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Abstract. The 2.5 km convection-permitting (CP) ensem-
ble AROME-EPS (Applications of Research to Operations
at Mesoscale – Ensemble Prediction System) is evaluated
by comparison with the regional 11 km ensemble ALADIN-
LAEF (Aire Limitée Adaption dynamique Développement
InterNational – Limited Area Ensemble Forecasting) to show
whether a benefit is provided by a CP EPS. The evalua-
tion focuses on the abilities of the ensembles to quanti-
tatively predict precipitation during a 3-month convective
summer period over areas consisting of mountains and low-
lands. The statistical verification uses surface observations
and 1 km× 1 km precipitation analyses, and the verification
scores involve state-of-the-art statistical measures for deter-
ministic and probabilistic forecasts as well as novel spatial
verification methods. The results show that the convection-
permitting ensemble with higher-resolution AROME-EPS
outperforms its mesoscale counterpart ALADIN-LAEF for
precipitation forecasts. The positive impact is larger for the
mountainous areas than for the lowlands. In particular, the di-
urnal precipitation cycle is improved in AROME-EPS, which
leads to a significant improvement of scores at the concerned
times of day (up to approximately one-third of the scored ver-
ification measure). Moreover, there are advantages for higher
precipitation thresholds at small spatial scales, which are due
to the improved simulation of the spatial structure of precip-
itation.

1 Introduction

The prediction of deep convection in mountainous terrain is
known to be one of the greatest challenges in atmospheric
modeling. The initiation and development of deep convec-
tion is dependent on small-scale orographic structures and
related processes, which cannot be easily described by at-

mospheric models (Wulfmeyer et al., 2011; Barthlott et al.,
2011; Weckwerth et al., 2014). Nevertheless, the estimation
of the location, duration, and intensity of precipitation events
is important, as Alpine areas are more exposed to natural
hazards connected with heavy precipitation (landslides and
flooding) than flat land (e.g., Rotach et al., 2009; Haiden et
al., 2014).

Models with deep convection parameterization perform
poorly in simulating heavy and highly localized precipita-
tion, especially those with a grid spacing larger than 10 km
(Weusthoff et al., 2010). One source of errors is that the
applied convection schemes act independently in individual
model grid columns. As a consequence, convectively gen-
erated cold pools that drive convective system propagation
cannot be properly simulated, resulting in simulated system
movement that is too slow. In weak synoptic forcing, for ex-
ample, organized mesoscale convection systems (MCSs) are
particularly challenging for convection-parameterizing mod-
els (Clark et al., 2007; Liu et al., 2006). Another drawback
is that the inadequate descriptions of buoyancy and updrafts
in a convection-parameterizing model often cause convection
to initiate too early. This premature initiation of convection
often results in timing and location errors as well as diffi-
culty to simulate the diurnal cycle of rainfall (Clark et al.,
2007). Detailed discussion on the convection initiation in a
convection-parameterizing model can be found in Davis et
al. (2003) and Bukovsky et al. (2006).

A solution for this kind of forecasting problem is offered
by a new generation of numerical weather prediction (NWP)
models, which have been developed during the last decade.
Convection-permitting models with horizontal grid spacings
of approximately 2–3 km offer new possibilities for estimat-
ing local impacts. The term “convection permitting” as used
in this article (CP hereafter) means that a deep convection
parameterization is not used in the model. It is assumed that
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the horizontal resolution around 2–3 km is sufficient to depict
the bulk properties of precipitating convective cells, but not
to truly resolve the processes within precipitating convective
cells such as turbulence and entrainment (Bryan et al., 2003).
This is in accordance with Weisman et al. (1997), who sug-
gested setting the upper limit for the range of convection-
permitting resolutions at 4 km.

Despite the higher resolution and explicit simulation of
deep convection, the exact prediction of location, intensity,
and spatiotemporal extent of deep convection is still dif-
ficult. Recently, probabilistic approaches using convection-
permitting ensembles have proven valuable, since they pro-
vide direct information on forecast uncertainty, which is of-
ten quite large for deep convection. An ensemble usually
consists of a number of model runs, which differ in their ini-
tial and boundary conditions and/or model configurations. In
order to produce a reliable probabilistic forecast, the individ-
ual ensemble member forecasts should be equally likely to
occur and cover the range of future states. Following Clark et
al. (2011), the ideal number of ensemble members is depen-
dent on the point of diminishing returns, i.e., the ensemble
size where no new information can be expected by additional
members.

In recent years, several CP ensemble prediction systems
(EPSs) have been developed and and considerable experience
has already been gained. To name but a few, there are the
COSMO-DE-EPS (Consortium for Small-scale Modeling –
EPS, Gebhardt et al., 2011; Peralta et al., 2012; Ben Boual-
lègue et al., 2013; Kühnlein et al., 2014) at the Deutscher
Wetterdienst (DWD), the CP version of UK Met Office’s
MOGREPS (Met Office Global and Regional Ensemble Pre-
diction System, Bowler et al., 2008; Caron, 2013; Hanley
et al., 2013; Tennant, 2015), a storm-scale ensemble fore-
cast (SSEF) run by the Center of Analysis and Prediction
of Storms (CAPS) at the University of Oklahoma (Xue et
al., 2007, 2009; Clark et al., 2011; Schumacher et al., 2013;
Schumacher and Clark, 2014), WRF-based CP ensemble at
NCAR (e.g., Schwartz et al., 2015), and AROME-EPS (e.g.,
Vié et al., 2012; Bouttier et al., 2012) developed at Météo
France. A common feature of all of these EPSs is that their
horizontal mesh size is equal to or less than 4 km, but mostly
between 2 and 3 km.

The EPSs mentioned above differ regarding their num-
ber of ensemble members and their perturbation strategies
and post-processing. Some of them apply an ensemble data
assimilation (EDA) approach for perturbing the initial con-
ditions (ICs) (Vié et al., 2012; Caron, 2013; Schumacher
and Clark, 2014; Schwartz et al., 2015). The applied model
perturbation methods range from a multiparameter approach
(Gebhardt et al., 2011) to a stochastic physics scheme (Bout-
tier et al., 2012; Romine et al., 2014) and to using different
dynamical cores (Schumacher et al., 2013). In order to in-
crease ensemble size and to improve the representation of the
ensemble distribution, some systems also apply the neighbor-
hood method and/or lagged ensemble concepts (Ben Boual-

lègue et al., 2013). While the neighborhood method is based
on ensemble probabilities derived from grid points of a de-
fined environment (Theis et al., 2005; Schwartz et al., 2010),
the lagged ensemble approach uses forecasts of successive
ensemble runs (Ben Bouallègue et al., 2013).

A number of evaluative studies concerned with these CP
EPSs have been conducted. They mainly focus on the in-
vestigation of the impact of CP ensemble configurations, for
example, the generation of IC perturbation, representation
of the model error, uncertainties from the lateral boundary
conditions (LBCs), ensemble size, and spatial scale (Kong
et al., 2006; Clark et al., 2009, 2011; Vié et al., 2012;
Bouttier et al., 2012; Ben Bouallègue et al., 2013; Kühn-
lein et al., 2014; Schwartz et al., 2015; Schumacher and
Clark, 2014; Romine et al., 2014; Tennant, 2015). There are
few comprehensive studies on the evaluation of CP EPS,
in particular, in comparison with the mesoscale regional
EPS. Clark et al. (2009) compared a 5-member 4 km grid
spacing convection-permitting ensemble with a 15-member
20 km grid spacing regional ensemble. Their case stud-
ies revealed that the convection-permitting ensemble gener-
ally provided more accurate precipitation forecasts than the
coarser-resolution regional EPS. Le Duc et al. (2013) exam-
ined the ability to predict precipitation of two 11-member
ensembles with 10 and 2 km horizontal resolution, with the
fine model using direct downscaling of the coarser one. They
could show that the 10 km ensemble was more reliable in pre-
dicting light rain, whereas the 2 km ensemble outperformed
the coarser one in cases of heavier rain. Schwartz et al. (2009)
combined subjective and objective verification approaches
and found that a higher-resolution ensemble with 4 km pro-
duced better forecasts than a 12 km regional model. However,
additional comparisons of control runs with 2 and 4 km res-
olution did not reveal further prognostic value for the lower-
resolution model.

