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Abstract. A global aerosol reanalysis product named the
Japanese Reanalysis for Aerosol (JRAero) was constructed
by the Meteorological Research Institute (MRI) of the Japan
Meteorological Agency. The reanalysis employs a global
aerosol transport model developed by MRI and a two-
dimensional variational data assimilation method. It assim-
ilates maps of aerosol optical depth (AOD) from MODIS on-
board the Terra and Aqua satellites every 6 h and has a TL159
horizontal resolution (approximately 1.1◦× 1.1◦). This paper
describes the aerosol transport model, the data assimilation
system, the observation data, and the setup of the reanalysis
and examines its quality with AOD observations.

Comparisons with MODIS AODs that were used for the
assimilation showed that the reanalysis showed much bet-
ter agreement than the free run (without assimilation) of the
aerosol model and improved under- and overestimation in
the free run, thus confirming the accuracy of the data as-
similation system. The reanalysis had a root mean square
error (RMSE) of 0.05, a correlation coefficient (R) of 0.96,
a mean fractional error (MFE) of 23.7 %, a mean fractional
bias (MFB) of 2.8 %, and an index of agreement (IOA) of
0.98. The better agreement of the first guess, compared to
the free run, indicates that aerosol fields obtained by the re-
analysis can improve short-term forecasts.

AOD fields from the reanalysis also agreed well with
monthly averaged global AODs obtained by the Aerosol
Robotic Network (AERONET) (RMSE= 0.08, R = 0.90,
MFE= 28.1 %, MFB= 0.6 %, and IOA= 0.93). Site-by-site
comparison showed that the reanalysis was considerably bet-
ter than the free run; RMSE was less than 0.10 at 86.4 % of
the 181 AERONET sites, R was greater than 0.90 at 40.7 %
of the sites, and IOA was greater than 0.90 at 43.4 % of
the sites. However, the reanalysis tended to have a negative
bias at urban sites (in particular, megacities in industrializ-

ing countries) and a positive bias at mountain sites, possi-
bly because of insufficient anthropogenic emissions data, the
coarse model resolution, and the difference in representative-
ness between satellite and ground-based observations.

1 Introduction

Airborne aerosols are tiny particles that are globally dis-
tributed in Earth’s atmosphere from the troposphere to the
stratosphere (including over urban areas, oceans, deserts,
and forests) and that affect various aspects of human soci-
ety and the Earth system. In the short term and most ob-
viously, aerosol particles can degrade visibility and damage
aviation and transport (Wilkinson et al., 2012; Prata and Tup-
per, 2009). The World Health Organization (WHO), which
has reported country estimates of air pollution exposure and
its health impact (WHO, 2016), has suggested that 6.5 mil-
lion deaths (11.6 % of all global deaths) may be associated
with indoor or outdoor air pollution, and 92 % of the world’s
population lives in places where air quality levels do not
meet the WHO Ambient Air quality guideline of an annual
mean PM2.5 (particulate matter with a diameter of less than
2.5 µm) concentration of less than 10 µg m−3. Impacts on the
Earth system include effects on ocean biogeochemistry and
climate. For instance, 500 Mt of dust particles settles to the
oceans and supplies iron, a vital element for ocean produc-
tivity (Shao et al., 2011). Aerosols also modify the radiation
balance and influence the albedo and properties of clouds
through both direct and indirect effects (IPCC, 2013).

In recent decades, our understanding of the aerosol life
cycle and aerosol impacts has been advanced by innova-
tion and progress in both observational and numerical mod-
eling techniques. Among various observation techniques,
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remote sensing using passive and active sensors has re-
vealed both the spatial distribution and temporal evolution
of aerosols at regional and global scales. The Moderate Res-
olution Imaging Spectroradiometer (MODIS) onboard the
Terra and Aqua satellites is an example of a passive sen-
sor. MODIS has provided aerosol optical properties (AOPs),
including aerosol optical depth (AOD) and the Ångström
exponent, globally since 2000 (Remer et al., 2005; Levy
et al., 2007; Zhang and Reid, 2006). More recently, Hi-
mawari 8, a geostationary meteorological satellite launched
on 7 October 2014, has been providing full-disk images of
AOPs every 10 min (Bessho et al., 2016; Kikuchi et al.,
2017; Yumimoto et al., 2016). The Aerosol Robotic Net-
work (AERONET; http://aeronet.gsfc.nasa.gov/) is a global
ground-based network of passive instruments, including sun
photometers, that has provided AOPs at several wavelengths
for more than 20 years (Holben et al., 1998, 2001; Li et
al., 2014). Backscatter lidar is an active-type aerosol ob-
servation sensor. The Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIPSO), the first polarization lidar in or-
bit, has provided continuous global measurements of verti-
cal aerosol distributions since 2006 (Winker et al., 2010; Liu
et al., 2008). The European Aerosol Research Lidar Network
(EARLINET; https://www.earlinet.org; Matthais et al., 2004)
and the Asian Dust Network (AD-Net; http://www-lidar.nies.
go.jp/AD-Net; Sugimoto et al., 2008) are regional ground-
based lidar networks, and the Micro-Pulse Lidar Network
(MPLNET; http://mplnet.gsfc.nasa.gov) is a global ground-
based lidar network. Although satellites and ground-based
networks have remarkably increased the amount of observed
data that are available, observational coverage is still limited
and spatially and temporally uneven. Passive satellite-borne
sensors cover wide swaths across large regions, but their re-
trievals are usually vertically integrated AOPs that lack in-
formation on vertical distributions, and they can be obtained
only under daytime and clear-sky conditions. Active sen-
sors have the capability of measuring vertical aerosol profiles
both under clouds (by ground-based lidar) and above clouds
(by space-based lidar). However, their field of view is quite
narrow compared to that of passive sensors so it is difficult to
use lidar to cover large regions.

Numerical modeling of the aerosol life cycle has advanced
considerably in the last decade. Various global aerosol trans-
port models have been developed, and multimodel intercom-
parison projects have been carried out (e.g., AeroCom, Kinne
et al., 2006; International Cooperative for Aerosol Predic-
tion (ICAP), Sessions et al., 2015). Global aerosol transport
models have been developed by numerous weather predic-
tion centers, research institutes, and universities (Kinne et
al., 2006; Sessions et al., 2015, and references therein). An
aerosol transport model can provide three-dimensional, grid-
ded aerosol distribution data at regular time intervals. How-
ever, multimodel intercomparison projects have shown that
large differences and uncertainties due to insufficient emis-
sions data, poor parameterization of aerosol processes (e.g.,

transport, chemistry, settling, and deposition), and errors in
meteorological fields remain in the models.

Data assimilation, which is the integration of observa-
tion data into a numerical model, is one way of overcom-
ing these shortcomings. At an early stage in the develop-
ment of data assimilation methods, Collins et al. (2001)
and Wang et al. (2006) assimilated satellite measurements
by using an optimal interpolation method and a Newto-
nian nudging scheme. Hakami et al. (2005) and Yumimoto
et al. (2007, 2008) attempted to apply a four-dimensional
variational method (a so-called advanced data assimilation
method) to inverse modeling of black carbon (BC) and dust
aerosols with ground-based observations and regional mod-
els. To date, measurements obtained by various observation
platforms, including MODIS (Dai et al., 2014; Huneeus et
al., 2012; Wang et al., 2012; Zhang et al., 2008), CALIPSO
(Sekiyama et al., 2010; Zhang et al., 2011, 2014), Himawari
8 (Yumimoto et al., 2016), AERONET (Schutgens et al.,
2010a), and surface PM10 (particulate matter with diameters
less than 10 µm) monitoring systems (Tombette et al., 2009;
Lee et al., 2013; Jiang et al., 2013), have been used in as-
similation studies adopting both variational (Benedetti et al.,
2009; Dubovik et al., 2008; Hakami et al., 2007; Henze et al.,
2007; Yumimoto and Takemura, 2013) and ensemble-based
(Rubin et al., 2016; Schutgens et al., 2010b; Di Tomaso et
al., 2017; Yumimoto and Takemura, 2011) methods.

One of most important outcomes of data assimilation
is the generation of uniform, continuous, and systematic
best-estimated data products (i.e., reanalysis products) for
use by the research community. Several weather predic-
tion centers, including the Japan Meteorological Agency
(JMA), the European Centre for Medium-Range Weather
Forecasts (ECMWF), the US National Center for Atmo-
spheric Research/National Centers for Environmental Pre-
diction (NCAR/NCEP), and the Global Modeling and As-
similation Office (GMAO) of NASA have developed me-
teorological reanalysis products that are widely utilized by
the research community (Kobayashi et al., 2015; Harada et
al., 2016; Uppala et al., 2005; Dee et al., 2011; Kalnay et
al., 1996; Rienecker et al., 2011). In addition to these me-
teorological reanalysis products, aerosol reanalysis products
are under development. ECMWF has generated a global re-
analysis dataset of atmospheric composition including car-
bon monoxide, ozone, and aerosols for the period 2003–
2015 known as the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) interim reanalysis (CAMSiRA) (Inness et al.,
2013; Flemming et al., 2017). GMAO NASA has provided
an aerosol reanalysis product called the Modern-Era Retro-
spective analysis for Research and Applications, version 2
(MERRA-2; Buchard et al., 2015). The US Naval Research
Laboratory (NRL) has developed an 11-year global gridded
aerosol reanalysis product based on the NAVDAS-AOT as-
similation system with the NRL Aerosol Analysis and Pre-
diction System (NAAPS; Lynch et al., 2016). Aerosol re-
analysis products have various applications, including deter-
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mination of the initial and boundary conditions of not only
aerosol transport models but also numerical weather fore-
casting models, climatological analyses of aerosols and their
climate effect, satellite measurement retrievals (e.g., Yokota
et al., 2009), use as truth data for observation system simu-
lation experiments (e.g., Yumimoto, 2013; Zoogman et al.,
2014), and use as input data for epidemiologic studies of
PM2.5 (e.g., Atkinson et al., 2014; Kloog et al., 2011). How-
ever, at this time, aerosol reanalysis is still at an early stage
of development.

