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Abstract. We investigate the application of clustering algo-
rithms to represent sub-grid scale variability in soil texture
for use in a global-scale terrestrial ecosystem model. Our
model, the coupled Canadian Land Surface Scheme – Cana-
dian Terrestrial Ecosystem Model (CLASS-CTEM), is typ-
ically implemented at a coarse spatial resolution (approxi-
mately 2.8◦× 2.8◦) due to its use as the land surface com-
ponent of the Canadian Earth System Model (CanESM).
CLASS-CTEM can, however, be run with tiling of the land
surface as a means to represent sub-grid heterogeneity. We
first determined that the model was sensitive to tiling of the
soil textures via an idealized test case before attempting to
cluster soil textures globally. To cluster a high-resolution
soil texture dataset onto our coarse model grid, we use two
linked algorithms – the Ordering Points to Identify the Clus-
tering Structure (OPTICS) algorithm (Ankerst et al., 1999;
Daszykowski et al., 2002) and the algorithm of (Sander et al.,
2003) – to provide tiles of representative soil textures for
use as CLASS-CTEM inputs. The clustering process results
in, on average, about three tiles per CLASS-CTEM grid
cell with most cells having four or less tiles. Results from
CLASS-CTEM simulations conducted with the tiled inputs
(Cluster) versus those using a simple grid-mean soil texture
(Gridmean) show CLASS-CTEM, at least on a global scale,
is relatively insensitive to the tiled soil textures; however, dif-
ferences can be large in arid or peatland regions. The Clus-
ter simulation has generally lower soil moisture and lower
overall vegetation productivity than the Gridmean simulation
except in arid regions where plant productivity increases. In

these dry regions, the influence of the tiling is stronger due to
the general state of vegetation moisture stress which allows
a single tile, whose soil texture retains more plant-available
water, to yield much higher productivity. Although the use of
clustering analysis appears promising as a means to represent
sub-grid heterogeneity, soil textures appear to be reasonably
represented for global-scale simulations using a simple grid-
mean value.

1 Introduction

Representation of sub-grid variability is a challenging prob-
lem in large-scale modelling applications such as Earth sys-
tem models (ESMs). ESMs are commonly run at relatively
coarse spatial resolutions due to the computational costs as-
sociated with these complex models. The terrestrial compo-
nent of an ESM is also generally tied to the grid cell size
or truncation level of the atmosphere, making it difficult to
resolve smaller-scale processes. Heterogeneity in precipita-
tion, vegetation, soils (Boone and Wetzel, 1999), topogra-
phy, and snow cover (Nitta et al., 2014) on spatial scales
much smaller than model grid cells can cause surface fluxes
to vary non-linearly across a grid cell. To address this is-
sue, several modelling groups have adopted either a tiling
approach, in which each grid cell is divided into a mosaic
of tiles with a different tile given for each landscape feature
(Avissar and Pielke, 1989; Koster and Suarez, 1992; Essery
et al., 2003), or a statistical approach whereby the sub-grid
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heterogeneity is represented by a probability density function
(e.g. Famiglietti and Wood, 1994; Pielke et al., 1991; Boone
and Wetzel, 1999).

The division of a grid cell into tiles has been attempted
for characteristics such as hydrological parameters (Wood
et al., 1992; Arora et al., 2001), vegetation present (Molod
and Salmun, 2002; Li and Arora, 2012; Melton and Arora,
2014; Ke et al., 2013), land cover change (Landry et al.,
2016), precipitation (Arora et al., 2001), elevation (Ke et al.,
2013), land surface properties (Avissar and Pielke, 1989),
and maximum infiltration (Decharme and Douville, 2005).
Many of these reports that tiled the land surface used rela-
tively easily observed, and hence classified, characteristics
of the landscape, i.e. vegetation presence/absence, elevation
band, and vegetation type. To our knowledge, the tiling of
soil texture has never been reported. We hypothesize that
the use of tiled soil textures, rather than taking simple grid-
mean values, will result in more realistic model simulations
due to the non-linear influence of soil texture on soil hy-
drological and thermal characteristics. Soil moisture is one
of the most important determinants for partitioning of sur-
face fluxes of moisture and heat from net radiation (Shao
and Henderson-Sellers, 1996) and precipitation into evapo-
transpiration and total runoff (Dirmeyer et al., 1999), as well
as having a strong influence on vegetation productivity, and
the terrestrial carbon cycle, which is of primary interest here.
Soil texture influences on plant productivity and community
structure should be especially strong in regions with low wa-
ter availability as has been observed in semi-arid and arid
regions (Archer et al., 2002; Hook and Burke, 2000; English
et al., 2005).

To test our hypothesis, we use clustering algorithms on
a recently released high-resolution soil textural dataset. Clus-
tering analysis searches for patterns in datasets based upon
their natural structure or grouping. Some examples of clus-
tering analysis in the Earth system sciences includes remote
determination of inundated areas (Prigent et al., 2001), land
use management zones (Li et al., 2007), ecoregion delin-
eation (Kumar et al., 2011), and fire regimes (Archibald
et al., 2013). Given high-resolution soil textural informa-
tion, a clustering analysis can determine regions of similar
soil textures (e.g. river valleys, mountainous slopes) that are
smaller than the size of ESM grid cells. The soil textures of
these distinct regions can then be used as a tile to allow rep-
resentation of this sub-grid heterogeneity in the model with-
out requiring a smaller model grid. It is possible that some
small areas or rare soil-type combinations may behave as
“hotspots” of hydrological or ecological importance. Deter-
mining their locations on a global scale would be challenging
and likely only possible through expert assessments, which is
not practical given the large number of land grid cells in an
ESM (generally greater than 2000). The advantage of cluster-
ing analysis is that it provides an algorithm-based approach
that can be applied globally. Newman et al. (2014) used k
means clustering analysis to determine tiles based, primarily,

on the vegetation types present and thus were able to provide
the k term (number of clusters) a priori. In clustering soil tex-
ture, it is desirable to allow the number of soil clusters to vary
per grid cell and not be specified a priori. This allows us to
optimize the number of tiles based on our considerations of
adequate representation of heterogeneity and computational
cost of additional tiles. Our study thus presents two new ap-
proaches: the use of a clustering algorithm to determine tiles
that does not require a priori information on the number of
tiles per grid cell and the use of tiled soil texture to represent
sub-grid heterogeneity.

