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Abstract. The Global Nested Air Quality Prediction Model-
ing System (GNAQPMS) is the global version of the Nested
Air Quality Prediction Modeling System (NAQPMS), which
is a multi-scale chemical transport model used for air qual-
ity forecast and atmospheric environmental research. In this
study, we present the porting and optimisation of GNAQPMS
on a second-generation Intel Xeon Phi processor, code-
named “Knights Landing” (KNL). Compared with the first-
generation Xeon Phi coprocessor (codenamed Knights Cor-
ner, KNC), KNL has many new hardware features such as
a bootable processor, high-performance in-package mem-
ory and ISA compatibility with Intel Xeon processors. In
particular, we describe the five optimisations we applied
to the key modules of GNAQPMS, including the CBM-Z
gas-phase chemistry, advection, convection and wet depo-
sition modules. These optimisations work well on both the
KNL 7250 processor and the Intel Xeon E5-2697 V4 pro-
cessor. They include (1) updating the pure Message Passing
Interface (MPI) parallel mode to the hybrid parallel mode
with MPI and OpenMP in the emission, advection, convec-
tion and gas-phase chemistry modules; (2) fully employing
the 512 bit wide vector processing units (VPUs) on the KNL
platform; (3) reducing unnecessary memory access to im-
prove cache efficiency; (4) reducing the thread local storage
(TLS) in the CBM-Z gas-phase chemistry module to improve
its OpenMP performance; and (5) changing the global com-

munication from writing/reading interface files to MPI func-
tions to improve the performance and the parallel scalability.
These optimisations greatly improved the GNAQPMS per-
formance. The same optimisations also work well for the
Intel Xeon Broadwell processor, specifically E5-2697 v4.
Compared with the baseline version of GNAQPMS, the op-
timised version was 3.51× faster on KNL and 2.77× faster
on the CPU. Moreover, the optimised version ran at 26 %
lower average power on KNL than on the CPU. With the
combined performance and energy improvement, the KNL
platform was 37.5 % more efficient on power consumption
compared with the CPU platform. The optimisations also en-
abled much further parallel scalability on both the CPU clus-
ter and the KNL cluster scaled to 40 CPU nodes and 30 KNL
nodes, with a parallel efficiency of 70.4 and 42.2 %, respec-
tively.

1 Introduction

Insatiable computing demand is driven by the ever-increasing
scientific demands in many research codes such as the cli-
mate model Community Earth System Model (CESM) and
the weather model Weather Research and Forecasting Model
(WRF). In the early days of computing, when there was
insufficient computation capability, scientists had to make
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trade-offs to fit the computation into a limited budget. One
example is that the physical, chemical and dynamic pro-
cesses in the models were simplified to adapt to the limited
computation capability. Another example is that the horizon-
tal and vertical resolutions were also sacrificed owing to the
limited computation capability. This means that many details
were neglected or simplified in the model and that the simu-
lation ability of the models was limited.

Until early 2000, the application performance could eas-
ily be increased by using higher-frequency processors. As
the semiconductor manufacturing technology improved, we
reached the power density and thermal limitation of silicon
technology in early 2000 for single-core processor design.
The industry has taken a “right-hand turn” to deliver perfor-
mance through more compute cores rather than by increasing
processor frequency. As a result, applications need to em-
brace parallelism to achieve higher performance. At the same
time, heterogeneous computing is widely used in the scien-
tific computing area. Typical examples of many-core archi-
tecture include the graphics processing unit (GPU) and the
Intel Many Integrated Core (Intel MIC) (Chrysos, 2012).

With the popularity of the new architecture, geo-scientific
models have been partially or fully ported to the GPU and
MIC heterogeneous computation platforms to get better com-
putation performance. There are many reports about porting
models to the GPU heterogeneous platform. The Princeton
Ocean Model (POM) (Xu et al., 2015), except the initialisa-
tion and input/output (I/O) modules, was fully ported to the
GPU by using CUDA-C. Moreover, the model computation
performance was improved on both single node and clusters.
For the atmospheric chemistry models, the RADM2 chem-
ical scheme in the WRF-CHEM model (Grell et al., 2005)
was ported to different multi-core platforms. Although the
limitation of the on-chip memory exists with the application,
the GPU version still gets a speedup of 8.5× when com-
pared with its serial version (Linford et al., 2009). Similar
to the GPU, the first-generation Intel Xeon Phi coprocessor
(codenamed Knights Corner or KNC) was connected to the
mainboard via the Peripheral Component Interface Express
(PCI-E) bus (Xu et al., 2015), and the bandwidth of PCI-E
has become the new performance bottleneck for some mem-
ory bandwidth-bounded software applications, e.g. the pop-
ular atmospheric model WRF on KNC (Meadows, 2012).
Mielikainen et al. (2014a, b, c, 2015a, b) did a series of
works to transplant the physical schemes to the KNC plat-
form in WRF, including the Goddard microphysics scheme,
the Thompson microphysics scheme, the Goddard shortwave
radiation scheme and the advection scheme in the model dy-
namic core. Among these works, the Goddard microphysics
scheme (Tao and Simpson, 1993; Khain et al., 2003) got a
4.7× speedup on KNC and a 2.8× speedup on the CPU
compared with its baseline version, and sharing the same
modern hardware features led to a speedup on both the MIC
and the CPU platform. In addition, this phenomenon of per-
formance improvement also appeared in the optimisation

work of Thompson cloud microphysics. In our work, the
global atmospheric chemistry model GNAQPMS also got a
speedup on both the CPU and the MIC platform after the op-
timisation.