In this study, we conducted a global aerosol reanalysis
named the Japanese Reanalysis for Aerosol (JRAero) for
the period 2011–2015 and validated its quality with AOD
measurements. The valued-added MODIS AOD observa-
tions provided by the NRL and the University of North
Dakota (NRL-UND MODIS AODs) were assimilated into
the MASINGAR mk-2 (Model of Aerosol Species IN the
Global AtmospheRe), a global aerosol transport model de-
veloped at JMA’s Meteorological Research Institute (MRI),
by using a two-dimensional variational data assimilation
system. This paper constitutes a comprehensive report on
JRAero. The aerosol model, the data assimilation method,
and the observation data used in this study are outlined in
Sect. 2.1–2.3, and the setup of the reanalysis is presented in
Sect. 2.4. Section 3 focuses on the sanity check and evalu-
ation of the reanalysis product with MODIS AOD and in-
dependent observation data. We present our conclusions in
Sect. 4, and we offer remarks on future directions in the de-
velopment of this reanalysis in Sect. 5.

2 Description of the data assimilation system

The data assimilation system consists of an aerosol model, a
data assimilation module, and observation data. We describe
each component in the following subsections. The setup of
the reanalysis and the observation dataset used for an inde-
pendent validation are also presented.

2.1 Overview of MASINGAR mk-2

The global aerosol transport model MASINGAR mk-2
(Yukimoto et al., 2012) is the first major update to the origi-
nal MASINGAR (Tanaka et al., 2003), which was developed
by MRI and JMA. MASINGAR mk-2 is coupled online with
an atmospheric general circulation model (AGCM; MRI-
AGCM3; Yukimoto et al., 2012) through a general-purpose
coupler (Scup; Yoshimura and Yukimoto, 2008), and it is ca-
pable of treating the major tropospheric aerosol components,
BC, organic carbon (OC), mineral dust, sea-salt, and sulfate
aerosols, and their precursors. JMA started to use the original
MASINGAR for operational sand and dust storm forecasting
in January 2004, and it changed over to MASINGAR mk-
2 in November 2014. MASINGAR mk-2 serves as a mem-
ber of the ICAP multi-model ensemble (MME) (Sessions

et al., 2015). The main features of the update were (1) re-
placement of the coupled AGCM, (2) improvement in the
treatment of stratospheric sulfate aerosols, (3) renovation of
emission schemes for dust and sea-salt aerosols, and (4) re-
design of calculation of AOPs. Here, we provide an overview
of MASINGAR mk-2 in which we focus on the updated fea-
tures.

2.1.1 Physical processes

MASINGAR mk-2 includes advection, convective, diffusive
transport, emissions, chemical reaction, and removal pro-
cesses. In the model, the continuity equation of the mixing
ratio of the ith aerosol component at the time step n+ 1
(xi(tn+1)) is solved by successively applying operators, as
follows:

xi (tn+1)= A ·D ·C · T · xi (tn) , (1)

where A,D, C, and T , respectively, denote operators associ-
ated with advection, eddy diffusion, convective transport, and
transformations, due to emissions, depositions, and chemical
reactions.

The model employs a semi-Lagrangian advection scheme
(Staniforth and Côté, 1991) for advection (A). The scheme
allows the use of a much longer time step compared to a Eu-
lerian advection scheme while conserving numerical stabil-
ity and accuracy. In the scheme, the upstream point is first
searched with horizontal and vertical wind fields and then
the mixing ratio is obtained by a three-dimensional interpola-
tion. The interpolation includes a correction for overshooting
or undershooting the advection fluxes to ensure mass conser-
vation and a non-negative value.

Eddy diffusion (D) is defined as(
∂xi

∂t

)
diffusion

=
∂

∂z

(
Kz
∂xi

∂z

)
, (2)

where Kz is the vertical eddy diffusion coefficient. The co-
efficient for aerosols is assumed to be the same as that for
water vapor and is provided by MRI-AGCM3 through the
coupler. MRI-AGCM3 calculates the diffusion coefficient by
the turbulence model of Nakanishi and Niino (2006, 2009),
which is an improved version of the MY scheme (Mellor and
Yamada, 1974, 1982) called the MYNN scheme. Convec-
tive transport (C) is estimated by using updraft or downdraft
mass fluxes calculated by the mass-flux-type cumulus pa-
rameterization scheme developed by Yoshimura et al. (2015)
and embedded in MRI-AGCM3. Further details of convec-
tive transport are given by Yukimoto et al. (2012).

The transformation process (T ) includes gravitational set-
tling, dry and wet depositions, emissions, and chemical re-
actions. Gravitational settling is estimated from the terminal
velocity (Vs), which is estimated on the basis of Stokes’ law
as follows:

Vs =
2Cc

(
ρp − ρa

)
gr2
p

9µ
, (3)
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where Cc is the Cunningham slip-flow correction, ρa is air
density, ρp and rp are the density and radius of the aerosol
particles, g is gravitational acceleration, and µ is the viscos-
ity of air. The model assumes that the particles are spheri-
cal. Ginoux (2003) investigated the effect of nonsphericity on
gravitational settling and suggested that the introduction of
nonsphericity to the modeling of gravitational settling does
not significantly improve dust modeling. Dry deposition at
the ground surface removes aerosol particles from the at-
mosphere. To calculate the dry deposition velocity (Vd), the
model employs the resistance analog model (Seinfeld and
Pandis, 2016), in which the dry deposition velocity is ex-
pressed as the inverse of the sum of resistances,

Vd =
1

ra+ rb+ rarbVs
, (4)

where ra and rb are the aerodynamic and quasi-laminar re-
sistance, respectively. Tanaka et al. (2003) have described
derivation of the resistances in detail.

MASINGAR mk-2 considers two wet deposition pro-
cesses, namely, in-cloud and below-cloud scavenging. In-
cloud scavenging is parameterized following Giorgi and
Chameides (1986), and the loss rate 3ic in s−1 is estimated
as

3ic =
Fc (1− exp(βTc))

1t
, (5)

where Fc, Tc, β, and 1t are the fraction of the cloud with
precipitation, the duration of the precipitation, the frequency
of conversion of cloud water to rainwater, and the model
time step, respectively. These parameters are derived from
the rainwater formation rate and the cloud amount provided
by the AGCM. The loss rate due to below-cloud scavenging
3bc is evaluated as

3bc =
λbcP

1t
, (6)

where λbc and P are the below-cloud scavenging coefficient
and precipitation intensity, respectively. To obtain λbc, the
collision efficiency between aerosol particles and raindrops is
calculated by considering Brownian diffusion, interception,
and inertial impaction (Slinn, 1984; Seinfeld and Pandis,
2016). Tanaka and Chiba (2005) describe the below-cloud
scavenging procedure in detail. Gravitational settling and dry
and wet deposition of mineral dust and sea-salt aerosols are
particle size dependent. The model also includes a process
for the re-emission of particles due to evaporation of rain-
drops. The fraction of re-emitted particles is assumed to be
proportional to the amount of evaporated rainwater.

2.1.2 Aerosol components

The standard version of MASINGAR mk-2 represents
aerosols with 10 externally mixed size distributions (i.e.,

mineral dust, sea salt, and five carbonaceous and three sul-
fate categories). The model represents mineral dust and sea-
salt aerosols by discrete size bins and assumes lognormal size
distributions for the other aerosol components.

For mineral dust particles, the model uses a size bin
method that logarithmically divides the particle size range
from 0.2 to 20 µm into 10 size classes. The volumetric mean
diameters of dry particles in each size bin are 0.271, 0.430,
0.681, 1.08, 1.71, 2.71, 4.30, 6.81, 10.8, and 17.1 µm. The
dust particle density is assumed to be 2.65 g cm−3 following
Tegen and Fung (1994). The dust emission scheme was com-
pletely replaced in the update. Now, the dust emission flux
is estimated by using the wind erosion model developed by
Shao et al. (1996) instead of by using the empirical approach
of Gillette (1978). The dust emission flux from the ith dust
size bin Fi is estimated as

Fi = CdAF0i, (7)

where Cd, A, and F0i are a global tuning parameter, the
erodible area fraction, and the dust emission flux, respec-
tively, estimated by the wind erosion model. Cd is set to
0.001 based on the study by Tanaka and Chiba (2005). The
erodible area fraction depends on ground surface conditions
and is represented by

A= (1−Av)(1−As)(1−Aw)AlAt, (8)

where Av, As, Aw, Al, and At denote the land-cover factors
for vegetation, snow, water, land use, and soil type, respec-
tively. Equation (8) means that larger cover with vegetation,
snow, or water suppresses dust emissions. Vegetation cover
Av is a function of the leaf area index (LAI) and is set to 1
when LAI is larger than a threshold value (1.2), following
Lunt and Valdes (2002). The area fraction of snow cover is
used for As. Thus, when the whole area of a model grid cell
is covered by snow, the model estimates zero dust emissions
from that grid cell. The value of LAI and the area fraction of
snow cover are provided by the hydrology, atmosphere, and
land (HAL) land surface model embedded in MRI-AGCM3.
The area fraction of inland water (i.e., oceans, rivers, and
lakes) is used for water cover Aw, and dust emission from
grid cells covered by inland waters is suppressed. The land-
use type is used to identify potential erodible surfaces. For in-
stance, a grid cell covered by “evergreen broadleaf forests” is
not a potential erodible surface, so its land-use factor Al = 0,
whereas grid cells covered by “sand desert” haveAl = 1. The
land class type (LCT) database provided by the US Geolog-
ical Survey (USGS; http://www.usgs.gov) is used to obtain
Aw and Al. Surfaces covered by Lithosol are excluded as a
possible dust source (i.e., At = 0), and soil texture data from
the Food and Agriculture Organization (FAO) are used to cal-
culate At.