In the following sections, we (i) introduce CLASS-CTEM
and the clustering algorithms (Sect. 2), (ii) evaluate the
soil textural tiles found by the clustering algorithms and
the resulting CLASS-CTEM outputs against simulations
that use a simple grid cell mean soil texture and against
an observation-based dataset of gross primary productivity
(Sect. 3), and (iii) discuss these results and give conclusions
for the utility of this approach (Sect. 4).

2 Methods

2.1 CLASS-CTEM

All simulations were run with the Canadian Land Surface
Scheme (CLASS v.3.6; Verseghy, 2012) coupled to the
Canadian Terrestrial Ecosystem Model (CTEM v.2; Melton
and Arora, 2016). Together CLASS-CTEM forms the land
surface component of the Canadian Earth System Model
(CanESM), but the simulations presented here were per-
formed offline to permit easier interpretation.

CLASS operates at a half-hour time step and performs
the land surface water and energy balance calculations. In
simulating the energy balance of the land surface and its in-
teractions with the atmosphere, CLASS uses vegetation at-
tributes such as leaf area index (LAI), canopy mass, rooting
depth, and vegetation height. The temperature, and liquid and
frozen water contents of three soil layers, of 0.1, 0.25, and
3.75 m thickness, are determined prognostically. The CLASS
parameterization for mineral soils follows that of Cosby et al.
(1984) and Clapp and Hornberger (1978) (see Appendix).
Organic soils, defined as those cells having an organic mat-
ter weight percent greater than 30, are modelled as peat fol-
lowing Letts et al. (2000). The daily mean soil temperature,
soil moisture, and net radiation from CLASS are passed to
CTEM at the end of each day. CTEM then calculates the
vegetation and carbon dynamics. While most of CTEM op-
erates on a daily time step, the carbon assimilation from pho-
tosynthesis and canopy conductance occur on the CLASS
time step. CTEM calculates the carbon uptake and respira-
tory costs of nine plant functional types (PFTs) which map
directly to four PFTs that CLASS uses. The CLASS PFTs
(with corresponding CTEM PFTs in parentheses) are needle-
leaf tree (needleleaf evergreen and needleleaf deciduous),
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broadleaf tree (broadleaf evergreen, broadleaf cold decidu-
ous, and broadleaf drought/dry deciduous), crop (photosyn-
thetic pathway C3 and C4), and grass (C3 and C4). CTEM
tracks carbon flow through the leaves, stem, and roots of the
living plants and the litter and soil C for the detrital pools. For
global simulations, CLASS-CTEM is typically run at a grid
cell resolution of approximately 2.8◦ by 2.8◦ corresponding
to a grid cell size of approximately 98 000 km2 at the Equa-
tor and approximately 49 000 km2 at 45◦ latitude. CLASS-
CTEM has been validated against observation-based datasets
from site to global level (e.g. Peng et al., 2014; Melton et al.,
2015; Melton and Arora, 2016).

2.1.1 CLASS-CTEM simulation details

The simulations were forced with version 7 of the Climate
Research Unit – National Centers for Environmental Pre-
diction (CRU-NCEP) meteorological dataset covering 1901–
2015 (Viovy, 2016). The meteorological inputs are disaggre-
gated from 6 hourly to half-hourly as laid out in Melton and
Arora (2016). To spin up the model, the climate years 1901–
1925 were repeatedly cycled over until the model reached
equilibrium (which is defined by the net biome production
simulated to be less than 0.1 % of net primary productivity).
During the spin-up, the land cover and population densities
(used by the fire disturbance scheme) were set to that of the
year 1850 with a global atmospheric CO2 concentration of
284.87 ppm. After the spin-up, the transient simulation ran
from 1851 to 2015 with atmospheric CO2 concentrations
from Meinshausen et al. (2011). The land cover is derived
from the Global Land Cover 2000 (GLC2000) dataset for the
year 2000 (Bartholomé and Belward, 2005). The GLC2000
data are then mapped to the corresponding CTEM PFTs, and
we use the HYDE v.3.1 dataset (Hurtt et al., 2011) to change
crop area with time. The distribution of the C3 and C4 pho-
tosynthetic types for the crops and grasses is based upon Still
et al. (2003). To run from 1851 to 2015, the climate was cy-
cled over twice from 1901 to 1925 for the years 1851–1900,
then allowed to run freely from 1901 to 2015. All simula-
tions had land use change impacts (prescribed changes in
crop cover from 1851 to 2015) as well as fire disturbance.

2.2 High-resolution soil texture dataset

The Global Soil Dataset for use in Earth system models
(GSDE) (Shangguan et al., 2014) is available at 5 arcmin res-
olution from http://globalchange.bnu.edu.cn/research/soilw
(accessed 23 July 2015). GSDE has eight soil layers of
depths: 4.5, 9.1, 16.6, 28.9, 49.3, 82.9, 138.3, and 229.6 cm.
CLASS-CTEM’s requirements for soil textural information
include weight percent sand, clay, and organic matter (OM)
as well as soil depth (Verseghy, 2012). We retain CLASS-
CTEM’s typical soil configuration of three soil layers with
layer bottom depths of 10, 35, and 410 cm. The soil silt

weight percent is found taking the remainder of 100 % – sand
– clay.

In each GSDE 5 arcmin grid cell, the soil textural values
for depths of 4.5 and 9.1 cm were averaged for the clustering
of model soil layer 1. Model layer 2 spanning 10–35 cm is
assumed to be representable by the mean of GSDE layers
16.6 and 28.9 cm and the bottom model layer spanning 35–
410 cm by the mean of GSDE layers 49.3, 82.9, 138.3, and
229.6 cm.

GSDE does not contain information about soil depth; thus,
the model default soil depth for each grid cell was used
(Zobler, 1986). CLASS-CTEM assumes that any part of the
ground column below the soil depth is bedrock and simulates
water flow only in the soil part of the ground column, while
the temperature dynamics are simulated over both the soil
and bedrock sections.

2.3 Clustering analysis

Clustering analysis is primarily a tool for database mining
in the information sciences but it has had applications in the
Earth sciences, predominantly for spatial pattern analysis of
remote sensing databases (e.g. Prigent et al., 2001; Archibald
et al., 2013). For the purpose of representing the spatial het-
erogeneity of soil textures, a clustering analysis algorithm
ideally would independently identify the number of clus-
ters without requiring per-grid-cell information, beyond the
high-resolution soil textural information. After a literature
survey, we chose the Ordering Points to Identify the Clus-
tering Structure (OPTICS) algorithm (Ankerst et al., 1999;
Daszykowski et al., 2002). OPTICS is a density-based clus-
tering algorithm where clusters are determined to be areas of
higher density than the rest of the dataset. Data points in more
sparse regions are considered to be noise. Another common
clustering algorithm, k means, was not used as it requires the
number of clusters as an input parameter and while there are
techniques to diagnostically estimate the number of clusters,
they are often ambiguous and their results can differ greatly
depending on technique chosen (Chiang and Mirkin, 2010).

