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Abstract. How carbon (C) is allocated to different plant tis-
sues (leaves, stem, and roots) determines how long C re-
mains in plant biomass and thus remains a central challenge
for understanding the global C cycle. We used a diverse
set of observations (AmeriFlux eddy covariance tower ob-
servations, biomass estimates from tree-ring data, and leaf
area index (LAI) measurements) to compare C fluxes, pools,
and LAI data with those predicted by a land surface model
(LSM), the Community Land Model (CLM4.5). We ran
CLM4.5 for nine temperate (including evergreen and decidu-
ous) forests in North America between 1980 and 2013 using
four different C allocation schemes:

i. dynamic C allocation scheme (named “D-CLM4.5”)
with one dynamic allometric parameter, which allocates
C to the stem and leaves to vary in time as a function of
annual net primary production (NPP);

ii. an alternative dynamic C allocation scheme (named “D-
Litton”), where, similar to (i), C allocation is a dy-
namic function of annual NPP, but unlike (i) includes
two dynamic allometric parameters involving allocation
to leaves, stem, and coarse roots;

iii.–iv. a fixed C allocation scheme with two variants, one
representative of observations in evergreen (named “F-
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Evergreen”) and the other of observations in deciduous
forests (named “F-Deciduous”).

D-CLM4.5 generally overestimated gross primary produc-
tion (GPP) and ecosystem respiration, and underestimated
net ecosystem exchange (NEE). In D-CLM4.5, initial above-
ground biomass in 1980 was largely overestimated (between
10 527 and 12 897 g C m−2) for deciduous forests, whereas
aboveground biomass accumulation through time (between
1980 and 2011) was highly underestimated (between 1222
and 7557 g C m−2) for both evergreen and deciduous sites
due to a lower stem turnover rate in the sites than the one
used in the model. D-CLM4.5 overestimated LAI in both
evergreen and deciduous sites because the leaf C–LAI re-
lationship in the model did not match the observed leaf C–
LAI relationship at our sites. Although the four C alloca-
tion schemes gave similar results for aggregated C fluxes,
they translated to important differences in long-term above-
ground biomass accumulation and aboveground NPP. For de-
ciduous forests, D-Litton gave more realistic Cstem / Cleaf ra-
tios and strongly reduced the overestimation of initial above-
ground biomass and aboveground NPP for deciduous forests
by D-CLM4.5. We identified key structural and parameteri-
zation deficits that need refinement to improve the accuracy
of LSMs in the near future. These include changing how
C is allocated in fixed and dynamic schemes based on data
from current forest syntheses and different parameterization
of allocation schemes for different forest types.Our results
highlight the utility of using measurements of aboveground
biomass to evaluate and constrain the C allocation scheme
in LSMs, and suggest that stem turnover is overestimated by
CLM4.5 for these AmeriFlux sites. Understanding the con-
trols of turnover will be critical to improving long-term C
processes in LSMs.

1 Introduction

Over the last half century, on average a little more than a
quarter of global CO2 emissions were absorbed by terres-
trial carbon (C) sinks (Le Quéré et al., 2015), with forests
accounting for most (Malhi et al., 2002; Bonan, 2008; Pan et
al., 2011; Baldocchi et al., 2016). The interannual variability
in the land C sink is high, representing up to 80 % of annual
CO2 emissions (Le Quéré et al., 2009). The mechanism by
which forests accumulate C is through photosynthetic uptake
and allocation of the C to biomass in different plant pools
(leaf, stem, and root). The C stored in biomass stocks are de-
termined mainly by the C fluxes and the C allocation amongst
plant pools.

The amount of carbon stored in biomass is dependent on
how photosynthetically fixed carbon is allocated between C
pools and how long these pools persist (Bloom et al., 2016;
Koven et al., 2015; De Kauwe et al., 2014). How long-lived
different plant pools are (leaf, stem, and root) influences

whether ecosystems are projected to act as C sources or sinks
(Delbart et al., 2010; Friend et al., 2014). Once C is taken up
by the plant, the carbon is allocated either to short-lived leaf
or fine-root tissues, or to longer-lived woody tissues. Here we
use turnover time of C in a plant pool as the total carbon pool
divided by the total flux into or out of the pool (Sierra et al.,
2017). Plants that allocate a greater proportion of C to tissues
with long turnover times (e.g., stem) have a higher standing
biomass than the plants that allocate a greater proportion of
C to tissues with short turnover times (e.g., leaf). Ecologi-
cal theory suggests that variation in C allocation to differ-
ent plant pools is governed by functional trade-offs (Tilman,
1988), with plants investing in either aboveground or below-
ground tissues depending on which strategy would maximize
growth and reproduction. If the functional trade-off hypothe-
sis is relevant on forest or regional scales, land surface mod-
els (LSMs) for forests should represent it using dynamic C al-
location schemes, which are responsive to above- (e.g., light)
and belowground (e.g., water or nutrients) factors that limit
growth.

Allocation of C between pools in terrestrial ecosystems
is poorly represented in LSMs (Delbart et al., 2010; Malhi
et al., 2011; Negron-Juarez et al., 2015). Some LSMs use
fixed ratios for each plant functional type (PFT), while other
models use allocation fractions that are altered by environ-
mental conditions (Wolf et al., 2011; De Kauwe et al 2014).
Though many LSMs use the same fractional allocation for
both evergreen and deciduous forests, global syntheses show
differences in inferred C allocation patterns, for example, the
percentage of NPP allocated to leaves that is greater in de-
ciduous than in evergreen forests (Luyssaert et al., 2007). In
part this is because it is difficult to measure allocation to dif-
ferent pools on ecosystem or landscape scales, and instead
we infer what partitioning was required to result in different
biomass pools. While eddy covariance observations can be
used to parameterize and benchmark LSMs either at single
sites or, using geospatial scaling methods, across regions or
the globe (Baldocchi et al., 2001; Friend et al., 2007; Ran-
derson et al., 2009; Zaehle and Friend, 2010; Mahecha et al.,
2010; Bonan et al., 2011), these data inform fluxes in and out
but do not provide information on allocation between pools
(Richardson et al., 2010).

Studies focusing simultaneously on C pools, fluxes and
allocation are relatively rare (Wolf et al., 2011; Xia et al.,
2015; Bloom et al., 2016; Thum et al., 2017), in part be-
cause collecting biometric data in addition to flux data is very
labor-intensive. Some forest inventory data include estimates
of the average biomass within the leaf, wood and root pool,
and these can be used to parameterize and benchmark mod-
els (Caspersen et al., 2000; Brown, 2002; Houghton, 2005;
Keith et al., 2009). The AmeriFlux network provides a rare
opportunity to investigate forest allocation processes because
gross primary productivity and respiration fluxes are quan-
tified continuously. However, measurements of pool sizes in
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leaves, stems, etc., are less available at these sites and so have
been less frequently explored.