The wind erosion model estimates the friction velocity,
threshold friction velocity, and saltation flux and then calcu-
lates the dust emission flux F0i . The saltation flux of a saltat-
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ing particle of diameter Ds is calculated as follows:

Q(Ds)=


Cs (Ds)ρau

3
∗s

g

(
1−

u∗t(Ds)
2

u2
∗s

)
, u∗s > u∗t

0, u∗s ≤ u∗t

. (9)

Here, u∗t (Ds) is the threshold friction velocity of a saltating
particle of diameter Ds, and u∗s is the friction velocity. Cs is
a coefficient that depends on the saltating particle of diame-
ter Ds. ρa and g denote the air density and the gravitational
constant, respectively. The threshold friction velocity is cal-
culated using the empirical formula of Shao and Lu (2000),
and the effects of soil water are calculated in accord with Fé-
can et al. (1999). To consider the frozen soil effect (Kang
et al., 2013), the soil water factor of Fécan et al. (1999) is
enhanced by 50 % when the soil temperature drops below
0 ◦C. The roughness length for momentum transfer and soil
water content provided by HAL are used for the estimation
of u∗t(Ds) and u∗s. Finally, the wind erosion model calcu-
lates the dust emission flux F0i from the saltation flux using
the energy-based dust emission scheme proposed by Shao et
al. (1996):

F0i = βQu
−2
∗t, d. (10)

Here, u∗t, d is the threshold friction velocity of a dust particle,
and β is an empirical function of the particle diameter of a
saltating particle (Ds) and a dust particle (Dd):

β = 10−5 [1.25ln(Ds)+ 3.28]exp(−140.7Dd+ 0.37) . (11)

Tanaka and Chiba (2005) give further details of the wind ero-
sion model.

MASINGAR mk-2 has 10 size bins for sea-salt aerosols.
The volumetric mean radii of the size bins are the same
as those for mineral dust aerosols. The particle density is
set to 2.25 g cm−3 (Hänel, 1976). The original MASIN-
GAR employed the following empirical formula developed
by Monahan et al. (1986) for the density function (parti-
cles m−2 s−1 µm−1):

dF
dr
= 1.373u3.41

10 r−A
(

1+ 0.057rC
)
× 10De

−B2

, (12)

where u10 is the wind speed at 10 m above ground level, r
is the particle radius at relative humidity (RH) of 80 %, A=
−3,B = (0.380−log(r))/0.650,C = 1.05, andD = 1.19. In
MASINGAR mk-2, the settings A= 4.7(1+2r)−0.017r−1.44

(where 2 is an adjustable parameter describing the shape
of the submicron particle size distribution; here 2= 30
is used), B = (0.433− log(r))/0.433, C = 3.45, and D =

1.607 are used in Eq. (12) following suggestions by
Gong (2003).

Carbonaceous aerosols are classified as BC or OC, and BC
and OC are further divided into hydrophobic or hydrophilic
states. It is assumed that 80 % of BC and 50 % of OC are

emitted from both anthropogenic sources and biomass burn-
ing in a hydrophobic state and the rest in a hydrophilic
state. Hydrophobic BC and hydrophobic OC both become
hydrophilic through aging processes, and the conversion rate
is based on an e-folding time of 1.2 days (Chin et al., 2002).
Although MASINGAR mk-2 does not calculate secondary
organic aerosol production explicitly, this process is repre-
sented implicitly by giving OC production from terpene us-
ing emission data. Emission amount of terpene is provided
by the emission inventory. OC produced from terpene is as-
sumed to be secondary organic aerosol and treated as hy-
drophilic. It is assumed that only hydrophilic species are re-
moved by wet deposition processes. The size distributions
of BC and OC are represented by lognormal distributions
with a number-equivalent geometric mean radius of 0.0118
and 0.0212 µm, respectively, and standard deviations of 2.0
and 2.2, respectively, under dry conditions (Hess et al., 1998;
Chin et al., 2002). The particle density of BC is assumed to
be 1.25 g cm−3, and that of OC is assumed to be 1.8 g cm−3.

MASINGAR mk-2 has a sulfur chemistry model that
treats eight major sulfur compounds, including sulfur dioxide
(SO2), sulfate (SO2−

4 ), dimethyl sulfide (DMS), hydrogen
sulfide (H2S), carbonyl sulfide (OCS), and methane sulfonic
acid (MSA), and it includes nine gas-phase reactions and two
aqueous-phase reactions. Tanaka et al. (2003) and Yukimoto
et al. (2011) present details of the sulfur chemistry model.
It is well known that OCS contributes to the formation of
stratospheric sulfate aerosols (Turco et al., 1980). The chem-
ical process including OCS was newly added to MASINGAR
mk-2 to improve simulation of stratospheric sulfate aerosols.
MASINGAR mk-2 can separately treat sulfate aerosols orig-
inating from anthropogenic, biogenic, and volcanic sources.
The size distribution of the sulfate aerosols is also repre-
sented by a lognormal size distribution with a mean radius
of 0.07 µm and a standard deviation of 2.03 under dry condi-
tions (Hess et al., 1998; Chin et al., 2002), although different
size distributions can be given for each sulfate component.
The particle density of sulfate is assumed to be 1.7 g cm−3.

MASINGAR mk-2 receives meteorological fields (e.g.,
wind fields, air temperature, surface pressure, clouds, precip-
itation, and the eddy diffusion coefficient) and surface con-
ditions (e.g., soil water content and LAI) from the AGCM
for the calculation of the advection, diffusion, deposition,
and emission processes. In turn, the AGCM receives mixing
ratio and deposition fluxes of the aerosol components from
MASINGAR mk-2 via the coupler for the simultaneous cal-
culation of the direct and indirect radiative effects of aerosols
in its simulation. Yukimoto et al. (2012) provide a detailed
description of the calculation of radiative effects.

2.1.3 Calculation of aerosol optical depth

The extinction coefficient at a given wavelength of aerosol
component l in the kth vertical layer is calculated as follows
(e.g., Tegen and Lacis, 1996; Chin et al., 2002):
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αl,k =
3
4
Qlxl,k

ρa lreff l
. (13)

Here, Ql is the extinction efficiency factor, which is the
cross-section-weighted mean extinction efficiency over a
given particle size distribution of the lth aerosol component,
xl,k denotes the mass concentration of the lth aerosol com-
ponent in the kth vertical layer, ρa l is the particle mass den-
sity of the lth aerosol component, and reff l is the effective
radius (cross-section-weighted mean radius over a given par-
ticle size distribution) of the lth aerosol component. Ql is
calculated on the basis of Mie scattering theory for a ho-
mogeneous sphere at a given wavelength using the modeled
aerosol size distributions (see Sect. 2.1.2) and the complex
refractive index, obtained from the software package Opti-
cal Properties of Aerosols and Clouds (Hess et al., 1998).
Under humid conditions, all quantities of hygroscopic com-
ponents in Eq. (13) change with RH because they take up
water. The factors for hygroscopic growth with RH of the hy-
groscopic components (i.e., sulfate, hydrophilic OC and BC,
and sea-salt aerosols) are taken from Chin et al. (2002). The
complex refractive indices of the hygroscopic components
are basically determined by volume-weighted averaging of
the complex refractive index of water and that of each dry
component. In the calculation of the extinction coefficient,
the sulfate component is assumed to be ammonium sulfate
and the mass concentration of the sulfate component is in-
creased by the ammonium sulfate-to-sulfate molecular ratio
to compensate for the absence of ammonium in the model.
The extinction coefficient of organic aerosols is estimated by
replacing the OC mass concentration with the organic matter
(OM) mass concentration using an OM-to-OC factor of 1.4
(White and Roberts, 1977; Japar et al., 1984; Russell, 2003).
MASINGAR mk-2 calculates the aerosol extinction coeffi-
cients at wavelengths of 550 and 870 nm. The total AOD is
derived by integration of αl,k in all aerosol components and
all model vertical layers as follows:

τ =

L∑
l=1

K∑
k=1

αl,k1zk. (14)

Here, L, K , and 1zk are the number of aerosol components,
the number of model vertical layers, and the box height be-
tween the upper and lower boundaries of the kth vertical
layer, respectively. We used the modeled AOD value at the
typical visible wavelength of 550 nm in this study.

2.2 Assimilation method

We previously developed an aerosol data assimilation system
(MASINGAR/LETKF) based on MASINGAR mk-2 and an
ensemble-based assimilation technique called the local en-
semble transform Kalman filter (LETKF; Hunt et al., 2007;
Miyoshi and Yamane, 2007). In fact, Yumimoto et al. (2016)

have reported successful results with MASINGAR/LETKF
in the assimilation of products from MODIS and Himawari 8.
However, the computational cost of MASINGAR/LETKF is
quite high due to the necessity of ensemble simulation, and it
is still unrealistic for development of the long-term reanalysis
product. Therefore, in this study, for the initial development
of a reanalysis product, we developed an aerosol data as-
similation system based on a sequential variational method.
The assimilation system (MASINGAR/2D-Var) uses a two-
dimensional variational method (2D-Var) for the core of the
assimilation system. NAVDAS-AOT (Zhang et al., 2008,
2014) and the NAAPS reanalysis also employ 2D-Var (Lynch
et al., 2016). Experience and knowledge obtained during the
development of MASINGAR/LETKF, and by conducting ex-
periments with that system, were utilized in the development
of MASINGAR/2D-Var.

