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Abstract. This paper documents the tropospheric chemi-
cal mechanism scheme used in the TOMCAT 3-D chemi-
cal transport model. The current scheme includes a more de-
tailed representation of hydrocarbon chemistry than previ-
ously included in the model, with the inclusion of the emis-
sion and oxidation of ethene, propene, butane, toluene and
monoterpenes. The model is evaluated against a range of sur-
face, balloon, aircraft and satellite measurements. The model
is generally able to capture the main spatial and seasonal fea-
tures of high and low concentrations of carbon monoxide
(CO), ozone (O3), volatile organic compounds (VOCs) and
reactive nitrogen. However, model biases are found in some
species, some of which are common to chemistry models and
some that are specific to TOMCAT and warrant further inves-
tigation. The most notable of these biases are (1) a negative
bias in Northern Hemisphere (NH) winter and spring CO and
a positive bias in Southern Hemisphere (SH) CO throughout
the year, (2) a positive bias in NH O3 in summer and a nega-
tive bias at high latitudes during SH winter and (3) a negative
bias in NH winter C2 and C3 alkanes and alkenes. TOMCAT
global mean tropospheric hydroxyl radical (OH) concentra-
tions are higher than estimates inferred from observations of
methyl chloroform but similar to, or lower than, multi-model
mean concentrations reported in recent model intercompari-

son studies. TOMCAT shows peak OH concentrations in the
tropical lower troposphere, unlike other models which show
peak concentrations in the tropical upper troposphere. This is
likely to affect the lifetime and transport of important trace
gases and warrants further investigation.

1 Introduction

Atmospheric chemistry plays a central role in air quality and
climate change, which can have a negative effect on humans
on a global scale. Air pollution has been estimated to have
caused over 3 million deaths worldwide in 2010, and this rate
is estimated to double by 2050 due to projected increases
in emissions (Lelieveld et al., 2015). Increases in anthro-
pogenic emissions have led to higher atmospheric concentra-
tions of greenhouse gases, such as methane (CH4) and ozone
(O3), contributing significantly to the observed rise in global
mean surface temperature (Stocker et al., 2013). Chemical
processing, emissions and transport determine the concen-
trations and distribution of pollutants within the atmosphere
and the impact that they have on society. Reactive gases, such
as volatile organic compounds (VOCs) and nitrogen oxides
(NOx), influence air quality and climate as they result in the
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formation of O3 and aerosols. Other gases such as carbon
monoxide (CO), which may not directly affect the climate,
can have secondary impacts by influencing the lifetime of
gases such as CH4 (Berntsen et al., 2005).

Atmospheric chemistry models help to inform our under-
standing of how atmospheric chemistry affects climate and
air quality on a global or regional scale. These models can
be used to simulate the temporal and spatial evolution of im-
portant short-lived pollutants, taking into account the main
physical and chemical processes that act on trace constituents
in the troposphere (emissions, chemistry, transport and de-
position). The chemical and dynamical complexity and the
spatial resolution of such models is a compromise between
model accuracy and computational efficiency. Atmospheric
chemistry models are often run as chemical transport models
(CTMs), where transport is driven by reanalysis products that
assimilate meteorological observations. This allows the sim-
ulated chemical fields to provide context for measurements,
which are often limited spatially and temporally. They can
also be used to further understand the impacts of new at-
mospheric processes that have been identified by measure-
ments (e.g. Lelieveld et al., 2008). CTMs are of particular
use in investigating the impacts of natural and anthropogenic
emissions on atmospheric burdens of pollutants that are im-
portant for air quality and climate reasons and for source–
receptor studies for policy-making purposes (e.g. Sanderson
et al., 2008; Fiore et al., 2009).

The TOMCAT CTM is a three-dimensional (3-D) global
Eulerian model that has been used for a wide range of tro-
pospheric and stratospheric chemistry studies. For example,
it has been used to investigate the impacts of O3 on crop
yields (Hollaway et al., 2012), fire emissions on Arctic in-
terannual variability (Monks et al., 2012) and to identify the
main sources of peak summertime O3 in the Mediterranean
(Richards et al., 2013). In the stratosphere, the model has
been used to study issues such as ozone depletion (e.g. Chip-
perfield et al., 2015) and the impact of solar variability (e.g.
Dhomse et al., 2013). TOMCAT is also the host model for
the GLOMAP aerosol module (Mann et al., 2010).

This paper summarises the current tropospheric chemical
mechanism scheme used in TOMCAT (Sect. 2). The scheme
gives a more detailed representation of hydrocarbon chem-
istry than previously included in the model, with the inclu-
sion of the emission and oxidation of ethene, propene, bu-
tane, toluene and monoterpenes. Alkenes have the greatest
potential for forming O3 (Saunders et al., 2003), and previ-
ously, isoprene was the only alkene treated in the TOMCAT
model. In addition, a more extensive VOC scheme makes
it possible to couple the TOMCAT tropospheric chemistry
to the formation of secondary organic aerosol in future ver-
sions of the GLOMAP aerosol model (Mann et al., 2010).
Key gas-phase species simulated by the latest version of the
model are shown and evaluated using a range of observa-
tions. The model simulations that are evaluated are described
in Sect. 2.2 and the observations that are used are described
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Figure 1. Global annual mean pressure levels from the TOMCAT
model.

in Sect. 3. The observational platforms that are used in-
clude surface, satellite, aircraft and balloon sounding mea-
surements. The model results and comparisons with obser-
vations are shown in Sect. 4 and focus on annual, seasonal
and monthly mean simulated concentrations. The chemical
species that are discussed include CO, O3, VOCs, reactive
nitrogen (NOy) and the hydroxyl radical (OH).

2 The TOMCAT model

The TOMCAT model is an Eulerian offline 3-D global CTM
and is described by Chipperfield (2006). The model has a
flexible horizontal and vertical resolution, and the vertical
domain can be varied depending on the problem being stud-
ied. Typical horizontal resolutions range from 5.6◦× 5.6◦

for multidecadal stratospheric studies to 1.2◦×1.2◦ for short
case studies. The model uses a σ–p coordinate system, with
near-surface levels following the terrain (σ ) and higher lev-
els (∼> 100 hPa) using pressure levels (p). The model ex-
tends from the surface to ∼ 10 hPa for tropospheric simula-
tions, as used in this study. The global mean pressure levels
are shown in Fig. 1. Model meteorology is forced by winds,
temperature and humidity fields from the European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalyses
(Dee et al., 2011). These data are read in every 6 h and lin-
early interpolated in time to the model time step and to the
TOMCAT grid. To avoid inconsistencies between horizontal
and vertical winds after this interpolation, the vertical mo-
tion is diagnosed from horizontal divergence instead of us-
ing analysed vertical velocities. Large-scale tracer advection
in the meridional, zonal and vertical directions is based on
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Table 1. TOMCAT annual global emissions used in the model simulations presented in this paper (Tg(species) year−1).

Species Anthropogenic Fires Biogenic Ocean Soil Total

CO 595.27 331.62 76.57 20.01 1023.47
Ethene 6.81 2.84 16.70 1.40 27.75
Ethane 6.34 1.67 0.14 0.98 9.14
Propene 3.04 1.57 6.10 1.52 12.23
Propane 5.68 0.38 0.02 1.30 7.37
Toluene 25.34 10.66 0.26 36.26
Butane 12.38 0.60 12.98
Formaldehyde 2.99 4.13 4.03 11.15
Acetone 0.54 1.86 28.58 30.98
Acetaldehyde 2.00 4.55 11.20 17.75
Methanol 0.93 5.38 159.87 166.18
Isoprene 0.80 525.84 526.64
Monoterpenes 0.28 97.10 97.37
NOx 107.73 19.41 16.31 143.46

the Prather (1986) scheme, which conserves mass and main-
tains tracer gradients (Chipperfield, 2006). Sub-grid-scale
transport (boundary layer mixing and convective transport)
is treated in the model using the Holtslag and Bolville (1993)
and Tiedtke (1989) schemes. There is also an option to run
the model using archived convective mass fluxes (Feng et al.,
2011). Wilson et al. (2014) used sulfur hexafluoride (SF6) to
evaluate model tracer transport and showed that the model is
able to reproduce seasonal transport timescales and patterns
along with the location of the intertropical convergence zone.
However, they also noted that the model interhemispheric
transport is somewhat slow, resulting in an interhemispheric
gradient in SF6 that was 18 % too large.

Natural and anthropogenic surface emissions are read into
the model on a 1◦× 1◦ resolution and regridded online to
the model grid. The model is usually provided with monthly
mean emissions, and a temporal interpolation is performed
online to the model time step. Isoprene emissions are emit-
ted and then have a diurnal cycle imposed online to account
for the dependence of emissions on daylight. Lightning emis-
sions of NOx are coupled to convection in the model and
therefore vary in space and time according to the seasonality
and spatial pattern of convective activity (Stockwell et al.,
1999).

Dry deposition velocities are weighted by prescribed fixed
land cover fields and seasonally varying sea-ice fields from
the NCAR community land model (CLM) (Oleson et al.,
2010). The 16 CLM land types were regridded onto the
model resolution and reclassified into the TOMCAT’s five
land types (forest, grass/shrub/crop, bare ground, sea ice and
water). Chemical species’ deposition velocities were then
determined based upon time of day and season, and were
weighted by the proportion of the grid box covered by each
land type. Wet deposition is parameterised according to the
proportionality of the removal rate to the concentration of
the species and is dependent on convection rates, precip-

itation and the solubility of gases. The scheme has been
shown to perform well within the TOMCAT model with a
4 % bias compared to radon observations (Giannakopoulos
et al., 1999).

2.1 Tropospheric chemistry scheme

The previously documented TOMCAT tropospheric chem-
ical mechanism included odd oxygen (Ox), reactive nitro-
gen (NOy), carbon monoxide, methane, ethane, propane,
acetaldehyde, acetone and formaldehyde chemistry (Arnold
et al., 2005). TOMCAT also includes oxidation of isoprene
based on the Mainz Isoprene Mechanism (MIM) scheme
(Pöschl et al., 2000). The implementation of this scheme into
TOMCAT is described by Young (2007). Isoprene is one of
the largest single sources of VOCs to the atmosphere, ac-
counting for around a third of total natural and anthropogenic
VOC emissions (Guenther et al., 2006). After emission, iso-
prene is highly reactive and can influence O3 concentrations
both regionally (Chameides et al., 1988) and globally (Wang
and Shallcross, 2000). O3, OH, CO and PAN from the con-
densed MIM scheme were found to agree within 10 % of the
concentrations calculated from a more explicit representa-
tion of isoprene chemistry in the Master Chemical Mecha-
nism (Pöschl et al., 2000). However, significant uncertainties
still exist in the representation of isoprene chemistry in mod-
els, and chemical mechanisms will likely evolve in the future
(e.g. Archibald et al., 2010, 2011; Squire et al., 2015). Most
recently, the TOMCAT model chemistry has been expanded
to include the emission and destruction of some C2–C7 unsat-
urated and aromatic hydrocarbons (ethene, propene, toluene
and butane) based on the Extended Tropospheric Chemistry
scheme (ExtTC), and monoterpenes based on the MOZART-
3 chemical mechanism (Kinnison et al., 2007). The extended
chemistry scheme results in an increase in the global burden
of CO, O3, PAN and HO2, and a small decrease in OH in
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Table 2. Chemical species treated in the tropospheric chemistry scheme of the TOMCAT CTM. If the species are emitted, the “dry deposited”
or “wet deposited” categories are marked with a Y in the relevant column. The family column indicates which short-lived species are grouped
together for advection and chemistry. TOMCAT abbreviations: Me indicates CH3, Et indicates C2H5, Pr indicates C3H7, MACR indicates
lumped species (methacrolein, methyl vinyl ketone and other C4 carbonyls), HACET indicates hydroxyacetone, MGLY indicates methyl-
glyoxal, NALD indicates nitrooxy acetaldehyde, TERP indicates generic terpene compound, AROM indicates generic aromatic compound,
MEK indicates methyl ethyl ketone, Prpe indicates C3H7O, ONIT indicates organic nitrate, and S indicates stratospheric tracer (TOMCAT
species 39–43).