In this study, we evaluate mechanisms by which C is stored
over multiple decades in plant biomass using correspond-
ing eddy covariance flux towers and biometric measurements
of C storage in different pools. We collated biometric data
(aboveground biomass and leaf area index), where avail-
able, for AmeriFlux sites and supplemented these data with
novel aboveground biomass estimates from tree-ring data for
AmeriFlux sites (Alexander et al., 2017). We evaluate two
dynamic C allocation schemes (Oleson et al., 2013; Litton
et al., 2007) and two fixed C allocation schemes (Luyssaert
et al., 2007) within the Community Land Model (CLM4.5)
against C fluxes, stocks, and leaf area index (LAI) data at
nine temperate North American forest ecosystems.

2 Methods

We implemented the CLM4.5 model – a well-established
and commonly used LSM – at nine different forest sites
(Sect. 2.1) and compiled observation of C fluxes, C pools,
LAI, and the Cstem / Cleaf ratio (Sect. 2.2) to evaluate alterna-
tive C allocation structures and parameterizations (Sects. 2.3
and 2.4). We re-parameterized the specific leaf area (SLA)
based on available observations (Sect. 2.5) before imple-
menting four CLM4.5 model experiments designed to exam-
ine the impact of the different C allocation structures and pa-
rameterizations (Sect. 2.6). Finally, to investigate the poten-
tial effects of site variation in woody turnover, we estimated
plausible site-specific turnover rates (Sect. 2.7).

2.1 Study sites

Nine temperate forests widely distributed throughout the
USA were selected for this study, including four evergreen
(Niwot Ridge, Valles Caldera mixed conifer, Howland For-
est, and Duke Forest loblolly pine) and five deciduous forests
(University of Michigan Biological Station, Missouri Ozark,
Harvard Forest, Morgan Monroe State Forest, and Duke For-
est hardwoods; Table 1). All the selected forests are Amer-
iFlux sites (http://ameriflux.lbl.gov/), a network of eddy co-
variance sites measuring ecosystem C, water, and the energy
fluxes in North and South America. AmeriFlux datasets pro-
vide central connections between terrestrial ecosystem pro-
cesses and climate responses from site to continental scale,
and are part of FLUXNET, a global network of eddy covari-
ance measurements being made on all continents.

2.2 Observations

We compiled different data streams from diverse sources for
the sites (Table 1) for benchmarking C fluxes, C pools, and
LAI in the model experiments. Some of the data were only
available for a subset of sites and years (Table 1).

To quantify carbon flux into and out of the different
forests, eddy covariance measurements were collated from
the AmeriFlux L2 gap-filled data product (Boden et al.,
2013; http://ameriflux.lbl.gov/data/download-data/) for all
sites, except for Niwot Ridge where only the AmeriFlux L2
with-gaps data product was available; there we used the REd-
dyProc package (Reichstein et al., 2005) to gap-fill and par-
tition the data (Table 1). Half-hourly eddy covariance flux
data were aggregated to annual values at all sites. While
partitioning and uncertainty analyses were available from
the FLUXNET2015 dataset (http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/) only for some sites, we opted to use
only AmeriFlux L2 data and process all sites using the same
protocol.

To quantify the how much carbon was stored in above-
ground woody biomass and leaf biomass in these forests, we
collated already existing biomass and LAI estimates from the
AmeriFlux network; these were available for only some sites
and years (Table 1). LAI measured in situ was available from
AmeriFlux data for some sites (Table 1), and we used the
annual maximum LAI for all the available measurements in
each year. We used the leaf C–LAI ratio from the AmeriFlux
sites with simultaneous measurements of LAI and leaf C dur-
ing the same year (Table 1). The Cstem / Cleaf ratio, which
was derived from AmeriFlux data with Cstem and Cleaf esti-
mates for the same year, was only available for a subset of
sites and years (Table 1).

To quantify aboveground biomass at all of the sites, we
surveyed each forest and calculated aboveground biomass
between 1980 and 2011 (Table 1) using a dendrochronolog-
ical sampling technique (Dye et al., 2016; Alexander et al.,
2017). This provided a reconstruction of year-to-year vari-
ability in diameter at breast height (dbh) of trees and biomass
inferred from allometric regressions. Briefly, the dbh of trees
within a 20 m diameter plot was measured; all trees above
10 cm in diameter were sampled within 13 m, and trees larger
than 20 cm dbh were sampled in the remainder of the plot.
In Valles Caldera, rather than subsampling within a 20 m
plot, all trees were sampled from two central locations un-
til 50 samples were collected from each location follow-
ing Babst et al. (2014). At the Niwot site, a point-centered
quarter method (Stearns, 1949; Cottam et al., 1953) was
used to estimate stand density and to select individuals for
sampling. Species, dbh, and canopy position were recorded
for each tree within the plots. Increment cores were dried,
mounted, and sanded using standard dendrochronological
procedures (Stokes and Smiley, 1968). Increments were first
visually cross-dated (Douglass, 1941) and then measured un-
der a binocular microscope and statistically cross-dated us-
ing COFECHA software (Holmes, 1983; Grissino-Mayer,
2001). Ring widths were scaled to dbh, and allometric equa-
tions (Jenkins et al., 2004; Chojnacky et al., 2014) were
applied to estimate biomass through time. When available
site- or region-specific allometric equations were applied,
and generalized species-level allometric equations were used
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where these were not available. Trees that were sampled but
lacked sufficient tree-ring data were gap-filled with a gen-
eralized additive mixed model to account for their biomass
on the landscape (Alexander et al., 2017). At Harvard and
Howland, tree-ring reconstructed biomass was compared to
biomass estimated from permanent plots established in 1969
and 1989, respectively; tree-ring biomass increment esti-
mates fell within the 95 % confidence intervals of biomass
estimated from the permanent plots (Dye et al., 2016). Both
permanent plots and tree-ring reconstructed biomass are de-
pendent on allometric equations, which contributes to uncer-
tainty in these values.

2.3 C allocation scheme in CLM

The Community Land Model (CLM version 4.5) was used
to simulate C fluxes, C pools and LAI at single points (Ole-
son et al., 2013). CLM4.5 is a component of the Community
Earth System Model (CESM1.2) of the National Center for
Atmospheric Research (Oleson et al., 2013).

CLM4.5 assumes that vegetated surfaces are comprised of
different plant functional types. Our sites had two different
PFTs: “needleleaf evergreen tree – temperate” for evergreen
forests and “broadleaf deciduous tree – temperate” for decid-
uous forests.