The cost function in a three-dimensional variational
method (3D-Var) is generally defined as

Jx(x)=
1
2

(
x− xf

)T
P−1

(
x− xf

)
+

1
2

(
yo
−H (x)

)T
R−1 (yo

−H (x)
)
, (15)

where x denotes the vector of modeled aerosol mass mix-
ing ratios. The suffix f represents the forecast (a priori), and
yo denotes a vector that contains observations used for the
assimilation. H is an observation operator that transforms
model variables to observation space. In this study, we used
the NRL-UND MODIS AODs (τ o) as the observational con-
straint (yo). Therefore, the observation operator includes the
conversion of the aerosol mass mixing ratio into AODs (de-
scribed in Sect. 2.1.3) and the interpolation of model space
into observation space. The first term on the right-hand side
of Eq. (15) represents the departure of the analysis (a pos-
teriori) aerosol mass mixing ratio from the forecast ratio
weighted by the background error covariance matrix for the
aerosol mass mixing ratio (P). The second term on the right-
hand side represents the difference between the modeled and
observed AODs weighted by the observation error covari-
ance matrix (R). To search for the optimal solution, which
minimizes the cost function, the gradient vector of Eq. (15)
is calculated as follows:

∇Jx = P−1
(
x− xf

)
−HTR−1 (yo

−H (x)
)
. (16)

Here, HT is an adjoint of H .
For the assimilation of two-dimensional observations such

as the NRL-UND MODIS AODs, we reduced the com-
putational cost by degrading the assimilation system from
three-dimensional to two-dimensional and analyzed the mod-
eled AOD (two-dimensional variable) instead of the modeled
aerosol mixing ratio (three-dimensional variable). The cost
function (Eq. 15) is redefined as
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Jτ (τ )=
1
2

(
τ − τ f

)T
P−1
τ

(
τ − τ f

)
+

1
2

(
τ o
−HIτ

)T
R−1 (τ o

−HIτ
)
, (17)

where τ denotes the modeled AOD vector, and Pτ is the
background error covariance matrix for AOD. HI is the in-
terpolation into observation space and a linear operator. The
gradient vector of Eq. (16) is derived as follows:

∇Jτ = P−1
τ

(
τ − τ f

)
−HT

I R−1 (τ o
−HIτ

)
. (18)

Because the observation operator HI is a linear operator, the
cost function (Eq. 17) becomes a quadratic scalar function.
Therefore, the minimum of the cost function is obtained for
τ = τ a, which makes ∇Jτ = 0. The analysis increment of
AOD is derived from Eq. (18) as

δτ a
= τ a
− τ f
=K

(
τ o
−HIτ

f
)
, (19)

Suffix a represents the analysis (a posteriori),
(
τ o
−HIτ

f) is
the innovation, and K is the Kalman gain, defined as follows:

K= PτHT
I
(
R+HPτHT

I
)−1

. (20)

Because the MODIS AOD is the product of a column-
integrated aerosol optical property and does not provide any
information about the vertical profile or the aerosol com-
ponents, we allocate the analysis increment of AOD to the
aerosol mass mixing ratio while keeping the shape of the ver-
tical profile and the rate of each aerosol component in the
forecast (a priori) aerosol fields. First, the analysis increment
of AOD is derived for each aerosol component. The analy-
sis increment of the AOD for the lth aerosol component is
calculated as

δτ a
l = δτ

a τ
f
l

τ f , (21)

where τ f
l is the forecast AOD of the lth aerosol component.

Then, we distribute the analysis increment of AOD of each
aerosol component to the aerosol mixing ratios in each ver-
tical layer. The analysis increment of the mixing ratio of the
lth aerosol component and the kth vertical layer is derived as

δxa
l,k = δτ

a
l

xf
l,k

αf
l,k

αf
l,k

τ f , (22)

where xf
l,k and αf

l,k represent the forecast mixing ratio and
the extinction coefficient of the lth aerosol component and
the kth vertical layer, respectively. In this distribution, we as-
sume that the hygroscopic growth rate is unchanged. Finally,
we obtain the analysis mixing ratio as follows:

xa
l,k = x

f
l,k + δx

a
l,k. (23)

MASINGAR/2D-Var is developed with expansibility that al-
lows the assimilation of three-dimensional observations in
the future update.

We introduced a localization technique used in LETKF to
the system that divides the model space into local regions
using a prescribed localization scale. The localization tech-
nique solves the analysis increment of AOD (δτ a) at each
model grid with observations included in the local region
independently, reduces spurious error covariance with dis-
tance, and enables parallel processing to be used to reduce
computational cost.

We define the background error covariance between model
grids m and n (i.e., the (m,n) element of Pτ ) as

Pm,nτ = σmτ
(
Cm,n

)1/2
σ nτ , (24)

where σmτ and σmτ are the background error standard devia-
tions at model grids m and n, respectively. Cm,n is a smooth
weighting function whose value becomes smaller when the
distance between model grids m and n becomes larger. The
function prevents a spurious large covariance between dis-
tant model grids. We use the second-order auto-regressive
(SOAR) approximation (Daley and Barker, 2001) following
Zhang et al. (2008) to calculate the value of Cm,n:

Cm,n =

(
1+

Rm,n

L

)
exp

(
1+

Rm,n

L

)
, (25)

where Rm,n denotes the distance (km) between model grids
m and n, and L is the horizontal error correlation length.
Zhang et al. (2008) calculated the spatial correlation between
satellite observations and model forecasts (1◦× 1◦ horizon-
tal resolution) as a function of distance and found that the
SOAR with L set to 200 km can fit the correlation and when
the distance was more than 1000 km, the spatial correlation
decreased to less than 0.05. On the basis of their results, we
set the localization scale and the horizontal error correlation
length to 1000 and 200 km, respectively.

The background error standard deviation was derived from
the MASINGAR mk-2 simulation without data assimilation
(free run). We collected AOD values within ±15 days of the
targeted hour, and then calculated their mean value (τFR)

and standard deviation (σ̂FR). For instance, for 12:00 UTC on
25 July 2014, AOD values at 12:00 UTC on 15 July–9 August
were gathered (i.e., 31 AOD values) and used for the calcu-
lation of the mean and standard deviation. We calculated the
background error standard deviation as follows:

στ =
σ̂FR

τFR
τ f. (26)

Here, τ f is the forecast AOD. The fraction on the right-
hand side of Eq. (26) indicates that the standard deviation
is normalized by the mean value. The standard deviation de-
rived from 31-day AODs leads to relatively smooth variation
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Figure 1. Horizontal distribution of the number of NRL-UND MODIS AOD data assimilated in RA in (a) the whole reanalysis period
(2011–2015), (b) December–February (DJF), (c) March–May (MAM), (d) June–August (JJA), and (e) September–November (SON).
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Figure 2. (a) Time series of the number of 6-hourly NRL-UND
MODIS AOD data. (b) Time series of the 5-day moving average of
the chi-square value (χ2; thick black line) and its standard deviation
(gray shading).

fields. To introduce the horizontal structure of AOD field at
the assimilation time into the background error covariance,
the normalized standard deviation is multiplied by the fore-
cast AOD.

2.3 Observation data

2.3.1 Assimilation dataset: the NRL-UND
MODIS AODs

We employed the MODIS Level 3 AOD product provided
by the NRL and UND (https://earthdata.nasa.gov/earth-
observation-data/near-real-time/nrt-value-added-modis-
aerosol-optical-depth-product-available) as the assimilation
dataset. The NRL-UND MODIS AOD product was produced
for the purpose of aerosol data assimilation and is based on
the NASA operational MODIS Level 2 Collection 5 AOD
dataset (Remer et al., 2005; Levy et al., 2007). These data
(i.e., Dark Target AODs) have been subjected to extensive
quality assurance (QA) and quality check (QC) procedures
(Zhang and Reid 2006; Shi et al., 2011; Hyer et al., 2011).
The QA and QC procedures included (1) a stringent filter to
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Figure 3. AERONET sites used in this study. Red circles denote the AERONET sites used in Fig. 18.

reduce outliers, eliminate cloud contamination, and exclude
bad conditions when aerosol detection is likely to be inac-
curate, and (2) empirical corrections to reduce systematic
biases over land and ocean. Then, the data are aggregated
onto a 1◦× 1◦ grid to reduce random spatial variation in
AOD values with additional buddy checks. The product is
provided every 6 h (i.e., 00:00, 06:00, 12:00, 18:00 UTC).
The QA and QC procedures and the validation of the pro-
cessed data have been reported by Zhang and Reid (2006),
Shi et al. (2011), and Hyer et al. (2011). Although the cutoff
latitudes for the product are 40◦ S over water in the Southern
Hemisphere and 80◦ N in the Northern Hemisphere, in this
study, the AOD product observed from 60◦ S to 60◦ N was
assimilated. We assumed that the observation error covari-
ance matrix (R) was diagonal and assigned uncertainty of
AOD provided by the NRL-UND MODIS AOD product to
the diagonal component of the observation error covariance
matrix. The uncertainty includes empirical estimation of
observation error and representativeness error based on
variability of the L2 dataset (Zhang and Reid, 2006).

The horizontal distribution of the total number of NRL-
UND MODIS AOD data assimilated in the reanalysis run
(RA) of MASINGAR mk-2 during the entire reanalysis pe-
riod and seasonally is shown in Fig. 1. Little or no observa-
tion data are available from regions covered by bright deserts
(e.g., the Sahara, the Kalahari Desert of southern Africa,
the Arabian Peninsula, the Middle East, central Asia, inland
deserts of China, and the inland desert of Australia). Cloud
coverage also affects the availability of observation data.
For instance, the Intertropical Convergence Zone, which is
frequently covered by clouds, has relatively fewer observa-
tion data. During winter in the Northern Hemisphere (i.e.,
December–February), little or no observation data are avail-
able from higher latitudes because of snow or ice cover.
There are no AOD observations over the ocean south of 40◦ S
because of the cutoff used by the QA/QC procedure. This
cutoff aims to filter out cloud contamination in the Southern
Ocean (Toth et al., 2013). The time series of the number of
the NRL-UND MODIS AOD data assimilated in RA shows
that there are more observation data during the boreal sum-
mer than during the boreal winter (Fig. 2a). No observation

data were available from 06:00 UTC on 1 October 2013 to
09:00 UTC on 9 October 2013. On average, about 1400 ob-
servations were assimilated at each analysis time. We assim-
ilated about 2 000 000–2 900 000 data each year. During the
whole reanalysis period, about 13 000 000 observation data
points were available.

2.3.2 Evaluation dataset: the AERONET AOD

We employed the AERONET product (version 2, level 2.0
(quality-assured)) for the independent evaluation of the re-
analysis. Various studies of AOP retrieval and aerosol simu-
lation and assimilation have used the AERONET product for
validation (Kinne et al., 2006; Levy et al., 2013; Sessions et
al., 2015; Lynch et al., 2016; Rubin et al., 2016). Because
the AERONET product does not include AODs measured at
550 nm, we used the Ångström law to derive AODs at 550 nm
from the AODs and Ångström exponents measured at multi-
ple wavelengths (340–870 nm). Then, the AERONET AODs
were averaged into 1 h bins and paired with the model re-
sults. We used observation data from 277 AERONET sites
situated between 60◦ S and 60◦ N from which observations
covering more than 5 % of the reanalysis period were avail-
able (Fig. 3). Roughly speaking, we obtained observation
data from about 190 sites each month, but the number of
available data varied seasonally and reached a maximum in
boreal summer (Fig. 4). In the most recent year (i.e., 2015),
the numbers of both available stations and data were smaller,
because it takes time for level 2.0 (quality-assured) data to
be established; the level 2.0 data become available only after
final calibration has been applied and manual data inspection
has been completed. To compare the modeled AODs with the
AERONET AODs, the gridded modeled values were linearly
interpolated to the AERONET site locations.