TOMCAT species Family Dry deposited? Wet deposited? Emitted

1 O(3P) Ox
2 O(1D) Ox
3 O3 Ox Y
4 NO NOx Y
5 NO3 NOx Y Y
6 NO2 NOx Y Y
7 N2O5 Y Y
8 HO2NO2 Y Y
9 HONO2 Y Y
10 OH
11 HO2 Y
12 H2O2 Y Y
13 CH4 Y
14 CO Y Y
15 HCHO Y Y Y
16 MeOO Y
17 H2O
18 MeOOH Y Y
19 HONO Y Y
20 C2H6 Y
21 EtOO
22 EtOOH Y Y
23 MeCHO Y Y
24 MeCO3
25 PAN Y
26 C3H8 Y
27 n-PrOO
28 i-PrOO
29 n-PrOOH Y Y
30 i-PrOOH Y Y
31 EtCHO Y
32 EtCO3
33 Me2CO Y Y
34 MeCOCH2OO
35 MeCOCH2OOH Y Y
36 PPAN Y
37 MeONO2
38 O(3P)S Sx
39 O(1D)S Sx
40 O3S Sx Y
41 NOXS Y
42 HNO3S Y Y
43 NOYS Y Y
44 C5H8 Y
45 C10H16 Y
46 TERPOOH Y Y
47 ISO2
48 ISOOH Y Y
49 ISON Y Y
50 MACR Y

Geosci. Model Dev., 10, 3025–3057, 2017 www.geosci-model-dev.net/10/3025/2017/
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Table 2. Continued.

TOMCAT species Family Dry deposited? Wet deposited? Emitted

51 MACRO2
52 MACROOH Y Y
53 MPAN Y
54 HACET Y Y
55 MGLY Y Y
56 NALD Y
57 HCOOH Y Y
58 MeCO3H Y Y
59 MeCO2H Y Y
60 MeOH Y Y Y
61 TERPO2
62 C2H4 Y
63 C2H2 Y
64 C4H10 Y
65 C3H6 Y
66 AROM Y
67 MEK
68 MeCOCOMe Y Y
69 BtOO
70 PrpeOO
71 AROMO2
72 MEKOO
73 BtOOH Y Y
74 PrpeOOH Y Y
75 AROMOOH Y Y
76 MEKOOH Y Y
77 ONIT
78 EtCO3H
79 EtCO2H

summer (see the Supplement). Whilst this scheme has been
used in the TOMCAT model for some scientific studies (e.g.
Richards et al., 2013; Emmons et al., 2015), the expanded
scheme was not fully documented. This is the purpose of this
study.

The current model chemistry scheme has a total of 79
species, 16 of which are emitted (see Table 2), and ap-
proximately 200 chemical reactions. The bimolecular, ter-
molecular and photolysis reactions are shown in Tables 3,
4 and 5, respectively. The chemical reactions are integrated
in the model with a 15 min chemical time step using a soft-
ware package, ASAD (Carver et al., 1997), which allows
the use of input files that contain the information listed
in Tables 2–5. The package allows fractional products and
the use of families, which can be used for grouping very
short-lived species together for transportation (see Table 2
for species treated as families). The bimolecular and ter-
molecular kinetic rates are mostly taken from the 2005 In-
ternational Union of Pure and Applied Chemistry recom-
mendations (http://iupac.pole-ether.fr/) and the Leeds Mas-
ter Chemical Mechanism (MCM, 2004). Simplified ethene,
propene and butane chemistry is based on von Kuhlmann

(2001), with reaction rates taken from IUPAC (Atkinson
et al., 2006b). Ethane chemistry adds one bimolecular re-
action (R135–R136, Table 3) and one termolecular reac-
tion (R17–19, Table 5) to TOMCAT. Oxidation of ethane
by OH forms PrpeOO, a peroxy radical, which contin-
ues in the propene oxidation chain (von Kuhlmann, 2001).
Propane oxidation adds 6 bimolecular reactions (R137–145,
Table 3) and 1 termolecular reaction to TOMCAT (R17–19,
Table 4) and butane adds 10 bimolecular reactions (R123–
134, Table 3) and 5 photolysis reactions (R40a–46b, Ta-
ble 5). Ethene, propene and butane emissions are emitted
into the respective compounds, with no lumping of higher
alkenes/alkanes. Toluene is emitted into a generic aromatic
compound, AROM, which produces AROMO2 (peroxy rad-
icals) and AROMOOH (hydroperoxides). Including AROM
adds 11 bimolecular reactions to the model (R146–R156, Ta-
ble 3) and 2 photolysis reactions (R48a–R48b, Table 5), with
reactions rates taken from Folberth et al. (2006). Including
ethene, propene, butane and toluene will account for missing
sources of carbon in the model and produces peroxy radicals
that are important for O3 production (von Kuhlmann, 2001).
Alkenes are particularly efficient at producing O3, with pho-
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Table 3. TOMCAT gas-phase bimolecular reactions. T is the model grid-box temperature in kelvin. Reaction rate references 1: Atkinson
et al. (2004a), 2: Atkinson et al. (2005), 3: Atkinson et al. (2006a), 4: MCM (2004), 5: Tyndall et al. (2001), 6: Ravishankara et al. (2002), 7:
Pöschl et al. (2000), 8: Kinnison et al. (2007), 9: Folberth et al. (2006).

Reactants Products k Reference

1 HO2 + NO →OH + NO2 3.60× 10−12 exp
(

270
T

)
2

2 HO2 + NO3 →OH + NO2 4.00× 10−12 2

3 HO2 + O3 →OH + O2 2.03× 10−16( T300 )
4.57 exp

(
693
T

)
2

4 HO2 + HO2 →H2O2 2.20× 10−13 exp
(

600
T

)
2

5 HO2 + MeOO →MeOOH 3.80× 10−13 exp
(

780
T

)
2

6 HO2 + MeOO →HCHO 3.80× 10−13 exp
(

780
T

)
2

7 HO2 + EtOO →EtOOH 3.80× 10−13 exp
(

900
T

)
2

8 HO2 + MeCO3 →MeCO3H 2.08× 10−13 exp
(

980
T

)
2

9 HO2 + MeCO3 →MeCO2H + O3 1.04× 10−13 exp
(

980
T

)
2

10 HO2 + MeCO3 →OH + MeOO 2.08× 10−13 exp
(

980
T

)
2

11 HO2 + n-PrOO → n-PrOOH 1.51× 10−13 exp
(

1300
T

)
4

12 HO2 + i-PrOO → i-PrOOH 1.51× 10−13 exp
(

1300
T

)
4

13 HO2 + EtCO3 →O2 + EtCO3H 3.05× 10−13 exp
(

1040
T

)
4

14 HO2 + EtCO3 →O3 + EtCO2H 1.25× 10−13 exp
(

1040
T

)
4

15 HO2 + MeCOCH2OO →MeCOCH2OOH 1.36× 10−13 exp
(

1250
T

)
4

16 MeOO + NO →HO2 + HCHO + NO2 2.95× 10−12 exp
(

285
T

)
2

17 MeOO + NO →MeONO2 2.95× 10−15 exp
(

285
T

)
2

18 MeOO + NO3 →HO2 + HCHO + NO2 1.30× 10−12 2

19 MeOO + MeOO →MeOH + HCHO 1.03× 10−13 exp
(

365
T

)
4

20 MeOO + MeOO →HO2 + HO2 + HCHO + HCHO 1.03× 10−13 exp
(

365
T

)
2

21 MeOO + MeCO3 →HO2 + HCHO + MeOO 1.80× 10−12 exp
(

500
T

)
2

22 MeOO + MeCO3 →MeCO2H + HCHO 2.00× 10−13 exp
(

500
T

)
2

23 EtOO + NO →MeCHO + HO2 + NO2 2.60× 10−12 exp
(

380
T

)
2

24 EtOO + NO3 →MeCHO + HO2 + NO2 2.30× 10−12 2

25 EtOO + MeCO3 →MeCHO + HO2 + MeOO 4.40× 10−13 exp
(

1070
T

)
2

26 MeCO3 + NO →MeOO + CO2 + NO2 7.50× 10−12 exp
(

290
T

)
2

27 MeCO3 + NO3 →MeOO + CO2 + NO2 4.00× 10−12 4

28 n-PrOO + NO →EtCHO + HO2 + NO2 2.90× 10−12 exp
(

350
T

)
2

29 n-PrOO + NO3 →EtCHO + HO2 + NO2 2.50× 10−12 4

30 i-PrOO + NO →Me2CO + HO2 + NO2 2.70× 10−12 exp
(

360
T

)
2

31 i-PrOO + NO3 →Me2CO + HO2 + NO2 2.50× 10−12 4

32 EtCO3 + NO →EtOO + CO2 + NO2 6.70× 10−12 exp
(

340
T

)
2
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Table 3. Continued.

Reactants Products k Reference

33 EtCO3 + NO3 →EtOO + CO2 + NO2 4.00× 10−12 4

34 MeCOCH2OO + NO →MeCO3 + HCHO + NO2 2.80× 10−12 exp
(

300
T

)
5

35 MeCOCH2OO + NO3 →MeCO3 + HCHO + NO2 2.50× 10−12 4

36 NO + NO3 →NO2 + NO2 1.80× 10−11 exp
(

110
T

)
2

37 NO + O3 →NO2 1.40× 10−12 exp
(
−1310
T

)
2

38 NO2 + O3 →NO3 1.40× 10−13 exp
(
−2470
T

)
2

39 NO3 + HCHO →HONO2 + HO2 + CO 2.00× 10−12 exp
(
−2440
T

)
2

40 NO3 + MeCHO →HONO2 + MeCO3 1.40× 10−12 exp
(
−1860
T

)
2

41 NO3 + EtCHO →HONO2 + EtCO3 3.46× 10−12 exp
(
−1862
T

)
4

42 NO3 + Me2CO →HONO2 + MeCOCH2OO 3.00× 10−17 2

43 N2O5 + H2O →HONO2 + HONO2 2.50× 10−22 2

44 O(3P) + O3 →O2 + O2 8.00× 10−12 exp
(
−2060
T

)
2

45 O(1D) + CH4 →OH + MeOO 1.05× 10−10 2

46 O(1D) + CH4 →HCHO + H2 7.50× 10−12 2

47 O(1D) + CH4 →HCHO + HO2 + HO2 3.45× 10−11 2

48 O(1D) + H2O →OH + OH 2.20× 10−10 2

49 O(1D) + N2 →O(3P) + N2 2.10× 10−11 exp
(

115
T

)
6

50 O(1D) + O2 →O(3P) + O2 3.20× 10−11 exp
(

67
T

)
2

51 OH + CH4 →H2O + MeOO 1.85× 10−12 exp
(
−1690
T

)
2

52 OH + C2H6 →H2O + EtOO 6.90× 10−12 exp
(
−1000
T

)
2

53 OH + C3H8 → n-PrOO + H2O 7.60× 10−12 exp
(
−585
T

)
2

54 OH + C3H8 → i-PrOO + H2O 7.60× 10−12 exp
(
−585
T

)
2

55 OH + CO →HO2 1.44× 10−13 2

56 OH + EtCHO →H2O + EtCO3 5.10× 10−12 exp
(

405
T

)
2

57 OH + EtOOH →H2O + MeCHO + OH 8.01× 10−12 4

58 OH + EtOOH →H2O + EtOO 1.90× 10−12 exp
(

190
T

)
4

59 OH + H2 →H2O + HO2 7.70× 10−12 exp
(
−2100
T

)
2

60 OH + H2O2 →H2O + HO2 2.90× 10−12 exp
(
−160
T

)
2

61 OH + HCHO →H2O + HO2 + CO 5.40× 10−12 exp
(

135
T

)
1

62 OH + HO2 →H2O 4.80× 10−11 exp
(

250
T

)
2

63 OH + HO2NO2 →H2O + NO2 1.90× 10−12 exp
(

270
T

)
2

64 OH + HO2NO2 →H2O + NO3 1.50× 10−13 2

65 OH + HONO →H2O + NO2 2.50× 10−12 exp
(

260
T

)
2

66 OH + MeOOH →H2O + HCHO + OH 1.02× 10−12 exp
(

190
T

)
2
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Table 3. Continued.