CLM4.5 includes the following plant tissue types: leaf,
stem (live and dead stem), coarse root (live and dead coarse
root), and fine root (Oleson et al., 2013). The model calcu-
lates carbon allocated to new growth based on three allo-
metric parameters that relate allocation between tissue types
(Oleson et al., 2013): a1 (ratio of new fine root to new
leaf carbon allocation), a2 (ratio of new coarse root to new
stem carbon allocation), and a3 (ratio of new stem to new
leaf carbon allocation). CLM4.5 has a dynamic allocation
scheme (named “D-CLM4.5”), which is described in Oleson
et al. (2013), that includes one dynamic allometric parameter
(as a function of annual NPP) and two constant allometric
parameters. In D-CLM4.5 (see Table 2), for the PFTs in our
sites a1 and a2 are constant (a1 = 1, a2 = 0.3), whereas a3 is
a dynamic parameter defined by the following equation:

a3 =
2.7

1+ e−0.004·(NPPann−300)
− 0.4, (1)

where NPPann is the annual sum of NPP of the previous year.
The above equation for a3 increases stem allocation relative
to leaf when annual NPP increases. For instance, when an-
nual NPP is 0 g C m−2 yr−1, a3 is 0.20 (e.g., 0.2 units of C
allocated to stem for 1 unit of C allocated to leaf), whereas
when NPP is close to 1000 g C m−2 yr−1 or greater, a3 is
constrained to not exceed 2.2 (e.g., 2.2 units of C allocated
to stem for 1 unit of C allocated to leaf). Therefore, when an-
nual NPP is relatively close to 1000 g C m−2 yr−1 or greater,
the C allocation scheme becomes fixed with the following
values for the parameters: a1 = 1, a2 = 0.3, and a3 = 2.2.
To account for the range of NPP found in temperate forests,
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Table 2. Allometric parameter values for evergreen and deciduous temperate forests in the C allocation scheme in CLM described in Oleson
et al. (2013; D-CLM4.5); the alternative dynamic C allocation scheme (D-Litton) based on Litton et al. (2007); and the 2 fixed C allocation
schemes (F-Evergreen, and F-Deciduous) based on Luyssaert et al. (2007). Allometric parameters represented with numbers indicate constant
parameters, whereas equations indicate dynamic parameters. In the equations, NPPann is the annual sum of net primary productivity (NPP)
of the previous year.

C allocation scheme

Allometric Definition D-CLM4.5 D-Litton F-Evergreen F-Deciduous
parameter (parameter name)

a1 Ratio of new fine 1 1 1 0.5
root to new leaf carbon
allocation (froot_leaf)

a2 Ratio of new coarse 0.3 0.25−8×10−05
×NPPann

0.17+0.0001158×NPPann 0.27 0.27
root to new stem carbon
allocation (croot_stem)

a3 Ratio of new stem to new 2.7
1+ e−0.004× (NPPann− 300) − 0.4 0.17+0.0001158×NPPann

0.26 1.76 1.4
leaf carbon allocation
(stem_leaf)

we calculated the allometric parameters a1, a2, and a3 for a
broad range of NPP, and then converted the allometric pa-
rameters to allocation coefficients for each plant tissue using
the C allometry in the model (Oleson et al., 2013). We illus-
trate in one figure the effect of annual NPP on C allocation to
each plant tissue in D-CLM4.5 (Fig. S1 in the Supplement).

2.4 Alternative C allocation structures and
parameterizations

In addition to the dynamic C allocation structure in CLM4.5
(Oleson et al., 2013), we implemented an alternative dynamic
(Litton et al., 2007) and two fixed (Luyssaert et al., 2007) C
allocation parameterizations with the same structure.

The alternative dynamic C allocation structure (named “D-
Litton”) was based on carbon partitioning data along an an-
nual GPP gradient from Litton et al. (2007), and it considered
two dynamic allometric parameters. We adapted the original
equations reported in Litton et al. (2007), converted the GPP
gradient to a NPP gradient with the general assumption that
NPP= 0.5×GPP (Waring et al., 1998; Gifford, 2003) and
used the modified equations to calculate the allometric pa-
rameters used in CLM4.5. The partitioning between coarse
root and fine root was not provided, and we used the default
value for parameter a1 (a1 = 1). The other allometric param-
eters (a2 and a3) were dynamic, and the equations used for
them are shown in Table 2.

The two alternative fixed C schemes have the same struc-
ture but different allocation parameterizations and were
based on observed values reported by Luyssaert et al. (2007),
which were converted accordingly to the allometric parame-
ters used in CLM. One of the C allocation parameter sets
was representative of temperate evergreen forests (named

“F-Evergreen”) and the other of temperate broadleaf decid-
uous forests (named “F-Deciduous”). Similarly to Litton et
al. (2007), Luyssaert et al. (2007) only provided total root
allocation without considering coarse and fine root, but the
default value for parameter a1 (a1 = 1) was not possible in
some cases. We thus initially used a range of possible val-
ues for parameter a1 (a1 = 1, a1 = 0.75 and a1 = 0.5) for
model runs. When these values were based on those in Luys-
saert et al. (2007) where allocation to leaf was lower than
total root allocation, we used the default value for parame-
ter a1 (a1 = 1 for F-Evergreen); but when based on the val-
ues in Luyssaert et al. (2007) where allocation to leaf was
higher than total root allocation, the a1 parameter had to be
lower than 1. This was the case for the F-Deciduous C al-
location parameterization, and because a1 = 0.75 gave unre-
alistic aboveground : belowground ratios, we used a1 = 0.5.
The allometric parameters used for the F-Evergreen and F-
Deciduous C allocation parameterizations are shown in Ta-
ble 2.

2.5 LAI in CLM

CLM4.5 uses a prognostic canopy model, with feedbacks be-
tween GPP and LAI acting through allocation to leaf C and
SLA and with SLA being a critical fixed parameter in this
feedback pathway (Thornton and Zimmermann, 2007). The
model assumes a linear relationship between SLA and the
canopy depth (x):

SLA(x)= SLA0+mx, (2)

where SLA0 (m2 one-sided leaf area g C−1) is a fixed value
of SLA at the top of the canopy, m is a linear slope coeffi-
cient, and x is the canopy depth expressed as overlying leaf
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area index (m2 overlying one-sided leaf area m−2 ground
area). LAI is calculated for a given leaf C (CL) using the
following equation:

LAI=
SLA0[exp(mCL)− 1]

m
, (3)

where m (m2 ground area g C−1) and SLA0 (m2 one-sided
leaf area g C−1) are different parameters for each PFT. In
the case of temperate evergreen forests the default values for
m and SLA0 in CLM4.5 are 0.00125 and 0.010, whereas
for temperate broadleaf deciduous forests m= 0.004 and
SLA0 = 0.030 (Oleson et al., 2013).