As emphasised by Mielikainen et al. (2014a), making full
use of the new hardware features of chips is the key to getting
a performance improvement on the MIC platform. KNL is
the second-generation Intel MIC architecture processor (So-
dani, 2015). Compared with the CPU, KNL has more cores,
16 GB of on-chip Multi-Channel Dynamic Random Access
Memory (MCDRAM), wider vector register and AVX-512
instructions support, and other minor architectural features.
Compared with the GPU, KNL is a bootable processor and
can work alone without a host CPU, which eliminates the
bottleneck of the PCI-E bandwidth. In addition, KNL has
adopted the x86 architecture and shares the same program-
ming model as the Intel processors. This study focused on
the optimisation of GNAQPMS to fully utilise the features
provided by modern (and future) processors. These optimi-
sations not only improve the performance of GNAQPMS on
the KNL platform but also work with our current and future
generation of processors, e.g. Skylake. GNAQPMS was de-
signed for global atmospheric aerosol and chemistry simu-
lation. Its applications include the temporal and spatial evo-
lution of atmospheric composition, providing the boundary
conditions for regional models, intercontinental long-range
transport and long-term climate change, and it also acts as
a key component of the Earth System Model of the Chinese
Academy of Sciences (CAS-ESM). Currently, GNAQPMS
can only run on the CPU platform, and its parallel scalabil-
ity and computation speed are about eight CPU nodes and
46 h per model year, respectively, at 1◦× 1◦ resolution (ex-
cluding the model I/O). This model’s performance is suit-
able for short-term or medium-term (5 years or less) simu-
lation, but not for long-term simulation (30 years or more).
Moreover, the overhead of the model will further increase
when the model I/O is included or a higher model resolu-
tion (e.g. 0.25◦× 0.25◦) is used. Therefore, the model can-
not be directly coupled to an earth system model and used
for long-term climate change simulation. By optimisation of
the model codes and usage of new hardware, we aimed to
greatly improve the model’s parallel scalability and compu-
tation speed. The target computation speed in the future is
about 5–10 model years per day (including the model I/O)
at 0.25◦× 0.25◦ resolution. We plan to improve the parallel
computation speed of GNAQPMS in the first step and im-
prove the model I/O efficiency in the next step. The optimi-
sation methods in this paper are also suitable for other atmo-
spheric chemistry transport models that use similar chemistry
or physical schemes to those of GNAQPMS.

In general, the optimisation processes include three steps:
(1) testing the baseline version codes and searching for the
performance bottleneck; (2) discovering and applying the op-
timisation solutions according to the specific performance
bottleneck; and (3) testing the codes and validating the new

Geosci. Model Dev., 10, 2891–2904, 2017 www.geosci-model-dev.net/10/2891/2017/



H. Wang et al.: GNAQPMS v1.1 2893

version codes. The optimisation process is iterative; that is,
these steps would be repeated until the peak or satisfactory
performance is reached. The single-node performance should
be optimised prior to the multi-node optimisation. More de-
tails about the common ways to modernise the codes can
be found at Intel’s website (https://software.intel.com/en-us/
modern-code/training/short-video-series).

The rest of the paper is organised as follows. Section 2
introduces GNAQPMS and the KNL processor. Section 3
presents the optimisation processes for GNAQPMS. Sec-
tion 3.1 shows the methods and tools used for testing the
baseline codes and finding the bottlenecks, followed by sub-
sections describing the optimisation measures in detail. The
numerical experiments of the performance testing are pre-
sented in Sect. 4, which includes the result validations in
Sect. 4.2 and the performance tests in Sect. 4.3 and 4.4. The
conclusions are given in Sect. 5.

2 Model and KNL description

GNAQPMS is a global multi-scale chemical transport model
developed by the Institute of Atmospheric Physics, Chinese
Academy of Sciences (Chen et al., 2015). The baseline ver-
sion works on the x86 CPU platform. As far as we know, this
is the first work that ported GNAQPMS to and optimises it
for the KNL platform. The model description of GNAQPMS
and KNL is presented as follows.

2.1 Model description of GNAQPMS

GNAQPMS is the global version of NAQPMS (Chen et al.,
2015; Wang et al., 2006). NAQPMS is a 3-D regional Eu-
lerian model that has been widely applied to simulate the
chemical evolution and transport of ozone (Li et al., 2007;
Tang et al., 2010), aerosol and acid rain over East Asia (Wang
et al., 2002; Li et al., 2011, 2012) and to provide routine air
quality forecasts in mega cities such as Beijing, Shanghai
and Guangzhou (Wang et al., 2010; Wu et al., 2012; Wang
et al., 2009). The typical timescale of these applications is
several days or months. Unlike the application of NAQPMS,
that of GNAQPMS usually has a typical timescale of more
than 10 years and has very high requirements to model the
computation speed (e.g. 5–10 model years per day). There-
fore, we chose GNAQPMS to start the code optimisation.
Figure 1 shows the framework of GNAQPMS; its model in-
puts include the meteorology field and static emissions, and
its physical/chemical processes include dynamic emissions
with profile assigned, advection, diffusion and convection
due to the meteorology field, and gas chemistry, aerosol mod-
ule, mercury chemistry and dry/wet deposition processes.
GNAQPMS has several key techniques, including process
analysis and tracer-tagging techniques, which will help to as-
sess the contribution to emission sources (Wu et al., 2011). It
is also a multi-scale nested and parallel computation model,

Figure 1. Framework of the Global Nested Air Quality Prediction
Modeling System (GNAQPMS).

and can be coupled to a regional model to simulate the air
pollution from a global scale to a regional scale, and even to
a city scale, with MPI functions on a high-performance paral-
lel computation platform. The air pollutant concentration, de-
positions and source apportionment results will be outputted
after the simulation.

As mentioned above, the key chemical processes in
GNAQPMS contain gas-phase chemistry, aqueous-phase
chemistry and aerosol chemistry. The gas-phase chemical
module is the CBM-Z mechanism (Zaveri and Peters, 1999),
with the solver module updated by Feng et al. (2015) by us-
ing a modified backward Euler (MBE) method. In this study,
the CBM-Z module was optimised heavily, as it is one of the
most time-consuming modules in GNAQPMS, as shown in
Fig. 2. Other chemical reaction modules such as the aqueous-
phase and the aerosol chemical module are relatively mi-
nor time-consuming modules compared with the CBM-Z
module. The wet deposition module and the aqueous-phase
chemical module use the RADM2 mechanism (Ge et al.,
2014; Chang et al., 1987; Wang et al., 2002); the former
is also a hotspot in GNAQPMS, which gets a good perfor-
mance after being optimised. The other physical processes
in GNAQPMS include dry deposition (Wesely, 2007), ad-
vection (Walcek and Aleksic, 1998; Walcek, 2000), diffusion
and convection, and all of these modules are also important
hotspots.