Reactants Products k Reference

67 OH + MeOOH →H2O + MeOO 1.89× 10−12 exp
(

190
T

)
2

68 OH + MeONO2 →HCHO + NO2 + H2O 4.00× 10−13 exp
(
−845
T

)
2

69 OH + Me2CO →H2O + MeCOCH2OO 8.80× 10−12 exp
(
−1320
T

)
2

70 OH + Me2CO →H2O + MeCOCH2OO 1.70× 10−14 exp
(

420
T

)
2

71 OH + MeCOCH2OOH →H2O + MeCOCH2OO 1.90× 10−12 exp
(

190
T

)
4

72 OH + MeCOCH2OOH →OH + MGLY 8.39× 10−12 4

73 OH + MeCHO →H2O + MeCO3 4.40× 10−12 exp
(

365
T

)
2

74 OH + NO3 →HO2 + NO2 2.00× 10−11 2

75 OH + O3 →HO2 + O2 1.70× 10−12 exp
(
−940
T

)
2

76 OH + OH →H2O + O(3P) 6.31× 10−14( T300 )
2.6 exp

(
945
T

)
2

77 OH + PAN →HCHO + NO2 + H2O 3.00× 10−14 2

78 OH + PPAN →MeCHO + NO2 + H2O 1.27× 10−12 4

79 OH + n-PrOOH → n-PrOO + H2O 1.90× 10−12 exp
(

190
T

)
4

80 OH + n-PrOOH →EtCHO + H2O + OH 1.10× 10−11 4

81 OH + i-PrOOH → i-PrOO + H2O 1.90× 10−12 exp
(

190
T

)
4

82 OH + i-PrOOH →Me2CO + OH 1.66× 10−11 4

83 O(3P) + NO2 →NO + O2 5.50× 10−12 exp
(

188
T

)
2

84 OH + C5H8 → ISO2 2.70× 10−11 exp
(

390
T

)
2

85∗ OH + C5H8 →MACR + HCHO + MACRO2 + MeCO3 3.33× 10−15 exp
(
−1995
T

)
2

86∗ OH + C5H8 →MeOO + HCOOH + CO + H2O2 3.33× 10−15 exp
(
−1995
T

)
2

87∗ OH + C5H8 →HO2 + OH 3.33× 10−15 exp
(
−1995
T

)
2

88 NO3 + C5H8 → ISON 3.15× 10−12 exp
(
−450
T

)
2

89 NO + ISO2 →NO2 + MACR + HCHO + HO2 2.43× 10−12 exp
(

360
T

)
4, 7

90 NO + ISO2 → ISON 1.12× 10−13 exp
(

360
T

)
4, 7

91 HO2 + ISO2 → ISOOH 2.05× 10−13 exp
(

1300
T

)
4, 7

92 ISO2 + ISO2 →MACR + MACR + HCHO + HO2 2.00× 10−12 7

93 OH + ISOOH →MACR + OH 1.00× 10−10 7

94 OH + ISON →HACET + NALD 1.30× 10−11 7

95 OH + MACR →MACRO2 1.30× 10−12 exp
(

610
T

)
2

96 OH + MACR →MACRO2 4.00× 10−12 exp
(

380
T

)
2

97∗ O3 + MACR →MGLY + HCOOH + HO2 + CO 2.13× 10−16 exp
(
−1520
T

)
2

98∗ O3 + MACR →OH + MeCO3 2.13× 10−16 exp
(
−1520
T

)
2

99∗ O3 + MACR →MGLY + HCOOH + HO2 + CO 3.50× 10−16 exp
(
−2100
T

)
2

100∗ O3 + MACR →OH + MeCO3 3.50× 10−16 exp
(
−2100
T

)
2
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Table 3. Continued.

Reactants Products k Reference

101∗ NO + MACRO2 →NO2 + MeCO3 + HACET + CO 1.27× 10−12 exp
(

360
T

)
4, 7

102∗ NO + MACRO2 →MGLY + HCHO + HO2 1.27× 10−12 exp
(

360
T

)
4, 7

103 HO2 + MACRO2 →MACROOH 1.83× 10−13 exp
(

1300
T

)
4, 7

104∗ MACRO2 + MACRO2 →HACET + MGLY + HCHO + CO 1.00× 10−12 4, 7

105∗ MACRO2 + MACRO2 →HO2 1.00× 10−12 4, 7

106 OH + MPAN →HACET + NO2 2.90× 10−11 2

107 OH + MACROOH →MACRO2 3.00× 10−11 7

108 OH + HACET →MGLY + HO2 3.00× 10−12 2, 7

109 OH + MGLY →MeCO3 + CO 1.50× 10−11 2, 7

110 NO3 + MGLY →MeCO3 + CO + HONO2 3.46× 10−12 exp
(
−1860
T

)
4

111 OH + NALD →HCHO + CO + NO2 4.40× 10−12 exp
(

365
T

)
2, 7

112 OH + MeCO3H →MeCO3 3.70× 10−12 4, 7

113 OH + MeCO2H →MeOO 4.00× 10−13 exp
(

200
T

)
7

114 OH + HCOOH →HO2 4.50× 10−13 2

115 MeOH + OH →HCHO + HO2 2.85× 10−12 exp
(
−345
T

)
3

116 OH + C10H16 →TERPO2 1.20× 10−11 exp
(

444
T

)
8

117 O3 + C10H16 →OH + MEK + HO2 1.00× 10−15 exp
(
−732
T

)
8

118 NO3 + C10H16 → ISON + MACR 1.20× 10−12 exp
(

490
T

)
8

119∗ NO + TERPO2 →Me2CO + HO2 + NO2 2.10× 10−12 exp
(

180
T

)
8

120∗ NO + TERPO2 →MACR + MACR 2.10× 10−12 exp
(

180
T

)
8

121∗ HO2 + TERPO2 →TERPOOH 7.50× 10−13 exp
(

700
T

)
8

122∗ OH + TERPOOH →TERPO2 3.80× 10−12 exp
(

200
T

)
8

123 C4H10 + OH →BtOO + H2O 9.10× 10−12 exp
(
−405
T

)
3

124∗ BtOO + NO →NO2 + MEK + HO2 + EtOO 1.27× 10−12 exp
(

360
T

)
4

125∗ BtOO + NO →ONIT + MeCHO 1.27× 10−12 exp
(

360
T

)
4

126 BtOO + HO2 →BtOOH 1.82× 10−13 exp
(

1300
T

)
4

127∗ BtOO + MeOO →MEK + HCHO + HO2 + MeCHO 1.25× 10−13 4

128∗ BtOO + MeOO →MeOH + EtOO 1.25× 10−13 4

129∗ BtOOH + OH →BtOO + MEK + OH + H2O 1.90× 10−12 exp
(

190
T

)
4

130 MEK + OH →MEKOO 1.30× 10−12 exp
(
−25
T

)
3

131 MEKOO + NO →MeCHO + MeCO3 + NO2 + ONIT 2.54× 10−12 exp
(

360
T

)
4

132 MEKOO + HO2 →MEKOOH 1.82× 10−13 exp
(

1300
T

)
4

133 MEKOOH + OH →MeCOCOMe + OH + OH 1.90× 10−12 exp
(

190
T

)
4

134 ONIT + OH →MEK + NO2 + H2O 1.60× 10−12 3
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Table 3. Continued.

Reactants Products k Reference

135∗ C2H4 + O3 →HCHO + HO2 + OH + CO 4.55× 10−15 exp
(
−2580
T

)
3

136∗ C2H4 + O3 →H2 + CO2 + HCOOH 4.55× 10−15 exp
(
−2580
T

)
3

137∗ C3H6 + O3 →HCHO + MeCHO + OH + HO2 1.83× 10−15 exp
(
−1880
T

)
3

138∗ C3H6 + O3 →EtOO + MGLY + CH4 + CO 1.83× 10−15 exp
(
−1880
T

)
3

139∗ C3H6 + O3 →MeOH + MeOO + HCOOH 1.83× 10−15 exp
(
−1880
T

)
3

140∗ C3H6 + NO3 →ONIT 4.60× 10−13 exp
(
−1155
T

)
3

141∗ PrpeOO + NO →MeCHO + HCHO + HO2 + NO2 1.27× 10−12 exp
(

360
T

)
4

142∗ PrpeOO + NO →ONIT 1.27× 10−12 exp
(

360
T

)
4

143 PrpeOO + HO2 →PrpeOOH 1.50× 10−13 exp
(

1300
T

)
4

144 PrpeOOH + OH →PrpeOO + H2O 1.90× 10−12 exp
(

190
T

)
4

145 PrpeOOH + OH →HACET + OH 2.44× 10−11 4

146∗ AROM + OH →AROMO2 + HO2 1.81× 10−12 exp
(

338
T

)
9

147∗ AROMO2 + NO →MGLY + NO2 + MeCO3 + CO 1.35× 10−12 exp
(

360
T

)
9

148∗ AROMO2 + NO →HO2 1.35× 10−12 exp
(

360
T

)
9

149∗ AROMO2 + NO3 →MGLY + NO2 + MeCO3 + CO 1.20× 10−12 9

150∗ AROMO2 + NO3 →HO2 1.20× 10−12 9

151∗ AROMO2 + HO2 →AROMOOH 1.90× 10−13 exp
(
−1300
T

)
9

152∗ AROMO2 + MeOO →MGLY + CO + MeCO3 + MeOH 1.15× 10−13 9

153∗ AROMO2 + MeOO →HO2 + HCHO 1.15× 10−13 9

154∗ AROMOOH + OH →AROMO2 1.90× 10−12 exp
(

190
T

)
9

155∗ AROMOOH + OH →OH + H2O 4.61× 10−18 exp
(

253
T

)
9

156∗ AROMOOH + OH →MeCO3 + CO + HO2 + OH 4.19× 10−17 exp
(

696
T

)
9

157 HO2 + O3S →HO2 + O2 2.03× 10−16( T300 )
4.57 exp

(
693
T

)
2

158 OH + O3S →OH + O2 1.70× 10−12 exp
(
−940
T

)
2

159 O(1D)S + H2O →H2O 2.20× 10−10 2

160 O(1D)S + N2 →O(3P)S + N2 2.10× 10−11 exp
(

115
T

)
6

161 O(1D)S + O2 →O(3P)S + O2 3.20× 10−11 exp
(

67
T

)
2

∗ Reactions are split between multiple lines.

tochemical ozone creation potentials of 100 and 105 for
ethene and propene, respectively, compared to 8.8 and 18.3
for ethane and propane, respectively (Saunders et al., 2003).
The lumped monoterpene compound (C10H16) is treated as
α-pinene, with emissions made up of the sum of α-pinene,
β-pinene, limonene, myrcene, ocimene, sabinene, and δ-3-
carene. Including monoterpene chemistry adds six bimolec-

ular reactions (R116–R122, Table 3) and one photolysis re-
action (R26–27, Table 5) to the TOMCAT extended scheme.
Monoterpenes are the second largest biogenic source of
VOCs, after isoprene, and play an important role in OH,
NO3, O3 and aerosol chemistry (e.g. Atkinson and Arey,
2003; Fuentes et al., 2000). Accounting for monoterpenes
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Table 4. TOMCAT gas-phase termolecular and thermal decomposition reactions. Rate constant k =
(

k0[M]
1+k0[M]/k∞

)
F

(
1+[log k0[M]

k∞
]
2
)−1

c ,

where k0 is the low pressure limit, k∞ is the high pressure limit and M is the number density in molecules cm−3. Fc = f when f < 1

else Fc = exp(−T/f ). Low pressure limit k0 = k1

(
T

300

)α1
exp

(
−β1
T

)
and high pressure limit k∞ = k2

(
T

300

)α2
exp

(
−β2
T

)
. Reaction rate

references 1: Atkinson et al. (2005), 2: MCM (2004), 3: Pöschl et al. (2000), 4: Atkinson et al. (2006a).