In this paper, we will evaluate the performance of a 16-
member 2.5 km grid spacing convection-permitting EPS by
comparing it with its driving 16-member and 11 km grid
spacing mesoscale regional ensemble. Focus will be on the
capabilities of the CP ensemble to quantitatively predict pre-
cipitation during a convective summer period over an area
consisting of mountains and lowlands. Of interest here is
the Alpine region, since the impacts of the mountainous ter-
rain, such as windward/lee effects, the differential heating
of valley, and mountain slopes can cause large inaccuracies
in forecasting convective precipitation and pose a challenge
for numerical models and their physical parameterizations
(Richard et al., 2007; Wulfmeyer et al., 2008, 2011; Bauer
et al., 2011). Therefore, an evaluation study is designed and
conducted for a typical convective season (3 months, May–
August 2011), i.e., a period, which is long enough to make at
least basic statements about the significance of results. Natu-
rally, this period length is not sufficient to enable statistically
reliable statements on real hazardous events, such as land-
slides and flash floods. However, the investigations can be
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regarded as a first step towards this aim. The CP ensemble,
which is evaluated in this paper, is a version of AROME-
EPS, developed at the Central Institute for Meteorology and
Geodynamics in Austria (ZAMG). It is compared with its
coarser driving regional EPS ALADIN-LAEF (Wang et al.,
2011). The following questions are raised:

– Can a convection-permitting EPS provide an advantage
over its coarser, driving regional EPS in complex ter-
rain?

– Is there any difference in the performance for the com-
pared EPSs between lowlands and mountainous areas?

– How well can CP EPS and lower-resolution regional
EPS simulate the diurnal cycle of precipitation? Is the
onset and development of convective precipitation real-
istic?

– Does a significant difference in performance for differ-
ent weather regimes (i.e., days with weak and strong
synoptic forcing) exist?

A verification study is designed and conducted to an-
swer these questions and to establish whether AROME-EPS
can outperform ALADIN-LAEF, a regional mesoscale en-
semble with deep convection parameterization on a coarser
grid. Wang et al. (2012) demonstrated the added value
of ALADIN-LAEF as a regional mesoscale EPS to the
global ECMWF-EPS (European Centre for Medium-Range
Weather Forecasts). Hence, the present study extends this re-
search by addressing the step between regional mesoscale
and CP ensembles.

For the present paper, AROME-EPS is coupled to the 16
perturbed ALADIN-LAEF members. This is done to take ad-
vantage of the simulation of uncertainties used in ALADIN-
LAEF. This uncertainty information is subsequently trans-
ferred to finer scales via the dynamical downscaling of the
ALADIN-LAEF forecasts by AROME. This means that both
IC perturbations and LBC perturbations are provided from
the driving model and are thus consistent. No further IC per-
turbations and model perturbations are applied. Generally,
the setup is kept as simple as possible to point out the pure ef-
fects of the downscaling: AROME-EPS is directly coupled to
a daily ALADIN-LAEF run initiated at 00:00 UTC. There is
no time lag between the ALADIN-LAEF and the AROME-
EPS simulations, and the forecasts are evaluated for the first
30 h of the model runs, hence for a whole day and the subse-
quent night each.

The benefits of AROME-EPS compared to ALADIN-
LAEF are revealed in the framework of a comparative ver-
ification study. Although the focus of the verification study
is on the onset and development of precipitation, the per-
formance of other surface weather parameters is considered.
The verification methods are selected in such a way that
the overall performance, in a deterministic and probabilistic

manner, and the abilities of the ensembles to reproduce spa-
tial structures, can be investigated. Hence, ensemble-related
scores are combined with spatial verification methods. Unin-
tentionally, the strategy of this paper shows parallels to the
verification study conducted by Le Duc et al. (2013), espe-
cially concerning the two ensembles (10 and 2 km resolution)
coupled by direct downscaling. Further similarities are the
complex terrain in which the study is conducted (Japan) and
the use of traditional and advanced verification metrics. As
a consequence, parallels in the results are mentioned in the
results section.

Detailed characteristics of the compared models are de-
scribed in Sect. 2 along with the verification data. The meth-
ods chosen for the evaluation of the two ensembles are de-
scribed in Sect. 3. Section 4 comprises the verification results
and Sect. 5 the summary and concluding remarks.

2 Ensemble systems and data

2.1 The regional ensemble ALADIN-LAEF

ALADIN-LAEF is the operational regional ensemble system
of ZAMG and runs at ECMWF (Wang et al., 2010, 2011). It
is based on the hydrostatic spectral limited area model AL-
ADIN (Wang et al., 2009). ALADIN-LAEF has 16 members
and is coupled to ECMWF-EPS (Weidle et al., 2013) with
a horizontal grid spacing of 11 km. In operational mode, it
runs two times per day at 00:00 and 12:00 UTC and provides
probabilistic forecasts on a forecast range up to 3 days ahead,
i.e., 72 h. In this study, however, evaluation is confined to the
run at 00:00 UTC and a forecast range of 30 h ahead only.
This is done in order to investigate the onset and develop-
ment of convection in its diurnal cycle.

The 16 members of ALADIN-LAEF are not sufficient to
represent the atmospheric state probability density function
(PDF). However, Schwartz et al. (2014) have shown that sim-
ilar verification scores can be obtained from a 50-member
ensemble and subsets of 20–30 members. Hence, we can ex-
pect, at least, reasonable results from verification based on a
16-member ensemble.

The ALADIN-LAEF domain (Fig. 1) covers the whole
European continent, Iceland, the whole Mediterranean Sea,
Black Sea, Caspian Sea, and adjacent countries. The east-
ern margins reach the Ural Mountains and parts of Siberia.
To deal with the atmospheric initial condition perturba-
tion, ALADIN-LAEF applies a breeding–blending method
for generating the IC perturbations for the upper levels.
It uses large-scale perturbations from the driving global-
ECMWF-EPS combined with small-scale perturbations from
the ALADIN-breeding vectors (Toth and Kalnay, 1993). The
blending method (Wang et al., 2014) ensures that incon-
sistencies between small- and large-scale perturbations are
avoided. Therefore, a digital filter is applied on the low spec-
tral truncations of both the breeding vectors and the fields
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Figure 1. Geographic domains and topographies of (a) ALADIN-LAEF, where the red frame is the output domain used for the present study,
and (b) AROME-EPS, which is shown by the blue frame in (a).

from the global model. Afterwards, the filtered breeding vec-
tors on the full spectral resolution are subtracted from the
original ones and added by the filtered global fields resulting
in initial perturbations that are consistent with the regional
EPS itself as well as with the driving global EPS.

To consider uncertainties arising from the initial surface
conditions in ALADIN-LAEF, a surface data assimilation
scheme based on optimum interpolation (CANARI – Code
for the Analysis Necessary for Arpège for its Rejects and
its Initialization, Taillefer, 2002) is implemented using ran-
domly perturbed observations. To account for uncertain-
ties in the model itself, a multi-physics approach is imple-
mented in ALADIN-LAEF. The perturbed members use dif-
ferent model configurations with several combinations and
tunings of schemes and parameterizations available in the
ALADIN physics package. The main emphasis is put on
the variation and tunings of the following schemes and pa-
rameterizations: the diagnostic convection scheme as de-
scribed in Bougeault (1985); the prognostic deep convection
scheme 3MT (modular multiscale microphysics and trans-
port scheme; Gerard et al., 2009), and the connected mi-
crophysics scheme described in Geleyn et al. (2008) and
Gerard et al. (2009); the radiation scheme based on Ritter
and Geleyn (1992) or alternatively the scheme described in
Mlawer (1997) and Morcrette (1991); the pseudo-prognostic
TKE (turbulent kinetic energy) scheme described in Vana et
al. (2008). Further details can be found in Wang et al. (2010).
Authors are aware that the forecasts of the individual mem-
bers produced by the multi-physics approach cannot be re-
garded as equally likely. However, a previous evaluation
(apart from this study) of the multi-physics in ALADIN-
LAEF revealed that some of the members showed larger bi-
ases and errors than the other members. The configurations
of these worse members were changed accordingly. Hence,
we can assume that the members now produce forecasts of
comparable quality.