We compared leaf C–LAI data from available sites with
the leaf C–LAI relationship in the model. For deciduous
sites, we optimized the model parameters based on observed
leaf C–LAI. To avoid using unrealistic values for the param-
eters m and SLA0, we took a range of possible values for
both parameters from Thornton and Zimmermann (2007),
and used an optimization approach based on least squares
that combined the range of parameter values and Eq. (3) to
find the best combination of values for the two parameters
given the leaf C–LAI observations at our sites. After opti-
mizing the parameters m and SLA0, we used m= 0.0010
and SLA0 = 0.024 for deciduous forests. For evergreen sites,
we could not optimize the parameters m and SLA0 due to
the limited number of leaf C–LAI observations available. All
model experiments were carried out after SLA optimization.

2.6 Testing allocation schemes in CLM4.5

All CLM4.5 modeling experiments were run for nine sites,
including four evergreen and five deciduous forests (see Ta-
ble 1). For evergreen sites, we used the default leaf C–LAI
relationship in CLM4.5, whereas for deciduous forests we
used the optimized leaf C–LAI relationship (Sect. 2.5).

Each experiment represents a different allocation scheme.
For experiment 1 we used the original dynamic C allocation
structure in CLM4.5 (D-CLM4.5; see Sect. 2.3). For experi-
ment 2, we used the alternative dynamic C allocation struc-
ture based on Litton et al. (2007; D-Litton, see Sect. 2.4). For
experiments 3 and 4, we used a fixed C allocation structure
representative of evergreen (F-Evergreen) and deciduous (F-
Deciduous) forests, respectively (Luyssaert et al., 2007 – see
Sect. 2.4).

The standard climate forcing provided with the model is
the 1901–2013 CRUNCEP dataset. While meteorological
data are available at the AmeriFlux sites, these data extend
only as long as the eddy covariance observations, which are
less than a decade in several cases. To explore the effects of
allocation on slowly changing C pools like woody biomass,
we extended model runs to 30 years, which requires using
CRUNCEP or some other reanalysis climate. The CRUN-
CEP dataset has been used to force CLM for studies of veg-
etation growth, evapotranspiration, and gross primary pro-
duction (Mao et al., 2012, 2013; Shi et al., 2013; Chen et

al., 2016), as well as for the TRENDY (trends in net land–
atmosphere carbon exchange over the period 1980–2010)
project (Piao et al., 2012).

In all the experiments, we spun up the model for each
site and C allocation scheme using 1901–1920 CRUNCEP
climate and assuming preindustrial atmospheric CO2 con-
centration in order to bring all above- and belowground C
pools to equilibrium. We used the initial conditions result-
ing from the spin-up to perform a 1901–2013 transient run
(e.g., 1901–2013 CRUNCEP transient climate, transient at-
mospheric CO2 concentration). Observations were compared
with model outputs for the period between 1980 and 2013.

2.7 Sensitivity of biomass increment to stem turnover
rate

In CLM4.5 the stem turnover rate is dominated by how much
woody C is lost each year through senescence (mortality and
litter). Here we define turnover time as the total C pool di-
vided by the rate of C input or output. We estimated a range
of plausible, site-specific stem turnover rates using Eq. (4)
below because, at individual research forest stands, rates of
tree mortality may or may not reflect averages rates across
larger areas. LSMs are typically run on scales that are coarser
than those for individual forest sites and use aggregate esti-
mates for turnover of different C pools. CLM4.5, like many
models, is based on differential equations for the calculation
of changing biomass with time, which can be expressed as
follows:

dBi/dt = aiNPP− uiBi, (4)

where i is a given plant pool, Bi is the biomass of that pool,
dBi / dt is the biomass increment with time for each plant
pool, ai is the allocation coefficient to that plant pool (al-
location coefficients for all pools combined sum to 1), and
ui is the turnover rate for each component. We considered
leaf, stem, coarse root, and fine root as plant pools. To opti-
mize the stem turnover rate we used Eq. (4) as a simplified
offline model to modify the default stem turnover rate (2 %)
to within a range of 0 to 2 % (van Mantgem et al., 2009;
Brown and Schroeder, 1999); for the rest of plant pools we
used the default turnover rate in the model. In the simplified
offline model, the annual NPP input was derived from the
model for a given site using the default stem turnover (2 %),
and the initial biomass for each plant pool was derived from
the model with a particular carbon allocation scheme and pa-
rameterization. We compared the differences in aboveground
biomass (leaf and stem) increment over time based on differ-
ent turnover rates with the aboveground biomass increments
estimated from tree-ring data for our sites between 1980 and
2011.
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3 Results

3.1 Carbon fluxes, and pools in D-CLM4.5

When compared to observations from the AmeriFlux sites,
D-CLM4.5 usually underestimated net ecosystem exchange
(NEE; Fig. 1a), and overestimated GPP (Fig. 1b) and ecosys-
tem respiration (Fig. 1c)

Initial aboveground biomass in 1980 showed contrasting
patterns in D-CLM4.5 for evergreen and deciduous forests.
At evergreen sites, aboveground biomass in 1980 was under-
estimated at sites with mean annual NPP < 500 g C m−2 yr−1

(NR1 and Vcm) and overestimated at the site with mean an-
nual NPP > 500 g C m−2 yr−1 (Ho1; Fig. 2a). Aboveground
biomass in 1980 was largely overestimated at all decid-
uous sites (between 10 527 and 12 897 g C m−2; Fig. 2a).
The accumulated aboveground biomass between 1980 and
2011 was largely underestimated in the model (difference
between observations and model ranged between 1222 and
7557 g C m−2, depending on the site; Fig. 2b).

3.2 LAI and Cstem / Cleaf in D-CLM4.5

D-CLM4.5 overestimated LAI relative to in situ LAI mea-
surements (Fig. 3a). We compared the leaf C–LAI relation-
ship with the observed leaf C–LAI and found important dif-
ferences, especially for deciduous sites (Fig. 3b). We opti-
mized the parameters m and SLA0 based on available obser-
vations for two deciduous sites (Fig. 3b). The modified LAI
was closer to the LAI values measured in situ for all five de-
ciduous sites (Fig. 3c).

The Cstem / Cleaf ratio in the model was dramatically dif-
ferent from the observations (Fig. 4). The model overesti-
mated the Cstem / Cleaf ratio in 1 of the 2 years with available
data for two evergreen sites, and all the 19 years with avail-
able data for two deciduous sites (Fig. 4; Table 1).

3.3 Carbon fluxes, pools, and LAI in the alternative C
allocation schemes

D-CLM4.5 and the alternative C allocation schemes have im-
portant differences in C allocation to each plant tissue (see
Fig. S1 in the Supplement). Some of the main differences
between D-CLM4.5 and the alternative C allocation schemes
include increased allocation to leaf and decreased allocation
to stem, especially in D-Litton at sites with low mean annual
NPP (see Fig. S1 in the Supplement).

