpful to
further test the transferability of model structures. But this
approach could be potentially integrated into the GEP evolu-
tion. More specifically, we think that the next development of
GEP could include the parameter optimization as an interme-
diate step before selection during each evolution generation
(Ilie et al., 2017). In this way, a model structure could be cho-
sen according to not only the current state of parameters, but
also according to its potential, and convergence to a global
solution might be achieved faster.

Code and data availability. All code and data used to produce the
results of this paper can be provided upon request by contacting
Iulia Ilie or Miguel D. Mahecha.
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Appendix A: Glossary

expression tree binary tree used to represent algebraic expressions
gene set of characters of fixed length that encodes an expression tree
chromosome individual used in automatically evolving an optimal solution comprised of a set of genes that are

connected with a binary operation (e.g. +×−)
GEP gene expression programming, machine learning method that evolves chromosome

structures with the purpose of minimizing a cost function
genetic operator operator that produces changes in the structure of a chromosome and the expression tree it encodes

by altering the strings representing composing genes (e.g. mutation, inversion, recombination)
evolution the process of producing an optimal solution by GEP through
generation time step of an evolution
genetic operator rate probability of a genetic manipulation occurring during a generation
population total set of chromosomes that participate at a certain step in the evolution of an optimal solution in

the GEP approach
CMA-ES covariance matrix adaptation evolutionary strategy
MLM machine learning method that can produce predicted values based on a training set
ill-posed problem a problem for which the solutions might not be unique or unstable, also known as an inverse problem
reproduction process of generating new individuals for a new generation starting from the present-generation

individuals after they go through structure modification and fitness-based selection
individual GEP entity that is a component of a population during a certain step of the evolution process.

Also known as a chromosome.
gene head initial section of the string that comprises a GEP gene, containing a combination of characters

that map to predictors and possible functional transformations
gene tail end section of the string that comprises a GEP gene, containing only characters that map to

predictors
solution finally selected model structure resulting from a GEP run
hyper-parameter set of parameters which need to be set for the runs of a machine learning approach
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