2.2 The convection-permitting ensemble AROME-EPS

The model core of AROME-EPS is the non-hydrostatic,
spectral limited area model AROME (Seity et al., 2011),
which is especially designed to run at very high resolutions
with a grid spacing of 2.5 km or lower. Deep convection
is treated explicitly, while shallow convection is parameter-
ized with a mass flux approach (Pergaud et al., 2009). The
single-moment bulk microphysics scheme ICE3 for mixed-
phase cloud parameterization (Pinty and Jabouille, 1998) can
handle mixing ratios of five prognostic hydrometeor classes:
cloud water, cloud ice, rain, snow, and graupel and also sim-
ulates complex interactions between them. AROME, by de-
fault, uses a three-layer soil model SURFEX (Surface Exter-
nalisé) with the effects of sea and urban areas parameterized
using a tile approach (Masson, 2000).

At ZAMG, a deterministic version of AROME with
2.5 km grid spacing has been operational since January 2014
running every 3 h up to a lead time of 48 h. The domain
for the model integration encompasses the Alpine region
(Fig. 1). Table 1 summarizes the most important model char-
acteristics of ALADIN-LAEF and AROME-EPS.

To run AROME-EPS, the same version of AROME with
the same resolution is initialized by a dynamical downscal-
ing of ALADIN-LAEF and coupled to the 16 members of
ALADIN-LAEF. The ensemble runs with a forecast range
of 30 h are initiated at 00:00 UTC each day, i.e., at the same
time as ALADIN-LAEF. There is no time lag considered, as
the pure impact of enhanced resolution and the convection-
permitting configuration shall be investigated. Apart from the
perturbations of initial conditions and lateral boundary con-
ditions, no further perturbations (e.g., multi-physics parame-
terizations as in ALADIN-LAEF) are induced in the model
integration. This comparatively simple configuration is used
for several reasons: first, AROME-EPS has been set up quite
recently at ZAMG and is still at an early stage of develop-
ment. Secondly, the development of physics perturbations
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Table 1. Main characteristics of the ALADIN-LAEF and AROME-EPS.

ALADIN-LAEF AROME-EPS

Ensemble size 16+1 members 16 members
Horizontal resolution 11 km 2.5 km
Vertical resolution 45 layers 60 layers
Model time step 450 s 60 s
Coupling model ECMWF-EPS (first 16 members) ALADIN-LAEF
Coupling update 6 h 3 h
No. of grid points 206× 164 432× 320
Forecast range 72 h 30 h
Runs per day 2 (00:00, 12:00 UTC) 1 (00:00 UTC)

Figure 2. Locations of meteorological surface observation stations
within the evaluation domain.

in AROME-EPS will rather go towards a stochastic physics
scheme or a combined stochastic–multi-physics scheme than
towards pure multi-physics as currently used in ALADIN-
LAEF. Thirdly, the aim of this study is to test the possible
advantage of a CP EPS compared to the operational system
of ALADIN-LAEF.

2.3 Verification data

Station observations are used for the evaluation of ALADIN-
LAEF and AROME-EPS surface weather variables. Figure 2
shows the 517 surface stations in the AROME domain, pro-
viding observations at 6-hourly intervals for 2 m temperature,
2 m humidity, 10 m wind speed, and mean sea level pressure.
The upper-level verification is achieved using ECMWF anal-
yses reference data at four pressure levels: 925, 850, 700, and
500 hPa, which are adapted to the model resolutions of both
AROME-EPS and ALADIN-LAEF.

The evaluation of precipitation forecasts is performed us-
ing the very high-resolution precipitation analyses of the
ZAMG nowcasting system INCA (Integrated Nowcasting

through Comprehensive Analyses; Haiden et al., 2011). This
is necessary as the average station distance of precipitation
observations is too large to resolve the fine spatial structures
of precipitation events. The advantage of the INCA analyses
is that they use additional observations and are provided on
a regular grid. Based on these gridded data, it is possible to
apply enhanced verification methods on precipitation fields,
which cannot be computed on a point-to-point basis.

The INCA system, developed at ZAMG, operates on a hor-
izontal resolution of 1 km× 1 km. INCA blends data from
automatic weather stations, remote sensing data (radar, satel-
lite), forecast fields of numerical weather prediction (NWP)
models, and high-resolution topographic data (Haiden et al.,
2011). It provides hourly 3-D fields of temperature, humid-
ity, wind, and 2-D fields of cloudiness, precipitation rate, and
precipitation type with an update frequency of 15 min to 1 h.
The precipitation analyses are provided for different accu-
mulation periods. In the present study, the 1 h accumulated
INCA precipitation analyses are used as a reference for the
spatial verification of EPS forecasts. For these analyses, pre-
cipitation measurements from surface stations and radar data
are accumulated to 1 h sums and algorithmically merged.
Prior to the analysis procedure, the data are quality controlled
and climatologically scaled (Haiden et al., 2011). In this way,
the higher quantitative accuracy of the station data and the
better spatial coverage of the radar data are utilized. The re-
sulting analysis reproduces the observed values at the station
locations while preserving the spatial structure provided by
the radar data. The analysis error, which is computed from
classical cross-validation, varies from case to case, and de-
pends on precipitation type, e.g., large scale or convective,
and on the accumulation period. The magnitude of analysis
errors of grid point values can be quite large, but areal mean
values are significantly more reliable (Haiden et al., 2011).

Amending the rain gauge–radar combination, the scheme
includes elevation effects on precipitation using an intensity-
dependent parameterization (Haiden and Pistotnik, 2009). A
NWP model first guess is not required in the precipitation
analysis; thus, such analyses are ideally suited as an inde-
pendent reference to validate NWP models.

www.geosci-model-dev.net/10/35/2017/ Geosci. Model Dev., 10, 35–56, 2017



40 T. Schellander-Gorgas et al.: On the forecast skill of a convection-permitting ensemble

Forecast verifications are performed at the observation lo-
cations for surface variables as 2 m temperature and humid-
ity, 10 m wind speed, and mean sea level pressure, and on the
INCA grid for precipitation. The model forecasts are inter-
polated bi-linearly to the station locations and INCA anal-
ysis grid points, respectively. Further, a height correction
scheme is applied on 2 m temperature values based on atmo-
spheric standard conditions. In doing so, the same number of
forecast–observations pairs is available for the verification of
each of the EPS models. This supports the comparability of
the verification results.

3 Verification strategy

AROME-EPS and ALADIN-LAEF are evaluated over a 3-
month summer period from 15 May–15 August 2011, which
represents a typical convective summer season in central Eu-
rope.

Precipitation is one of the parameters for which the biggest
improvement is expected from the convection-permitting
models. Therefore, the evaluation of the ensembles focuses
on the representation of the spatiotemporal structure of pre-
cipitation events in the forecasts. Nevertheless, the precondi-
tions for the development and onset of precipitation are also
considered. For this reason, other forecast parameters such as
temperature, humidity, wind speed, air pressure, and geopo-
tential height are also verified.

Precipitation forecasts are evaluated in both determinis-
tic and probabilistic ways. The deterministic approach is di-
rected towards predicting the correct precipitation amounts
and the spatial distribution of the data. Probabilistic evalua-
tion tests the capability of the ensembles to predict a prede-
fined event with the probability which corresponds to its rel-
ative frequency, i.e., to produce a reliable probability density
function (PDF) for the occurrence of the event. The events
can be defined as, e.g., precipitation amounts exceeding a
certain threshold. In this study, thresholds of 0.1 mm (thresh-
old for the prediction of rain or no rain), 0.5, 1, 2, and 5 mm
are chosen for 3-hourly accumulated precipitation amounts.
These thresholds appear low, especially when taking into ac-
count convective precipitation events. However, the thresh-
olds are selected according to the frequency of occurrence
of the precipitation values in the individual grid cells of the
1 km× 1 km verification grid. They ensure that a sufficient
number of observed events are available for evaluation over
the 3-month test period. The two ways of deterministic and
probabilistic evaluation reflect the main options for the effi-
cient use of ensemble forecasts: first, as a conservative pre-
diction of ensemble mean or median and, second, as a tool to
estimate the uncertainty of the forecast and the probability of
extreme values via the ensemble spread and PDF (e.g., Zhu
et al., 2002).