2.2 KNL description

The benchmark many-core processor we used in this study
was the Intel Xeon Phi KNL 7250 processor. Compared
with the first-generation KNC MIC coprocessor, KNL has
many improvements. Similar to the GPU, KNC is a copro-
cessor and it cannot work alone. KNC needs a host CPU
and must be connected to the mainboard via the PCI-E in-
terface, and the bandwidth of PCI-E should be taken into ac-
count when designing codes for KNC. Unlike KNC, KNL
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Figure 2. Overhead proportions of Base-V GNAQPMS (outer
ring) and Opt-V GNAQPMS (inner ring). The top five most time-
consuming modules were CBM-Z, diffusion, advection, wet depo-
sition and boundary exchange.

can work alone as a processor like a normal CPU, which
means more efficient memory access. Moreover, KNL is
equipped with 16 GB of MCDRAM, whose bandwidth is
higher than that of normal DDR4 yet lower than that of
the on-chip caches. MCDRAM was designed to bridge the
bandwidth gap between DDR4 and on-chip cache. The MC-
DRAM on KNL can be configured in three modes for dif-
ferent applications, namely cache mode, flat mode and hy-
brid mode. Since GNAQPMS is not limited by the mem-
ory working set size detected by the VTune Memory-Access
tool, the cache mode was chosen in our experiment. The
core number and clock speed in KNL were also improved.
The core number was increased from 61 to 68, and the fre-
quency of each core was increased from about 1.2 to 1.4 GHz
at the same time. More details about KNL can be found
at Intel’s website (https://www.intel.com/content/www/us/
en/products/processors/xeon-phi/xeon-phi-processors.html).

3 Optimisation technology

In this study, some optimisation measures were used when
porting GNAQPMS to the KNL platform, including updat-
ing the pure MPI to a hybrid parallel mode, strengthening of
the vectorisation, reducing unnecessary memory access, re-
ducing the thread local storage (TLS) and changing the way
the global communication works in GNAQPMS. Moreover,
the baseline version and the optimised version of GNAQPMS
were labelled as “Base-V” and “Opt-V”, respectively.

3.1 Baseline performance test

The first step of the optimisation was to test Base-V
GNAQPMS and to identify the hotspots of the model.
As shown in Fig. 2, the runtime breakdown of each
section of Base-V GNAQPMS was measured and cal-
culated by the MPI function mpi_wtime in the exper-
iment on the x86 CPU platform. The top five time-
consuming sections were the CBM-Z chemistry, wet de-
position, advection, diffusion and emission modules. To
analyse the insight performance bottleneck of GNAQPMS,
we used the Intel VTune Amplifier (https://software.intel.
com/en-us/intel-vtune-amplifier-xe/), Intel Advisor (https:
//software.intel.com/en-us/intel-advisor-xe) and Intel Trace
Analyzer and Collector (ITAC; https://software.intel.com/
en-us/intel-trace-analyzer). The VTune tools can do the anal-
ysis of the performance in high-performance computing
(HPC), memory access, thread profiling with locks and waits
analysis, floating-point operations per second (FLOPS) and
floating point unit (FPU) utilisation analysis and detection
of hotspot functions. By using the VTune HPC performance
detection tool, we could report the general performance, e.g.
GFLOPS, bandwidth, and CPU and FPU utilisation, through
a simple report. Table 1 presents the general indicators de-
tected by the VTune HPC performance detection tool for the
two models. Moreover, an obvious increase in GFLOPS was
detected from 93.741 to 279.479. The “Memory bound” col-
umn in Table 1 indicates the fraction of slots where a pipeline
could be stalled owing to the demand load or store instruc-
tion, and the values of 9.2 % of Base-V and 12.7 % of Opt-V
indicate that the bandwidth is not the limitation of our model.
The FPU utilisation was also improved from 2.9 to 9.6 %, al-
though there is still room for improvement. Further analysis
of the hotspots and bandwidth could be detected by Hotspot
and Memory-Access in VTune, respectively. Hotspots are the
segment codes that consume most of the time during the
running of the model. Therefore, optimising these hotspot
parts will be more helpful to improve the speed and effi-
ciency of the model codes, and Fig. S1 in the Supplement
shows the hotspots in Base-V GNAQPMS with low CPU
utilisation. Moreover, using the Intel Advisor tool could help
to learn about the vectorisation and bandwidth situation of
the hotspot functions and modules. The Intel Advisor tool
could also provide some information about the limitation of
vectorisation or the reasons why vectorisation cannot be re-
alised, as well as the primary solutions to the users to do the
full vectorisation work. Furthermore, the realisation of multi-
threads could be done with the help of the Intel Advisor tool.
As for the MPI performance, ITAC could provide the par-
allel MPI balance information and communication profiling,
which is auto-visualised by ITAC to analyse the MPI perfor-
mance, as shown in Fig. S2. However, the more significant
step is designing the corresponding solutions for the hotspots
or bottlenecks with the help of the tools mentioned above.
Moreover, timely test and validation should be done after the
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Table 1. General indicators detected by the VTune HPC performance detection tool for the two versions of GNAQPMS.

Version SP GFLOPS CPU utilisation Memory bound FPU utilisation

Base-V 93.741 82.5 % 9.2 % 2.9 %
Opt-V 279.479 74.1 % 12.7 % 9.6 %

optimisation. This whole process, as mentioned in Sect. 1,
could be repeated many times to try different alternatives and
gain a satisfactory performance.