The accumulated annual C fluxes (GPP, ecosystem respi-
ration, and NEE) from 1980 to 2011 gave comparable re-
sults for the four C allocation schemes (Supplement Fig. 2).
However, the C allocation schemes resulted in differences
larger than 5000 g C m−2 in long-term aboveground biomass
accumulation for all the sites (Fig. 5a and b). All C alloca-
tion schemes overestimated aboveground biomass in 1980
in all the sites, except in evergreen sites with mean annual
NPP < 500 g C m−2 yr−1 (NR1 and Vcm), where only the

Figure 1. Comparisons between (a) NEE, (b) GPP, and (c) ecosys-
tem respiration in observations and model (D-CLM4.5). All fluxes
were aggregated to annual. Dashed line is 1 : 1 relationship between
observations and model. Observations are from the AmeriFlux L2
data product.

F-Deciduous allocation overestimated aboveground biomass
(Fig. 5a). The D-Litton allocation scheme underestimated
aboveground biomass in 1980 at all evergreen sites and, de-
spite overestimating it at all deciduous sites, this scheme gave
the closest values to the observations (Fig. 5a). Similar re-
sults were found for mean aboveground biomass between
2002 and 2011 (Fig. 5b). Despite the differences in the to-
tal aboveground biomass, aboveground biomass annual in-
crement in all the C allocation schemes was lower than that
estimated from tree-ring data, and accumulated aboveground

www.geosci-model-dev.net/10/3499/2017/ Geosci. Model Dev., 10, 3499–3517, 2017
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Figure 2. Comparisons (a) between observed and modeled (D-CLM4.5) aboveground biomass in 1980 and (b) between observed and
modeled (D-CLM4.5) accumulated aboveground biomass between 1980–2011. Dashed line is 1 : 1 relationship between observations and
model. Observations (estimates of aboveground biomass from tree-ring data) for the Ho1 and Ha1 sites are from Dye et al. (2016), whereas
for the rest of sites observations were obtained following the methodology described in Alexander et al. (2017).

biomass between 1980 and 2011 was therefore strongly un-
derestimated assuming a mortality rate of 2 % yr−1 (Fig. 5c).

The C allocation schemes showed differences of up to
10 % in allocation to leaf, which produced large differ-
ences in LAI values (from ∼ 20 to ∼ 4.5) between allocation
schemes (Fig. 6). In particular the F-Deciduous allocation
gave high and unrealistic LAI values at evergreen sites (LAI
∼ 20; Fig. 6), where the leaf C–LAI relationship was not
optimized. At deciduous sites, using the optimized leaf C–
LAI relationship, the highest LAI values were ∼ 10 (Fig. 6).
The F-Deciduous allocation had an allocation to leaf that
was ∼ 10 % greater than the one in D-CLM; however, the F-
Deciduous allocation scheme with optimized LAI gave very
similar LAI values to the D-CLM without optimizing the leaf
C–LAI relationship (Fig. 6).

3.4 Turnover rate and its effect on accumulated
aboveground biomass through time

The stem turnover rate that best matched the biomass ac-
cumulation rate estimated from the tree-ring reconstructions
varied by site and was always lower than the default rate of
2 % yr−1 used in CLM4.5 (Fig. 7). As expected, changing
the turnover rate had the largest influence at sites with the
highest average NPP. Biomass accumulation in the D-Litton
scheme was less sensitive to changes in turnover rate com-
pared to the D-CLM scheme (compare Fig. 7b to a). The F-
Deciduous and F-Evergreen parameterization were similar in
their sensitivity to changes in turnover rate (compare Fig. 7c
to d).

3.5 C allocation scheme and its effects on Cstem / Cleaf
ratio and initial aboveground biomass

The partitioning between leaf and stem C at these sites was
best predicted by the D-Litton scheme (Fig 8). For the range
of annual NPP values at our sites (NPP < 1500 g C m−2 yr−1),
the NPPstem / NPPleaf ratio was the lowest in the D-Litton
scheme (Fig. 8b), which therefore resulted in the lowest

Cstem / Cleaf ratios amongst the four C allocation schemes
(Fig. 8a). The Cstem / Cleaf ratios from the D-Litton scheme
were also the closest to the observed values at all the sites
with mean annual NPP > 500 g C m−2 yr−1 (Fig. 8a). The
NPPstem / NPPleaf ratio was overestimated in D-CLM4.5,
and it caused overestimations in the Cstem / Cleaf ratio, which
ranged between 33 and 56 for deciduous sites (Figs. 4 and
8a).

Initial aboveground biomass showed different patterns be-
tween evergreen and deciduous sites (Fig. 9a, b). Whereas
for evergreen sites with annual NPP < 500 g C m−2 yr−1,
there was some overlap between modeled and observed ini-
tial aboveground biomass, for deciduous sites modeled ini-
tial aboveground biomass was strongly overestimated (be-
tween 10 527 and 12 897 g C m−2) in D-CLM4.5 (Fig. 5a,
Fig. 9b). The D-Litton scheme reduced the initial above-
ground biomass relative to D-CLM4.5, but still with a posi-
tive bias (between 5040 and 6859 g C m−2; Figs. 5a and 9b).

4 Discussion

From the four C allocation schemes used, two were based on
fixed coefficients (Luyssaert et al., 2007), whereas the other
two were dynamic and based on optimization of resources
(Oleson et al., 2013; Litton et al., 2007). Of these schemes,
the dynamic scheme based on D-Litton performed better than
the other three. Though this scheme is imperfect, we note
that on average it produces lower, and more credible, above-
ground biomass estimates at the start of the simulation for
these forests (Fig. 5a) and matches the biometric estimates
of C partitioning between leaf and stem (Fig. 8a). The ever-
green and deciduous forests appear to allocate carbon differ-
ently, and for situations where a fixed scheme is preferred our
results favor the adoption of separate schemes for evergreen
and deciduous forests. Below we discuss these findings in de-
tail and make some recommendations for future development
of allocation schemes.
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Figure 3. Comparisons between (a) LAI measured in situ and LAI
in the model. (b) Relationship between leaf C and LAI in CLM4.5
for deciduous forests, observations for deciduous forests, optimized
leaf C–LAI relationship for deciduous forests, CLM4.5 for ever-
green forests, and observations for evergreen forests. (c) Compar-
isons between LAI measured in situ and LAI in the standard and
modified version of the model with optimized parameters for LAI.
In (a) and (c), dashed line is 1 : 1 relationship between observations
and model. Observations (LAI measured in situ and leaf C) are from
the AmeriFlux database.