A number of traditional point-to-point verification scores
(see, e.g., Wilks, 2006) are computed for all evaluated pa-

rameters. In addition, significance tests for these scores are
performed. Confidence intervals of the verification scores are
estimated by a bootstrapping algorithm (Davison and Hink-
ley, 1997; Joliffe, 2007; Ferro, 2007) and confidence inter-
vals of 90 %. The bootstrapping method uses 5000 random
samples with a block length of 4 days (Hall et al., 1995).

In order to present the results concisely, three scores have
been selected to describe the differences in forecast perfor-
mance between AROME-EPS and ALADIN-LAEF: the en-
semble mean bias (Eq. 1), the Brier score (BS), components
derived from its decomposition, reliability, resolution, and
uncertainty (Brier, 1950; Murphy, 1973; respectively, Eqs.
2–5), and the continuous ranked probability score (CRPS,
Hersbach 2000; Gneiting and Raftery, 2007; Eq. 6).

The bias simply measures the mean deviation between the
analyzed values (a) and the forecast values, in our case the
ensemble means (f̄ ), averaged over n grid points with in-
dex i. Both positive as well as negative signs are possible. A
perfect forecast has a bias of zero.

BIAS=
1
n

n∑
i=1
(f̄i − ai) (1)

Like the bias, BS is also a measure for the accuracy of
the forecasts, however, in probability space. It is the mean
squared difference between the forecast probability (p ∈

[0 : 1]), e.g., derived from the distribution of ensemble mem-
bers) for a predefined event (e.g., the exceeding of a thresh-
old) and the analyzed truth x (x ∈ {0,1}). The binary vari-
able x is 1 if the event occurred, and 0 if the event did not oc-
cur. The minimal value of BS is 0. It is achieved for a perfect
forecast, and the maximum value is 1 for the worst possible
forecast.

BS=
1
n

n∑
i=1

(pi − xi)
2 (2)

According to Murphy (1973), the BS can be decomposed to
three quantities which refer to the reliability, resolution, and
uncertainty of the forecast (Eq. 3).

BS=
1
n

K∑
k=1

Nk(pk − x̄k)
2
−

1
n

K∑
k=1

Nk(x̄k − x̄)
2

+ x̄ (1− x̄) (3)

The Nk values in Eq. (3) denote the sample sizes in K con-
ditional subsamples pertaining to forecast probabilities pk .
The x̄k values (Eq. 4) are the conditional average observa-
tions and x̄ is overall average observation (Eq. 5).

x̄k =
1
Nk

∑
k∈Nk

xi (4)

x̄ =
1
n

n∑
i=1

xi (5)

Reliability (first term of Eq. 3) measures how well a forecast
system is calibrated, i.e., it is a measure of accuracy condi-
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tional to a range of forecast values. Resolution (second term),
on the other hand, describes the ability of the forecast to react
differently to different weather situations or, in other words,
to resolve them. While the value for a perfect forecast of the
reliability term is zero, the resolution term is preferably large.
The third term of Eq. (3), uncertainty, is not dependent on
the forecast, but only on the variance of observations (here,
the relative frequencies of the occurrence/non-occurrence of
events). For a very comprehensible discussion of these quan-
tities of forecast quality, see also Wilks (1995).

CRPS is related to BS insofar as it can be expressed as
the integral of BS for all possible thresholds of the meteoro-
logical parameter ξ (Hersbach, 2000). The value for an ideal
forecast of CRPS is zero as for BS.

CRPSi =

∞∫
−∞

[Pi (ξ)−Pi (ξa)]2dξ (6)

The continuous ranked probability score compares the cu-
mulative distributions Pi (ξ) (Eq. 7) and Pi (ξa) (Eq. 8) of the
forecast and the analyzed values at each grid point i.

Pi (ξ)=

∫
pi (y)dy (7)

Pi (ξa)=H (ξ − ξa) (8)

H(ξ ) is the so-called Heaviside function (Eq. 9), which only
takes the values 0 and 1.

H (ξ)=

{
0 forξ < 0
1 forξ ≥ 0 (9)

In addition to the traditional statistical scores, precipitation
forecasts are verified by spatial verification methods, which
not only consider the exact match of forecast and verifica-
tion values at individual points but also take into account
the matching of forecasts and observations in terms of ob-
jects or spatial scales (Casati et al., 2008; Ahijevych et al.,
2009; Gilleland et al., 2010). This is necessary as precipita-
tion fields exhibit high spatial variability and discontinuity.
Small deviations in space and time between forecast and ver-
ification data can lead to large errors in traditional point-to-
point verification scores, which is also known as the double
penalty problem (Nurmi, 2003).

3.1 Spatial verification methods

The selected spatial verification methods are the so-called
SAL method (structure–amplitude–location method; Wernli
et al., 2008) and the fractions skill score (FSS; Roberts and
Lean, 2008).

SAL determines the forecast performance of precipitation
in terms of structure (S), amplitude (A), and location (L).
The method is object based. Precipitation objects in forecast
and verification fields are contiguous areas of grid points ex-

ceeding a certain precipitation threshold.

A=
R̄f− R̄a

0.5
[
R̄f+ R̄a

] (10)

The amplitude score (Eq. 10) defines whether the domain-
averaged amount R̄ of the precipitation field R is underesti-
mated (A < 0) or overestimated (A > 0). Subscripts (f and
a) denote forecast and analyzed fields, respectively.

The location score measures the agreement of the centers
of mass in the analyzed and predicted precipitation fields to-
gether with the averaged distance between the center of mass
and the individual objects. It is actually the sum of two com-
ponents (L= L1+L2) where both values are in the range [0,
1]. The first part L1,

L1=
|x (Rf)− x (Ra)|

dmax
, (11)

is a measure of the distance between the mass centers x of
the analyzed (Ra) and the predicted precipitation fields (Rf).
dmax is the longest possible distance in the domain.

As an identical mass center position does not necessarily
mean that the forecast is perfect, the second component L2
(Eq. 12) is introduced:

L2= 2
|r (Rf)− r (Ra)|

dmax
. (12)

L2 takes into account the distance r (Eq. 13) between the
mass center of each individual objectRn and the overall mass
center and compares them between the observed and simu-
lated precipitation field:

r =

M∑
n=1

Rn |x− xn|

M∑
n=1

Rn

. (13)

The L component has a range [0, 2], with L= 0 indicating a
perfect forecast.

The structure score S,

S =
V (Rf)−V (Ra)

0.5[V (Rf)+V (Ra)]
, (14)

compares the weighted sums of the precipitation volumes
V (R),

V (R)=

M∑
n=1

RnVn

M∑
n=1

Rn

, (15)

of the precipitation objects, where Vn = Rn/Rmax describes
precipitation sums scaled by their maxima. If S < 0, forecast
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objects are too small and too peaked. In contrast, S > 0 indi-
cates that the objects are too large and too flat.

The fractions skill score (FSS),

FSS(n)= 1−
MSE(n)

MSE(n)ref
, (16)

evaluates the forecasts on different spatial scales. The scales
are defined via neighborhoods, i.e., square boxes of length n
grid spaces surrounding a selected grid point. The score com-
pares the fractions of rain coverage of forecast and analysis
in the neighborhoods. Depending on the precipitation event,
small disparities of the coverage may lead to large forecast
errors on fine scales, but to a better rating on a coarser scale.
The aim of FSS is to identify scales for which the evaluated
model can provide useful forecasts.

FSS is computed by assigning the grid points binary val-
ues 0 and 1 in each of the neighborhoods with subscripts
(i,j ), according to a selected precipitation threshold. From
these binary fields, the fraction of the points with value 1 are
computed for analyses and forecasts as A(n)i,j and F(n)i,j ,
respectively.

At each such defined scale n, the mean squared error
(MSE),

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
A(n)i,j −F(n)i,j

]2
, (17)

is computed for the whole field of fractions and related to a
reference (MSEref).