OPTICS does not directly produce a clustering of the data
but rather a hierarchical representation of the data that shows
their density-based structure. A second step, using the algo-
rithm of Sander et al. (2003), then produces the clusters. The
OPTICS algorithm searches a neighbourhood of a predefined
radius (ε) for clusters that contain a minimum number of
points (minPts). We set ε to infinity and minPts to 5 % of
the number of data points in the grid cell (sensitivity to the
minPts parameter is discussed further in Sect. 3.3.1). The pa-
rameters for the algorithm of Sander et al. (2003) were taken
directly from their paper.
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2.3.1 Application of OPTICS and the Sander et
al. (2003) clustering algorithm

The boundaries of each CLASS-CTEM grid cell (1958 to-
tal land cells) were used to determine which high-resolution
GSDE grid cells would fit within each model cell. Around
1100 GSDE cells fit within a CLASS-CTEM grid cell. From
these GSDE cells, all points that were not land (lakes, rivers,
etc.) were masked out. If the CLASS-CTEM grid cell did not
contain more than 100 GSDE cells (which is about 340 km2

at the Equator), the CanESM soil textural information was
used for that grid cell. This occurred for four CLASS-CTEM
grid cells and is a result of the land mask used by CLASS-
CTEM, which is the same as in the CanESM where the ex-
act placement of the land cells is determined somewhat by
the needs of the ocean model. The remaining 1954 CLASS-
CTEM grid cells were then individually clustered using the
OPTICS and Sander et al. (2003) algorithms. The cluster-
ing algorithms choose which GSDE grid cells are consid-
ered part of the clusters determined for each CLASS-CTEM
grid cell. GSDE grid cells that, in soil texture space, are
far from regions of higher density are considered noise and
excluded from clusters (see Sect. 2.3 above); thus, the per-
cent of GSDE cells clustered varies between CLASS-CTEM
grid cells. We checked the weighted mean of the clusters
against the simple mean of the GSDE grid cells for each
CLASS-CTEM grid cell and if the difference between them
was greater than 10 % for sand, clay, or OM, we assigned
that cell the simple Gridmean soil textures. This 10 % limit
was exceeded for 53 CLASS-CTEM grid cells, or < 3 % of
the total. The vast majority of the CLASS-CTEM grid cells
above this 10 % limit were cells where the clustering algo-
rithm had found only one cluster (Fig. A1). The clustering
algorithms were applied to the GSDE grid cells for the first
model layer (0–10 cm depth). For simplicity, the clustering
found in the first layer was then applied to the layers be-
low; i.e. we did not cluster the lower layers separately but
rather we applied the clustering assignment of each GSDE
grid cell from layer 1 to each of the lower layers. As our
study is mostly focused on the determining the impact of sub-
grid soil texture on the model outputs, this simple approach
is likely sufficient. Each cluster was assigned the same soil
depth. Other model inputs like meteorological forcing and
prescribed vegetation cover was the same for each cluster;
i.e. each tile within a CLASS-CTEM grid cell had the same
PFT fractional coverages on each tile (e.g. if the CLASS-
CTEM grid cell had 30 % needleleaf evergreen tree, 50 % C3
grass, and 20 % bare ground coverage, each tile would have
that same PFT distribution applied to it).

3 Results and discussion

3.1 Model sensitivity to tiling

We performed a simple test to ascertain model sensitivity to
soil texture, the number of soil tiles, and if this sensitivity
has a saturating number of tiles using three example sites:
northeast USA (temperate; 43.3◦ N, 92.8◦W), the Amazon
(tropical;−1.40◦ S, 56.25◦W), and the Sudan (arid; 12.6◦ N,
28.1◦ E). For this test, we first ran a simulation at each test
grid cell with a soil texture of 50 % sand and 50 % clay. We
then ran different simulations with an increasing number of
tiles at each site but with the same proportion of sand and
clay percentages for the grid-cell-weighted mean. These fur-
ther simulations were (i) two tiles each covering half the grid
cell (one with 100 % sand and the other 100 % clay), (ii) three
tiles each covering a third (one with 100 % sand, one with
50 % sand and 50 % clay, and the third 100 % clay), (iii) four
tiles each covering a fourth (one with 100 % sand, one with
75 % sand and 25 % clay, one with 25 % sand and 75 % clay,
and the fourth 100 % clay), (iv) five tiles each covering a fifth
(one with 100 % sand, one with 75 % sand and 25 % clay, one
with 50 % sand and 50 % clay, one with 25 % sand and 75 %
clay, and the fourth 100 % clay), etc. up until 20 tiles. All
tiles were assigned the same vegetation, soil depth, and an
OM content of 0 %.

Some example carbon cycle outputs are plotted in Fig. 1.
As we increase from one tile to two, the model outputs show
drops of slightly less than 10 to almost 20 % for the north-
east USA and 30 to 50 % at the Amazon site, but show
an increase in some variables of up to 6-fold for the Su-
dan site. The change in the carbon outputs from the one-
tile simulations then decreases and stabilizes, indicating that
the model is not sensitive to an increasing number of tiles.
The threshold number of tiles at which the carbon outputs
stabilize is around 7 or 8 for the northeast USA and Ama-
zon while the Sudan site is around 12. The Sudan site has
low productivity (net primary productivity, NPP, approxi-
mately 300 gCm−2 yr−1) due to arid conditions (annual pre-
cipitation approximately 400 mmyr−1), and it demonstrates
a strong response of the carbon cycle to soil texture. Addi-
tionally, since model runtime increases proportionally to the
number of tiles (see dashed line in the Sudan plot of Fig. 1),
to manage computational cost, only the minimum number of
tiles that allows an adequate representation of sub-grid het-
erogeneity should be run.