2.4 Experiment setup

The configuration of the reanalysis is summarized in Table 1.
The model resolution was set to TL159 (about 1.1◦× 1.1◦;
320× 160 grid points) with 48 vertical layers from the
ground to 0.4 hPa using the hybrid sigma pressure coordi-
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Figure 4. Time series of the number of monthly AERONET AOD data (gray shading) and the number of AERONET sites (thick black line)
used in the evaluation.

Table 1. Configuration of the reanalysis.

Aerosol model MASINGAR mk-2

Meteorological model MRI-AGCM3 nudging with GANAL/JMA
Model resolution TL159 (1.1◦× 1.1◦) with 48 vertical layers
Assimilation method two-dimensional variational method
Assimilation data NRL-UND MODIS AOD (L3)
Assimilation interval 6 h
Localization scale 1000 km
Product period 2011–2015 (5 years)

nate system. At the three lowest levels, the vertical resolu-
tion (layer thickness) was about 100, 200, and 300 m. The
time step of the aerosol model was 900 s, and we used hourly
model output data for the evaluation. The AGCM has the
same spatial resolution and time step as MASINGAR mk-
2. The exchange of meteorological and aerosol variables be-
tween the AGCM and MASINGAR mk-2 through the cou-
pler is performed at every model time step (i.e., every 900 s).
At the assimilation step, the exchange follows the assim-
ilation. This means that the AGCM receives the analyzed
aerosol fields from MASINGAR mk-2. In this study, the op-
erational global analysis provided by JMA (GANAL/JMA;
JMA, 2002) at 6 h intervals was used for nudging the AGCM.
The nudging scheme is applied to the horizontal wind com-
ponents and air temperature. The nudging term is applied
at each time step of the integration by temporarily inter-
polating the variables by linear interpolation. We used an-
thropogenic and biomass burning emissions of sulfur diox-
ide, BC, and OC from the MACCity (MACC/CityZEN EU
projects) emission inventory (http://accent.aero.jussieu.fr/
MACC_metadata.php) and the Global Fire Assimilation Sys-
tem (GFAS) dataset (http://www.gmes-atmosphere.eu/about/
project_structure/input_data/d_fire). This MASINGAR mk-
2 setup, excepting the model resolution and the assimilation
setting, is identical to the operational forecasting setup of the
ICAP MME.

Figure 5 shows a schematic diagram of the reanalysis pro-
cedure. For this study, we performed two runs: a model sim-
ulation without data assimilation (free run; hereafter FR) and
the reanalysis run (RA), in which NRL-UND MODIS AODs
were assimilated every 6 h. The reanalysis period was from

Figure 5. Schematic diagram of the reanalysis procedure. A map
showing NRL-UND MODIS AODs is also shown at each assimila-
tion time.

1 January 2011 to 31 December 2015 (5 years) with a spin-
up period of 3 months (October–December 2010). We also
compared the 6 h forecast AODs from the analyzed state (first
guess; hereafter FG) with the NRL-UND MODIS AODs.

3 Evaluation results

3.1 Chi-square test

We used the chi-square test (χ2), which evaluates the balance
between the innovation and the background and observation
error covariances, to evaluate the long-term stability of the
assimilation performance (Ménard et al., 2000; Miyazaki et
al., 2012, 2015). In this study, the chi-square value was de-
fined as follows:
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Figure 6. Spatial distributions of 5-year averaged AODs during 2011–2015: (a) NRL-UND MODIS, (b) RA, (c) difference (RA minus FR),
and (d) increment (RA minus FG). No observation data were available from gray areas (also see Fig. 1a).
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f
)
, (27)

χ2
= traceYYT. (28)

Here, m is the number of observation data. When the back-
ground and observation error covariances properly balance
the innovation, χ2 has the ideal value of 1. χ2 > 1 indicates
overconfidence (i.e., underestimation) of the model or obser-
vation errors.

The time evolution of χ2 during RA (Fig. 2b) shows that
it decreased in the first 2 months of the reanalysis period
and then remained approximately constant with an average
value of 0.30 and a standard deviation of 0.077. This re-
sult confirms that the assimilation performance was stable.
The relatively large χ2 value in October 2013 was caused
by the lack of assimilation data at that time. In almost all
cases, χ2 was less than the ideal value of 1, which implies
persistent overestimation of the background or observation
errors with respect to the innovation. We performed an addi-
tional 2-year assimilation experiment (2011–2012) in which
the background error covariances were uniformly decreased
by 60 %, and found that the average χ2 value was 0.56 with
a standard deviation of 0.16. Although the average was in-
creased in this experiment, almost all of the χ2 values were
still lower than the ideal value, which implies persistent over-
estimation of the observation errors. Both RA and FG from
the additional experiment obtained worse scores in the val-
idations with MODIS and AERONET AODs than the stan-
dard experiment. For the χ2 value, the additional experiment
shows much larger variation (standard deviation). These re-
sults imply that although there were the persistent overesti-

mates of background and observation errors, they were well-
balanced and stable in the standard experiment.

3.2 Sanity check by MODIS AODs

To validate the data assimilation system, we compared the
AOD fields from FR, FG, and RA with the NRL-UND
MODIS AODs. Better agreement of RA AODs, compared
to FR AODs, confirms the accuracy of the data assimilation
system, because NRL-UND MODIS AODs were used as an
observational constraint. The FG performance is an indica-
tion of whether the analyzed aerosol fields can improve the
short-term forecasting until the next analysis (until the next
MODIS AOD is available).

The RA AOD spatial distribution showed quite good
agreement with the NRL-UND MODIS AOD distribution
(Fig. 6a and b). The distribution of the 5-year averaged dif-
ference (RA AOD minus FR AOD) (Fig. 6c) shows that, in
general, assimilation increased AODs over the central Pa-
cific Ocean, implying that in FR, MASINGAR mk-2 under-
estimated sea-salt aerosols. Large negative and positive dif-
ferences over Canada, Siberia, and Indonesia resulted from
improved simulation of carbonaceous aerosols from forest
fires. Over the Sahel (south of the Sahara) and its down-
wind regions (e.g., the Atlantic Ocean), mineral dust parti-
cles were increased by assimilation. In contrast, over other
dust-dominant regions (central China, Australia, the Persian
Gulf, and Argentina), AODs (mainly mineral dust particles)
were decreased. The negative difference around the Mediter-
ranean Sea indicating that the model overestimate dust par-
ticles transported from the Sahara. Over industrializing ar-
eas, such as India and the eastern coast of China, assim-
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ilation increased anthropogenic pollutants (i.e., sulfate and
carbonaceous aerosols), filling the gap between observed
and FR AODs. The large positive differences around central
Africa and the Gulf of Guinea reflect increased carbonaceous
aerosols due to forest fires. Figure 6d exhibits the distribution
of the increment (RA AOD minus FG AOD) that is derived
from the 5-year average of the modifications by the assimila-
tions (i.e., δτ a in Eq. 19). The increment shows lower ampli-
tudes and different distributions in several regions (particu-
larly in the downwind regions of aerosol sources) compared
to the difference (Fig. 6c). It is because that the difference is
affected by transport of the modifications after the assimila-
tions and the increment (FG AOD) takes into account accu-
mulation of previous assimilations. The effect by the accu-
mulation also appears as much better statistics of FG AOD
(e.g., lower root mean square error (RMSE) and mean frac-
tional bias (MFB)) compare to FR AOD (Fig. 7).

Temporal evolution of the RMSE, linear Pearson correla-
tion coefficient (R), mean fractional error (MFE), MFB, and
index of agreement (IOA) for FR, FG, and RA AODs are
shown in Fig. 7 (formulations of these statistical measures
are given in Appendix A). For FR, these statistical measures
(blue lines and dots) showed seasonal variations reflecting
the seasonal cycle of the observation coverage (shown in
Fig. 1) and the aerosol distribution (e.g., springtime Asian
dust storms). Occasional large RMSEs and low R values for
FR AODs (e.g., July 2011 and March 2015) were caused
mainly by large-scale dust storms or forest fires. Values of the
RA AOD statistical measures (red lines and dots) are much
better than the FR values. In most cases, the RMSEs are less
than 0.06 (the 80th percentile of RMSE for RA is 0.057), and
R and IOA values are larger than 0.9 (20th percentile of R
and IOA for RA is 0.91 and 0.94, respectively). The 80th per-
centile of MFE for RA AOD is 26.6 %. The MFB time series
showed that assimilation considerably reduced the bias found
in FR. During 96.4 % of the reanalysis period, MFB for RA
AODs is within ±10 %. In most cases, RA AODs meet the
model performance goals for particulate matter and light ex-
tinction (MFE ≤+50 % and MFB ≤±30 %) suggested by
Boylan and Russell (2006). Moreover, all FG AOD (green
lines and dots) statistical measures are better than the FR
AOD statistics. This result means that aerosol fields obtained
by the reanalysis improved short-term forecasting until the
next analysis (until the next MODIS AOD is available).

Scatter plots of FR, FG, and RA AODs versus NRL-
UND MODIS AODs for the whole reanalysis period (Fig. 8)
and by season (Fig. 9) show no seasonal dependency of
RA. However, MFB values are relatively larger in boreal
spring and summer, perhaps reflecting larger AOD values
over the Northern Hemisphere during those seasons (Ta-
ble 2). RA AODs are much more aligned with the 1 : 1 line
in the scatter plots compared to both FR and FG AODs, and
the RA statistical measures are much better, both seasonally
and for the whole analysis period (RMSE≤ 0.05, R ≥ 0.95,
MFE≤ 25.1 %, MFB= 1.3–4.1 %, and IOA≥ 0.97; Table 2).
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Figure 7. Time series of the 5-day moving average of (a) RMSE,
(b) R, (c) MFE, (d) MFB, and (e) IOA for FR (blue), FG (green),
and RA (red), validated by NRL-UND MODIS AODs. Small dots
show 6-hourly values.