MSE(n)ref =
1

NxNy

 Nx∑
i=1

Ny∑
j=1

A2
(n)i,j +

Nx∑
i=1

Ny∑
j=1

F 2
(n)i,j

 (18)

MSEref is the largest possible MSE which can be obtained
from the underlying field. The skill score summarizes the
performance in the whole field and ranges from 0 (complete
mismatch) to 1 (perfect match).

3.2 Subdomains for precipitation verification

Verification is done for the whole domain of Austria. To ac-
count for the different topographic characteristics in the ver-
ification domain, two subdomains are chosen (Fig. 3). They
comprise a mountainous area (hereafter region West) as well
as a region with flat terrain (hereafter region Northeast). Due
to the location of the Alps in Austria and the prevailing flow
directions around the Alps, each of the subdomains has its
own climatological properties which are also visible in the
precipitation characteristics.

3.3 Temporal stratification

In order to investigate the influence of different weather
regimes, the 92 days of the test period are classified into three

Figure 3. INCA domain and topography with the subdomains
which are used for the evaluation.

bins according to the synoptic situation: strong synoptic forc-
ing, weak synoptic forcing, and dry. Days are classified as
dry (5 days) if the areal mean of the daily precipitation sum
is below 0.05 mm. All other days, i.e., 87 days on which rain
was reported, are assigned to the bins of weak (23 days) or
strong synoptic forcing (64 days). For the classification, a
method described by Done et al. (2006) and successfully ap-
plied by Kühnlein et al. (2014) is used, which is based on
the temporal variability of CAPE (convective available po-
tential energy) as a measure of atmospheric instability. Ac-
cording to Done et al. (2006), the approach helps to distin-
guish between days on which convection is predominantly at
equilibrium or at non-equilibrium. This means that the desta-
bilization of the atmosphere by large-scale synoptic forcing
is balanced or unbalanced, respectively, by the stabilization
through convection. The idea is that this balance or imbal-
ance is related to the timescale in which CAPE is built up by
large-scale processes and consumed by convection. On days
with weak synoptic forcing, the consumption of CAPE is re-
lated to the diurnal cycle or to local triggering rather than to
prevalent large-scale processes. In these cases, the convective
timescale is long and CAPE is often not fully consumed by
convection. In situations where CAPE is realized much faster
by large-scale processes, i.e., in situations of strong synoptic
forcing, convection is in equilibrium. In our study, the con-
vective adjustment timescale tc,

tc = CAPE
d(CAPE)

dt
, (19)

is calculated hourly from AROME-EPS CAPE forecasts us-
ing1t = 1 h. Following the suggestion of Done et al. (2006),
a specific day is assigned to weak synoptic forcing if the
areal mean of tc exceeds a threshold of 6 h at least once a
day by at least three ensemble members. In order to test the
method of Done et al. (2006), we compared the classifica-
tion with alternative approaches, such as the temporal change
of midtropospheric vorticity and convection related to pat-
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terns in 500 hPa geopotential using archived ECMWF fore-
cast and ERA-Interim reanalyses. The results were compara-
ble to those of the equilibrium method.

4 Results

In the following, we present the evaluation of AROME-EPS
and ALADIN-LAEF over a 3-month summer period. The fo-
cus is on the performance of near-surface parameters, in par-
ticular the precipitation forecast, which is of most interest to
the users of convection-permitting and regional EPSs.

4.1 Evaluation of forecasts of temperature, wind, and
humidity

The forecast performance of surface parameters (2 m tem-
perature and humidity, 10 m wind speed, and mean sea level
pressure, MSLP) and upper-level parameters (temperature,
humidity, wind speed, and geopotential height) of AROME-
EPS and ALADIN-LAEF are verified in this study, which
form the background of the evaluation of precipitation.

A large number of verification metrics have been calcu-
lated for those near-surface and upper-air parameters. In gen-
eral, there is no clear advantage either for ALADIN-LAEF or
for AROME-EPS. Exceptions from this statement are solely
constituted by biases in the forecasts, which are particularly
found on the surface level. They form the most eminent dif-
ferences in the performances of the EPSs: if the bias is low,
the models provide good performance also for other scores.

For the surface level, we also found more results on a high
level of significance (i.e., 90 %). The verification results of
the upper levels are less significant than for the surface and
performance is more ambivalent. We used a large number of
observations for both surface (station observations) and up-
per levels (ECMWF grid values). Hence, the lower signifi-
cance of the results for the upper levels can be explained by
the model setup rather than by the verification data. Near sur-
face and on lower levels, AROME-EPS can add more infor-
mation to the model simulation than on upper levels, com-
pared to ALADIN-LAEF. This is due to the SURFEX soil
scheme and the interaction between a refined representation
of orography and the model physics schemes and dynam-
ics. On the upper levels, however, there is less influence of
the orography and the simulation resembles more the driving
model. For this reason, surface results have been selected to
highlight the main findings in the following.

Figure 4 compares the ensemble mean bias and the con-
tinuous ranked probability score (CRPS; see Wilks, 2006 for
details) for 2 m relative humidity, 2 m temperature, and 10 m
wind speed. CRPS compares the forecast PDF based on all
ensemble members to the observed values of occurrence and
non-occurrence, respectively. CRPS is sensitive to the dif-
ference between the forecast probabilities and observed val-
ues. The lower the difference, the better the forecast is rated.

Hence, the value of CRPS of a perfect forecast is zero. Due to
the formulation of CRPS, variations of CRPS values are also
reflected by many other scores, in particular those which are
sensitive to deviations between the distributions of forecasts
and observations. Thus, CRPS is useful for representing the
results of this study exemplarily. It also shows the impact of
biased forecasts.

Biases of 2 m relative humidity in Fig. 4a show notice-
able diurnal variations. During the night and early morn-
ing, AROME-EPS is too dry, whereas ALADIN-LAEF is
too moist during the day (12:00 and 18:00 UTC). The diur-
nal variations of the differences between AROME-EPS and
ALADIN-LAEF are also reflected in CRPS in Fig. 4b. Dur-
ing the night, AROME-EPS and ALADIN-LAEF are at the
same level, but for the daytime hours AROME-EPS shows
better results. For 2 m relative humidity, most verification re-
sults are significant at a level of 90 %. This is also true for
the differences in forecast performance during the daytime
hours. Results for 2 m temperature in Fig. 4c and d show an
improvement for bias and CRPS at a significance level of
90 % for AROME-EPS. This result is partially due to a large
bias of ALADIN-LAEF temperatures. In contrast, there ex-
ist fewer deviations between the ensembles for wind speed
(Fig. 4e and f) and MSLP (not shown). However, these re-
sults have only a low level of significance.

4.2 Evaluation of precipitation forecasts

Precipitation is evaluated by 3-hourly INCA analyses on a
regular 1 km× 1 km grid. A first insight into the strengths
and weaknesses of the ensembles in forecasting precipita-
tion is offered by a comparison of the daily variability of
precipitation intensities. Figure 5 compares the 3-hourly pre-
cipitation sums of INCA and both EPS models for different
regional domains and for days with strong (left panels) and
weak (right panels) synoptic forcing.

Errors occur in terms of over- and underestimation of the
maximum intensity and in terms of time shifts. The daily
maximum of 3 h precipitation is overestimated by AROME-
EPS for regions West and Austria and both types of synoptic
forcing by 20–50 %. In ALADIN-LAEF, the maximum of
the ensemble mean in these regions is approximately at the
same level as analyzed by INCA. Hence, the conditions of
ALADIN-LAEF that are too moist near the surface in Fig. 4a
are not directly reflected in the precipitation sums. For region
Northeast, the ensemble mean of AROME-EPS simulates the
maximum amount of precipitation quite well for strong syn-
optic forcing and only slightly overestimates it for weak syn-
optic forcing, whereas ALADIN-LAEF is too low for both
types of forcing.