These results demonstrate the model should indeed be sen-
sitive to tiling of the soil texture and that “too many” tiles is
not necessary and would indeed come with a computational
cost penalty. However, this sensitivity test is relatively unre-
alistic in its choice of soil texture for the clusters so the next
section looks again at the Sudan test site as well as one in
Brazil.
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Figure 1. Sensitivity test of CLASS-CTEM to the number of tiles (clusters) for three test grid cells. The texture of each tile as the number
of tiles increases is described in Sect. 3.1. GPP is gross primary productivity. All simulations were run until a new equilibrium state was
established. The increase in runtime of the model is displayed as a dashed line.

3.2 Site-level simulations

3.2.1 Evaluation of soil textural clusters

We first examine example grid cells from the Sudan and
Brazil (Figs. 2 and 3). These sites were chosen because they
are from relatively arid regions, and therefore soil moisture
variations should play a role in the vegetation dynamics. Fig-
ures 2 and 3 show the high-resolution GSDE grid cell tex-
tures for the top CLASS-CTEM soil layer. The clustering
algorithm found three clusters for both example grid cells.
The weight percent of clay, sand, and OM for each cluster
can be seen in Figs. 2 and 3 and compared to the original
GSDE grid cells. The joint distribution using kernel density
estimation for the sand and clay soil contents is also shown.
The clustering is able to effectively capture the distinct soil
textural regions apparent in both grid cells. Another example
cell with a more heterogeneous GSDE soil texture is shown
in Fig. A2.

3.2.2 Influence on model outputs

The CLASS-CTEM simulated net primary productivity
(NPP), heterotrophic respiration (HR), and net ecosystem
productivity (NEP) for the Sudan and Brazil example sites
are shown in Figs. 4 and 5, respectively. Model outputs such
as NPP, HR, and NEP are important components of the ter-
restrial C cycle but they are also useful indicators of changes
in soil hydrology and thermal regimes since their calculation
is influenced by the soil environment as a whole. To inves-
tigate the influence of the clustering algorithm, the per-tile
results are shown alongside the model results taken at the
grid level (as a weighted mean) for the clustering simula-
tion (“Cluster”) and the model result if a simple mean of the

GSDE soil texture for the CLASS-CTEM grid cell was used
(“Gridmean”).

The Sudan grid cell shows relatively large differences be-
tween the three tiles determined by the clustering algorithm.
The NPP of tile C (with 36 % sand, 31 % clay, and 2 % OM)
is generally very low which draws down the grid-level NPP
for the Cluster simulation, but not greatly, as this tile only
occupies 8 % of the grid cell. The other tiles (A: 91 % sand,
4 % clay, and 1 % OM covering 62 % of the grid cell; B:
67 % sand, 15 % clay, and 1 % OM covering 30 % of the grid
cell) can also differ greatly especially for HR and NPP. The
NPP and NEP is generally higher for the Gridmean simula-
tion while the HR is higher for the Cluster simulation. The
different sensitivity of CLASS-CTEM’s simulated NPP and
HR to each tile’s soil texture is at least partially due to the
model formulation of these processes. In CLASS-CTEM,
GPP, a component of NPP, depends upon a soil moisture
stress term that uses the volumetric water content to deter-
mine the degree of soil saturation (Eqs. A5–A7 in Melton
and Arora, 2016), whereas the HR calculation depends on
soil matric potential (Melton et al., 2015, and Eqs. A33–A36
in Melton and Arora, 2016). Soil matric potential is calcu-
lated as

9 =9sat

(
θl

θp+ θi

)−b
, (1)

where b is the Clapp and Hornberger b term (Cosby et al.,
1984), 9sat is the soil moisture suction at saturation, and θi,
θl, and θp are the volumetric ice, liquid, and pore (air) content
of the soil layer, respectively. The Cluster grid-level NPP is
also slightly more variable than the Gridmean simulation and
appears to respond strongly to precipitation changes in this
arid grid cell.
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Figure 2. Example CLASS-CTEM grid cell located in the Sudan (12.6◦ N, 28.1◦ E). The top panel shows the GSDE sand, clay, and organic
carbon weight percents for GSDE cells within the CLASS-CTEM grid cell. Each GSDE grid cell is 5 arcmin by 5 arcmin. The numbers on
the plot axes are the number of GSDE grid cells along that axis. The joint distribution using kernel density estimation for the soil sand and
clay content is shown in the centre panel. The histograms on the axes and the blue colour scaling demonstrate qualitatively the number of
GSDE grid cells sharing the similar soil textural space. The clustering algorithm found three clusters (labelled A, B, and C) with a fractional
area per cluster and soil texture as shown in the pie charts. The pie charts can be visually referenced to the top panel which uses the same
colour scheme, e.g. cluster A covers 63 % of the CLASS-CTEM grid cell with 91 % sand, 4 % clay, and 1 % OM. In the scatter plot, the label
is placed close to the cluster value to help illustrate the cluster relation in sand–clay space.

The NPP, HR, and NEP values at the Brazil test site
(Fig. 5) are all higher than at the Sudan test site due, in part,
to the higher precipitation in the region. The Brazil site’s
Gridmean simulation generally has similar NPP and NEP to
the Cluster simulation but higher HR. This appears to reflect
the relatively similar behaviour between the three tiles deter-
mined for this location. The largest difference between tiles
is for HR which is lower for tile C (43 % sand, 36 % clay,
and 3 % OM) compared to the sandier tiles, A (91 % sand,

4 % clay, and 1 % OM) and B (67 % sand, 15 % clay, and
1 % OM).

The differences between the Cluster and Gridmean simu-
lation for these two grid cells indicates that (1) the model is
sensitive to soil textural differences, especially for more arid
sites, and (2) the influence of clustering soil textures is not
uniform and will depend on the conditions unique to each
grid cell. We next look at the influence of the clustering on
global simulations.

Geosci. Model Dev., 10, 2761–2783, 2017 www.geosci-model-dev.net/10/2761/2017/
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Figure 3. Similar to Fig. 2 for a CLASS-CTEM grid cell located in Brazil (9.8◦ S, 45.0◦W).