Reactants Products f k1 α1 β1 k2 α2 β2 Reference

1a HO2 + HO2 + M →H2O2 + O2 + M 0.00 1.90× 10−33 0.00 −980.0 0.00× 10+00 0.00 0.01 1
2 HO2 + NO2 + M →HO2NO2 + M 0.60 1.80× 10−31

−3.20 0.0 4.70× 10−12 0.00 0.0 1
3 HO2NO2 + M →HO2 + NO2 + M 0.60 4.10× 10−05 0.00 10 650.0 4.80× 10+15 0.00 11 170.0 1
4 MeCO3 + NO2 + M →PAN + M 0.30 2.70× 10−28

−7.10 0.0 1.20× 10−11
−0.90 0.0 1

5 PAN + M →MeCO3 + NO2 + M 0.30 4.90× 10−03 0.00 12 100.0 5.40× 10+16 0.00 13 830.0 1
6 N2O5 + M →NO2 + NO3 + M 0.35 1.30× 10−03

−3.50 11 000.0 9.70× 10+14 0.10 11 080.0 1
7 NO2 + NO3 + M →N2O5 + M 0.35 3.60× 10−30

−4.10 0.0 1.90× 10−12 0.20 0.0 1
8 O(3P) + O2 + M →O3 + M 0.00 5.70× 10−34

−2.60 0.0 0.00× 10+00 0.00 0.0 1
9 OH + NO + M →HONO + M 1420.00 7.40× 10−31

−2.40 0.0 3.30× 10−11
−0.30 0.0 1

10 OH + NO2 + M →HONO2 + M 0.40 3.30× 10−30
−3.00 0.0 4.10× 10−11 0.00 0.0 1

11 OH + OH + M →H2O2 + M 0.50 6.90× 10−31
−0.80 0.0 2.60× 10−11 0.00 0.0 1

12 EtCO3 + NO2 + M →PPAN + M 0.30 2.70× 10−28
−7.10 0.0 1.20× 10−11

−0.90 0.0 2
13 PPAN + M →EtCO3 + NO2 + M 0.36 1.70× 10−03 0.00 11 280.0 8.30× 10+16 0.00 13 940.0 1
14 MACRO2 + NO2 + M →MPAN + M 0.30 2.70× 10−28 0.00 11 280.0 8.30× 10+16 0.00 13 940.0 3
15 MPAN + M →MACRO2 + NO2 + M 0.30 4.90× 10−03 0.00 12 100.0 5.40× 10+16 0.00 13 830.0 3
16 O(3P) + O2 + M →O3 + M 0.00 5.70× 10−34

−2.60 0.0 0.00× 10+00 0.00 0.0 1
17b C2H4 + OH + M →PrpeOO + M 0.48 2.87× 10−29

−3.10 0.0 3.00× 10−12
−0.85 0.0 4

18b C2H4 + OH + M →PrpeOO + M 0.48 2.87× 10−29
−3.10 0.0 3.00× 10−12

−0.85 0.0 4
19b C2H4 + OH + M → 0.48 2.87× 10−29

−3.10 0.0 3.00× 10−12
−0.85 0.0 4

20 C3H6 + OH + M →PrpeOO + M 0.50 8.00× 10−27
−3.50 0.0 3.00× 10−11

−1.00 0.0 4
a Reaction rate is dependent on H2O so k is weighted by factor of 1+ 1.4× 10−21

[H2O]exp(2200/T ), where [H2O] is in molecules cm−3.
b Reactions are split between multiple lines.

also allows the coupling of the atmospheric chemistry model,
TOMCAT, to the aerosol model, GLOMAP.

Photolysis rates are calculated online at each chemical
time step based on the two-stream method of Hough (1988),
which considers both direct and scattered radiation. The
scheme has total of 203 wavelength intervals from 120 to
850 nm, though only wavelengths above 175 nm are used
for stratosphere–troposphere studies. These wavelength in-
tervals are the same as those employed in the TOMCAT
stratospheric chemistry scheme (Chipperfield et al., 2015;
Sukhodolov et al., 2016). The top of the atmosphere so-
lar flux spectrum is fixed in time and there is no account
of, for example, the 11-year solar cycle in the standard
model. This photolysis scheme is coupled with the TOM-
CAT model by using the model temperature and ozone con-
centration profiles. The scheme is also supplied with sur-
face albedo, aerosol concentrations and monthly mean cli-
matological cloud fields. This scheme was first used in this
manner by Arnold et al. (2005). Previously, an offline ap-
proach was used where photolysis rates were calculated of-
fline and then read in to the model (e.g. Law et al., 1998).
Where possible, photochemical data are taken from Sander et
al. (2011) for species which are also relevant for the strato-
sphere. Otherwise, photochemical data are generally taken
from IUPAC (Atkinson et al., 2004b, 2006b). The UV ab-
sorption cross sections for methyl hydroperoxide (MeOOH),
which are from the Jet Propulsion Laboratory (JPL) (Sander

et al., 2006), are used for the hydroperoxides produced from
the oxidation of butane (BtOOH), toluene (AROMOOH)
and monoterpene (TERPOOH). For the photolysis of ONIT,
which represents organic nitrates produced from higher alka-
nes (currently only butane), cross sections for methyl nitrate
are used based on IUPAC recommendations (Atkinson et al.,
2006b). ONIT can be an important reservoir of reactive nitro-
gen (von Kuhlmann, 2001). Stratospheric concentrations of
O3 and NOy calculated offline by the 2-D Cambridge model
(Law and Pyle, 1993) are read in by TOMCAT in the ab-
sence of stratospheric chemistry. Hydrogen, carbon dioxide,
oxygen and nitrogen are kept at fixed global mean volume
mixing ratios in the model. Water vapour is calculated from
the specific humidity field read in from the meteorological
input data.

Heterogeneous chemistry is known to affect the global
concentrations of O3, OH and NOx in the troposphere (Ja-
cob, 2000). One important reaction is that of dinitrogen pen-
toxide (N2O5) with water (H2O) on the surface of aerosols
to form nitric acid (HNO3). HNO3 is highly soluble and is
therefore efficiently lost through wet deposition, making this
an important loss channel for NOx from the atmosphere. This
is important in the troposphere when there is no sunlight, al-
lowing time for the formation of N2O5. TOMCAT can be
run coupled to the GLOMAP aerosol module (Mann et al.,
2010), which can then calculate the available aerosol surface
area for use in the heterogeneous chemistry calculation (e.g.
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Table 5. TOMCAT photolysis reactions.

Reaction Reactants Products

1 EtOOH +hν →MeCHO + HO2 + OH
2 H2O2 +hν →OH + OH
3a HCHO +hν →HO2 + HO2 + CO
3b HCHO +hν →H2 + CO
5 HO2NO2 +hν →HO2 + NO2
6 HONO2 +hν →OH + NO2
7a MeCHO +hν →MeOO + HO2 + CO
7b MeCHO +hν →CH4 + CO
9 MeOOH +hν →HO2 + HCHO + OH
10 N2O5 +hν →NO3 + NO2
11 NO2 +hν →NO + O(3P)
12a NO3 +hν →NO + O2
12b NO3 +hν →NO2 + O(3P)
14 O2 +hν →O(3P) + O(3P)
15a O3 +hν →O2 + O(1D)
15b O3 +hν →O2 + O(3P)
17 PAN +hν →MeCO3 + NO2
18 HONO +hν →OH + NO
19 EtCHO +hν →EtOO + HO2 + CO
20 Me2CO +hν →MeCO3 + MeOO
21 n-PrOOH +hν →EtCHO + HO2 + OH
22 i-PrOOH +hν →Me2CO + HO2 + OH
23 MeCOCH2OOH +hν →MeCO3 + HCHO + OH
24 PPAN +hν →EtCO3 + NO2
25 MeONO2 +hν →HO2 + HCHO + NO2
26a TERPOOH +hν →OH + HO2 + MACR + MACR
26b TERPOOH +hν →TERPOOH + Me2CO
28 ISOOH +hν →OH + MACR + HCHO + HO2
29 ISON +hν →NO2 + MACR + HCHO + HO2
30 MACR +hν →MeCO3 + HCHO + CO + HO2
31 MPAN +hν →MACRO2 + NO2
32a MACROOH +hν →OH + HO2 + OH + HO2
32b MACROOH +hν →HACET + CO + MGLY + HCHO
34 HACET +hν →MeCO3 + HCHO + HO2
35 MGLY +hν →MeCO3 + CO + HO2 +
36 NALD +hν →HCHO + CO + NO2 + HO2
37 MeCO3H +hν →MeOO + OH
38a O3S +hν →O2 + O(1D)S
38b O3S +hν →O2 + O(3P)S
40a BtOOH +hν →MEK + MEK + EtOO + MeCHO
40b BtOOH +hν →HO2 + HO2
40c BtOOH +hν →OH + OH + OH
43 MEK +hν →MeCO3 + EtOO
44 MeCOCOMe +hν →MeCO3 + MeCO3
45 MEKOOH +hν →MeCO3 + MeCHO + OH
46a ONIT +hν →NO2 + MEK + HO2 + EtOO
46b ONIT +hν →MeCHO + ONIT
48a AROMOOH +hν →OH + Me2CO + HO2 + CO
48b AROMOOH +hν →MeCO3 + AROMOOH

Breider et al., 2010). When TOMCAT is run uncoupled to
GLOMAP, there is an option to account for heterogeneous
uptake of N2O5 using prescribed monthly mean aerosol num-
ber density and radius for five different aerosol types (sulfate,

black carbon, organic carbon, sea salt and dust). Currently,
these data are taken from a previous GLOMAP run for the
year 2000 (Mann et al., 2010). In this simplified scheme,
the uptake coefficients are based on Evans and Jacob (2005),
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Table 6. List of γ values used in TOMCAT for heterogeneous up-
take of N2O5 by aerosol.

Aerosol type Reaction probability
(T = temperature (K),
RH= relative humidity (%))

Sulfate γ = α× 10β

α = 2.79× 10−4
+ 1.3

×10−4
×RH− 3.43

×10−6
×RH2

+ 7.52
×10−8

×RH3

β = 4× 10−2
× (T − 294) (T ≥ 282 K)

β =−0.48 (T < 282 K)

Organic Carbon γ = RH× 5.2× 10−4 (RH< 57%)

Black Carbon γ = 0.005

Sea Salt γ = 0.005 (RH< 62%)
γ = 0.03 (RH≥ 62%)

Dust γ = 0.02

with the exception of dust, which is based on Mogili et al.
(2006) (see Table 6). The overall uptake coefficient varies
as a function of temperature, humidity and aerosol composi-
tion. Similarly, computationally cheap TOMCAT-GLOMAP
“aerosol-only” experiments can be run using specified fields
of oxidants. Uptake of N2O5 on cloud surfaces is currently
not included due to the use of climatological clouds in the
model. Code exists to take account of HO2 uptake but is cur-
rently not used in the model as it requires evaluation and test-
ing within the model.