Considering the days with strong synoptic forcing in Fig. 5
(left panels), the highest precipitation sums are detected
around 18:00 UTC. AROME-EPS describes the temporal
maximum quite well, whereas the maximum in ALADIN-
LAEF occurs too early (−3 h time shift). In the case of weak
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Figure 4. Bias of the ensemble means (left panel) and CRPS (right panel) for 2 m relative humidity (top), 2 m temperature (middle), and
10 m wind speed (bottom) for the period of 15 May–15 August 2011 of AROME-EPS (dotted line) and ALADIN-LAEF (solid line), both
verified over the AROME domain. Lead times, which are marked with asterisks (*) indicate results with significant differences between the
ensembles.

synoptic forcing shown in Fig. 5 (right panels), the precipi-
tation maxima are observed later than for the other cases in
region West (e.g., 21:00 UTC instead of 18:00 UTC). This is
not reflected by the EPS models, which reach the maximum
intensity of precipitation at 15:00 UTC (ALADIN-LAEF)
and 18:00 UTC (AROME-EPS). Only for region Northeast
and weak synoptic forcing does the maximum of precipita-
tion occur too late in AROME-EPS. The characteristic that
ALADIN-LAEF and AROME-EPS tend to trigger moist and
deep convection over complex orography too early is well
known (Wittmann et al., 2010). However, according to Fig. 5,
running a model or an EPS on CP scales is beneficial for pre-
dicting the daily maximum of the convective diurnal cycle, at
least over mountainous terrain. With respect to the timing of
the maxima, AROME-EPS shows a time shift of −3 h, with
ALADIN-LAEF showing a time shift of −6 h for weak syn-
optic forcing in regions Austria and West (panels b and d),
respectively. Because of the limited framework of this study
we can only speculate that this behavior might be due to dif-
ferences caused by the deep convection scheme in ALADIN-
LAEF, which is one of the reasons that causes an early onset
of precipitation (Bechtold et al., 2013) and, respectively, the

explicit simulation of deep convection in AROME. Another
reason, which we cannot exclude, could be that ALADIN-
LAEF and AROME apply different physical parameteriza-
tions. The different dynamical cores, hydrostatic and non-
hydrostatic, might also contribute to the differences to some
extent, but remain statistically less significant with respect
to precipitation, as shown in an earlier study (Wittmann et
al., 2010). Experiences concerning the pure impact of differ-
ent vertical resolutions on the forecast quality are few. How-
ever, it is known that an increase of vertical resolution and,
hence, enhanced possibilities to simulate convection-related,
micro-physical, and boundary-layer processes, does not nec-
essarily result in an improvement of precipitation forecasts.
It is rather related to increased overprediction of precipitation
amounts (Aligo et al., 2009).

A further characteristic evident in Fig. 5 is that the pre-
cipitation amounts in AROME-EPS develop independently
of those in the driving ALADIN-LAEF members, which is
indicated by the ensemble spread. In ALADIN-LAEF, the
ensemble spread is quite large for certain lead times, rang-
ing from a larger overestimation of the observed precipita-
tion amounts to a large underestimation. This contrasts with
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Figure 5. Time evolution of 3-hourly accumulated precipitation forecast for INCA (solid line), ALADIN-LAEF ensemble mean (dashed
line), and AROME-EPS ensemble mean (dotted line) for regions Austria (top), West (middle), and Northeast (bottom). Left panels show
results for the days with strong synoptic forcing, right panels for weak synoptic forcing. The shaded areas denote the range of individual
ensemble member forecasts for ALADIN-LAEF (dark grey) and AROME-EPS (light grey), respectively.

AROME-EPS, which shows a much smaller range of precip-
itation amounts. This difference in the spread is very likely
due to the large influence of the multi-physics configuration
in ALADIN-LAEF, compared with the single physics con-
figuration of AROME-EPS.

In order to summarize the findings of Fig. 5, we can state
that the ability of the models to forecast the daily precipita-
tion cycle is influenced by both the topography and the type
of synoptic forcing. Additionally, there is a general tendency
of the finer model, AROME-EPS, to forecast higher precip-
itation amounts with a temporal maximum later in the day
than ALADIN-LAEF. The latter, on the other hand, exhibits
a larger variety of simulations, visible through the larger
spread, especially over mountainous terrain. In the follow-
ing, we will discuss several scores (Brier score, SAL scores,
and FSS) to demonstrate in which ways the differences in

the diurnal precipitation cycle have an influence on forecast
quality.

4.2.1 Brier score components

Figure 6 shows the differences of the components of BS, reli-
ability, resolution, and uncertainty for strong and weak syn-
optic forcing with different precipitation thresholds for re-
gion Austria. BS measures the accuracy of probability fore-
casts, which is equivalent to the MSE for deterministic fore-
casts. The value for perfect forecasts is zero. BS has largest
values for the lowest precipitation threshold of 0.1 mm/3 h,
and decreases for larger thresholds. This is also true for
the differences of BS between AROME-EPS and ALADIN-
LAEF. However, BS is dominated by the uncertainty com-
ponent, which is independent of the forecast system but only
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Figure 6. Time evolution of the Brier score components, reliability (top), resolution (center), and uncertainty (bottom), with confidence
intervals (shades) for region Austria, AROME-EPS (dotted line), and ALADIN-LAEF (dashed line). The results are shown for a precipitation
threshold of 0.1 mm/3 h. Left panels depict results for days with strong synoptic forcing, right panels results for days with weak synoptic
forcing.

dependent on the observations. Therefore, the components
are shown in Fig. 6, as they provide a more detailed insight
into forecast performance than the overall quantity BS.

The unequal diurnal variations of uncertainty for days with
strong synoptic forcing and days with weak synoptic forcing
are clearly visible in panels e and f, respectively, in Fig. 6.
The relatively constant values of uncertainty for strong syn-
optic forcing and the differences between afternoon (+12
to +24 h forecast range) and early nighttime and morning
hours (+3 to+9 h and+27 to+30 h forecast range) for weak
synoptic forcing reflect the mean precipitation intensities in
Fig. 5a and b. They state that the uncertainty is high whenever
there is some possibility of rainfall. In cases of strong syn-

optic forcing, this circumstance persists for the whole day,
while there is a period with relatively stable conditions and
low probability of rainfall during the morning hours for days
with weak synoptic forcing.

The results of the resolution component depicted in panels
c and d show very similar daily variations compared to uncer-
tainty. Generally, larger-resolution values are preferable for
any forecast system. However, this does not necessarily mean
that the forecasts are generally wrong as during the morning
hours of days with weak synoptic forcing (panel d) in Fig. 6.
It reveals, moreover, that the models keep forecasting low
values of precipitation probability regardless of if there is no
rain or a little rain reported. However, if the observation sam-
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Figure 7. Time evolution of SAL scores for AROME-EPS (left) and ALADIN-LAEF (right) for different forecast ranges in region West.
Upper panels (a) and (b) show results for days with strong synoptic forcing, lower panels (c) and (d) for weak synoptic forcing. The boxes
are created based on the scores of all individual ensemble members.

ple itself contains values of no rain, results of resolution are
less meaningful than for situations with a more balanced dis-
tribution of observations. This is the case between noon and
early night hours for days with weak synoptic forcing and
for the whole day for days with strong synoptic forcing. For
these periods, we can observe mostly higher resolution for
the forecasts of AROME-EPS than for ALADIN-LAEF, at
which the differences are not significant, though. The lower-
resolution values for ALADIN-LAEF are presumably due to
the smoother precipitation fields compared to AROME-EPS.
The smoothness leads to rather medium precipitation proba-
bilities in large areas, which is a disadvantage with regard to
resolution compared to sharper forecasts near 0 and 1 (i.e.,
very low and very high probabilities for rainfall).

The most obvious differences between ALADIN-LAEF
and AROME-EPS can be observed for the reliability com-
ponent (Fig. 6a and b). They can, for the most part, be ex-
plained by the time shift between forecast and observation,
i.e., by the fact that the precipitation generally starts too early
in ALADIN-LAEF forecasts (see Fig. 5a and b). Both mod-
els show good (i.e., low values of) reliability during the night-
time and the morning hours (+3 to +6 h and +21 to +30 h
forecast range). However, during daytime (starting at +9 h
forecast range) ALADIN-LAEF shows significantly higher
values of reliability than AROME-EPS with a peak at +12 h
of the forecast range. It is the same point in time at which
the largest differences between ALADIN-LAEF and INCA

are reported in Fig. 5a and b. The fact that there are also
large differences between ALADIN-LAEF and INCA at a
longer forecast range (e.g., +21 h) is, however, not reflected
in the score. An explanation for this fact is that both the fore-
casts and INCA reported larger amounts of rain. In this situ-
ation, it is easier for the models to differ between no rain and
rain. For this reason, the bias in the precipitation intensities
of AROME-EPS is also not reflected in the reliability.