The scatter diagrams show that RA AODs tended to be un-
derestimated with respect to NRL-UND MODIS AODs. In
fact, the mean bias (averaged value of RA AODs minus
NRL-UND MODIS AODs) is slightly negative (−0.007).
However, MFB is slightly positive (2.8 %). This discrep-
ancy implies that although RA underestimated relatively
large AODs (> 0.5), smaller AODs (< 0.5) were overesti-
mated. The FG AODs also show better agreement than FR
AODs with the NRL-UND MODIS AODs throughout the re-
analysis period (Table 2) and meet the model performance
goal. The frequency distribution of FR AOD deviations (ob-
served AODs minus modeled AODs) (Fig. 10) is symmet-
ric and mound-shaped, similar to a Gaussian distribution,
and supports the assumption of the data assimilation that
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Table 2. Statistical measures of the NRL-UND MODIS AODs versus FR, FG, and RA AODs.

RMSE R MFE MFB IOA No. of data

FR FG RA FR FG RA FR FG RA FR FG RA FR FG RA

Whole period 0.14 0.11 0.05 0.61 0.78 0.96 56.8 39.7 23.7 −24.3 6.3 2.8 0.76 0.88 0.98 12 960 929
DJF 0.14 0.11 0.05 0.60 0.77 0.96 61.4 39.4 23.3 −33.3 4.0 1.3 0.75 0.87 0.97 2 774 132
MAM 0.15 0.11 0.05 0.64 0.79 0.96 56.8 38.9 23.4 −26.0 7.2 3.4 0.78 0.89 0.98 3 182 020
JJA 0.16 0.12 0.05 0.61 0.79 0.96 54.0 41.4 25.1 −14.8 8.3 4.1 0.75 0.88 0.98 3 811 923
SON 0.13 0.10 0.05 0.58 0.76 0.95 56.3 38.9 22.7 −26.0 5.1 1.9 0.72 0.87 0.97 3 192 854

RMSE: root mean square error; R: correlation coefficient; MFE: mean fractional error; MFB: mean fractional bias; IOA: index of agreement. FR: free run; FG: first guess; RA: reanalysis.
DJF: boreal winter (December–February); MAM: boreal spring (March–May); JJA: boreal summer (June–August); SON: boreal autumn (September–November).
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Figure 8. Scatter plots of (a) FR, (b) FG, and (c) RA AODs versus NRL-UND MODIS AODs during the whole reanalysis period (2011–
2015). The AOD resolution is 0.05.

the background errors follow a Gaussian distribution. How-
ever, the requirement of an unbiased background error is
not strictly met (mean bias between FR AODs and NRL-
UND MODIS AODs is −0.032). FG and RA AOD devia-
tions shows squeezed distributions, and their peaks are closer
to 0 than the FR peak; 92.0 % (79.6 %) of RA (FG) AOD de-
viations are within ±0.05.

3.3 Evaluation by AERONET AODs

3.3.1 Evaluation with 1 h binned data

We compared the modeled AODs with the 1 h binned
AERONET AODs during the whole reanalysis period
(Fig. 11) and during each season (Fig. 12) in scatter plots.
In general, the FR AOD distribution is squashed verti-
cally, an indication that FR AODs generally underesti-
mated AERONET AODs. This underestimation is also re-
flected in negative MFB values (Table 3). In boreal spring
(Fig. 12c) and summer (Fig. 12e), FR AODs in regions where
AERONET AODs were between 0.0 and 1.0 showed posi-
tive biases, which were caused by the overestimation of car-
bonaceous aerosols from forest fires in Canada and mineral
dust aerosols over central China, Australia, and the Persian

Gulf mentioned in Sect. 3.2. RA AODs (Figs. 11b, 12b, d,
f, and g) are more narrowly distributed along the 1 : 1 line,
an indication that assimilation improved under- and overes-
timates in the FR AODs. The statistical measures of RA for
the whole reanalysis period (Table 3) meet the model perfor-
mance goals. The MFE and MFB values obtained in boreal
summer compared better to those obtained in other seasons.
This improvement might reflect the relatively larger num-
ber of NRL-UND MODIS AODs available in boreal summer
(see Table 2).

The distribution of FR AOD deviations (AERONET
AODs minus modeled AODs) (Fig. 13, blue line) is pos-
itively biased (i.e., FR AODs underestimate AERONET
AODs); 70.0 % of the deviations are larger than 0 (2.1 % ex-
ceed 0.5). The distribution of RA AOD deviations (Fig. 13,
red line) shows less positive bias and is more symmetric com-
pared to the FR AOD result; 48.4 % of the deviations are
larger than 0 (1.1 % exceed 0.5). Although the distribution of
RA AOD deviations relative to AERONET AODs is broader,
compared to the distribution relative to NRL-UND MODIS
AODs (Fig. 10), 73.1 % (80.9 %) of the deviations are still
within ±0.05 (±0.10).
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Figure 9. Scatter plots of FR (a, d, g, j), FG (b, e, h, k), and RA (c, f, i, m) AODs versus NRL-UND MODIS AODs for boreal (a–c) winter
(December–February), (d–f) spring (March–May), (g–i) summer (June–August), and (j–m) autumn (September–November).
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Table 3. Statistical measures of the 1 h binned AERONET AODs versus FR and RA AODs.

RMSE R MFE MFB IOA No. of data

FR RA FR RA FR RA FR RA FR RA

Whole period 0.19 0.14 0.58 0.76 56.2 42.7 −27.2 4.5 0.71 0.85 1 513 663
DJF 0.19 0.14 0.58 0.77 65.6 50.3 −31.9 5.6 0.69 0.86 254 833
MAM 0.21 0.16 0.59 0.77 56.8 41.5 −27.5 6.7 0.73 0.86 411 600
JJA 0.20 0.15 0.53 0.74 51.7 38.8 −27.0 2.3 0.69 0.84 497 808
SON 0.16 0.13 0.59 0.76 55.0 44.1 −23.8 4.4 0.69 0.84 349 422

Table 4. Statistical measures of the monthly averaged AERONET AODs versus FR and RA AODs.

RMSE R MFE MFB IOA No. of data

FR RA FR RA FR RA FR RA FR RA

Whole period 0.12 0.08 0.76 0.90 44.5 28.1 −27.3 0.6 0.81 0.93 11 222
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Figure 10. Frequency distributions of deviations (observed AODs
minus modeled AODs) from the NRL-UND MODIS AODs. The
percentages of deviations between −0.05 and +0.05 are shown at
the top, and the percentages less than −0.5 (bottom left) or greater
than +0.5 (bottom right) are shown in parentheses.

3.3.2 Evaluation with monthly averaged data

We also evaluated monthly averaged AODs, because
monthly AOD data are often used in climate studies (Lynch
et al., 2016). Monthly averaged AODs were derived from
paired 1 h binned AERONET and modeled AODs. In gen-
eral, the monthly averaged RA AODs (Table 4) showed bet-
ter agreement than the 1 h binned AODs (Table 3) with the
AERONET AOD data; in particular, RMSE and MFB of RA
were about 43 and 86 % lower, respectively. As in the pair-
wise comparison with the 1 h binned AODs, FR AODs under-
estimated the monthly averaged AERONET AODs (Fig. 14a
and negative MFB value in Table 4), whereas RA AODs re-
duced or eliminated the underestimation. As a result, the RA
MFB value, 0.6 %, is quite good (Table 4). Moreover, in the
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Figure 11. Scatter plots of (a) FR and (b) RA AODs versus 1 h
binned AERONET AODs for the whole reanalysis period (2011–
2015).

monthly data, 74.0 % (89.4 %) of RA AOD deviations from
AERONET AODs were within ±0.05 (±0.10).

Time series of the statistical measures calculated by us-
ing the monthly averaged AERONET AODs (Fig. 15) show
that, in general, RA AOD performance is much better than
FR AOD performance throughout the reanalysis period, ex-
cept for MFB in December 2015. The only statistical mea-
sure that shows seasonality is MFE. RMSE of RA is almost
always (58 months during 5 years) lower than 0.10; 53.3 %
(32 months) of R values and 73.3 % (44 months) of IOA
values are greater than 0.90; 80.0 % (48 months) of MFE
and MFB values are less than 34 % and within ±10 %, re-
spectively; and all months except for the initial month of the
reanalysis (i.e., January 2011) meet the model performance
goals.

Statistical measures for RA at each AERONET site are
shown in Fig. 16, and those for FR AOD are shown in
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Figure 12. The same as Fig. 11, except for boreal (a–b) winter (December–February), (c–d) spring (March–May), (e–f) summer (June–
August), and (g–h) autumn (September–November).
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Figure 13. Frequency of deviations (observed AODs minus mod-
eled AODs) from the 1 h binned AERONET AOD. The percent-
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Figure 14. Scatter plots of (a) FR AODs and (b) RA AODs ver-
sus monthly averaged AERONET AODs for the whole reanalysis
period (2011–2015).
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Figure 15. Time series of (a) RMSE, (b) R, (c) MFE, (d) MFB, and
(e) IOA for FR (blue) and RA (red), validated by monthly averaged
AERONET AODs. The number of AERONET sites used at each
time point for these calculations is shown by the thick black line in
Fig. 4.

Fig. 17 as a reference. In these figures, the 181 AERONET
sites with more than 36 monthly averaged data are plot-
ted. In general, RA shows much better agreement globally
than FR with the AERONET data. In RA, RMSE < 0.01,
R > 0.90, and IOA> 0.90 at 86.4 % (154 sites), 40.7 % (74
sites), and 43.4 % (79 sites) of the 181 sites, respectively.
MFE is less than 50 % at 181 sites (91.2 %), and MFB val-
ues at 81 sites (44.5 %) are within ±15 %. Consequently, at
44.5 % (81 sites) of the 181 AERONET sites, RA meets the
model performance goal. RMSEs are relatively large at sites
in central Africa, India, southeast Asia, and eastern coastal
China, but the other statistical measures (e.g., R and MFE)
in these regions are not particularly worse than those in the

other regions. Relatively higher AOD values (see Fig. 6) are
responsible for the larger RMSE values.