2.2 Model set-up and emissions

A simulation has been performed using the current chemical
mechanism scheme for the year 2008 (with a 1-year spin-
up). The model uses 31 vertical levels (surface to 10 hPa)
and a horizontal resolution of 2.8◦× 2.8◦. ERA-Interim me-
teorology is used to drive the model. Offline aerosol concen-
trations are used for N2O5 uptake. This run uses emissions
that were chosen for the POLARCAT (POLar study using
Aircraft, Remote Sensing, surface measurements and mod-
els of Climate, chemistry, Aerosols, and Transport) Model
Intercomparison Project (POLMIP) (Emmons et al., 2015).
Monthly mean anthropogenic and ship emissions are based
on the Streets v1.2 inventory, which was updated with sev-
eral recent regional inventories in 2008 for the POLARCAT
campaign (see Table 1). This included Asian emissions from
Zhang et al. (2009), North American emissions from US-
NEI 2002 and CAC 2005, and European emissions from the
EMEP 2006 database (http://www.ceip.at). Where regional
inventories were unavailable, emissions were taken from the

EDGAR 3.2FT2000 database. These emissions have no sea-
sonal cycle and are therefore the same each month. Monthly
varying biogenic emissions are from the MACC (Monitor-
ing Atmospheric Composition and Climate) project (MAC-
City), which provides simulated VOCs calculated offline by
the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) v2.0 for the reference year 2000 (Guen-
ther et al., 2006). Oceanic CO and VOC emissions and soil
NOx are from the POET inventory. For 2008, daily biomass
burning emissions are taken from the Fire INventory from
NCAR (FINN) (Wiedinmyer et al., 2011). Aircraft emissions
of NOx are based on estimated aircraft movements for the
year 2002 (Lamarque et al., 2010) and were calculated for
the European QUANTIFY project (http://www.pa.op.dlr.de/
quantify/). They are provided on 25 vertical levels from the
surface to 14.5 km and are regridded to the TOMCAT ver-
tical levels online. Surface CH4 is set to equal zonal mean
concentrations calculated from NOAA/ESRL/GMD surface
observations for the year 2000 (Meinshausen et al., 2011).
There is also the option to use an emission file for CH4 and
then scale the surface global mean concentration to a suit-
able value for the year in question. As already mentioned,
lightning NOx emissions are also included but are dealt with
online depending on the convection in the model.

3 Observations

3.1 Satellite data

Simulated CO is compared on a global scale to CO distribu-
tions retrieved from the satellite instrument, MOPITT (Mea-
surements Of Pollution In The Troposphere) version 6. MO-
PITT is a nadir-viewing instrument onboard the NASA Terra
satellite and retrieves CO concentrations globally at a hori-
zontal resolution of∼ 22 km by measuring infrared radiances
in the CO absorption band (Deeter et al., 2010). The Terra
satellite has an overpass time at the Equator of 10:30 local
time (LT). Version 6 uses an a priori based on climatological
output from the CAM-Chem model for 2000 to 2009 (Deeter,
2013). It has increased sensitivity to lower tropospheric CO
by using both near-infrared and thermal infrared wavelengths
(Deeter et al., 2011). As MOPITT is a nadir-viewing instru-
ment, it is more sensitive to certain altitudes; therefore, av-
eraging kernels (AKs) that contain information about the in-
strument’s varying sensitivities at different altitudes are used,
along with the a priori, to apply the same vertical sensitivity
to the TOMCAT CO profiles. This allows a more accurate
comparison between the observed and simulated CO. Inci-
dents where the degrees of freedom signal (DOFS) is less
than 1 are used to identify data where the satellite sensitivity
is low. These data points have been removed from both the
satellite and model columns.

Satellite O3 is taken from Global Ozone Monitoring
Experiment-2 (GOME-2) aboard EUMETSAT’s Metop-A
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Table 7. Model diagnostics compared to previously published values.

Diagnostic TOMCAT Published values Reference

O3 Burden (Tg)a 331 337 ± 23 Young et al. (2013)
OH concentration 1.08 0.94–1.06 Krol and Lelieveld (2003); Prinn et al. (2001),
(×106 moleculescm−3)b Bousquet et al. (2005); Wang et al. (2008)
CH4 lifetime (yrs) 7.9 9.3± .0.9 Voulgarakis et al. (2013)

a Annual mean. b Mass-weighted annual mean.
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Figure 2. Location of the World Data Centre for Greenhouse Gases (WDCGG) surface observatories and ozonesonde release sites used to
evaluate the model for (a) CO, (b) O3 and (c) PAN, NOx and VOCs.

polar-orbiting satellite. GOME-2 is a nadir-viewing instru-
ment with an approximate local Equator crossing time of
09:30 LT. It has a spectral range of 240–790 nm and the pixel
sizes are between 40 and 80 km along and across track, re-
spectively (Miles et al., 2015b). The data come from the
Rutherford Appleton Laboratory and are based on an optimal
estimation algorithm (Rodgers, 1976). Miles et al. (2015b)
describes how the GOME-2 retrievals are quality controlled
prior to use, with data being removed where geometric cloud
fraction is greater than 0.2 and the solar zenith angle is less
than 80◦. For optimal comparisons, the GOME-2 AKs are
applied to the TOMCAT data, as described in Miles et al.
(2015a). The model and satellite data are matched in space
and time by choosing the closest model grid box to the satel-
lite pixel, to within 3 h of the satellite daylight overpass time
(6-hourly model output is being used).

For nitrogen dioxide (NO2), we use data from the Ozone
Monitoring Instrument (OMI) aboard NASA’s EOS-Aura
polar-orbiting satellite. It has an approximate Equator cross-
ing of 13:30 LT (Boersma et al., 2007) and is a nadir-
viewing instrument with a spectral range of 270–500 nm.
The pixel sizes are between 16–23 km and 24–135 km along

and across track, respectively, depending on the viewing
zenith angle (Boersma et al., 2007). The tropospheric col-
umn NO2 data, known as the DOMINO product (v2.0)
(Boersma et al., 2011), were downloaded from the Tro-
pospheric Emissions Monitoring Internet Service (TEMIS;
http://www.temis.nl/airpollution/no2.html). The retrieval of
OMI tropospheric column NO2 is based on differential op-
tical absorption spectroscopy (DOAS), as discussed by Es-
kes and Boersma (2003). OMI retrievals have been quality
controlled, and data are only used where they have geomet-
ric cloud cover less than 20 % and good-quality data flags.
The product also uses the algorithm of Braak (2010) to re-
move OMI pixels affected by row anomalies. Studies have
shown the DOMINO product to have small biases against
other independent observational data with some evidence of
a small low bias over oceans (Irie et al., 2012; Boersma et al.,
2008). The product has also been used in model evaluation
studies previously (e.g. Huijnen et al., 2010; Pope et al.,
2015). For the TOMCAT comparisons, AKs are applied fol-
lowing Boersma et al. (2011). The model and satellite data
are matched in space and time by choosing the closest model
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Figure 3. Concentrations of TOMCAT-simulated annual surface mean and annual zonal mean CO (a, b), O3 (c, d) and OH (e, f).

grid box to the satellite pixel, to within 3 h of the satellite day-
light overpass time (6-hourly model output is being used).

3.2 Surface data

We take O3 measurements at the surface over the US from the
United States Environmental Protection Agency (EPA) Clean
Air Status and Trends Network (CASTNET) database. They
provide hourly mean concentrations from continuous ozone
monitoring instruments that have undergone a large amount
of quality assurance. Here, we use data from 44 sites, which
cover large parts of the US, excluding highly urbanised sites
as identified by Sofen et al. (2016). The model output is inter-
polated to the location of each station both horizontally and
vertically.

Observations of CO, VOCs, peroxyacetyl nitrate (PAN)
and some O3 measurements are taken from the World Data
Centre for Greenhouse Gases (WDCGG; http://ds.data.jma.
go.jp/gmd/wdcgg/; see Fig. 2 for locations). Most of the sur-
face O3 and CO measurements are provided by the National
Oceanic and Atmospheric Administration (NOAA). NOAA
CO is from flask samples that have been analysed using gas
chromatography (Novelli et al., 1998) and O3 is measured
by ultraviolet (UV) light absorption at 254 nm (Oltmans and
Levy, 1994). The O3 measurements at Cabo Verde are pro-
vided by the University of York and were made using a UV
light absorption instrument (Read et al., 2008). CO at Mi-
nami Torishima is from continuous measurements made by
the Japan Meteorological Agency (JMA) using gas chro-

matography (Watanabe et al., 2000). PAN measurements at
Zugspitze and Schauinsland are provided to the WDCGG by
the German Federal Environment Agency (UBA) and were
made using a commercial gas chromatograph (GC) anal-
yser (Pandey Deolal et al., 2014). VOC measurements of
ethene, ethane, propene, propane, toluene and butane made
using gas chromatography at Hohenpeissenberg were pro-
vided by the German Meteorological Service (DWD) (Plass-
Dülmer et al., 2002). All NOx measurements were made us-
ing chemiluminescence and are provided by DWD at Hohen-
peissenberg (Mannschreck et al., 2004), UBA at Zugspitze,
Empa (Swiss Federal Laboratories for Materials Science and
Technology) at Jungfraujoch, Payerne and Rigi (Zellweger
et al., 2003), and by RIVM (Netherlands National Institute
for Public Health and the Environment) at Kollumerwaard.

3.3 Ozonesonde data climatology

Simulated O3 profiles are compared to ozonesonde data from
a climatology, which uses 17 years of ozone balloon sound-
ings made between 1995 and 2011 (Tilmes et al., 2012). The
data are available as profiles between 1000 and 10 hPa at 42
stations, covering large parts of the globe. The model out-
put is interpolated to the longitude and latitude of each sta-
tion location. The site locations are shown in Fig. 2b. The
ozonesondes tend to measure concentrations around 10 ppbv
higher over the eastern US and around 5 ppbv lower over Eu-
rope compared to independent observational data from air-
craft and surface data (Tilmes et al., 2012). For comparison
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to TOMCAT, both the model and the observations have been
averaged into three different altitude and latitude bands for
comparison.

3.4 Aircraft ARCTAS data

We use observations taken aboard the DC-8 aircraft between
29 June and 10 July 2008 during the Arctic Research of the
Composition of the Troposphere from Aircraft and Satellites
(ARCTAS) campaign (Jacob et al., 2010). At this time, the
aircraft was based at Cold Lake, Canada, and flew over large
parts of North America and the Arctic. For the comparisons,
the model monthly mean data for July are used and are aver-
aged over a region contained by the maximum and minimum
longitude and latitude ranges of the aircraft during the cam-
paign.

3.5 OH estimates

OH is difficult to measure due to its very short lifetime (∼
1 s) and low concentrations, and even though vast improve-
ments have been made to in situ measurement techniques
(Heard and Pilling, 2003), they do not provide a global pic-
ture. A common method to estimate OH is by using measure-
ments of methyl chloroform (CH3CCl3, MCF), for which the
primary loss channel is through reaction with OH. Accurate
determination of OH from MCF relies on accurate estima-
tion of emissions and the use of models, introducing possible
biases. These measurements are frequently used to estimate
the global mean OH concentration (e.g. Krol et al., 1998;
Prinn et al., 2001; Montzka et al., 2011) and can offer some
insight into the regional distribution of OH (e.g. Krol and
Lelieveld, 2003; Patra et al., 2014). We use published esti-
mates of global mean OH to discuss possible biases in simu-
lated OH in Sect. 4.2.