4.2.2 SAL scores

The variability of SAL scores with lead time gives insight
into the performance of AROME-EPS and ALADIN-LAEF
in terms of the structure, amplitude, and location of the pre-
dicted precipitation events. Figures 7 and 8 show the SAL
scores for the mountainous region West and the lowland re-
gion Northeast, respectively. The distributions of SAL values
are sampled for the individual ensemble members and classi-
fied into days with strong (panels a and b) and weak synoptic
forcing (panels c and d). These values differ from those based
on the ensemble mean and median forecasts as the averaging
produces more smoothed precipitation events, and hence has
an influence on the properties described by the SAL method.

In both geographic regions and for both types of synop-
tic forcing, the structure score is lower for AROME-EPS
than for ALADIN-LAEF, which is, inter alia, a consequence
of the model resolution (Wittmann et al., 2010). AROME-
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Figure 8. Same as in Fig. 7, but for region Northeast.

EPS produces precipitation events, which are mostly too
small and/or too peaked, whereas precipitation objects in
ALADIN-LAEF are too large and flat. This is particularly
true for days with strong synoptic forcing and for flat terrain.
The structure score for ALADIN-LAEF further shows a pro-
nounced diurnal variation for region West, where precipita-
tion events are too large during the day (09:00–15:00 UTC),
but more realistic during evening and nighttime. In region
Northeast and in weak synoptic forcing, on the contrary,
there is a rather damped diurnal variation. This is a sign that
precipitation events emerge too early and grow too large over
the mountains, whereas over flat land, they are too flat and
too widespread during the whole day. AROME-EPS gen-
erally shows better agreement with the observed precipita-
tion structures than ALADIN-LAEF during noon (12:00–
15:00 UTC) while objects are much too small during the rest
of the day. Only on days with strong synoptic forcing and
over mountainous terrain does AROME-EPS mostly under-
estimate the dimension of precipitation events. Also over flat
land, structure scores are variable for AROME-EPS, but do
not show a perfect daily cycle as for the mountainous areas.

In most instances, the amplitude component reflects the
findings shown in Fig. 5, being more apparent for days
with weak than for days with strong synoptic forcing. For
both EPS models, an overestimation occurs during noon
over mountainous terrain (region West; Fig. 7), which is as-
sociated with the early onset of convection for ALADIN-
LAEF and with the overestimation of precipitation amounts
in AROME-EPS. In region Northeast (Fig. 8), the agreement

seems to be much better for days with strong synoptic forc-
ing than with weak synoptic forcing. However, the ampli-
tude score measures the agreement in terms of the percentage
share of precipitation amounts. Hence, if the amounts are on
a much lower level, as in the case of weak synoptic forcing,
amplitude scores appear worse. The large amplitude errors in
Fig. 8c and d are, therefore, more dependent on the time shift
between simulated and observed peaks of precipitation inten-
sities than on the absolute amount of maximum precipitation
intensities, which are fairly well captured.

The location score in both regions provided by the SAL
shows not as much variability as the other two components.
Nevertheless, an investigation of the distances of observed
and forecast centers of mass for the precipitation events can
provide useful information. Figure 9a and b show the mean
distances for objects pertaining to precipitation thresholds of
0.1 mm/3 h and of 2 mm/3 h for days with strong synoptic
forcing, respectively. In general, it can be stated that the dis-
tances get shorter with increasing thresholds. This indicates
that both ALADIN-LAEF and AROME-EPS are more suc-
cessful for more intense precipitation events. On the other
hand, precipitation objects with very low intensities can be
either very small and randomly distributed, which is difficult
to predict, or very large, which is easier to predict or detect.

For higher thresholds, Fig. 9b shows that the distances
have more variability with time. Although distances are short
for earlier hours of the forecast (and the first half of the
day), they increase for later forecast hours and reach a max-
imum at +21 h (21:00 UTC). This effect is much greater
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Figure 9. Distances (km) between the centers of mass of observed and forecast precipitation objects for AROME-EPS (dotted) and ALADIN-
LAEF (dashed) for thresholds of (a) 0.1 mm/3 h, and (b) 2 mm/3 h. The shades indicate the confidence intervals for AROME-EPS (light grey)
and ALADIN-LAEF (dark grey).

in ALADIN-LAEF than in AROME-EPS and it is remark-
able that it happens very late in the day, much later than
the main peak of precipitation shown in Fig. 5. The rea-
son could be that the precipitation cells are captured well
when they are in a mature and well-developed state. Their
further development or collapse seems to be better simulated
in AROME-EPS. This should be connected to the prognos-
tic (and explicit) treatment of the atmospheric variables de-
scribing the evolution of convective activity in AROME. A
convection parameterization (in particular, a diagnostic con-
vection scheme, as it is used for some members of ALADIN-
LAEF) has more deficiencies in simulating the life cycle of
convective objects properly than AROME. In addition, the
non-hydrostatic dynamics, higher resolution, and better rep-
resentation of turbulence and microphysical interactions in
the model physics might lead to a more realistic decay of
convection in AROME-EPS.

4.2.3 Fractions skill score

The fractions skill score (FSS) indicates how well the ensem-
ble systems predict precipitation at different spatial scales.
The grid box widths (1–21 km, corresponding to areas of 1–
441 km2) have been selected to investigate the performance
of models at very fine scales, near the resolution of the an-
alyzed observations of INCA. At these scales, models have
difficulties to reach the level of usefulness (i.e., the target
skill as defined in Roberts and Lean, 2008), which can be
expected at larger scales. Nevertheless, it is interesting to ex-
amine how FSS values change with increasing precipitation
thresholds.

Figure 10a and b compare the FSSs for days with strong
synoptic forcing and days with weak forcing. FSS values
are greater (∼ factor of 2) for strong synoptic forcing than
for weak synoptic forcing, since for the latter, precipitation
events are generally less structured and lead to the lower level
of skill.

For all weather situations, ALADIN-LAEF shows bet-
ter values for the lowest thresholds of 0.1 and 0.5 mm.
The converse result is observed for higher thresholds above
2 mm. For 5 mm/3 h, ALADIN-LAEF has hardly any skill
on the very fine scales for days with weak synoptic forc-
ing. This means that small, scattered showers and thunder-
storms, which typically occur on these days, cannot be sim-
ulated well by the model with coarser model resolution. In
AROME-EPS, there is at least a certain skill for small intense
precipitation events, although it is not on a level considered
to be useful.

These results are comparable to the main outcomes of Le
Duc et al. (2013) and Schwartz et al. (2009). Le Duc et
al. (2013) also found that the coarser 10 km ensemble showed
slightly better results for light rains than the finer 2 km one.
Both models had lower skill in predicting heavy rain; how-
ever, for the higher precipitation thresholds, the 2 km en-
semble performed better than the 10 km one. Schwartz et
al. (2009) partially found the same behavior of FSS for coarse
12 km and fine models (2 and 4 km resolution). The coarser
model clearly outperformed the finer ones for light rain,
whereas the 4 km model showed better skill at a high thresh-
old of 5 mm h−1.

In the previous sections, the discussion provided an
overview on the whole 3-month period. In the following sec-
tion, evaluations focus on a single selected day. This is done
in order to show the forecast behavior of the ensembles in a
single, concrete weather situation.

4.3 Case study

A typical convective day with weak synoptic forcing is se-
lected to show the evolution of precipitation in AROME-EPS
and ALADIN-LAEF in more detail. Here, more emphasis is
put on the observation of the numbers, volumes, and distri-
bution of the precipitation objects.

Figure 11 illustrates the precipitation at different times of
INCA analyses on 29 April 2014 and the ensemble means of
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Figure 10. FSSs for (a) strong synoptic forcing, and (b) weak synoptic forcing of AROME-EPS (dashed) and ALADIN-LAEF (solid line)
for the region Austria. Numbers denote the precipitation thresholds (mm). The values represent averages for all hours of lead time.