Our optimisation is based on the tools and processes men-
tioned above. To achieve the goal of porting GNAQPMS
from the CPU platform to the KNL platform, we adopted the
basic idea of fully using the hardware features of KNL, e.g.
multiple hyper-threads, vector computing units, MCDRAM
and multi-level caches. Accordingly, the main optimisation
technologies include changing the parallel mode, fully vec-
torising the codes and improving the cache hit rates. Base-V
GNAQPMS uses only the MPI parallel mode, which would
ignore the hyper-threads of the CPU as well as of KNL
and may greatly limit the scalability owing to the expensive
communication as the number of processes increases. Be-
cause of the knowledge limitation of the original designer
of GNAQPMS, the old way (i.e. file reading and writing)
of doing the global communication was used in Base-V
GNAQPMS, which directly reduces the speed and limits the
scalability.

3.2 Main optimisation methods

According to the profiling and analysis of Base-V
GNAQPMS on the CPU platform, the following optimisation
measures were conducted: (1) altering the pure MPI parallel
mode to hybrid parallel mode with MPI and OpenMP func-
tions; (2) manual strengthening of the vectorisation with the
help of compiler directives to fully use the vector computa-
tion on the KNL platform; (3) reducing unnecessary mem-
ory access to improve the utilisation efficiency of caches;
(4) reducing the TLS for the common variables of each
OpenMP thread; and (5) changing the way global commu-
nication works from writing/reading interface files to using
MPI functions. KNL contains many low-frequency cores,
and each core contains four hyper-threads. Considering the
relatively expensive overhead of communication in MPI for
many cores of KNL, we adopted the hybrid parallel mode by
using OpenMP and MPI. Furthermore, the OpenMP threads
could fully use the hyper-threads in KNL, and the cheap com-
munication cost of OpenMP could help to improve the scal-
ability. As shown in Table 2, the optimisation measures and
the corresponding speedup for the relatively high overhead
sections are presented, and the optimisation steps in the head-
ing of Table 2 refer to the optimisation measures mentioned
in the preceding paragraph. OpenMP was added to the sec-
tions including the emission calculation, advection and con-

vection, diffusion, gas-phase chemistry and wet deposition
modules. The other sections did not adopt the OpenMP opti-
misation because of the relatively low calculation density and
time consumption, and the cost of establishing and destroy-
ing threads in these sections is larger than the benefits gained
from OpenMP. Therefore, the use of OpenMP may lead to a
decrease in performance for these modules. To ensure that
the peak performance of OpenMP was fully achieved, we
removed the TLS of the common variables in the CBM-Z
module, which is effective in reducing the overhead of estab-
lishing the threads by reducing the procedure for copying the
common variables for each thread. The TLS is introduced for
variables in named common blocks when using the thread-
private OpenMP directive and is allocated for each thread on
thread creation. These variables are private for each thread
but are global within the thread. When a thread references a
common variable in its TLS, the memory address of the TLS
is first located by calling an OpenMP library function with
the thread ID, and then the common variable is addressed
within the TLS space. Even for the references to common
variables within the same named common block in the same
subroutine, the above process is repeated for every variable,
rather than addressing the TLS and common block only once.
Since calling the OpenMP library function for TLS address-
ing is expensive, and there are many references to these com-
mon variables in the user subroutines, the total overhead of
using common variables in the TLS is extremely high. Link-
ing against the static OpenMP library can partially alleviate
the calling cost, but the cost is still prohibitive.

For global communications, an improvement was achieved
by changing how communication is taking place. The orig-
inal way for global communication is by writing the mes-
sages that need to be broadcast to other processes to files,
and then the processes need to read these files to get the mes-
sage through an I/O channel, which is a bottleneck in the
model. The old way has relatively low efficiency and will
impact the performance greatly, especially in the initialisa-
tion module. Multiple processes that read the same file will
make this file a critical section, and the limitation of the I/O
bandwidth would also slow the speed. This problem was in-
troduced owing to the lack of consideration for parallel com-
putation in the early development of GNAQPMS. Instead
of writing/reading interface files, the new way is to use the
MPI_ALLREDUCE and MPI_GATHERV functions to per-
form the global communications.

Manual strengthening of the vectorisation with compiler
directives is used in the sections including emission, advec-

www.geosci-model-dev.net/10/2891/2017/ Geosci. Model Dev., 10, 2891–2904, 2017



2896 H. Wang et al.: GNAQPMS v1.1

Table 2. Optimisation measures for the main modules and the speedup after the optimisation on the CPU and KNL platforms. The well-
parallelised modules (e.g. emission module) could get a high speedup of 12.83× on KNL, and a 3.27× speedup on KNL and 2.82× speedup
on the CPU were achieved for the CBM-Z gas-phase chemistry module, which was the most time-consuming part (68 %) for the baseline
version.

Items OpenMP Strengthen the Remove Change global Remove redundant speedup on speedup on
optimisation vectorisation TLS communication calculation and the CPU KNL

memory access

Initialisation Yes 1.27 1.26
Emission Yes Yes Yes Yes 5.03 12.83
Advection and convection Yes Yes Yes Yes 2.72 3.18
Diffusion Yes Yes 1.99 3.31
Gas-phase chemistry (CBM-Z) Yes Yes Yes Yes Yes 2.82 3.27
Wet deposition Yes Yes 3.19 5.92

tion, diffusion and CBM-Z gas-phase chemistry. KNL sup-
ports 512 bit vector operations and data path. It consists of
two VPUs that can perform up to two 512 bit vector opera-
tions per cycle. A previous study about the optimisation of
the physical schemes in WRF (Mielikainen et al., 2014a) in-
cluded plenty of ways to vectorise the code and align the
data for vectorisation, which was prepared for the upcom-
ing unified AVX-512 instruction set on KNL and Skylake
architecture CPUs. Although the compiler can automatically
vectorise loops with no obvious data dependence, there are
still many loops that cannot be optimised automatically be-
cause of loop or array dependencies. Therefore, manually
adding vectorisation directives and reconstructing the loops
are needed with the help of the Intel Advisor tool men-
tioned above. During this process, different optimisation tips
were used for various scenes, and typical vectorisation tech-
niques were introduced in Sect. 3.4 and 3.5. As reported by
Mielikainen et al. (2014a), alignment directives were added
in the codes for ensuring that vectorisation results in peak
performance. For KNL, if the data are aligned and padded
to 64 byte boundaries, the efficiency of data access can be
improved and vector operation can be executed with high ef-
ficiency. This operation is treated as part of the vectorisation
optimisation and is isolated as an independent optimisation
measure.