4 Results

4.1 Simulated distributions of CO, O3 and OH

Figure 3 shows annual mean surface and zonal mean concen-
trations of CO, O3 and OH from the TOMCAT 2008 simula-
tion. CO is emitted directly from natural and anthropogenic
sources and produced in the atmosphere from chemical de-
struction of VOCs (Logan et al., 1981). Direct emission at
the Earth’s surface and secondary production in the tropo-
sphere from VOCs (most notably CH4) are estimated to be
of equal importance in terms of total global tropospheric CO
sources (Duncan et al., 2007). High concentrations due to
direct emission of CO from fossil fuel burning can be seen
in Fig. 3a in the densely populated regions of North Amer-
ica, central Europe and Asia. Large concentrations are also
seen over regions with high rates of biomass burning, such as
South America and Africa. Both at the surface and through-
out the troposphere, higher background concentrations of CO
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Figure 4. Regional annual mean OH concentrations
(×106 moleculescm−3) split into subsections as recommended by
Lawrence et al. (2001). (a) OH estimated from methyl chloroform
observations from Spivakovsky et al. (2000), (b) the Atmospheric
Chemistry and Climate Model Intercomparison Project (ACCMIP)
multi-model mean simulated OH concentrations from Naik et al.
(2013) and (c) TOMCAT-simulated OH concentrations for the
year 2008. The air-mass-weighted global mean tropospheric
OH (OHgm) is indicated above each plot for panels (b) and (c).
In TOMCAT, the troposphere was defined as the area below a
climatological tropopause (p = 300−215(cos(lat))2) (as discussed
in Lawrence et al. (2001)) and for ACCMIP it was defined as
below 200 hPa. The colours in panel (c) are scaled according to the
difference from panel (a), with the darkest blue representing the
largest negative differences and the darkest red representing the
largest positive differences.

are seen in the Northern Hemisphere (NH) due to larger
emissions.

O3 is important in the troposphere as it is a major source
of OH, the primary oxidising agent in the troposphere, and
is an air pollutant and greenhouse gas (Monks et al., 2015a).
It is not directly emitted but produced from photochemical
reactions involving NOx , VOCs and CO, and is transported
from the stratosphere to the troposphere (Lelieveld and Den-
tener, 2000). The atmospheric burden of O3 is controlled by
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Figure 5. April and October 2008 monthly mean 500 hPa CO concentrations (ppbv) observed by MOPITT (a, d) and simulated by TOM-
CAT (b, e). The zonal mean concentrations at 500 hPa are also shown (c, f; data are only shown when there is > 25 % coverage in a given
latitude band). MOPITT averaging kernels have been applied to the TOMCAT fields.

a balance between these sources and loss through chemi-
cal reactions and deposition (Stevenson et al., 2006). Fig-
ure 3c shows the highest concentrations at the surface lie
within the NH extratropical region due to the proximity to
large emissions of NOx and VOCs, and photochemical pro-
duction. Some of the highest concentrations of O3 are found
downwind of regions with high NH anthropogenic emissions
(identified by CO in Fig. 3a). This is due to production of O3
being greater downwind of source regions away from very
high NOx concentrations that can titrate O3 in urban envi-
ronments (Monks et al., 2015a). Low O3 over the central
Pacific Ocean and northern South America is also seen in
the model. In the tropics, lower O3 concentrations are seen
at 100–300 hPa due to a higher tropopause in this region
and the uplift of air with low O3 within deep tropical con-
vection. At around 20–40◦ S/N, evidence of the downward
transport of stratospheric O3 by the Brewer–Dobson circu-
lation (Butchart, 2014) can be seen. The overall features of
TOMCAT O3 are consistent with multi-model results from
the Atmospheric Chemistry and Climate Model Intercom-
parison Project (ACCMIP) (Young et al., 2013) and those
observed by satellite (Ziemke et al., 2011). TOMCAT sim-

ulates an annual mean tropospheric burden of 331 Tg (see
Table 7), which agrees well with the present-day ACCMIP
multi-model mean tropospheric ozone burden of 337± 23 Tg
(Young et al., 2013).

OH is the dominant radical responsible for the removal of
pollutants such as NOx and VOCs from the atmosphere, ini-
tiating the production of O3 (Gligorovski et al., 2015) and
aerosols (e.g. Carlton et al., 2009). OH is produced in the
troposphere when O3 is photolysed to produce O(1D) and
a subsequent reaction with H2O. It is therefore produced in
large quantities in the tropics, where there are large concen-
trations of H2O and a high incidence of solar radiation. This
can be seen in TOMCAT in Fig. 3e and f with high concen-
trations of OH occurring between 50◦ N and 50◦ S. The spa-
tial distribution of TOMCAT surface OH is broadly similar
to multi-model surface OH from the ACCMIP study shown
by Voulgarakis et al. (2013).

4.2 Evaluation of OH

TOMCAT global mean air-mass-weighted tropospheric OH
was calculated using a climatological tropopause (see def-
inition in Fig. 4) following Lawrence et al. (2001). TOM-

www.geosci-model-dev.net/10/3025/2017/ Geosci. Model Dev., 10, 3025–3057, 2017



3042 S. A. Monks et al.: TOMCAT chemical mechanism and evaluation

Alert
(297° E,  82° N,  210 m)

J F M A M J J A S O N D
0

50

100

150

200

C
O

 [p
pb

v]

NMB = -14.6%, r = 0.95

Mace Head
(350° E,  53° N,    8 m)

J F M A M J J A S O N D
0

50

100

150

200

C
O

 [p
pb

v]

NMB = -14.6%, r = 0.94

Tae-ahn Peninsula
(126° E,  36° N,   20 m)

J F M A M J J A S O N D
0

100

200

300

400

C
O

 [p
pb

v]

NMB = -22.4%, r = 0.72

Sand Island
(182° E,  28° N,    7 m)

J F M A M J J A S O N D
0

50

100

150

C
O

 [p
pb

v]

NMB = -18.9%, r = 0.93

Key Biscayne
(279° E,  25° N,    3 m)

J F M A M J J A S O N D
0

50

100

150

C
O

 [p
pb

v]
NMB =  6.9%, r = 0.76

Minami Torishima
(153° E,  24° N,    8 m)

J F M A M J J A S O N D
0

50

100

150

C
O

 [p
pb

v]

NMB =  8.2%, r = 0.96

Mauna Loa
(204° E,  19° N, 3397 m)

J F M A M J J A S O N D
0

20
40
60
80

100
120
140

C
O

 [p
pb

v]

NMB = -8.5%, r = 0.91

Ascension Island
(345° E,  -7° N,   54 m)

J F M A M J J A S O N D
0

20

40

60

80

100
120

C
O

 [p
pb

v]

NMB =  5.6%, r= 0.78

Easter Island
(250° E, -27° N,   50 m)

J F M A M J J A S O N D
0

20

40

60

80

C
O

 [p
pb

v]

NMB =  6.3%, r = 0.95

Cape Grim
(144° E, -40° N,   94 m)

J F M A M J J A S O N D
0

20

40

60

80

C
O

 [p
pb

v]

NMB = 28.5%, r = 0.67

Palmer Station
(296° E, -64° N,   10 m)

J F M A M J J A S O N D
0

20

40

60

80

C
O

 [p
pb

v]

NMB = 21.6%, r = 1.00

South Pole
(335° E, -89° N, 2810 m)

J F M A M J J A S O N D
0

20

40

60

80
C

O
 [p

pb
v]

NMB = 21.2%, r = 0.94

1.0

TOMCAT
Observations

Figure 6. Monthly mean 2008 observed and simulated CO (ppbv) at several surface sites located throughout the globe. The panels are
arranged by latitude from north to south, with Pearson correlation (r) and normalised mean bias (NMB) between the observed and simulated
monthly mean data printed on each panel.

CAT has an annual mean tropospheric OH concentra-
tion of 1.08× 106 moleculescm−3. Concentrations of global
mean tropospheric OH calculated from MCF observations
have been estimated to be 0.94× 106 molecules cm−3 by
Prinn et al. (2001), 1.0× 106 molecules cm−3 by Krol et al.
(2003) and 0.98× 106 molecules cm−3 by Bousquet et al.
(2005). These estimates indicate that the TOMCAT global
mean OH may be slightly high. However, a recent inverse
modelling study calculated a global mean OH concentra-
tion of 1.06× 106 molecules cm−3, highlighting uncertain-
ties in using MCF observations to calculate OH (Wang
et al., 2008). In addition to this, concentrations reported by
model intercomparison studies are also higher than those
reported based on observations. The POLARCAT Model

Intercomparison Project (POLMIP) found a multi-model
mean value of 1.08 ± 0.6× 106 moleculescm−3 when us-
ing eight models (including a previous version of TOM-
CAT). The multi-model mean was the same whether a cli-
matological tropopause was used, as done here, or when the
150 ppb O3 contour line was used. Voulgarakis et al. (2013)
found a multi-model mean concentration of 1.17 ± 0.1×
106 moleculescm−3 when using a subset of 12 ACCMIP
models, and Naik et al. (2013) found a multi-model mean of
1.11± 0.2×106 moleculescm−3 when using all 16 ACCMIP
models. Both of these ACCMIP concentrations were calcu-
lated using a tropopause of 200 hPa. However, Voulgarakis
et al. (2013) found little difference in the resulting concen-
trations of OH when using different methods of defining the
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tropopause (200 hPa, 150 ppbv O3 contour and the climato-
logical tropopause, as used here).

Whilst comparing the global mean OH concentration in
TOMCAT to those reported in the literature is very useful, it
is also important to consider the regional distribution of OH
in TOMCAT. Figure 4 shows TOMCAT OH averaged into
nine regional subsections defined by Lawrence et al. (2001),
along with OH from Spivakovsky et al. (2000) (referred to as
the Spivakovsky dataset) and the multi-model mean OH from
the ACCMIP study (Naik et al., 2013). Patra et al. (2011)
used the Spivakovsky dataset in a recent multi-model inter-
comparison project, but revised the concentrations down by
8 % to match more recent measurements of MCF. This high-
lights that quantitative comparison of TOMCAT OH with the
Spivakovsky dataset is limited due to observational and mod-
elling uncertainties. However, the Spivakovsky dataset is still
valuable for estimating the regional distribution of OH.

The largest concentrations of OH are found in the tropics
for the Spivakovsky dataset and for the ACCMIP and TOM-
CAT simulations. However, the ACCMIP models have the
highest OH concentrations between 500 and 250 hPa, Spi-
vakovsky has the highest concentrations between 750 and
500 hPa and TOMCAT has the highest concentrations be-
tween the surface and 750 hPa. Large differences in the spa-
tial distribution of simulated OH have recently been iden-
tified in models, highlighting uncertainties in the ability of
current models to accurately simulate OH concentrations and
distributions (Emmons et al., 2015; Monks et al., 2015b).
TOMCAT was shown to have lower photolysis rates in the
upper troposphere and higher photolysis rates in the lower
troposphere compared to other models, with model differ-
ences in clouds and water vapour in the POLMIP models be-
ing identified as possible reasons for differences in the OH
(Emmons et al., 2015; Monks et al., 2015b).

In addition to this, Patra et al. (2014) found that the NH
to SH ratio of OH, inferred from observations of MCF, is
equal to 0.97. TOMCAT has an annual NH : SH ratio of 1.37.
Naik et al. (2013) found a NH : SH ratio of 1.28± 0.1 for the
ACCMIP models, which is also higher than that estimated
from observations, indicating that this is a common feature
in global models.

TOMCAT OH results in a chemical methane lifetime of
7.9 years. Voulgarakis et al. (2013) found an ACCMIP multi-
model mean methane lifetime of 9.3 ± 0.9, with a minimum
of 7.1 years and a maximum of 13.9 years. This indicates
TOMCAT has a methane lifetime that is generally shorter
than other models. As the majority of methane oxidation oc-
curs in the tropics near the surface (Lawrence et al., 2001;
Bloss et al., 2005), the short methane lifetime is likely due to
TOMCAT having a higher concentration of OH in this region
compared to other models.