3.3 Global simulations

3.3.1 Evaluation of soil textural clusters

On a global scale, the clustering algorithm found, on aver-
age, slightly more than three clusters per CLASS-CTEM grid
cell (3.1±1.5; Fig. A3) with few cells having more than five
clusters. The global distribution of the number of clusters and
the percent of GSDE grid cells that formed the clusters are
shown in Fig. 6. The number of clusters found by OPTICS
shows a lower number of clusters in parts of the US, Europe,
and China, with higher numbers generally found for South
America and part of Africa. There appears to be some de-
pendence between the number of clusters and the original
source soil map that was incorporated into GSDE (see Fig. 1
in Shangguan et al., 2014, for the distribution of source maps

incorporated into GSDE). The regions of two original source
maps, the General Soil Map of the US (GSM) and the Soil
Database of China for Land Surface Modelling, appear to
correlate well with areas of, primarily, single tiles, as deter-
mined by the clustering algorithms. The soil textural infor-
mation from these regions is of higher quality (W. Shang-
guan, personal communication, 2016) with more observa-
tions contributing to a higher spatial heterogeneity in the
original maps incorporated into GSDE. This higher spatial
heterogeneity could have led the clustering algorithms to find
no distinct clustering by effectively increasing noise and ob-
scuring the regions of higher density of soil textural points
that indicate a cluster. The GSM map also covers Alaska but
given the sparse population and remoteness of the region,
the soil textural information could be of poorer quality, and
hence lower spatial heterogeneity, for that state. Western Eu-
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Geosci. Model Dev., 10, 2761–2783, 2017 www.geosci-model-dev.net/10/2761/2017/



J. R. Melton et al.: Soil texture sub-grid heterogeneity 2769

Number of  lusters Percent in clusters

1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

80

90

100 c

Figure 6. Global distributions of the number of clusters (tiles) found per CLASS-CTEM grid cell (left) and the percent of GSDE grid cells
clustered per CLASS-CTEM grid cell (right).

rope could also have higher-quality soil data but it is only
a subsection of the European Soils Database. To understand
if the selection of the minPts parameter caused the predom-
inance of single tiles in these regions, we reduced minPts
from 5 to 1 % of the number of data points in the grid cell.
This did reduce the number of grid cells with only single tiles
in China, the US, and Europe, but it also greatly increased the
number of tiles everywhere else (Fig. A4). The mean num-
ber of clusters found increased to 11.2± 5.2 with some grid
cells having up to 20 cells. Since the model is not sensitive
to more than about seven tiles (see Sect. 3.1), the original
minPts value used appears more appropriate for the majority
of the land surface.

The percent of GSDE grid cells that were included in clus-
ters is, on average, 57.0± 20.1, as not all GSDE soil textu-
ral values are necessarily determined to fall within a cluster
(as discussed in Sect. 2.3.1). The clustering does not, how-
ever, appreciably shift the simple grid-mean texture of the
CLASS-CTEM grid cells (Figs. A5 and A6); i.e. the raw
Gridmean is similar to the weighted mean of the clusters. The
spatial distribution of the percent of GSDE cells clustered is
shown in Fig. 6. Areas of northern Eurasia, southeastern Aus-
tralia, and the prairie region of Canada appear to have lower
percentages of GSDE grid cells clustered, while areas like
northern Africa and the high latitudes of Canada have higher
percentages clustered although the pattern on the whole is
relatively heterogeneous.

3.3.2 Influence on model outputs

Global totals of CLASS-CTEM outputs for tiled (Cluster)
and grid-mean (Gridmean) simulations for 1996–2015, along
with observation-based estimates, are presented in Table 1.
The general impact of the clustering integrated over the globe
is small for most variables. Evapotranspiration (ET), transpi-
ration, and runoff show small differences of around 1 % or
less. There are some seasonal and regional differences for ET
between the Cluster and Gridmean simulations (Fig. A7) but

they are generally not statistically significant (independent
two-sample t-test p level< 0.01). The transpiration com-
ponent of ET is relatively unchanged globally between the
Cluster and Gridmean simulations (Table 1) while changes at
the grid cell level indicate a partitioning shift between evapo-
ration and transpiration with some arid regions showing more
transpiration for the Cluster simulations (Figs. A8 and A7).
Runoff also has some seasonal differences with more grid
cells significantly different between Cluster and Gridmean
simulations (Fig. A9) and while the Cluster simulation has
generally higher runoff, the signal is quite mixed. Globally,
latent heat fluxes are less influenced by the tiling than sen-
sible heat fluxes with a 0.4 % difference compared to 3.7 %,
respectively. Seasonal maps of latent heat fluxes show little
difference between the two simulations (not shown) while
there is a general increase in sensible heat fluxes of the Clus-
ter simulation over the Gridmean for all seasons in arid re-
gions (Fig. A10).

Some variables for the carbon cycle also show similar
relatively small changes with the largest changes occurring
for NEP with a 4 % difference between simulations and net
biome productivity (NBP) with a 5 % difference. The largest
difference is observed for water use efficiency (WUE; de-
fined as GPP/ET) with a percent absolute difference of about
33 %. The higher mean annual global WUE of the Cluster
simulation is also closer to an observation-based estimate
(Xue et al., 2015) than the Gridmean simulation. The change
in WUE between the two simulations will be discussed in
greater detail below.

Regional differences can be much larger than the generally
modest global differences found between the two simula-
tions. The annual mean simulated soil moisture per soil layer
shows some regions to differ by more than 20 % between the
Cluster and Gridmean simulations (Fig. 7) with more grid
cells showing statistically significant differences between the
simulations with increasing soil depth. The Cluster simula-
tion has generally drier soils than the Gridmean simulation,
with larger differences visible for arid regions, such as north-
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Figure 7. Percent difference in soil moisture per CLASS-CTEM soil layer between the Cluster and Gridmean simulations (mean of 1995–
2015). Grid cells with soil moisture below 10−5 kgm−2 were masked out to prevent instances of division by zero and overly large relative
differences in regions of very little soil moisture. Positive values indicate the Cluster soil moisture is larger while negative values indicate the
Gridmean soil moisture is larger. Dots indicate grid cells that are statistically significant (independent two-sample t-test p level< 0.01).

Table 1. Global annual values for CLASS-CTEM model outputs based on simulations using grid-mean soil textures (Gridmean) and tiled
simulations derived from the clustering analysis (Cluster). Values are an average over the period 1996–2015.