Memory optimisation is also a critical spot that should be
concentrated on. As mentioned in Sect. 2.2, the MCDRAM
on the KNL platform can be configured in three modes. Since
the internal memory is not the bottleneck for GNAQPMS,
16 GB of MCDRAM is used as the last level cache for
GNAQPMS. To utilise the two level caches and MCDRAM
well, we had to remove some unnecessary memory access
operations via optimisation and cut off some temporary ar-
rays. In the original code, some array variables are allocated,
used and de-allocated many times in the outermost loop of
the time step. In the optimised code, these variables are allo-
cated and de-allocated only once outside the time-step loop.
Moreover, reforming the loop order to realise vectorisation
also enables the cache hit rates to be improved at the same
time.

The optimisation details for the typical physical and chem-
ical modules, including the initialisation, emission, advec-
tion, convection, diffusion, chemistry and deposition mod-
ules in GNAQPMS, are presented in the following sections.

3.2.1 Global communication

The global communication of the model parameter in Base-
V GNAQPMS is realised through writing and reading inter-
face files in MPI parallel computing. GNAQPMS does many
global communications when the model is initialised for the
defined model domains, grids and boundaries setting and
such model parameter. Thus, the model initialisation gets a
good speedup through this optimisation method, which can
save the time consumed by the input/output resources. Ac-
cording to the performance experiment shown in Table 2, the
speedup for this section reached 1.27 on the CPU and 1.26 on
KNL compared with the Base-V model on the CPU platform.
KNL has more processors than the CPU and will involve
more MPI tasks and more communications between each
task; thus, KNL gets a limited benefit through this measure
on a single node. However, this optimisation method greatly
improves the model scalability in the multi-node testing. The
scalability test results are shown in Sect. 4.4. However, we
should clarify that this optimisation measure is only suitable
for GNAQPMS since this problem was caused by the lack
of concern for parallel efficiency by the original designer of
the model. Because of the low frequency of the KNL cores,
the I/O writing/reading way may lower the performance of
KNL more than that of the CPU, which is indicated by the
single-node test in Sect. 4.3.

3.2.2 Emission process section and typical vectorisation

In GNAQPMS, the emission process section would read the
external emission files and assign them to emission variables,
and increase the relevant pollution concentration when the
model is running. In a word, the emission process section
prepares the emission data for GNAQPMS. Therefore, it is
the first section in the calculation loop of one time step. The
emission section calculates and distributes the emission rates
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of the relevant species for each vertical and horizontal layer
and completes the unit conversion.

In our study, strengthening of the vectorisation by adding
directives and constructing loops and multithreading were
done in the emission section. The sample code of this work
is shown in Fig. 3 to explain the whole processes as an ex-
ample. First, we changed the nesting order of loops from j,
i, igas to igas, j, i to ensure that the data would be continu-
ously accessed and to improve the efficiency of the caches.
Second, since the subroutine get_ratio_emit() is too big to be
inlined automatically by the Intel compiler, we manually in-
lined it in the calling site of the main program to improve the
calling efficiency and facilitate the vectorisation. Third, vec-
torisation was involved in the emission section in the model
by using the parameters to convert a scalar structure of as-
signment value to variables to a vector structure, which is
shown in step 3 in Fig. 3. Finally, we added the directives,
clauses, declaration and syntax comment of OpenMP out-
side the outermost loop, as shown in box “4”. According to
the performance testing of the sample code of this hotspot, it
could get an 8.57× speedup on the CPU (E5-2697 V4) with
two OpenMP threads. However, in the actual application, the
number of OpenMP threads should fit the whole application
to get the peak performance. This type of optimisation is
common in Opt-V GNAQPMS. With the doubly wider vec-
tor registers in KNL and OpenMP optimisation, the speedup
of the whole emission section reached 12.83× (from 167.09
to 13.02 s).

Moreover, the allocatable arrays loading the emission rates
of all species were kept, which had been de-allocated at the
end of the emission module in Base-V GNAQPMS, since
they would be used again in the gas-phase chemistry sec-
tion in the same way. Therefore, the cost of allocating, as-
signing and de-allocating these arrays for the second time in
the section of CBM-Z is eliminated by preserving the vari-
ables across functions. Finally, the initialisation of these ar-
rays was also updated from one statement to assign the whole
four-dimension arrays to loops with OpenMP to initialise the
values, thus improving the efficiency of the initialisation.

3.2.3 CBM-Z gas-phase chemistry section

The gas-phase chemistry module is the key module in
GNAQPMS; this module uses the CBM-Z scheme (Zaveri
and Peters, 1999; Chen et al., 2015). According to the per-
formance analysis with the MPI timing function shown in
Fig. 2, the CBM-Z module is one of the most important and
sophisticated hotspots in GNAQPMS.