4.1 C allocation scheme: implications for C flux and
LAI

The C allocation scheme does not strongly influence annual
GPP, ecosystem respiration, and NEE over 34 years of accu-

Figure 4. Comparisons between Cstem / Cleaf ratio for the D-
CLM4.5 scheme and AmeriFlux observations. Dashed line is
1 : 1 relationship between observations and model. Observations
(Cstem and Cleaf) are from the AmeriFlux database.

mulated effect (Fig. S2 in the Supplement); the overestima-
tion of GPP and ecosystem respiration in Fig. 1 was com-
mon to all allocation schemes. GPP was also overestimated
in previous versions of CLM (Bonan et al., 2011; Lawrence
et al., 2011). Despite revisions of the model structure in pre-
vious versions of CLM, and that the GPP bias was found to
be most pronounced in the tropics (Lawrence et al., 2011),
our results show that the GPP is still overestimated in tem-
perate forests with CLM4.5. Our results support the recom-
mendation by Thornton and Zimmerman (2007) that addi-
tional measurements are required to establish the variability
of SLA(x) within and between PFTs. Maximum LAI val-
ues reported for temperate evergreen and deciduous forests
are 15 and 8.8, respectively (Asner et al., 2003). Realistic
C allocation schemes (e.g., Litton et al., 2007; Luyssaert et
al., 2007) in CLM4.5 combined with the default values for
the parameters SLA0 and m resulted in unrealistically high
– sometimes > 20 – estimates of maximum annual LAI val-
ues when implementing alternative C allocation schemes in
CLM4.5. When using the optimized parameters in conjunc-
tion with the alternative allocation schemes, LAI always re-
mained below 10. Clear and persistent model–data discrep-
ancies in LAI also needed to be addressed in the ORCHIDEE
LSM prior to any evaluation of model changes (Thum et
al., 2017). Site-specific estimates of SLA and LAI would be
very useful for optimizing parameters within their observed
range and allow mechanistic processes controlling allocation
to leaves in the model to be assessed.

4.2 C allocation scheme: implications for C pools

None of the allocation schemes simultaneously matched
observed evergreen and deciduous forest aboveground
biomass. D-CLM4.5 underestimated the modeled above-
ground biomass for evergreen sites with mean annual
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Figure 5. (a) Comparisons between observed and modeled above-
ground biomass in 1980 for the four C allocation schemes.
(b) Comparisons between mean observed and modeled above-
ground biomass between 2002 and 2011 for the four C allocation
schemes. (c) Comparisons between observed and modeled accu-
mulated aboveground biomass 1980–2011 for the four C alloca-
tion schemes. Turnover rate for stem in CLM4.5 is 2 %. Dashed
line is 1 : 1 relationship between observations and model. Obser-
vations (“observation” in a, “observation_tree_ring” in b, and “ac-
cumulated aboveground biomass 1980–2011 observation” in c) are
aboveground biomass estimates from tree-ring data, which are from
Dye et al. (2016) for the Ha1 and Ho1 sites and following the
methodology in Alexander et al. (2017) for the rest of sites. Obser-
vations (“Observation_AmeriFlux” in b) are aboveground biomass
data from the AmeriFlux database, available only for a subset of
sites and years (see Table 1).

Figure 6. Comparisons between LAI measured in situ and
LAI in the model for the different C allocation schemes (D-
CLM4.5_deciduous_optimized refers to the one with the opti-
mized leaf C–LAI relationship for deciduous forests in D-CLM4.5).
Dashed line is 1 : 1 relationship between observations and model.
Observations (LAI measured in situ) are from the AmeriFlux
database.

NPP < 500 g C m−2 yr−1, but overestimated it for decidu-
ous sites. These results are in line with previous findings
in evergreen Oregon forests where CLM4.0 also underes-
timated aboveground biomass at most sites (Hudiburg et
al., 2013). The strong overestimation in biomass at tem-
perate deciduous sites is due to the fact these sites had a
higher mean annual NPP and therefore a higher allocation
to stem in D-CLM4.5 than the evergreen sites. A similar
pattern has been found in other models, in which a high
allocation to stem results in an overestimation of above-
ground biomass (e.g., Song et al., 2016). In a comparison
between observations and CMIP5 Earth system models for
tropical forests, the high CLM-based biomass values were
attributed to the high stem allocation relative to observa-
tions (Negron-Juarez et al., 2015). D-CLM4.5 stem C allo-
cation has a value of ∼ 46 % when annual NPP is close to
or greater than 1000 g C m−2 yr−1, while forest data synthe-
ses indicate that 20–35 % are more plausible for sites with
similar mean annual NPP to our sites (Litton et al., 2007).
Other LSMs have an even higher allocation to stem of 45–
50 % for temperate forests (Table 3; Ise et al., 2010; Xia et al.,
2015). Our results show that an alternative scheme (D-Litton,
based on Litton et al., 2007), which greatly reduced alloca-
tion to stem compared with D-CLM4.5, provided more real-
istic estimates of aboveground biomass for deciduous sites
(Fig. 5a and b). However, the D-CLM4.5-based estimates
of aboveground biomass were closer to the observed values
than those from the D-Litton scheme for evergreen sites with
mean annual NPP < 500 g C m−2 yr−1 (NR1 and Vcm). Our
results suggest that it is necessary to improve the D-CLM4.5
scheme for temperate forests; for evergreen forests the D-
Litton scheme could be modified from a linear to a nonlinear
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Figure 7. Comparisons between observed and modeled accumulated aboveground biomass 1980–2011 for (a) D-CLM4.5 allocation scheme,
(b) D-Litton allocation scheme, (c) F-Evergreen allocation scheme, and (d) F-Deciduous allocation scheme. We assumed different turnover
rates for stem from 0 to 2 % yr−1. Turnover rate for stem in the model is 2 % yr−1. Dashed line is 1 : 1 relationship between observations and
model. Observations (aboveground biomass estimates from tree-ring data) are from Dye et al. (2016) for the Ha1 and Ho1 sites and following
the methodology in Alexander et al. (2017) for the rest of sites.

Figure 8. (a) Comparisons between Cstem / Cleaf ratio for the four C allocation schemes and AmeriFlux observations. (b) NPPstem / NPPleaf
ratio for the different mean annual NPP values and C allocation schemes. In Fig. 8a, dashed line is 1 : 1 relationship between observations
and model. Observations (Cstem and Cleaf) are from the AmeriFlux database.

scheme to increase allocation to stem for sites with mean an-
nual NPP < 500 g C m−2 yr−1.