AROME-EPS and ALADIN-LAEF. On this day, continuous
light rain was reported in Austria’s mountainous terrain, near
the main Alpine ridge during the morning hours, as shown
in the first row of Fig. 11. At the same time, the lowlands
in the east and north were dry. In the lowlands, precipita-
tion activities in terms of small showers started from approx-
imately 11:00 UTC in second row of Fig. 11. Over the course
of the day, the focus of precipitation was increasingly shifted
to the flat lands in the north, east, and southeast of Austria as
well as to Slovenia and northern Italy. The peak rain intensity
was around 15:00 UTC, shown at 14:00 UTC in third row of
Fig. 11. Rain in the inner Alpine areas had diminished. In
contrast, the showers in the flat regions continued until the
time of sunset. Then, their activity also weakened, which is
visible in the bottom row of Fig. 11.

Figure 12 gives the characteristics of the precipitation
forecasts of ALADIN-LAEF and AROME-EPS, such as
the temporal evolution of the mean areal precipitation in
Fig. 12a, the number of precipitation objects in Fig. 12b, and
the temporal evolution of the SAL scores in Fig. 12c. For the
selected day, precipitation amounts for the region Austria are
slightly underestimated by the both ensemble systems. Fur-
ther, only a minor fraction of ensemble members reach the
observed precipitation intensities at noon. By investigating
the structures of the precipitation forecasts, further insight
into the behavior of the ensemble systems is provided. The
number and volume of precipitation objects describe how
models perform in a spatial context. In this respect, AROME-
EPS clearly shows more ability to replicate the real spatial
structure of precipitation. Although the number of objects in
the region Austria is too low during the first forecast hours,
the further development as observed by the INCA analysis in
Fig. 12b is described well. In the ALADIN-LAEF forecast,
the number of precipitation objects is very low and mostly
a product of the lower resolution. The volumes of the pre-

cipitation events are in direct connection with their number
(not shown). ALADIN-LAEF overestimates the volumes to
the same degree as it underestimates their numbers. How-
ever, it shows a clear diurnal variation of the volumes with a
maximum around noon, which is not indicated by AROME.

The fact that ALADIN-LAEF tends to produce fewer but
larger precipitation objects does not lead to worse verifica-
tion statistics for ALADIN-LAEF. On the contrary, in most
regions, the hit rate is higher for ALADIN-LAEF than for
AROME-EPS and the number of missed events is lower.
AROME-EPS, on the other hand, outperforms ALADIN-
LAEF in terms of correct negatives and false alarms (not
shown).

These results are also reflected in the temporal evolution
of SAL scores in Fig. 12c. As expected, the structure score
S is too high for ALADIN-LAEF, due to the overestimation
of the volumes of precipitation objects. At the same time,
however, AROME-EPS produces a low S score which means
that it still produces precipitation objects that are too small
and peaked compared to INCA.

Interestingly, there is a late peak in the S score between
the 26–28 h lead time in both models, which follows a short
minimum at 25 h lead time. This is also slightly reflected in
the A score. The sequence of minimum and peak is related
to a nightly shower, which was also simulated by the ensem-
bles, but with a delay of approximately 2 h. The location or
L score is rather constant in time for both ensemble models.
This means that they were able to reproduce the changing
spatial focus and distribution of precipitation during the day.

5 Summary and conclusions

In this paper, we investigate the forecast performance of
the 2.5 km convection-permitting ensemble AROME-EPS by
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Figure 11. Observed (INCA, first column) and forecast (AROME-EPS and ALADIN-LAEF, second and third columns, respectively) de-
velopment of precipitation on 29 April 2014 shown for selected times (rows). The panels show 1-hourly accumulated precipitation sums
(mm).

comparison with the regional 11 km ensemble ALADIN-
LAEF to reveal the benefit provided by a CP EPS. The
regional EPS, ALADIN-LAEF, involves several sources of
forecast perturbations, such as initial condition perturbations
by blending ECMWF-EPS with ALADIN-LAEF breed-
ing vectors and assimilation of perturbed surface obser-
vations, and a multi-physics scheme. The high-resolution,
convection-permitting AROME-EPS solely performs down-
scaling of the ALADIN-LAEF forecasts. The performance of
the ensembles is evaluated for a 3-month period during the
convective season of 2011 and for a typical convective day
in April 2014 with a special focus on precipitation events
in mountainous terrain and lowland regions. The aim is to
show whether the convection-permitting ensemble provides

benefits to the regional ensemble with deep convection pa-
rameterization. The evaluation is conducted using a combi-
nation of standard deterministic and probabilistic verification
scores and selected spatial verification measures. The former
are applied on several main forecast parameters for surface
and upper levels, and the latter – according to their definition
– only for precipitation.

The forecast quality for the main meteorological parame-
ters (except precipitation) for the surface and selected upper
levels is strongly dependent on the model bias and is rather
balanced, except for diurnal variations near the surface. How-
ever, characteristic differences are revealed by the investi-
gation of the precipitation forecasts. A known drawback of
models using deep convection schemes proves true, which
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Figure 12. Characteristics of the precipitation forecasts of ALADIN-LAEF and AROME-EPS on 29 April 2014. (a) Temporal evolution of
the mean areal precipitation compared with INCA and (b) temporal evolution of the number of precipitation objects. Dashed and dotted lines
in (a) and (b) represent the ensemble mean and grey shades the ensemble spread. (c) Temporal evolution of S (structure), A (amplitude), and
L (location) scores of the ensemble means of ALADIN-LAEF (black) and AROME-EPS (grey).

is the premature onset of precipitation in the daily cycle by
ALADIN-LAEF (see, e.g., Wittmann et al., 2010; Weusthoff
et al., 2010). On the other hand, an overestimation of pre-
cipitation intensities at the peak of convection activities by
AROME-EPS is also confirmed, which has been assumed in
previous validations. Both of these properties are found to be
more pronounced in mountainous than in flat regions.

ALADIN-LAEF shows skill in the prediction of probabil-
ities for low precipitation thresholds, i.e., to distinguish be-
tween rain and no rain. This is also true for small scales, but
it is again dependent on the time of day, as the early onset
of precipitation has a negative influence on the verification
scores. AROME-EPS, on the other hand, has a better abil-
ity to capture the diurnal cycle of convective precipitation,
especially over mountainous terrain. At small spatial scales,
it further demonstrates better performance for higher pre-
cipitation thresholds. The results of the evaluations in this
study lead to the conclusion that the convection-permitting
ensemble is more skillful in the precipitation forecast than
its mesoscale counterpart, the regional ensemble. The pos-
itive impact is larger for the mountainous areas than for
the lowlands. Nevertheless, the knowledge of which precip-

itation situations can be better modeled by the convection-
permitting ensemble is important to have. For many applica-
tions, e.g., for large-scale extreme events, such as the cen-
tral Europe flooding event of 2013, the best solution will be
a combination of both systems: the coarser ensembles with
longer forecast range for (pre)warnings and the convection-
permitting ensemble for the detailed specification of the ex-
pected event. Regarding different time and length scales in
that way could lead to the generation of seamless forecast
products (e.g., Drobinski et al., 2014; Vitart et al., 2008).

This study is considered as the initial point for fur-
ther investigations and improvement of the convection-
permitting ensemble AROME-EPS. The low spread of the
prevailing AROME-EPS version is a clear drawback com-
pared to ALADIN-LAEF. Therefore, future enhancements
of AROME-EPS will involve components which will pre-
sumably increase ensemble spread. Among those upgrades
will be ensemble data assimilation and physics perturba-
tions (multimodel and stochastic). The expectation with these
components is that forecast errors will be reduced, and that
a more realistic simulation of forecast uncertainties will be
achieved.
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6 Code and/or data availability

The ALADIN-LAEF and AROME codes including all re-
lated intellectual property rights, are owned by the members
of the LACE consortium and ALADIN consortium. Access
to the ALADIN-LAEF and AROME systems, or elements
thereof, can be granted upon request and for research pur-
poses only. INCA code and INCA data are only available
subject to a licence agreement with ZAMG.
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