At Beijing (39.977◦ N, 116.381◦ E; Fig. 18b), RMSE
(0.28) and the negative MFB value (−49.3 %) are large,
and IOA is relatively low (0.65), but the correlation co-
efficient is relatively high (R = 0.80). We also compared
time series of monthly averaged AERONET and modeled
AODs with the time series of monthly averaged NRL-
UND MODIS AODs there in Fig. 18. It should be noted
that the monthly averaged MODIS AODs are derived by
using all available data, and neither the AERONET nor
the modeled AODs are paired. At Beijing, although RA
successfully captured the temporal variation observed by
AERONET, its AOD values were almost always lower than
the observed values. A similar negative MFB value when
AOD levels are high has been observed for other megacity
AERONET sites in industrializing countries, including Xi-
anHe (39.754◦ N, 116.962◦ E; about 56 km from Beijing),
Kanpur, India (26.513◦ N, 80.232◦ E; Fig. 18h), and Mex-
ico_City, Mexico (19.334◦ N, 99.182◦W). The statistics for
these sites are summarized in Table 5. Averaged RA AODs
are lower than averaged AERONET AODs, and MFB val-
ues are negative (−22.0 to −53.7 %), but correlation coeffi-
cients are relatively high (R = 0.78–0.79). Multi-model in-
tercomparison studies (Kinne et al., 2006; Sessions et al.,
2015) have pointed out that aerosol models having negative
biases for high-AOD events is a common problem. Insuf-
ficient anthropogenic emissions data and model resolution
for megacities are plausible reasons for the negative biases.
Zheng et al. (2015) evaluated the impact of heterogeneous
chemistry with regional chemical transport model in eastern
and central China (urban and industrialized area of China),
and suggested the significant role of heterogeneous chem-
istry in regional haze formation. While the current version
of MASINGAR mk-2 includes the nine gas-phase and two
aqueous-phase reactions of the sulfate chemistry, the imple-
mentation of the heterogeneous chemistry reactions is un-
der development. The absence of the heterogeneous chemical
productions may partly explain the negative bias. Assimila-
tion partly reduced the negative bias (see Fig. 18b and h),
although the amount of improvement was limited. The prob-
ability of a successful retrieval can be reduced during high-
AOD events (Lynch et al., 2016); thus, fewer available satel-
lite observations over megacities during high-AOD events
may also account for the negative biases in RA AODs. Rubin
et al. (2017) applied an ensemble-based assimilation method
to NAAPS and found that flow-dependent error covariances
estimated by ensemble simulations utilized the AERONET
AOD efficiently and brought better analyses at Beijing and
Kanpur. Sophistication of the background error covariance
and assimilation of additional observations have the poten-
tial to improve the analyses in the megacities.

At Lulin (23.469◦ N, 120.874◦ E; Fig. 18i), the mod-
eled AODs showed a positive bias (MFE and MFB of
RA AODs are 135.6 and 135.5 %, respectively), and
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Figure 16. Maps of statistical measures of monthly AERONET AODs versus RA AODs. (a) RMSE, (b) R, (c) MFE, (d) MFB, (e) IOA, and
(f) number of data.

Table 5. Statistical measures of the monthly AERONET AODs versus FR and RA AOD at megacity and mountain AERONET sites.

Notation Site Location Elevation (m) Observation RA

Average Average RMSE R MFE MFB IOA

Megacity Beijing (39.977◦ N, 116.381◦ E) 92 0.56 0.33 0.28 0.79 50.4 −49.3 0.65
XiangHe (39.754◦ N, 116.962◦ E) 36 0.60 0.37 0.27 0.78 44.7 −44.6 0.66
Kanpur (26.513◦ N, 80.232◦ E) 123 0.61 0.48 0.14 0.86 23.6 −22.0 0.80
Mexico_City (19.334◦ N, 99.182◦W) 2268 0.28 0.17 0.12 0.84 53.7 −53.7 0.59

Mountain Lulin (19.334◦ N, 99.182◦W) 2868 0.056 0.24 0.20 0.74 136.5 135.3 0.40
QOMS_COM (28.365◦ N, 86.948◦ E) 4276 0.041 0.16 0.14 0.61 119.8 119.8 0.25
CASLEO (31.799◦ S, 69.306◦W) 2552 0.025 0.084 0.064 0.71 108.6 108.6 0.24
Mauna_Loa (19.539◦ N, 155.578◦W) 3397 0.051 0.14 0.13 0.51 162.3 162.3 0.09

the improvement due to assimilation was limited. We
found similar positive biases with little improvement at
QOMS_COM, China (28.365◦ N, 86.948◦ E), CASLEO, Ar-
gentina (31.799◦ S, 69.306◦W), and Mauna_Loa, Hawaii
(19.539◦ N, 155.578◦W) (Table 5). All of these sites have
large MFE and MFB values; when MFE is equal to MFB, the
modeled AODs are always larger than the observed AODs.

One characteristic shared by these sites is a relatively low
AOD level (0.025–0.056), and another shared feature is that
all four sites are situated at high elevation in mountainous
areas (Table 5). The coarse model resolution might obscure
the effect of local terrain and result in this positive bias. In
addition, the NRL-UND MODIS AODs also overestimated
the AERONET AODs because of the difference in the rep-

Geosci. Model Dev., 10, 3225–3253, 2017 www.geosci-model-dev.net/10/3225/2017/



K. Yumimoto et al.: JRAero: the Japanese Reanalysis for Aerosol 3243

Number of data
42 48 54 6036

Mean fractional bias (MFB) [%]
5040-50 3020100-10-20-30-40

Mean fractional error (MFE) [%]
400 60 80 10020

Root mean square error (RMSE)
0.120 0.14 0.16 0.200.10

Correlation coefficient (R)
0.40 0.6 0.8 1.00.2

Index of agreement (IOA)
0.40 0.6 0.8 1.00.2

0.180.080.060.040.02

60° N

40° N

20° N

EQ

20° S

40° S

60° S

(a) RMSE (FR) (b) R (FR)

(c) IOA (FR)

0° 60° E 120° E 180° 120° W 60° W 0° 

(d) MFE (FR) (e) MFB (FR)

(f) Number of data

0° 60° E 120° E 180° 120° W 60° W 0° 

0° 60° E 120° E 180° 120° W 60° W 0° 0° 60° E 120° E 180° 120° W 60° W 0° 

0° 60° E 120° E 180° 120° W 60° W 0° 0° 60° E 120° E 180° 120° W 60° W 0° 

60° N

40° N

20° N

20° S

40° S

60° S

EQ

60° N

40° N

20° N

20° S

40° S

60° S

EQ

Figure 17. The same as Fig. 16, except versus FR AODs.

resentativeness of the observations. This fact can explain the
limited improvement by the assimilation.

In addition to the sites discussed above, we show
time series of monthly averaged AERONET and mod-
eled AODs of other sites (Fig. 18), which we selected
as representative of urban areas (Goddard Space Flight
Center – GSFC, Moldova, and Osaka) or because
they show the influence of African dust (IER_Cinzana,
Capo_Verde, and Ragged_Point), Arabian dust (Mezaira),
African smoke (Ascension_Island), southeast Asian
smoke (Chiang_Mai_Met_Sta), or South American smoke
(Rio_Branco). Cart_Site was selected as representative of a
clean area. Nine of these sites were also selected for valida-
tion of the ICAP-MME (Sessions et al., 2015). At the urban
sites (Fig. 18f, k, and i), assimilation improved the negative
bias in FR AODs, and RA AODs showed much better agree-
ment with the observations than FR AODs, in particular at
GSFC (Fig. 18f), although a slight negative MFB (−1.9 %)
remained in RA AODs. At IER_Cinzana (Fig. 18g), situated
in an African dust source region, RA AODs success-

fully captured the observed temporal variation (R = 0.93,
IOA= 0.89), but a negative MFB (−32.7 %) remained
after the assimilation. The availability of fewer NRL-UND
MODIS AOD observations over bright surfaces (also see
Fig. 1) can explain the limited improvement achieved by
assimilation. At Capo_Verde (Fig. 18c) and Ragged_Point
(Fig. 18m), which are downwind of an African dust source,
the RA results showed nearly perfect agreement with
observations, though the sites are on opposite sides of the
Atlantic Ocean. At Mezaira (Fig. 18j), which is influenced
by Arabian dust, AERONET captured the AOD peaks in
boreal summer. FR considerably overestimated the AOD
values of the peaks, and assimilation improved the overesti-
mation, even though no MODIS data are available over this
AERONET site. MODIS observations near the site (i.e., over
the Persian Gulf; see Fig. 1) contributed to this improvement,
and the overall performance of RA was good (Fig. 18j). At
Ascension_Island (Fig. 18a), which is influenced by African
smoke, assimilation improved the persistent negative bias.
In RA AODs, RMSE= 0.03 and R = 0.92, and the negative
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Figure 18. Time series of monthly averaged AERONET and modeled AODs. The AERONET, FR, and RA AODs are shown with black,
blue, and red lines, respectively. Gray shading denotes standard deviations of the AERONET AODs. Monthly averages of NRL-UND MODIS
AODs over each AERONET site are shown by circles. RMSE, R, MFE, MFB, and IOA values for RA are also shown. Locations of sites
are shown by red circles in Fig. 3. Beijing, Capo_Verde, Cart_Site, Chiang_Mai_Met_Sta, GSFC, Kanpur, Moldova, Ragged_Point, and
Rio_Branco are included among the sites selected for validation of the ICAP-MME (Sessions et al., 2015).

MFB (−3.0 %) was much smaller than that in FR AODs.
At Chiang_Mai_Met_Sta, which is influenced by southeast
Asian smoke (Fig. 18e), RA AODs reproduced the seasonal
variation (peaks in spring) seen in the AERONET AODs
(R = 0.96), but they underestimated peak AOD values
(MFB=−12.9 %). The NRL-UND MODIS peak AOD
values were also lower than the AERONET peak AODs,
because larger spatial variability included in the dense
aerosol events filtered the high AOD values out through
the QA process. This fact can explain the negative bias of

the peak AOD values in the RA AODs. At Rio_Branco
(Fig. 18n), which is influenced by South American smoke,
RA AODs successfully captured both the temporal variation
and the winter peaks (R = 0.93), but peak AOD values were
slightly underestimated (MFB=−1.5 %). At the clean site
(Cart_Site; Fig. 18d), assimilation complemented the under-
estimates in FR AODs, and the RA performance was good
(RMSE= 0.02, R = 0.94, MFE= 15.3 %, MFB=−2.5 %,
and IOA= 0.96).
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4 Conclusions

A global aerosol data assimilation system was developed
based on a global aerosol transport model, MASINGAR
mk-2, and a two-dimensional variational data assimilation
method. The assimilation system was used to produce an
aerosol reanalysis product named the Japanese Reanalysis
for Aerosol (JRAero) for the period 2011–2015 through the
assimilation of NRL-UND MODIS AOD data with a hori-
zontal resolution of TL159 (about 1.1◦× 1.1◦). In this pa-
per, we have outlined the data assimilation system and pre-
sented the general specifications of JRAero. We have also
presented results of our validation of the reanalysis AODs
with AERONET AODs.