The framework of the CBM-Z module is shown in Fig. 4.
It contains many complicated subroutines to calculate the
gas-phase species concentration. The analysis of the algo-
rithms and code structure is in the first place before the op-
timisation, and the flowcharts of the module are presented in
Fig. 4. Deep analysis with the Intel VTune tools showed that
the most complicated and important hotspot was the Integrat-

Figure 3. Sample codes containing some typical optimisation meth-
ods. Panel (a) is the original code and panel (b) is the optimised
code. Step (1) changes the order of the i, j, ig loops, and step (2)
makes the subroutine inline. Step (3) uses the parameter to convert
the scalar codes to vector codes, and step (4) adds the OpenMP
pragmas.

eChemistry subroutine, which contains the subroutines Se-
lectGasRegimes, PeroxyRateConstants, GasRateConstants,
Setgasindices, MapGasSpecies and ODEsolver. The func-
tion of the SelectGasRegime subroutine is to choose the
optimum combination of gas-phase chemistry mechanisms
on the basis of the concentrations and emissions of differ-
ent gas species. The selection of different gas-phase chem-
istry mechanisms controls the following progresses in the
IntegrateChemistry subroutine. The subroutines PeroxyCon-
stants and GasRateConstants calculate the gas reaction rates
for the selected chemistry mechanisms by relying on the re-
sult of the SelectGasRegimes subroutine. Then, the following
SetGasIndices subroutine prepares the index of the local con-
centration and emission variables, and the MapGasSpecies
subroutine converts the global gas species concentration vari-
ables to the local concentration variables when it is called for
the first time. After that, the MBEsolver subroutine would
calculate the ordinary differential equation functions of the
gas-phase chemistry reactions. The second call to the Map-
GasSpecies subroutine returns the new values of the global
gas concentrations.

According to the code structure of the CBM-Z module, the
optimisation work was done step by step. At first, because of
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Figure 4. Flowcharts of the CBM-Z module (a) and the IntegrateChemistry subroutine (b). The red subroutines were removed and made into
inline functions, and the orange parts were modified for vectorisation.

the relatively simple structures and functions, the Setrunpa-
rameters and SolarzenithAngle subroutines, as shown in red
in Fig. 4, were removed and made into inline functions to
improve the calling efficiency. For the subroutines in yel-
low in the CBM-Z module, including the PrintResult and
IntegrateChemistry subroutines, strengthening of the vec-
torisation was conducted. The PrintResult subroutine has a
function for converting the units of gas concentration from
molecules cm−1 to ppb with one loop, and a pragma direc-
tive was added to this loop to force the compiler to do the
vectorisation.

In the CBM-Z module, the core calculation is in the In-
tegrateChemistry subroutine, whose flowchart is also shown
in the right plot in Fig. 4. The optimisation of this subrou-
tine contributed the most remarkable performance improve-
ment for GNAQPMS. The main optimisation of the Integrat-
eChemistry subroutine includes two parts of work: strength-
ening of the vectorisation by constructing a vector loop and

removing the TLS. The strengthening of the vectorisation in
the IntegrateChemistry subroutine was realised through three
aspects: (1) giving the directives for the loops to instruct the
compiler to vectorise the codes, including declaring no de-
pendencies and aligning the data for efficient data accesses;
(2) converting the scalar structure into vectorisation structure
codes, as shown in step 3 in Fig. 3, but using more complex
parameter arrays to build the loop structure; and (3) in the
original code segments in the IntegrateChemistry subroutine,
the exponential operation sometimes was used without base-
e, and these code segments had been updated to the base-e
exponential operation, which can be vectorised by the AVX-
512 instruction set on the KNL platform. The second part in
our work was removing the TLS for the OpenMP threads. As
described in Sect. 3.2, the TLS was designed to keep the data
synchronisation among the threads for the common variables
in Fortran. At present, the same work on the TLS is done
by the compiler automatically in the way of adding codes
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to copy the common variables for each thread of OpenMP.
The codes added by the compiler impacted the performance
greatly, and it is necessary to remove the TLS. Therefore,
a type structure named cbmztype was constructed to store
the common variables. Using a PRIVATE list in the OpenMP
directive allows each thread to own a private copy of the ob-
ject instance of cbmztype, i.e. the cbmzobj variable. Since
cbmzobj is located on a thread local stack, the references
to its member variables require only simple relative address-
ing on the stack, with simple yet efficient instructions. Mean-
while, since the common variables in the original code were
no longer global and are now visible within the user subrou-
tines, a formal parameter (argument) of cbmzobj was added
to the subroutines using the variables. The additional over-
head of passing the address of cbmzobj to the subroutine
is quite small. Therefore, the cost of referencing common
variables in the TLS is greatly reduced with the derived type
object.

Other optimisation techniques, including removing local
variables to improve the memory access, were also used in
CBM-Z to improve the efficiency of using caches. After all
the optimisations, the CBM-Z got a 2.82× (from 3031.9 to
1075.25 s) speedup on the CPU platform and a 3.27× (from
3031.9 to 927.32 s) speedup on the KNL platform, respec-
tively, as shown in Table 2. Compared with the OpenMP
performance of other modules, that of the CBM-Z module
was not good enough, taking up most of the time in Opt-
V GNAQMS, as shown in Fig. 2, owing to the high cost of
copying the rest of the common variables. More optimisa-
tions will be involved in the future to improve the OpenMP
performance for CBM-Z.

3.2.4 Diffusion and wet deposition section

Strengthening of the vectorisation and updating of the global
communication were used in the optimisation of the dif-
fusion module. According to the performance on the sin-
gle node, the diffusion module could get a 1.99× speedup
(from 241.97 to 121.19 s) on the CPU platform and a 3.31×
speedup (from 241.97 to 73.05 s) on the KNL platform. The
optimisation of the wet deposition module is relatively sim-
ple but more effective. The main optimisation of the mod-
ule involves adding an OpenMP pragma to enable the mul-
tithreading for the wet deposition module. During this pro-
cess, the position of allocating the private variables should
be carefully chosen. The scalability of the threads in the wet
deposition was really good, which allowed OpenMP to get
better performance on the KNL platform than on the CPU
platform. Finally, the optimised wet deposition module got
a 5.92× speedup (from 498.01 to 84.13 s) on the KNL plat-
form, which was much higher than the 3.19× speedup (from
498.01 to 156.13 s) on the CPU platform.

4 Performance evaluation

A 48 h global atmospheric chemistry simulation was de-
signed as the test case to test Opt-V GNAQPMS. In the test
case, GNAQPMS had full physical and chemical processes
in one domain without nesting grids, which made it easier to
diagnose the elapsed time. The horizontal resolution of the
model was 1◦× 1◦, which indicates that the modelling do-
main contained 360× 180 grids. Moreover, the number of
vertical layers was 20, whereas the time step for integration
was 600 s in the test case. The test case was designed to test
the performance of GNAQPMS on a single node of the CPU
and KNL platforms and on multi-nodes of different platform
clusters. This test case was an actual scientific workload and
had a medium scale of calculation amount; therefore, it al-
lowed us to carry out much debugging and testing within a
short time.