CLASS-CTEM output Cluster Gridmean Percent absolute Observation-based estimate
difference

Evapotranspiration (ET; 103 km3 yr−1) 78.3 78.6 0.5 83.9± 9.9 (Trenberth et al., 2011)a

Transpiration (T ; 103 km3 yr−1) 21.1 21.2 0.3 62± 8 (Jasechko et al., 2013),
45± 4.5 (Schlesinger and Jasechko, 2014)

T/ET (%) 27.0 27.0 0.1 61± 15(Schlesinger and Jasechko, 2014)
Runoff (103 km3 yr−1) 32.8 32.4 1.1 38.3 (Fekete et al., 2002)
Latent heat fluxes (Wm−2) 44.9 45.2 0.4 39± 2 (Jung et al., 2011),

38.5 (Trenberth et al., 2009)
37–59 (Jiménez et al., 2011)

Sensible heat fluxes (Wm−2) 25.5 24.6 3.7 41± 4 (Jung et al., 2011),
27 (Trenberth et al., 2009)
18–57 (Jiménez et al., 2011)

Water use efficiency (g C kg−1 water) 1.47 1.10 32.8 1.70 (Xue et al., 2015)
Gross primary productivity (GPP) (Pg C yr−1) 133.1 133.6 0.4 123± 8 (Beer et al., 2010)
Vegetation biomass (Pg C) 555.00 558.46 0.6 300–536 (Forest biomass)b

Soil carbon mass (Pg C) 1132.1 1119.6 1.1 1922c (Shangguan et al., 2014)
Area burnt (104 km2 yr−1) 484 505 4.2 464 (Randerson et al., 2012)
Net ecosystem productivity (NEP) (Pg C yr−1) 4.6 4.8 4.0
Net biome productivity (NBP) (Pg C yr−1) 1.0 1.1 5.0 1.0–2.5d (Le Quéré et al., 2016)

Percent absolute difference is calculated as abs{100− [(clustered value/grid-mean value)× 100]}.
a Value from eight reanalyses for 2002–2008, except ERA-40 which was for the 1990s.
b As summarized in Kauppi (2003).
c Note that this version of CLASS-CTEM does not simulate permafrost C pools.
d Range of all estimates across the 1990–2015 time period.

ern Australia, the Middle East, and Mongolia (which have
low soil moisture, so small changes in absolute amounts will
appear as a larger percent change than the same absolute
change in a more humid region), while the northern latitudes
are wetter for some of the Canadian high north and western
Siberia as well as areas of Indonesia and other parts of south-
east Asia. These patterns are not uniform and can also differ
by soil model layer as is the case in the Saharan region where
the second layer is generally wetter for the Cluster simulation
than for the Gridmean but drier in the third layer. The drier

first soil layer in the Cluster simulations leads to an increase
in sensible heat fluxes over the Gridmean simulations as seen
in Fig. A10 and Table 1.

The principle regions of an increase in soil moisture for
the Cluster simulation over the Gridmean are in large peat-
land complexes such as the west Siberian lowlands, the Hud-
son Bay Lowlands, the Mackenzie River delta, and parts of
Indonesia. These peatland regions are strongly influenced by
the tiling due to the soil OM threshold above which the peat
soils parameterization of Letts et al. (2000) is applied (soil
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Figure 8. Mean annual gross primary productivity (1982–2008) from an observation-based dataset (Beer et al., 2010) (a), the Gridmean
simulation (b), and percent relative difference between the Cluster and Gridmean simulations (d). Note that many of the regions with the
largest changes in GPP between the two approaches are also regions with low GPP; hence, the absolute change in GPP is generally small.
Dots indicate grid cells that are statistically significant (independent two-sample t-test p level< 0.01). For the areas of significant change
in GPP between the Cluster and Gridmean simulations, comparison of Cluster and Gridmean simulations against observations was not
significant after accounting for the observational uncertainty.

OM≥ 30 %; see Sect. 2.1). The higher porosity, greater hy-
draulic conductivity variation with depth, and differing ther-
mal properties all cause greater changes in soil moisture
when a grid cell or tile is treated as peat soil as opposed to
a mineral soil. The differences in soil moisture appear to be
relatively stable throughout the year with relatively little sea-
sonal variation (not shown).

Changes in soil moisture will influence vegetation through
changes in water supply and water stress. The mean annual
gross primary productivity (GPP) as simulated by CLASS-
CTEM is plotted in Fig. 8. An observation-based estimate
(Beer et al., 2010) is provided for reference against the Grid-
mean simulation GPP. The relative percent difference be-
tween the Gridmean and Cluster simulations can be large
in arid regions while relatively small elsewhere (again with
the understanding that small absolute changes appear rela-
tively larger for areas of low GPP than for the same abso-
lute change in a region of higher productivity). The areas
of significant difference are similar to the regions that saw
the significant changes in total soil moisture (Fig. 7) includ-
ing central Australia, Saharan Africa, and other arid regions.
In these arid regions, the Cluster simulation produces higher
GPP values than the Gridmean simulation. However, in these
regions, the soil moisture in the total soil column was less in
the Cluster simulation than in the Gridmean simulation (with
the exception of Saharan Africa where the second soil layer

increased in soil moisture). In non-arid regions, the general
effect of the clustering was to slightly lower GPP (resulting in
a slightly smaller global GPP; Table 1). Regions like the peat-
land complexes that showed significant changes in soil mois-
ture (Fig. 7) are already moist and rarely experience water
stress; thus, these changes in soil moisture have little impact
upon productivity. We investigated the temporal dynamics
of GPP in the regions that differed significantly between the
Cluster and Gridmean simulations using the dataset of Jung
et al. (2011) and found a small improvement in root mean
square deviation of the cluster simulation over the Gridmean,
but it was smaller than the uncertainty of the Jung et al.
(2011) dataset which is relatively large in these regions due
to sparse observations (e.g. Fig. S2 in Beer et al., 2010) and
low productivity.

To understand how lower soil moisture could lead to
higher GPP, we selected a grid cell in Australia that saw
a large increase in GPP with lower soil moisture (Fig. 9).
This grid cell has five tiles determined by the clustering algo-
rithms. Of these tiles, the fifth (tile E; 78 % sand, 12 % clay,
and 1 % OM) has much higher productivity than the others,
while only occupying 10 % of the grid cell. The higher GPP
of tile E can be understood by looking at its plant-available
soil water, θa (m3 m−3), which we approximate using the
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Figure 9. Australian grid cell that has higher GPP for the Cluster simulation than the Gridmean simulation, but lower soil moisture. A measure
of the mean annual plant-available soil water, scaled so that 1 indicates field capacity and 0 is the wilting point, is calculated for the second
model soil layer (0.1–0.35 m) and is described in Sect. 3.3.2. The annual precipitation for this grid cell from CRU-NCEP is included for
reference in panel (b).

soil’s field capacity, θfc, and wilting point, θw:

θa = θfc− θw. (2)

The GPP formulation of CLASS-CTEM is sensitive to θa
(Melton and Arora, 2016) and thus enforces stomatal closing
to limit water loss during periods of low moisture availability,
resulting in lower productivity. From Fig. 9, we can see tile
E, on an annual basis, generally has some plant-available wa-
ter while the other tiles, and Cluster-weighted mean (Fig. 9d)
and the Gridmean simulation, are commonly strongly water
limited resulting in higher GPP for tile E than other tiles and
the Gridmean simulation.