LSMs tend to overestimate allocation to stem in temper-
ate forest syntheses and therefore underestimate allocation
to leaves. C allocation to leaf in D-CLM4.5 is probably un-
derestimated when mean annual NPP is relatively close to or
greater than 1000 g C m−2 yr−1. In other LSMs carbon allo-
cation to leaf shows broad ranges (∼ 19–30 %; Table 3; Ise
et al., 2010; Xia et al., 2015). The D-CLM4.5 scheme is dy-
namic, with changing C, but functions as a fixed scheme
at higher NPP values (Fig. S1 in the Supplement), which

means that at many sites the allocation to leaf is 20 % in this
scheme, which is∼ 5–10 % lower than available data suggest
for deciduous sites (Table 3; Litton et al., 2007; Luyssaert
et al., 2007; Wolf et al., 2011). There is reasonable agree-
ment across LSMs on how much carbon is allocated to roots;
however, root biomass is difficult to measure accurately and
data are sparse. Allocation to root and stem are variable be-
tween sites, and conditions that favor high productivity in-
crease partitioning to stem and decrease partitioning to root
(Litton et al., 2007). D-CLM4.5 allocates 34–40 % of car-
bon to roots, which is similar to most other models (Table 3).
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Figure 9. The C allocation scheme determines aboveground biomass C at equilibrium for (a) evergreen and (b) deciduous sites. For the
deciduous sites, with NPP at equilibrium conditions, the D-Litton allocation scheme is closer to the observed aboveground biomass values
in 1980 (see Fig. 5a).

The partitioning between fine and coarse root is absent from
most syntheses, but empirical studies show a wide range in
allocation of C belowground and are generally higher than
LSMs (Table 3; Nadelhoffer and Raich, 1992; Gower et al.,
2001; Newman et al., 2006; Luyssaert et al., 2007; Litton et
al., 2007; Wolf et al., 2011; Gill and Finzi, 2016).

Although root function is complex in reality, the controls
of root dynamics and function are highly simplified in LSMs
(Warren et al., 2015). It has been suggested that resource al-
location is controlled by two separate functional trade-offs
between leaf or fine roots and their supporting woody or-
gans (Chen et al., 2013). If this is correct, LSMs should
use an allocation scheme based on at least two (or proba-
bly three) dynamic allometric parameters, instead of the D-
CLM4.5 which is based only on one dynamic allometric pa-
rameter (a3). Here, we implemented an allocation scheme
(D-Litton) that included two dynamic allometric parameters
(a2 and a3) based on Litton et al. (2007), assuming that the
ratio between allocation to leaf and fine root (a1) is constant.
However, some studies suggest that this trade-off includes
fine roots (Wolf et al., 2011; Malhi et al., 2011; Chen et al.,
2013), probably due to the colimitation of productivity by re-
sources captured aboveground (e.g., light) and belowground
(e.g., nutrients and water; Dybzinski et al., 2011; Weng et
al., 2016). These growth drivers also vary with time and
across spatial ecological gradients (Guillemot et al., 2015).
In CLM4.5 employed here, the roots control water uptake but
are not related to nutrient uptake, which limits the potential
for dynamic responses to nutrients and CO2 concentrations
(Atkin, 2016; De Kauwe et al., 2014; Hickler et al., 2015; Se-
vanto and Dickman 2015). Root functionality in LSMs could
be enhanced by improving parameterization within models
and introducing new components such as dynamic root dis-
tribution and root functional traits linked to resource extrac-
tion (Warren et al., 2015; Brzostek et al., 2014, 2017; Shi et
al., 2016; Phillips et al., 2016; Iversen et al., 2017).

4.3 C allocation scheme: implications for steady-state
aboveground biomass

Initial conditions used to begin transient runs or make fore-
casts in LSMs are usually obtained by spin-up methods.
Starting from bare ground, with prescribed physical soil char-
acteristics and plant functional type fractions, a time series
of meteorological forcing variables are cycled repeatedly un-
til the model reaches a steady state, a point when C pool
sizes and fluxes remain constant between subsequent mete-
orological forcing cycles. This feature is exploited by Xia
et al. (2012) with their semi-analytical approach to calcu-
lating these steady-state conditions. Model simulations over
timescales from days to centuries critically depend on the ini-
tial variable values obtained after spin-up, and flawed initial
values may produce model output that can be severely bi-
ased or unrealistic (Yang et al., 1995; Cosgrove et al., 2003;
Rodell et al., 2005; Li et al., 2009). There is an increasing
awareness in Earth system modeling of the critical role of
these initial values after spin-up (including the initialized size
of C pools – examined in 2017) that adds an extra layer of
complexity in diagnosing the impact of an incorrect repre-
sentation of physical processes on the transient simulation
(Kay et al., 2015; Fisher et al., 2015). Our results reinforce
that concern by showing that with the same climate forc-
ing different C allocation schemes within the same LSM can
produce strongly differing initial conditions after spin-up for
aboveground biomass (Fig. 9). In the Supplement “Meth-
ods and Figures”, we provide an explanation for the vari-
ability in steady-state aboveground biomass depending on
the C allocation scheme used in CLM4.5. In the C alloca-
tion schemes used, changing biomass with time can be ex-
pressed as Eq. (4), which are models that behave as a lin-
ear autonomous system (Sierra et al., 2017). This implies the
models, when forced with equivalent meteorology and phys-
ical soil properties, will eventually converge to a steady-state
independent of the starting values of the state variables, al-
though in the case of CLM this may take many tens of thou-
sands of years.
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4.4 C allocation scheme: implications of the
NPPstem / NPPleaf ratio

The NPPstem / NPPleaf ratio in the model (a3 parameter) is
one of the primary factors contributing to overestimations of
biomass. While the D-Litton scheme best approximates the
average ratio of stem C to leaf C, realistic Cstem / Cleaf ra-
tios are produced in CLM4.5 at sites where the D-CLM4.5
NPPstem / NPPleaf ratio is similar to the values in the D-Litton
scheme (Fig. 8). Any overestimation of allocation to stem is
compounded because stem C has a longer turnover time than
leaf C (Schulze et al., 2000; Xia et al., 2015; Song et al.,
2016). Overestimation of allocation to stem was also found
using the IBIS model, where a fixed allocation scheme with
terms for allocation to leaf, stem, and root, which sum to
1, was found to overestimate allocation to stem (Xia et al.,
2015). The fractional allocation to stem in IBIS was reduced
from 0.5 to 0.36 when the scheme was optimized against
satellite LAI observations (Xia et al., 2015). Similarly, our
results suggest that allocation to stem in D-CLM4.5 should
decrease and allocation to leaf and root should increase, to
match observed biomass.