Three aspects were considered to test the performance
of Opt-V GNAQPMS by comparing it with that of Base-
V GNAQPMS: (1) validation of the modelling results,
(2) speedup and (3) scalability, as discussed in the following
section. This test case only focused on the calculation loop
part except for the output part.

4.1 Platform setup

Intel Corporation provides a high-performance computing
environment. The Cthor Lab. of Intel Corporation was
adopted for the single-node tests owing to its relatively
steady environment, and Intel’s Endeavor cluster was used
for the cluster tests. There were two platforms, including
the CPU and KNL nodes. The CPU node had a 2.3 GHz
18-core Intel Xeon E5-2697 V4 processor, and each board
contained two sockets, and its operating system was Cen-
tOS release 6.7, which is similar to the Red Hat Enterprise
Linux system. The KNL node had a 1.40 GHz 68-core In-
tel Xeon Phi 7250 processor, and its operating system was
Red Hat Enterprise Linux 7.2. The network was using the
latest Intel Omni-Path Architecture (OPA). Both Base-V and
Opt-V GNAQPMS were compiled with the Intel FORTRAN
Compiler 2017 Update 1, and Opt-V GNAQPMS was com-
piled for the CPU and KNL platforms with its own compile
flags, shown in Table 3. For Opt-V GNAQPMS, the “-xCore-
AVX2” and “-xMIC-AVX512” compile flags were not used
for the advection module because they might cause calcula-
tion accuracy difference because of the numerical sensitivity
of the advection algorithm.

4.2 Validation of the model results

The spatial distribution of atmospheric chemistry was used
for the validation, which was plotted from the binary files
outputted by GNAQPMS, as shown in Fig. 5. Four species,
namely black carbon (BC), carbon monoxide (CO), ground-
level ozone (O3) and nitrogen dioxide (NO2), were chosen
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Table 3. Compile flags of Base-V GNAQPMS and Opt-V GNAQPMS on the CPU and KNL platforms.

Version of GNAQPMS Intel compiler flags

Base-V –O3 –init=arrays –init=zero –fpp –w – traceback –ftz –fno-
alias –fno-fnalias -g

Opt-V (CPU platform) –O3 –ip –init=arrays -xCore-AVX2 –fp-model fast=1 –O3 –ip
–init=arrays –init=zero –qopenmp –ftz –fno-fnalias –fno-alias
–g –w – traceback

Opt-V (KNL platform) –O3 –ip –init=arrays –MIC-AVX512 –fp-model fast=2 -align
array64byte –qopenmp –ftz –fno-fnalias –fno-alias –g –w –
traceback

Figure 5. Spatial distribution of BC, CO, O3 and NO2 from Opt-V and Base-V GNAQPMS.

to verify the model results by examining their value changes
after the optimisation. According to the different reaction
properties, these four species participated in different chem-
istry reactions. BC is a component of fine particulate mat-
ter (PM), consisting of pure carbon in several linked forms,
and is emitted in anthropogenic and naturally occurring soot.
In GNAQPMS, BC hardly gets involved in chemical reac-
tions and can stay in the atmosphere for several days or
even weeks. CO is spatially variable and short-lived, play-
ing a role in the formation of O3, and its spatial distribu-
tion is predominated by the emissions. NO2 is one of the O3
precursors, participating in the photochemical reaction with

the ozone (O3). Thus, CO, NO2 and O3 will be calculated
in the gas-phase module CBM-Z of GNAQPMS. Because
of this type of species diversity, the model modules can be
fully covered and tested to ensure that the model results have
no change during the step-by-step optimisation. By compar-
ing the model output results and plotting the spatial distribu-
tion images with the relative error (RE) shown in Fig. 5, we
can see, in the third column, that the RE was small (< 1 %)
enough. The optimisation does not introduce an “erroneous”
concentration for any atmospheric specie, and therefore it is
reliable. However, the error could not be completely dimin-
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Table 4. Speedup and wall time of different combinations of OpenMP threads and MPI processes.

CPU (E5-2697 V4 with 36 physical cores and 2 hyper-threads)

OMP MPI Wall time Speedup

Baseline (no hyper-thread) 0 36 4381.2 1

Opt-V 1 72 1769 2.48
2 36 1625.72 2.70
4 18 1614.9 2.71
6 12 1580.1 2.77

12 6 1612.3 2.72
18 4 1790.2 2.45
36 2 2243.4 1.95

Opt-V (no global communication) 6 12 1623.6 2.70

KNL (KNL 7250 with 68 physical cores and 4 threads)

Opt-V 2 136 1499.2 2.92
4 68 1402.9 3.12
2 68 1512.8 2.90
4 34 1248.3 3.51
8 34 1373.6 3.19

16 17 1473.2 2.97

Opt-V (no global communication) 4 34 1444.6 3.03

ished because of the numerical sensitivity of the advection
algorithm.

4.3 Speedup performance

The runtime breakdown of Base-V and Opt-V GNAQPMS
on the single-node CPU platform is shown in Fig. 2. In both
Base-V and Opt-V GNAQPMS, the CBM-Z module played
the most significant role for performance, and the absolute
performance improvement for CBM-Z was remarkable after
the optimisation. The better vector processing performance
helped KNL to get a better speedup (3.27×) than the CPU
(2.82×) in CBM-Z. However, compared with the acceler-
ation of other modules (e.g. emission and wet deposition),
that of CBM-Z was limited, which was mainly caused by the
parallelisation overhead of OpenMP for the CBM-Z module
when establishing the OpenMP threads. Different combina-
tions of OpenMP and MPI processes were tested on a single
node, and the results are shown in Table 4. The speedup of
the best combination for Opt-V GNAQPMS reached 3.51×
on KNL and 2.77× on the CPU, compared to that of Base-
V GNAQPMS, and the KNL platform had an advantageous
speedup of 1.26× over the CPU platform. At the same time,
without the global communication optimisation, the speedup
of these combinations was 3.03× on KNL and 2.70× on
the CPU. In addition, these results indicated that KNL was
affected more than the CPU since the KNL cores have a
lower frequency for the I/O. The power consumption was
measured with a script tool based on the Intelligent Platform
Management Interface (IPMI). IPMI is a low-level interface