Chi-square test results confirmed that the stability of the
assimilation performance was good throughout the reanaly-
sis period. In almost all cases, the chi-square value was lower
than the ideal value of 1; this result implies persistent over-
estimation of the background and observation errors with re-
spect to the innovation.

Comparison of the reanalysis results with the NRL-UND
MODIS AODs showed that assimilation improved both neg-
ative and positive biases in the free run (FR) of MASIN-
GAR mk-2: negative biases over oceans caused by underes-
timation of sea-salt aerosols, gaps in carbonaceous aerosols
from forest fires in Canada, Siberia, Indonesia, and central
Africa, discrepancies in dust source and downwind regions
(e.g., the Sahel, Atlantic Ocean, Mediterranean Sea, cen-
tral China, Australia, and the Persian Gulf), and underesti-
mates in industrializing areas (in particular, India and eastern
China) were compensated by the assimilation. The reanaly-
sis AODs showed quite good agreement with the NRL-UND
MODIS AODs (RMSE= 0.05, R = 0.96, MFE= 23.7 %,
MFB= 2.8 %, and IOA= 0.98), confirming the accuracy of
the assimilation system. FG AODs also showed better agree-
ment with the NRL-UND MODIS AODs than the FR AODs
(although worse compared to the reanalysis AODs). This re-
sult indicates that aerosol fields provided by the reanalysis
are capable of substantially improving short-term forecast-
ing till the next analysis (the next MODIS AOD is available).

Validation with 1 h binned AERONET AODs showed
the reanalysis AODs to be considerably better than the
FR AODs. The statistical measures of RA (RMSE= 0.14,
R = 0.76, MFE= 42.7 %, MFB= 4.5 %, and IOA= 0.85,
based on about 1 500 000 1 h binned AOD data from 277
AERONET sites) met the model performance goals proposed
by Boylan and Russell (2006). In addition, 73.1 % (80.9 %)
of deviations (the AERONET AOD minus the reanalysis
AOD) were within ±0.05 (±0.10).

The statistics of the reanalysis AODs in a comparison
with monthly averaged AERONET AODs (RMSE= 0.08,
R = 0.90, MFE= 28.1 %, MFB= 0.6 %, and IOA= 0.93)
were even better than those in the comparison with 1 h binned
AERONET AODs. In site-by-site comparisons, the reanaly-
sis performance was also better than the FR performance.

At 86.4 % of the 181 AERONET sites, the RMSE of RA
was < 0.10; at 40.7 % of sites, R was > 0.90; and at 43.4 %
of sites, IOA was > 0.90. However, the reanalysis AODs
tended to underestimate the observed AODs at urban sites
(in particular, megacities in industrializing countries), pos-
sibly because anthropogenic emissions data and model res-
olution were insufficient. At high-elevation mountain sites
(2500–4200 m), persistent positive biases were found in the
reanalysis and improvement by assimilation was limited. The
coarse model resolution, which likely obscures the effect
of local terrain, and the difference in representativeness be-
tween satellite and ground-based observations can explain
the overestimation and limited improvement.

5 Future directions

To enhance the current version’s quality and address its prob-
lems, we propose the following for the next version:

1. NRL-UND MODIS AODs (or Dark Target AODs) are
unavailable over deserts. These regions without obser-
vational constraints are responsible for the limited im-
provement of RA obtained near dust source regions. In-
clusion of AOD data retrieved by the Deep Blue algo-
rithm, which is able to complement Dark Target AODs
by retrieving AODs over bright arid land surfaces (Hsu
et al., 2006; Sayer et al., 2013), could improve the re-
analysis quality in regions around deserts. In the cur-
rent version, we assimilated two-dimensional maps of
AODs (vertically integrated aerosol optical property)
and assumed that the shape of vertical profile before
assimilation was unchanged after assimilation. How-
ever, vertical profiles of aerosols likely affect their trans-
port, deposition, and climate effects. A space-borne li-
dar, CALIPSO (Winker et al., 2010), has been provid-
ing continuous measurements of aerosol vertical distri-
butions over the globe since 2006. The use of lidar data
would allow the vertical profiles of the reanalysis to be
adjusted. Furthermore, the inclusion of information on
the size distribution (e.g., Ångström exponent) would
raise the quality of the reanalysis.

2. The limited temporal coverage of MODIS AOD (once
a day) might cause temporal jumps or discontinuities
in the reanalysis. Lynch et al. (2016) suggested that the
importance of model tuning in particular when there are
areas not covered by assimilated observations. To ob-
tain a better coverage of assimilation data is important
for the future development. Smoother techniques (e.g.,
four-dimensional variational method; Yumimoto and
Takemura, 2013, 2015) and ensemble Kalman smoother
(Schutgens et al., 2012) are also useful.

3. At megacity and mountain sites, assimilation provided
limited improvement, and positive and negative biases
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remained in the reanalysis. A plausible reason is the
coarse model resolution, which is insufficient to resolve
high-AOD events around megacities and local terrain
effects in mountainous areas. Therefore, we plan to re-
run the reanalysis with a finer resolution and check the
performance of the model. Re-examination of the back-
ground error by an ensemble-based method (Yumimoto
et al., 2016) and assimilation of additional observations
(e.g., the AERONET AOD) have the potential to im-
prove the analyses at the megacity sites (Rubin et al.,
2017).

4. In the next version, we will employ the JRA-55 reanaly-
sis dataset (Kobayashi et al., 2015; Harada et al., 2016),
the most recent meteorological reanalysis product de-
veloped by JMA, as nudging data in the AGCM. The
use of these data is expected to enable more accurate
simulation of aerosol transport and deposition and to al-
low longer integration of the reanalysis.

5. Updating to more recent anthropogenic emissions in-
ventory data will improve the negative biases, especially
for industrializing countries where anthropogenic emis-
sions are rapidly increasing.

6. In addition to the updates of the model resolution and in-
put data, physical and chemical processes in the model
need to be sophisticated. Newly developed dust emis-
sion (e.g., Kang et al., 2014), optical calculation, micro-
physics parameterization, and wet deposition schemes
(e.g., Oshima et al., 2009; Oshima and Koike, 2013)
will be applied in the next version. Aerosol microphys-
ical and optical parameters (e.g., size distribution, hy-
groscopicity, and refractive index) will also be updated
by taking advantage of recent measurements.

7. The chi-square test results imply model and observa-
tion errors are relatively large with respect to the inno-
vation. Re-examination of these errors is required. In-
sights from studies using the ensemble-based assimila-
tion system (Yumimoto et al., 2016) should make it pos-
sible to provide the background error covariance matrix
with a more appropriate amplitude and structure. In the
current version, the background error was in proportion
to the forecast AOD (Eq. 26) and became small where
the model did not predict aerosols. Therefore, the analy-
sis could not reproduce aerosol events that satellites ob-
served but the model failed to predict (e.g., dust storms
and biomass burning) due to the small background error.
The ensemble-based estimate of the background error
considering uncertainty in emissions will bring better
analysis for this situation.

8. In the present paper, the reanalysis was validated with
only the AOD observations. Further validation is also
needed. Comparison with vertical AOD distributions
obtained from space- and ground-based lidars would
contribute to improvement of the vertical profiles of the
reanalysis and become a good prearrangement of assim-
ilation with the lidar data. Validation using mass con-
centrations observed in situ and by aircraft campaigns
should effectively improve the model’s emission, trans-
port, diffusion, and deposition processes. Furthermore,
intercomparison with other reanalysis products (e.g.,
CAMSiRA, MERRA-2, and NRL NAAPS reanalyses)
will provide insight into various aspects of not only the
data assimilation system but also the aerosol model and
help us increase their sophistication.

Code and data availability. The model and data assimilation sys-
tem codes are the property of MRI/JMA and not available to the
general public. If you are interested in the codes, please contact
the corresponding author. The reanalysis product is available from
the authors upon request (http://www.mri-jma.go.jp/Dep/ap/ap_1_
en.html).
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Appendix A: Statistical metrics

We used the root mean square error (RMSE), the (Pearson)
correlation (R), the mean fractional error (MFE), the mean
fractional bias (MFB; also known as the fractional gross er-
ror), and the index of agreement (IOA) for validating the re-
analysis. The statistical metrics are defined as follows:

RMSE=

√√√√ 1
N

N∑
i=1

(Mi −Oi)
2, (A1)

R =

∑N
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(
Oi −O

)(
Mi −M

)√∑N
i=1
(
Oi −O

)2∑N
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(
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MFE=
2
N
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IOA= 1−

N∑
i=1
(Oi −Mi)

2

N∑
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(∣∣Oi −O∣∣+ ∣∣Mi −M
∣∣)2 , (A5)

where N is the total number of pairs of modeled (M) and
observed (O) values. O and M represent 1

N

∑N
i=1Oi and

1
N

∑N
i=1Mi , respectively. RMSE represents the standard de-

viation of the discrepancies between modeled and observed
values. MFE can range from 0 to 200 % and is a measure
of overall modeling error without emphasizing outliers. An
MFE of 0 is a perfect score. MFB is a measure of the es-
timation bias error that allows symmetric analysis of over-
or underestimation by the model relative to observed values.
The best value of MFB is 0 with ±200 % the minimum and
maximum values. Boylan and Russell (2006) proposed that
MFE should be ≤+50 % and MFB should be ≤±30 % to
meet model performance goals for particulate matter (PM)
and light extinction. IOA was developed by Willmott (1981)
as a standard measure of the degree of model prediction accu-
racy, and it ranges from 0 to 1. An IOA of 1 indicates perfect
agreement.
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