The large changes in the global mean WUE seen in
Table 1 can also be observed regionally and seasonally
(Fig. A11). Outside of arid regions, the Gridmean simula-
tion has a slightly higher WUE, although it is generally not
statistically significant. Arid regions show greatly increased
WUE principally due to the higher GPP discussed previously
(Fig. 8), while the increase in evapotranspiration is muted by
a compensating shift in transpiration versus evaporation as
discussed above; thus, while the effect of tiling on WUE ap-
pears larger than other variables, some of the impact is sim-
ply due to how WUE is formulated (ratio of two variables

and commonly given as a global mean value, not a global
sum) and its sensitivity to small changes in its components.

The large influence of the clustering in arid regions
demonstrates the impact of soil texture when water limita-
tions are important. In these arid regions, the amount of water
in the soil column is low, and thus soil textural changes that
allow greater θa are important, while regions with plentiful
moisture are much less influenced by soil texture since water
stress is less frequent and the soils generally contain suffi-
cient water for photosynthesis. CLASS-CTEM’s pedotrans-
fer functions could also be limiting the influence of the tiling
of soil textures. The range in θa for the Cosby et al. (1984) pe-
dotransfer functions, as implemented in CLASS-CTEM, for
soils ranging from the most disparate USDA texture classes
(“sand” to “silt” to “clay”) only covers a θa range of 0.08. Us-
ing another pedotransfer function may cause CLASS-CTEM
to have a greater sensitivity to soil textural changes. For ex-
ample, the range in θa using the Saxton and Rawls (2006)
pedotransfer functions is over double the range of CLASS-
CTEM’s implementation of Cosby et al. (1984) (θa high to
low range of 0.2). Additionally, the Cosby et al. (1984) pe-
dotransfer functions (Fig. A12 and Eqs. A1–A8), while non-
linear, are relatively linear in the regions of most soil tex-
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tures (Fig. A5). Additionally, the GPP moisture-stress re-
sponse of CLASS-CTEM could be quite different from an-
other model; thus, the effects could be somewhat dependent
upon the model used.

4 Conclusions and future work

Soil texture influences soil hydrology and temperature and
is commonly assigned simple mean values across large grid
cells. The sub-grid heterogeneity of soil texture can be rep-
resented by tiling of the land surface. To test the sensitivity
of our model, CLASS-CTEM, to soil texture, we ran simula-
tions of three artificial test grid cells with increasing numbers
of tiles but the same grid-mean soil texture. CLASS-CTEM’s
carbon cycle outputs were sensitive to the tiling with some
outputs changing greatly but displaying a saturating effect
dependent upon the climate of the grid cell that ranged be-
tween 7 and 12 tiles. We then used two linked clustering
algorithms – the OPTICS algorithm (Ankerst et al., 1999;
Daszykowski et al., 2002) and the algorithm of Sander et al.,
2003 – to cluster high-resolution soil textures over the rela-
tively coarse CLASS-CTEM model grid (approximately 2.8◦

by 2.8◦). After determining the impact of this tiling at two
locations, we ran global simulations using tiled soil textures
against those with a simple grid-mean soil texture. The dif-
ference between the two simulations on a global scale were
generally relatively small (< 5 %) but could be large region-
ally (> 20 %). The areas that felt the largest impact due to the
soil texture tiling were in arid or peatland regions. Peatland
regions were more sensitive to the tiling due to the model pa-
rameterization of peatland soils, that is subject to a minimum
organic matter limit, and which could be exceeded for single
tiles while the simple grid mean remained below the limit.
Arid regions saw the largest impact upon GPP due to those
regions’ general state of moisture stress on the vegetation,
whereas the peatland regions generally have abundant soil
moisture. Tiles that retained higher levels of plant-available
water in arid regions would greatly increase GPP causing the
grid-level GPP to rise above that simulated when using a sim-
ple grid-mean soil texture.

In water-limited regions, the inverse-texture hypothesis as
put forth by Noy-Meir (1973) and Sala et al. (1997) predicts
that coarse-textured soils will support higher above-ground
plant net primary productivity than fine-textured soils. This
hypothesis has been supported by observations across pre-

cipitation gradients (Lane et al., 1998), and we also find
this in our simulations for semi-arid and arid regions (Figs.
4, 5, and 9). The role of soil texture is even stronger on
plant community composition based on both observations
(Lane et al., 1998; Dodd et al., 2002; Dodd and Lauenroth,
1997; Fernandez-Illescas et al., 2001) and modelling stud-
ies (Bucini and Hanan, 2007). While our model does have
a parameterization for competition between plants for ground
coverage (Melton and Arora, 2016), we do not presently have
shrub PFTs. As the major interactions in these regions is be-
tween grasses and shrubs, our competition parameterization
is unlikely to appropriately capture the dynamics of plant
cover due to soil texture as has been reported by observa-
tional studies.

We suggest the following as some possible future direc-
tions for this work. First, mapping of the PFTs so the PFTs
observed for each point in the GSDE grid are assigned to
the same tile as their underlying soil textures. Presently, we
give all tiles in the grid cell the same composition of PFTs,
whereas the underlying soil conditions could lead to notable
differences in which PFTs exist in a location. Second, the
Zobler (1986) soil depth dataset is markedly shallow com-
pared to a more recent dataset (Pelletier et al., 2016). In-
troducing the newer soil dataset into the clustering could al-
low greater distinction of clusters within a tile, e.g. river val-
leys with deep soil columns with surrounding shallow soil
uplands. Lastly, the use of different pedotransfer functions
could yield more model sensitivity to the clustering. An ex-
amination of pedotransfer functions would need to look care-
fully at the impact of the function for test sites with well-
understood soil conditions.

While the performance of the tiled grid cells in the arid re-
gions is encouraging, the overall impact of tiling on the ter-
restrial C cycle is relatively small, and thus the use of a sim-
ple grid-mean soil texture is likely sufficient for most appli-
cations. For large-scale applications with a special interest in
arid regions, selectively tiling those regions could be useful
for capturing the impact of soil heterogeneity on plant pro-
ductivity.