4.5 C allocation scheme and stem turnover rate:
implications for accumulated aboveground biomass

Regardless of allocation scheme, CLM4.5 overestimates
aboveground NPP and underestimates aboveground biomass
increments (Fig. 5c), this suggests that the stem turnover rate
is overestimated in the model. The underestimation of incre-
ment can be attributed to an inaccurate representation of pro-
duction in the model, an inaccurate representation of turnover
time of the plant pools, or both (Friend et al., 2014; Koven
et al., 2015). Aboveground NPP in the D-CLM4.5 scheme
from the deciduous sites, including UMBS, Morgan Mon-
roe, Harvard Forest, and Duke hardwoods (Megonigal et al.,
1997; Curtis et al., 2002) was consistently higher than that in
the observations. The D-Litton scheme, however, resulted in
aboveground NPP estimations that were consistently closer
to the observations (data not shown). These results suggest
that, in temperate deciduous forests, the D-CLM4.5 scheme
is overestimating allocation to stem and underestimating al-
location to roots, as previously found in other models like
IBIS (Xia et al., 2015).

It is likely that CLM4.5 overestimates stem turnover at
these sites. Currently, CLM4.5 assumes a stem mortality rate
of 2 % yr−1 that is higher than published tree mortality rates
for forests in the USA (van Mantgem et al., 2009; Brown
and Schroeder, 1999; Runkle, 1998). When considering large
geographic scales the 2 % yr−1 rate of stem turnover may
be reasonable, but at individual sites this may be a poor
approximation. The Harvard Forest, for example, is at the
end of the stem exclusions stage of forest development, and
there has been little to no canopy disturbance since the time
of the 1969 census. As such, the tree-ring biomass incre-
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ment estimates at Harvard assume zero mortality between
1980 and 2012. This assumption appears solid as it results
in no significant difference between tree-ring reconstructed
biomass increment and the repeated measurements from per-
manent plots over the last 40 years (Dye et al., 2016). We
thus decreased the stem mortality rate from 2 % yr−1 to pub-
lished ranges of tree mortality (between 0 and 1.5 % yr−1),
to estimate plausible stem turnover rates for each site and
scheme. The resulting ranges of aboveground biomass incre-
ment overlapped with the observed aboveground biomass in-
crement estimated from tree-ring data, for nearly all the car-
bon allocation schemes (see Fig. 7). For Harvard forest the
turnover rate that was most consistent with the tree-ring re-
construction was never zero, which indicates that both NPP
and turnover are overestimated for this site in all the alloca-
tion schemes. A different turnover rate was required for each
site and C allocation scheme to match the observed above-
ground biomass increment, but in each case it was below
the default 2 % value. Our analysis suggests that when using
AmeriFlux sites to inform models, or other site-level obser-
vations, taking note of site-specific rates of stem turnover is
prudent.

Given the high uncertainty associated with turnover rela-
tive to production, it has been suggested that research prior-
ities should move from production to turnover (Friend et al.,
2014). Our results show the need for improvements of mod-
els in carbon turnover processes, a current limitation in state-
of-the-art LSMs (Thurner et al., 2017). Tree-ring widths can
provide reliable estimates of biomass increment, but repeated
surveys of forests are required to estimate stem turnover
in nonequilibrium stands (Alexander et al., 2017; Dye et
al., 2016; Klesse et al., 2016; Babst et al., 2014). However,
whole-ecosystem C turnover will encompass processes other
than mortality, including disturbances and land-use and land-
cover change (Masek et al., 2008; Erb et al., 2016; Thurner
et al., 2017). Some of the aforementioned processes are al-
ready partially incorporated in LSMs, in particular land-use
and land-cover change, but the lack of a mechanistic repre-
sentation of the remaining processes is therefore indirectly
represented in stem turnover rates. The processes controlling
turnover times influence C storage capacity, but turnover is
not well constrained in models (Friend et al., 2014; Chen et
al., 2015; Sierra et al 2017).

5 Conclusions and perspectives

Our results highlight the importance of evaluating the C al-
location scheme and the stem turnover in LSMs using mea-
sures of C stocks in addition to flux data. The four C allo-
cation schemes translated to important long-term differences
in C accumulation in aboveground biomass, but gave similar
results for short-term C fluxes. We were unable to distinguish
between the allocation schemes using eddy flux data alone.

Data on different carbon pools are sparse, but very use-
ful in parameterizing allocation schemes. We found that site-
specific SLA was a prerequisite to evaluating the different
allocation schemes; large-scale databases might be exploited
to better estimate this relationship. Fixed allocation schemes
preclude dynamic changes in allocation in response to vary-
ing water and nutrient availability on seasonal to interannual
timescales (De Kauwe et al., 2014), but they have the ad-
vantage of simplicity. If fixed allocation schemes are used
in land surface modeling, we suggest different schemes for
evergreen and deciduous forests and that databases like Lit-
ton et al. (2007) and Luyssaert et al. (2007) can be used to
parameterize them.

Finally, we show that information on stem turnover rate,
which varies with forest age and successional status, is im-
portant to interpret the success or failure of different model
schemes at forest sites. Stem turnover in CLM4.5 may ap-
proximate steady-state conditions on large scales, and so
is inconsistent with forests which are not at steady state.
Decreasing the stem turnover rate from 2 % yr−1 to plausi-
ble values consistent with their successional status yielded
aboveground biomass accumulation rates consistent with ob-
servations. It is possible to estimate equilibrium turnover
rates from mean stand age derived from tree-ring estimates;
this could be a promising technique to approximate the du-
ration of carbon storage in temperate forests, though equilib-
rium assumptions are problematic.

Ecological theory suggests that dynamic allocation prob-
ably reflects whatever resource is most limiting, but de-
veloping allocation schemes for LSMs that respond to re-
source limitation is challenging. The two dynamic allocation
schemes reflect forest stand development to some extent, i.e.,
as trees get bigger (and can grow more) they tend to invest
more in stem and less in leaves. However, the two schemes
both use low NPP, regardless of cause, as a proxy for resource
limitation (Fig. S1 in the Supplement). Cohort representation
in the model would enable ontogenetic changes in allocation
but would not avoid the problem that these dynamic schemes
cause sites with low average NPP to perpetually allocate
more resources to leaves and roots, while sites with high av-
erage NPP perpetually allocate less resources to leaves and
roots (Fig. S1 in the Supplement). As coupled C–N and func-
tional root subroutines are developed for LSMs (Shi et al.,
2016), and with better representation of vegetation dynamics
(Fisher et al., 2015), we could imagine a dynamic allocation
scheme for CLM4.5 based on whether aboveground (light)
or belowground (water and nutrients) factors are limiting.

Code availability. The code for CLM version 4.5 (CLM4.5) is
available at https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_
tags/cesm1_2_1 (registration required at: http://www.cesm.ucar.
edu/models/register/register.html). The allometric parameters used
for the different C allocation schemes used in this study with
CLM4.5 are shown in Table 2. The code modifications and pa-
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rameter files for this paper are available from https://github.com/
davidjpmoore/gmd-2017-74.

Data availability. The data for this paper are available upon request
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