4.3 Evaluation of carbon monoxide

As mentioned in Sect. 4.1, CO is emitted from a wide range
of natural and anthropogenic sources and can provide insight
into model emissions and subsequent transport of sources
due to its lifetime of several months. Figure 5 shows retrieved
CO from MOPITT (see Sect. 3) at 500 hPa during April and
October 2008 along with simulated CO from TOMCAT with
the MOPITT averaging kernels applied.

In April, both the model and the satellite show higher CO
concentrations in the NH compared to the Southern Hemi-
sphere (SH) due to a longer CO lifetime at this time of year in
conjunction with higher anthropogenic emissions in the NH.
MOPITT observes concentrations around 10–30 ppbv larger
than simulated in the NH midlatitudes and Arctic (Fig. 5c).
This negative model bias is a well-known problem with cur-
rent CTMs during winter and spring, with models having a
15 to 50 ppbv negative bias against MOPITT at 500 hPa in
April in the NH (Shindell et al., 2006) and 5 to 40 ppbv neg-
ative bias against Arctic surface stations in the spring (Monks
et al., 2015b). The model shows the best agreement in the NH
tropics at this time of year.

TOMCAT CO concentrations in the SH in April are
around 10–15 ppbv larger than observed. Shindell et al.
(2006) found good agreement between a 26-model ensem-
ble mean at 500 hPa compared to MOPITT, with individual
models showing both negative and positive biases of between
−15 and +15 ppbv, showing that the TOMCAT bias at this
time of year is at the high end of the multi-model positive
bias range.

The model negative bias in the NH and positive bias in
the SH leads to a simulated interhemispheric gradient that is
too low (see Fig. 5c), which is a common feature in chem-
istry models (Shindell et al., 2006). Several inverse mod-
elling studies have suggested that wintertime CO emissions
in the NH need to be increased in order to better match ob-
servations of CO (Pétron et al., 2004; Kopacz et al., 2010;
Fortems-Cheiney et al., 2011). Transport errors in the model
could also play a role; however, they are unlikely to cause
such widespread biases of this magnitude in background CO.
In addition to this, as mentioned in Sect. 4.2, OH in TOM-
CAT is most likely too high at the surface, particularly in the
tropics, and the NH : SH OH ratio is higher than estimates
based on observations. This is likely to influence the lifetime
of simulated CO and will contribute to the NH and SH biases.
Strode et al. (2015) showed that by lowering the NH : SH OH
ratio of current state-of-the-art models, simulations of CO
can be improved. The cause of the lower simulated NH : SH
OH ratio in models is still unclear and may be linked to emis-
sion biases, where higher emissions of CO and VOCs in the
NH may reduce OH concentrations, reducing the NH : SH
OH ratio.

In October, the interhemispheric gradient in CO is no
longer as clear due to longer CO lifetimes in the SH and
shorter lifetimes in the NH. This time of year is charac-
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Figure 7. Median O3 concentrations (ppbv) taken from the Tilmes et al. (2012) ozonesonde climatology compared to TOMCAT-simulated
concentrations. The data are averaged over three latitude ranges (left to right) and three pressure level ranges (top to bottom), where the error
bars show the 25th and 75th percentiles of the observed concentrations and Nstat gives the number of sonde release sites located within each
latitude range.

terised by peak fire emissions in the SH (van der Werf et al.,
2010). For this reason, high concentrations of CO are seen
by MOPITT over South America and there is a shift in the
biomass burning emissions further south over Africa, result-
ing in higher CO over the Southern Ocean. TOMCAT also
shows higher concentrations over the Southern Ocean due
to the influence of fire emissions compared to April. How-
ever, fire emission location errors are clearly contributing
to a mismatch between the CO plumes in the model and
those seen by MOPITT. Total column CO over this region
suggests that emissions from fires may be too large in the
tropics, particularly over tropical Asia (not shown), and the
fires are located too far north in Africa and too far west in
South America, resulting in too much CO being transported
out over the oceans in the tropics (see Fig. 5d and e). Naik
et al. (2013) also showed that the ACCMIP multi-model an-
nual mean simulated CO at 500 hPa was 2–45 ppbv too high
compared to MOPITT in this region, supporting a high bias
in CO fire emissions across different emission inventories in
the SH and tropics at this time of year. Outside of the 10◦ S–
30◦ N region, the zonal mean CO shows much better agree-
ment between TOMCAT and MOPITT than seen in April
(see Fig. 5f).

Figure 6 compares simulated and measured CO at 14 dif-
ferent surface observatories that are located at several differ-

ent latitudes and longitudes for the year 2008 (see Fig. 2a
for station locations). TOMCAT generally captures the sea-
sonal cycle, with high correlations values found at most sta-
tions (see r values in Fig. 6). However, the amplitude of the
seasonal cycle is less pronounced in the model in some re-
gions. In agreement with the MOPITT comparison results,
the model shows a large negative bias in winter and spring
in the NH, with particularly large biases at stations located at
higher latitudes (Alert and Mace Head). This has been doc-
umented at Arctic surface sites previously (Shindell et al.,
2008; Monks et al., 2015b). At latitudes> 25◦ N the model
has a normalised mean bias (NMB) of between −14.6 and
−22.4 %. The model performs the best near the tropics, with
NMBs of between −8.5 and 8.2 %. In the middle to high
SH latitudes, the model overestimates CO concentrations
throughout the year, with the largest biases occurring during
the austral summer (NMBs of 21.2 to 28.5 %).

The 26-model study by Shindell et al. (2006) found that
models have a negative bias between 20 and 80 ppbv at Alert
in the Arctic during winter/spring and a more persistent pos-
itive bias throughout the year of up to 20–25 ppbv at Cape
Grim, exhibiting a transition from a negative bias in the NH
to a positive bias in the SH that is similar to that found in
TOMCAT. TOMCAT is within the bias range at Alert, with
a winter negative bias of up to ∼ 50 ppbv, and at the upper
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Figure 8. Monthly mean 2008 observed and simulated O3 (ppbv) at several surface sites located throughout the globe. The panels are
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Figure 9. Scatter plots of seasonal mean observed and simulated 2008 O3 concentrations (ppbv) at CASTNET EPA monitoring stations
located in North America.
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Figure 10. GOME-2 subcolumn O3 (0–6 km, DU) on the TOMCAT 2.8◦×2.8◦ grid for (a) June–July–August 2008 (JJA) and (b) December–
January–February 2008 (DJF). Panels (c) and (d) show the difference in concentrations between TOMCAT and GOME-2. The green polygons
indicate where the mean bias (MB) is greater than the satellite error.

end of the bias range at Cape Grim, with up to ∼ 25 ppbv
at Cape Grim. The surface and MOPITT comparisons show
that these model biases exist at the surface and throughout
the free troposphere, and are generally consistent with biases
found in other chemical transport models.

4.4 Evaluation of ozone

Ozonesonde data are compared to simulated O3 in Fig. 7.
The data have been separated into three different altitude and
latitude bands. The model overestimates O3 at higher NH
and SH latitudes in the highest altitude band (NMB of 22
to 43.2 %), possibly due to too much downward mixing of
stratospheric O3 in the model at these altitudes. TOMCAT
also overestimates O3 at the surface in the tropics (NMB of
14.4 to 16.7 %), but the model lies within the range of obser-
vations. Elsewhere, the model has a negative bias (NMB of
−1.2 to −24.6 %) but lies within the range of observations
at several times of the year. Most of the negative bias in the
higher latitudes is being driven by wintertime underestimates

in O3 in both the SH and NH. Young et al. (2013) found that
the multi-model ACCMIP mean O3 is also negatively biased
in the SH during the winter months when compared to the
same data, suggesting that this is a common feature in chem-
istry models. However, they found that the ACCMIP models
overestimated O3 in the NH high latitudes during winter.

The low TOMCAT bias in wintertime O3 can also be seen
in surface data located at high latitudes in the SH at Ar-
rival Heights (see Fig. 8), where TOMCAT has a negative
O3 bias of∼ 10–15 ppbv during the SH austral winter (NMB
of −21.1 %). This suggests that the model may have diffi-
culties reproducing O3 photochemistry in the winter in re-
mote, dark and cold regions or the model may deposit too
much O3 onto snow/ice covered surfaces. Whilst most mod-
els in the POLMIP study were also negatively biased at the
Summit observatory in the Arctic during winter, TOMCAT
simulated some of the lowest concentrations (Monks et al.,
2015b). Outside of the poles, the model simulates concentra-
tions of O3 that are in much better agreement with the obser-
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vations (NMB of 0.7 to 15.2 %). In the NH during the sum-
mer, TOMCAT tends to overestimate concentrations. This
is a common feature in models in the NH during summer,
which has been identified to be particularly pronounced over
the eastern US (e.g. Ellingsen et al., 2008; Fiore et al., 2009;
Yu et al., 2010). O3 at the surface is also compared to data
from 44 EPA CASTNET stations located in the US (Fig. 9).
This high summer bias over the US is clearly evident, with
a large mean bias (MB) of 28 ppbv (NMB of 97.8 %). The
best agreement is seen in winter (MB of−2.7 ppbv, NMB of
−8%). ValMartin et al. (2014) showed that model summer-
time O3 biases could be reduced from 44 to 28 % over the
US and from 25 to 14 % over Europe when improvements
were made to a coupled land–atmosphere model’s deposition
scheme. This suggests that using a more sophisticated depo-
sition scheme coupled to a land model may improve TOM-
CAT simulations of summertime O3.

Subcolumn O3 between 0 and 6 km (up to ∼ 500 hPa)
is compared to GOME-2 retrievals in Fig. 10. MB errors
that are greater than the satellite error are highlighted with
green polygons. In DJF, GOME-2 measures the highest con-
centrations of O3 (∼ 25 DU) in regions near O3 precursor
emissions and those with enough sunlight to initiate photo-
chemistry at this time of year (e.g. India, China and north-
ern Africa; Fig. 10b). TOMCAT shows negative MBs of up
to −10 DU in several regions, with some of the larger bi-
ases being co-located with high observed O3 concentrations
(see Fig. 10d). Comparisons to ozonesondes (see Fig. 7) fur-
ther support this and show that the model O3 may be bi-
ased low (by 5–10 ppbv) in the tropical region at this time
of year at altitudes between 750 and 450 hPa (although the
model does lie within the ozonesonde observed ranges). In
JJA, the model bias is much smaller with very few signifi-
cant MBs being highlighted (see Fig. 10c). There is evidence
that the model overestimates O3 at this time of year over
the southeast US, in agreement with the CASTNET model–
observation comparisons, as well as some evidence that O3
is also overestimated near Cabo Verde off the coast of Africa,
as seen in Fig. 8.