Code availability. The Python code used for the OPTICS and
Sander et al. (2003) algorithms as well as the CLASS-CTEM For-
tran code is available. Please email the first author for access to the
Git repository.
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Appendix A: CLASS-CTEM soil pedotransfer functions

Figure A12 demonstrates the non-linear relationships be-
tween soil texture and the hydrologic soil state variables.
The saturated hydraulic conductivity,Ksat (ms−1; Fig. A12),
is found from the weight percentage sand content, Xsand, as
(Cosby et al., 1984; Verseghy, 2012)

Ksat = 7.0556× 10−6 exp(0.0352Xsand− 2.035) , (A1)

while the pore volume, θp (m3 m−3; Fig. A12), is also calcu-
lated using Xsand (Cosby et al., 1984; Verseghy, 2012):

θp = (−0.126Xsand+ 48.9)/100.0. (A2)

The soil moisture suction at saturation, 9sat (m; Fig. A12),
uses Xsand:

9sat = 0.01exp(−0.0302Xsand+ 4.33) . (A3)

The hydraulic parameter b (unitless; also called the Clapp
and Hornberger b term) is calculated via the weight percent-
age clay content, Xclay (Cosby et al., 1984; Verseghy, 2012),
as

b = 0.159Xclay+ 2.91. (A4)

The hydraulic conductivity of the soil, K (ms−1), is then
related to the soil’s volumetric liquid water content, θl
(m3 m−3), via the Clapp and Hornberger (1978) relationship:

K =Ksat
(
θl/θp

)(2b+3)
. (A5)

In CLASS-CTEM, the field capacity of soil moisture, θfc
(m3 m−3; Fig. A12), is found by setting K in Eq. (A5) to
0.1 mmd−1 (1.157× 10−9 mms−1) and then solving for the
liquid water content:

θfc = θp

(
1.157× 10−9/Ksat

)1/(2b+3)
. (A6)

The field capacity of the lowest permeable layer, θfc, b
(m3 m−3), accounts for the permeable depth of the whole
overlying soil column, zb (m), and is found via Soulis et al.
(2011):

θfc, b = θp/(b− 1)(9satb/zb)
1/b[(3b+ 2)(b−1)/b

− (2b+ 2)(b−1)/b]. (A7)

At the wilting point, the soil moisture suction, 9wilt, is set to
150 m. The volumetric water content at the wilting point, θw
(m3 m−3), is then calculated as

θw = θp(9wilt/9sat)
1/b. (A8)

The thermal regime of the soil is also influenced by soil tex-
ture. The volumetric heat capacity of soils in CLASS-CTEM,
Cg (Jm−3 K−1) is derived from the volume fraction (V ) and
volumetric heat capacity of clay and silt, Cfine, sand, Csand,
and organic matter (OM), COM, components of the soil ma-
trix as a weighted average:

Cg =6(CsandVsand+CfineVfine+COMVOM)/(1− θp). (A9)

In a similar manner, the soil thermal conductivity, τg
(Wm−1 K−1), is calculated via a weighted average of the
components’ thermal conductivities:

τg =6(τsandVsand+ τfineVfine+ τOMVOM)/(1− θp). (A10)

Organic soils, defined as those cells having an organic matter
weight percent greater than 30, are assigned values of Ksat,
θp, θfc,9sat, b,K , Cg, and τg based on peat texture following
Letts et al. (2000). The model’s first soil layer is assumed to
be fibric peat, the second as hemic peat, and the bottom soil
layer as sapric peat.
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Figure A1. Map of the number of clusters for all CLASS-CTEM grid cells where the weighted mean of the clusters was more than 10 %
different than the simple mean of all GSDE grid cells within a CLASS-CTEM grid cell. These grid cells were then assigned the simple
Gridmean soil texture values for all simulations (see Sect. 2.3.1).

Figure A2. Similar to Fig. 2 for a grid cell in Paraguay. This figure demonstrates the clustering performance for a grid cell with a more
heterogeneous soil texture. The clustering algorithm found six clusters for this grid cell. The clusters are labelled A through F in the bottom
pie chart and the middle scatter plot. In the scatter plot, the label is placed close to the cluster value to help illustrate the cluster relation in
sand–clay space.
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Figure A4. Global distributions of the number of clusters (tiles) found per CLASS-CTEM grid cell when minPts (see Sect. 2.3) is set to
1 % of the number of GSDE data points in the CLASS-CTEM grid cell. The gray regions have more than eight tiles found by the clustering
algorithms.

Figure A5. Histogram of the mean clay, sand, and organic matter content for CLASS-CTEM grid cells based on the simple mean value of
all GSDE cells (green) or the weighted mean of the clusters within a CLASS-CTEM grid cell (red line).
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Figure A6. Histogram of the difference between the mean clay, sand, and organic matter content for CLASS-CTEM grid cells based on the
simple mean value of all GSDE cells and the weighted mean of the clusters within a CLASS-CTEM grid cell.
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Figure A7. Percent difference in evapotranspiration (ET) between the Cluster and Gridmean simulations by season (mean of 1995–2015).
Grid cells with monthly ET of< 10−5 mm water were masked out to prevent instances of division by zero and overly large relative differences
in regions of very small evapotranspiration. Positive values indicate the Cluster simulation ET is larger while negative values indicate the
Gridmean simulation ET is larger. Dots indicate grid cells that are statistically significant (independent two-sample t-test p level< 0.01).
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Figure A8. Percent difference in transpiration between the Cluster and Gridmean simulations by season (mean of 1995–2015) following
Fig. A7.
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Figure A9. Percent difference in runoff between the Cluster and Gridmean simulations by season (mean of 1995–2015) following Fig. A7.
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Figure A10. Percent difference in sensible heat fluxes between the Cluster and Gridmean simulations by season (mean of 1995–2015)
following Fig. A7.
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Figure A11. Percent difference in WUE between the Cluster and Gridmean simulations by season (mean of 1995–2015). Grid cells with
monthly evapotranspiration of < 10−5 mm water were masked out to prevent instances of division by zero and overly large relative dif-
ferences in regions of very small evapotranspiration. Positive values indicate the Cluster WUE is larger while negative values indicate the
Gridmean WUE is larger. Dots indicate grid cells that are statistically significant (independent two-sample t-test p level< 0.01).
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Figure A12. Relationships between soil texture and field capacity (θfc; a), pore volume (θp; b), saturated hydraulic conductivity (Ksat; c),
and soil moisture suction at saturation (9sat; d) following Cosby et al. (1984) as implemented in Verseghy (2012).
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