Figure 6. Scalability of Base-V and Opt-V GNAQPMS on the CPU
and KNL clusters. Base-V GNAQPMS on the CPU cluster had a
bad scalability and its performance was nearly saturated on 8 nodes,
whereas Opt-V GNAQPMS could reach at least 40 nodes on the
CPU and at most 30 nodes on KNL.

specification that allows remote management at the hardware
level without dependencies on the operating system. IPMI
communicates with the server’s baseboard management con-
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Figure 7. Simulation ability improved with increasing number of nodes.

troller (BMC), which is a reliable agent in the system for
managing and gathering system health, including power con-
sumption data. The average power was 440 and 324 W for the
CPU and KNL platforms, respectively. Therefore, the aver-
age power of KNL was 26 % lower and the average energy
consumption was 37.5 % lower than those of the CPU plat-
form. The faster speed and lower energy consumption en-
abled KNL to outperform the CPU on a single node.

4.4 Scalability on a cluster

The cluster performance of the atmospheric model was mea-
sured by strong scalability. Strong scalability indicates how
many computing resources can be used when the workload
is fixed, which can be measured by the speedup with increas-
ing node number. Better scalability means the model can use
more computing resources to deal with a task and complete
the task at a shorter time. The scalability was measured by
recording the speedup of the core calculation portion of the
model on clusters.

As shown in Fig. 6, Base-V GNAQPMS could maximally
use eight two-socket CPU nodes for the test case. After
the optimisation, the parallel scalability of GNAQPMS was
greatly improved on both the CPU and the KNL cluster, scal-
ing to 40 CPU nodes and 30 KNL nodes, with a parallel ef-
ficiency of 70.4 and 42.2 %, respectively. Opt-V GNAQPMS
could use more than 40 two-socket CPU nodes for the same
test case. The test of scalability on the CPU cluster was con-
strained by the limited computing resources, and the scala-
bility could be expected to extend to more than 40 nodes.
However, the scalability curve of the KNL cluster was lower
than that of the CPU cluster, as shown in Fig. 6; moreover,

Opt-V GNAQPMS could only use 30 KNL nodes at most.
On a single node, Opt-V GNAQPMS had a higher perfor-
mance on the KNL platform than on the CPU platform when
the number of nodes reached 12; however, its speed on the
KNL platform was lower than that on the CPU platform. This
was mainly caused by too many MPI processors and the not-
good-enough performance of the GNAQPMS OpenMP code
segments on KNL, which has 68 cores, almost 4 times more
than those of the CPU. According to the above test, further
optimisation of OpenMP is needed to improve the cluster
performance of Opt-V GNAQPMS on the KNL cluster. In
addition, Fig. 7 shows that the simulation speed, or model
second per real second, improved with increasing number of
nodes. When reaching 40 CPU nodes, the CPU cluster could
do the simulation of 8 model years per day, and with 30 KNL
nodes, it could do the simulation of 3.7 model years per day
excluding the I/O part. The optimisation work in this study
has made the computation performance of GNAQPMS very
close to our anticipated goal of 5–10 model years under the
coarse spatial resolution.

5 Conclusions

In this study, the global chemistry transport model
GNAQPMS was optimised to run on the Intel second-
generation MIC architecture KNL processor and acceler-
ate its modules. The main optimisation methods and tips
were used, including (1) updating the pure MPI parallel
mode to the hybrid parallel mode with MPI and OpenMP;
(2) strengthening the vectorisation by constructing loops and
using compiler directives in GNAQPMS to make full use of
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the 512 bit wide VPU on the KNL platform; (3) reducing
unnecessary memory access to improve the utilisation effi-
ciency of caches; (4) removing the TLS for common vari-
ables with each OpenMP thread to improve the OpenMP ef-
ficiency; and (5) changing the way global communication
works from writing/reading interface files to using MPI func-
tions.

The tests of Opt-V GNAQPMS were conducted on the lat-
est Xeon E5-2697 V4 and KNL 7250 clusters. Both single-
node and multi-node cluster performances were tested. For
the single node, Opt-V GNAQPMS achieved a speedup of
2.77× on the CPU platform and a speedup of 3.51× on the
KNL platform compared with the Base-V model on the CPU
platform. The power and energy consumption of KNL was
26 % lower than that of the CPU. With the combined per-
formance and energy improvement, the KNL platform was
37.5 % more efficient in terms of power consumption com-
pared with the CPU platform. Compared with the CPU plat-
form, the KNL platform had obvious advantages such as fast
speed and lower energy consumption. The cluster test results
showed that the scalability of GNAQPMS on the CPU plat-
form was largely increased from 8 nodes to up to 40 nodes,
whereas that on the KNL platform was not as good as that on
the CPU platform owing to the bottleneck of the MPI global
communication and fragmental OpenMP parallel regions. In
summary, the computation speed (excluding the model I/O)
was improved from about 0.5 model years per day using
8 CPU nodes to about 3.7 model years per day using 30 KNL
nodes and about 8 model years per day using 40 CPU nodes,
respectively. Therefore, without regard to the model I/O, the
optimisation work in this study resulted in the computation
performance of the GNAQPMS being very close to our an-
ticipated goal. In the next step, further work will be focused
on merging the OpenMP parallel regions. Moreover, the I/O
optimisation was not considered in this study and it should
be taken into account in the future.

The general suggestions we could give for the optimisa-
tion of other models on KNL are as follows: (1) the coder
should focus on the vectorisation of codes, and (2) as the per-
formance of OpenMP is very important for KNL, the coder
should design more efficient parallel regions for OpenMP.
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