4.5 Evaluation of VOCs

In Fig. 11, measurements of ethene, ethane, propene,
propane, toluene and butane are compared to simulated con-
centrations at the mountain site in Hohenpeissenberg, Ger-
many. The observations show a seasonal cycle that is partic-
ularly pronounced for ethene, ethane, propene and toluene,
with peak concentrations in winter and spring, when OH con-
centrations are lower and the lifetimes of VOCs are longer,
and a minimum in summer. For ethane and propane, the
model captures the seasonal transitions (r values of 0.94
and 0.99, respectively) but shows a much smaller amplitude
due to large negative biases, particularly in winter (NMB
of −31.3 and −25.8 %, respectively). This can also be seen
at high latitudes over North America throughout the tropo-
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Figure 11. Monthly mean 2008 observed and simulated VOCs
(pptv) at the European high-altitude observatory, Hohenpeis-
senberg. Pearson correlation (r) and normalised mean bias (NMB)
between the observed and simulated monthly mean data are printed
on each panel.

sphere when compared to the ARCTAS data in Fig. 12. It
has been suggested previously that the current anthropogenic
emissions of ethane are too low in global models (Franco
et al., 2016; Tilmes et al., 2016), which is likely to explain
the negative bias in TOMCAT ethane. Propane is also shown
to be too low throughout the tropospheric column (Fig. 12)
and has also been found to be biased low in the NH across
different models, suggesting a similar problem with emis-
sions (Emmons et al., 2015; Tilmes et al., 2015). For ethene
and propene, the seasonal cycle is not well captured by the
model due to enhancements in summer (r = 0.25–0.68). This
is likely to be due to incorrect local emissions at this time
of year (from biogenic or fire sources) or difficulties captur-
ing local turbulent transport at this mountain site, which is a
common problem in models (Zhang et al., 2008; Feng et al.,
2011). Similar to ethane and propane, the model also shows
negative biases that are particularly large in winter, suggest-
ing underestimated anthropogenic emissions in the NH. For
toluene and butane, the model captures the seasonal cycle
well (r values of 0.91 and 0.97, respectively), but some large
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Figure 12. Comparison of simulated and observed concentrations of CO, O3, C2H6, C3H8, NO2, PAN and HNO3 for the ARCTAS July 2008
flights (seven flights).
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Figure 13. Monthly mean 2008 observed and simulated NO2 (ppbv) at two European surface sites located in Europe. Pearson correlation (r)
and normalised mean bias (NMB) between the observed and simulated monthly mean data are printed on each panel.

positive biases are found consistently throughout the year
(NMBs of 270.5 and 175.6 %, respectively).

4.6 Evaluation of reactive nitrogen

Oxides of nitrogen (NOy) are important atmospheric pollu-
tants and are key in the production of O3. In addition, spe-
ciation of NOy is dependent on oxidative capacity, organic
chemistry and heterogeneous chemistry. Hence, evaluation
of speciated NOy is a valuable test of several interrelated as-
pects of model chemistry. Here, we use observations of NO2,
nitric acid (HNO3) and PAN to evaluate the model NOy .

In Fig. 13, 2008 measurements of NO2 from two Euro-
pean observatories are compared to simulated concentrations
(see Fig. 2c for locations). Observed concentrations at both
Hohenpeissenberg and Payerne show a minimum in summer

and a maximum in winter, with the model capturing the sea-
sonal cycle well, suggesting that the model is able to repro-
duce seasonal changes in photochemistry (r values of 0.89
and 0.94, respectively). However, TOMCAT overestimates
the concentrations at Hohenpeissenberg throughout the year
(NMB of 78.9 %) but underestimates concentrations at Pay-
erne (NMB of −28.4 %). The model shows only marginally
higher concentrations at Payerne compared to Hohenpeis-
senberg. The observations show that this difference is larger
in reality, suggesting a higher gradient in concentrations be-
tween the two different stations both horizontally and verti-
cally. As NO2 is short-lived, it is difficult for global models
to reproduce observations due to coarse horizontal and ver-
tical resolutions, which is likely to affect the model’s ability
to capture concentration gradients (Huijnen et al., 2010). The
model is able to capture the changes in NO2 with altitude and
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Figure 14. 2008 tropospheric NO2 column (×1015 moleculescm−2) from OMI on the TOMCAT model 2.8◦× 2.8◦ grid for (a) June–
July–August and (b) December–January–February, along with the TOMCAT OMI tropospheric column NO2 mean bias (MB) for the same
periods (c, d). The green polygons are where the absolute MB is greater than the satellite error.

captures the magnitude well in the middle troposphere (see
Fig. 12).

Figure 14 shows 2008 DJF and JJA OMI satellite NO2 col-
umn data alongside the TOMCAT MB. Due to the short life-
time of NO2, high concentrations are observed near emission
regions. In the NH, high concentrations are seen over Asia,
North America and Europe, near some of the largest anthro-
pogenic emission sources. In both seasons, the model simu-
lates concentrations that are too high over parts of Europe.
This is likely to be linked to emissions due to the short life-
time of NO2. Due to the location near the Baltic and North
seas, this could indicate that ship emissions are too large in
this region. Large negative biases in NO2 near China are seen
in the model in the NH winter. This has been seen in several
models previously when comparing to OMI and is thought to
be due to anthropogenic emissions that are too low (Emmons
et al., 2015). In contrast, TOMCAT has a positive model bias
in this region during summer, most likely due to the FINN
fire emissions being too high, which has also been seen in

multiple models being compared to OMI (Emmons et al.,
2015).

In the SH, OMI observes the largest concentrations over
the high-biomass-burning regions of South America, Africa
and Australia. In these regions, the model shows NO2 con-
centrations that are too low during both seasons, suggesting
FINN fire emissions are too low in the SH. This is in contrast
to CO satellite comparisons, which suggested fire emissions
are too high in this region (see Sect. 4.3). This therefore in-
dicates that emission factors used to calculate fire emissions
need to be further evaluated in the tropics and the SH.

Figure 15 shows PAN comparisons at the mountain site in
Schauinsland, Germany. Observations at this location show
concentrations that peak in April, with a winter minimum.
TOMCAT concentrations peak later in the year in June but
capture the strong drop in concentrations leading towards a
winter minimum (r = 0.82). Simulated concentrations show
reasonable agreement with the observations (NMB of 6.9 %).
PAN during the summer months shows reasonable agreement
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Figure 15. Monthly mean 2008 observed and simulated PAN (pptv)
at the Schauinsland mountain observatory in Germany.

with aircraft data shown in Fig. 12. However, HNO3 is over-
estimated in the model, possibly due to too much produc-
tion or not enough washout. In an Arctic model intercompar-
ison project (POLMIP), TOMCAT had some of the highest
concentrations of PAN and HNO3 compared to other mod-
els (Emmons et al., 2015), suggesting that TOMCAT NOy
production is higher and/or loss may be lower compared to
other models. The observations at Schauinsland suggest that
TOMCAT may do a better job in simulating PAN over Eu-
rope at lower latitudes. In addition to this, Pope et al. (2016)
found that TOMCAT PAN overestimated upper tropospheric
Michelson Interferometer for Passive Atmospheric Sound-
ing (MIPAS) PAN at altitudes above 200 hPa in winter and
spring. Due to the importance of reactive nitrogen in O3 pro-
duction, there is a need for further investigation and evalua-
tion of these species in the future when more recent observa-
tions become available.

5 Summary

This paper describes the TOMCAT 3-D chemical transport
model’s tropospheric chemistry scheme. The current scheme
has a more detailed representation of hydrocarbon chemistry
compared to the previously documented version found in
Arnold et al. (2005). The current scheme includes the degra-
dation of ethene, propene, toluene and butane based on the
Extended Tropospheric Chemistry scheme and monoterpene
chemistry based on MOZART-3 chemistry. A 1-year simu-
lation for the year 2008 is used to document model perfor-
mance against a range of surface, satellite, aircraft and bal-
loon measurements. The model is generally able to capture
the main spatial and seasonal features of high and low con-
centrations of CO, O3, VOCs and reactive nitrogen. How-
ever, several negative and positive biases are present in TOM-
CAT during certain times of the year and at certain locations.
Some of these biases are prevalent in current state-of-the-art
chemistry models, but some biases that are specific to TOM-
CAT are also highlighted.

TOMCAT global mean tropospheric OH (1.08×
106 moleculescm−3) is higher than estimates inferred from
MCF observations (0.94–1.0× 106 moleculescm−3). How-

ever, this is a common feature across chemistry models, and
the TOMCAT global mean OH is at the lower end of concen-
trations reported in previous multi-model intercomparison
projects (1.08–1.17× 106 moleculescm−3). TOMCAT has
the highest concentrations (in molecules cm−3) of OH in
the lower tropical troposphere, which is in contrast to the
ACCMIP multi-model mean OH, which has the highest OH
concentrations in the tropical upper troposphere. Observa-
tionally constrained OH shows the highest concentrations
of OH in the middle tropical troposphere suggesting that
TOMCAT has too much OH at the surface in the tropics.
In addition to this, TOMCAT has a higher NH : SH OH
ratio (1.37) compared to the ratio inferred from MCF
observations (0.98), which is again a common feature
in chemistry models, with TOMCAT being at the upper
limit of the multi-model mean value calculated from the
ACCMIP models (1.28 ± 0.1). This suggests that simulated
OH in current chemistry models is largely uncertain and
more work is needed to understand the cause of the lower
simulated NH : SH OH ratio in models. One possibility
could be underestimated emissions in the NH which may
be contributing to OH concentrations being too high in this
region.

TOMCAT CO is negatively biased during winter and
spring in the NH when compared to MOPITT and surface
observations. In contrast, CO is positively biased throughout
the year in the SH. The negative bias in the NH is a common
feature in chemistry models and TOMCAT lies well within
the range of biases found in other models. The TOMCAT
SH positive bias is at the upper range of positive biases re-
ported in other models, with some models reporting negative
biases. Underestimated emissions in the NH are thought to
play a role in the negative NH CO bias, whilst comparisons
with MOPITT suggest that TOMCAT fire emissions may be
too high in the SH, contributing to the model positive bias.
OH biases could also play a role in the CO bias, in particu-
lar in the NH where near-surface OH is around 50 % larger
than methyl chloroform-constrained OH estimates. Lower
OH concentrations in the model at the surface would lead to
an increase in CO concentrations in the NH and would also
reduce the NH : SH OH ratio.

TOMCAT is able to capture the seasonality of O3 in most
locations, with the model lying within the range of observa-
tions made during balloon soundings during most times of
the year. The notable exceptions to this are (1) at high lat-
itudes during winter conditions, where TOMCAT simulates
O3 that is negatively biased by up to 15 ppbv when compared
to both surface and ozonesonde measurements and (2) in the
NH during summer, where TOMCAT is positively biased by
up to 28 ppbv over North America when compared to surface
sites. GOME-2 satellite data show that model performance is
better in JJA compared to DJF, where the model underesti-
mates O3 by up to 10 DU in regions with high observed O3
concentrations near Asia and Africa.
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VOC surface measurements show large negative biases in
simulated winter/spring C2–C3 alkanes and alkenes, which
is likely driven by underestimated anthropogenic emissions.
This has been seen previously for ethane and propane in sev-
eral models in the NH.

TOMCAT captures the rapid decline in PAN concentra-
tions between summer and winter at a European mountain
site but simulates peak PAN concentrations in June rather
than in April. TOMCAT is able to capture the seasonal cy-
cle of NOx well at two European surface sites but has trou-
ble capturing the concentrations, overestimating them at the
lower altitude Payerne site and underestimating them at the
higher altitude site of Hohenpeissenberg. This is likely to be
at least partly due to the very short lifetime of NOx and the
coarse model grid. Tropospheric satellite OMI NO2 showed
regional differences in TOMCAT biases, with negative biases
existing over China in DJF (possibly due to anthropogenic
emissions) and South America and Africa (possibly due to
fire emissions), and positive biases over Europe in DJF and
JJA. The biases over Asia have been shown to exist in several
other models when using the same emissions as used here. In
addition to this, models have been shown previously to vary
widely in the simulation of species such as HNO3, PAN and
acetaldehyde. Therefore, observations of these species that
are collected continuously throughout the year at several lo-
cations globally would be valuable in evaluating chemical
transport models in the future and understanding model bi-
ases in O3.

Code availability. TOMCAT/SLIMCAT (www.see.leeds.ac.uk/
tomcat) is a UK community model. It is available to UK (or
NERC-funded) researchers who normally access the model on
common facilities or who are helped to install it on their local
machines. As it is a complex research tool, new users will need
help to use the model optimally. We do not have the resources to
release and support the model in an open way. Any potential user
interested in the model should contact Martyn Chipperfield. The
model updates described in this paper are included in the standard
model library.
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online at https://doi.org/10.5194/gmd-10-3025-2017-
supplement.
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