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Abstract. Simple models can play pivotal roles in the quan-
tification and framing of uncertainties surrounding climate
change and sea-level rise. They are computationally efficient,
transparent, and easy to reproduce. These qualities also make
simple models useful for the characterization of risk. Sim-
ple model codes are increasingly distributed as open source,
as well as actively shared and guided. Alas, computer codes
used in the geosciences can often be hard to access, run,
modify (e.g., with regards to assumptions and model com-
ponents), and review. Here, we describe the simple model
framework BRICK (Building blocks for Relevant Ice and
Climate Knowledge) v0.2 and its underlying design princi-
ples. The paper adds detail to an earlier published model
setup and discusses the inclusion of a land water storage
component. The framework largely builds on existing mod-
els and allows for projections of global mean temperature
as well as regional sea levels and coastal flood risk. BRICK
is written in R and Fortran. BRICK gives special attention to
the model values of transparency, accessibility, and flexibility
in order to mitigate the above-mentioned issues while main-
taining a high degree of computational efficiency. We demon-
strate the flexibility of this framework through simple model
intercomparison experiments. Furthermore, we demonstrate
that BRICK is suitable for risk assessment applications by
using a didactic example in local flood risk management.

1 Introduction

Simple, mechanistically motivated Earth system models of-
ten play a pivotal role in climate and flood risk management
(Hartin et al., 2015). For example, they are used for uncer-
tainty quantification (Bakker et al., 2017; Grinsted et al.,
2010; Urban et al., 2014; Urban and Keller, 2010) and com-
plex model emulation (Applegate et al., 2012; Bakker et al.,
2016; Hartin et al., 2015; Meinshausen et al., 2011a), and are
incorporated into integrated assessment models (Hartin et al.,
2015; Meinshausen et al., 2011a).

Computational constraints often impose hard trade-offs
between physical model complexity and statistical model
complexity. For example, a sizable allocation of computa-
tional time could be spent running a small number of simu-
lations using a high-complexity physical model. Highly de-
tailed simulations are useful to better understand the complex
system, but with just a small number of simulations, only
weak ensemble statistics can be drawn. In contrast, numer-
ous realizations of a less detailed physical model could be
run. This would provide the opportunity for more advanced
ensemble statistical techniques including the characterization
and quantification of uncertainties. It is important in climate-
related applications such as mitigation of greenhouse gas
emissions or adaptation to sea-level rise that the relevant un-
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certainties are explored and communicated clearly to policy-
makers (e.g., Garner et al., 2016; Gauderis et al., 2013; Goes
et al., 2011; Hall et al., 2012; Lempert et al., 2004).

Several studies have broken important new ground in tack-
ling these challenges. For example, Nauels et al. (2017)
present a platform of sea-level emulators (i.e., simple models
of complex models) that efficiently produces future projec-
tions and characterizes key model structural uncertainties us-
ing statistical calibration methods. Semi-empirical modeling
(SEM) approaches trade detailed physics for a model that can
efficiently project sea level using statistical, but mechanisti-
cally motivated, relationships between sea-level changes and
climate conditions such as temperature and radiative forc-
ing (Grinsted et al., 2010; Jevrejeva et al., 2010; Kopp et al.,
2016; Rahmstorf, 2007). Recent work has expanded upon the
SEM approach to use simple models to resolve individual
contributions to global sea level (Bakker et al., 2017; Mengel
et al., 2016; Nauels et al., 2017).

Studies based on simple, mechanistically motivated mod-
els have the potential to be transparent and reproducible
when presented in open platforms and when the underlying
data are readily available. Yet, although there is an increasing
tendency to share scientific code, it can be (perhaps surpris-
ingly) hard to get the models running and to reproduce the
results. A likely cause of this is that not enough attention
is given to the scientific coding itself. Careful coding, doc-
umentation, and review require a dedicated commitment of
time, but scientific incentives to do so can be weak.

Here we describe in detail BRICK (Building blocks for
Relevant Ice and Climate Knowledge, Bakker et al., 2017)
v0.2, a model framework that focuses on accessibility, trans-
parency, and flexibility while maintaining, as much as pos-
sible, the computational efficiency that makes simple models
so appealing. As compared to Bakker et al. (2017), BRICK
v0.2 accounts for land water storage with the other com-
ponents kept unchanged. There is a wide range of poten-
tial applications for such a model. A simple framework en-
ables uncertainty quantification via statistical calibration ap-
proaches (Higdon et al., 2004; Kennedy and O’Hagan, 2001),
which would be infeasible with more computationally ex-
pensive models. A transparent modeling framework enables
communication between scientists as well as communication
with stakeholders. This leads to potential application of the
model framework in decision support and education (Fis-
chbach et al., 2012; Johnson et al., 2013; Weaver et al., 2013).
The present work expands on previous studies by (i) provid-
ing a platform of simple but mechanistically motivated sea-
level process models that resolve more processes, (ii) pro-
viding a model framework that can facilitate model compar-
isons (for example, between our models and those of Nauels
et al., 2017), (iii) exploring combined effects of key struc-
tural and parametric uncertainties, (iv) explicitly demonstrat-
ing the flexibility of our framework for interchanging model
components, and (v) explicitly demonstrating the utility of
our model framework for informing decision analyses.

In this model framework, we present a set of existing,
well-tested, and easy-to-couple simple models for climate
and flood risk management. They simulate global mean sur-
face temperature and contributions to global mean sea-level
rise. BRICK also includes a regional sea-level rise module,
which translates the global mean sea-level contributions to
regional sea level at a user-defined location. We use these
regional sea-level projections to demonstrate how the phys-
ical model may be linked to decision-making and impacts.
We implement a Bayesian calibration approach with an aim
to adequately resolve the tails of the distribution of future
sea levels because these low-probability areas represent high-
risk events. In robust decision-making approaches, it can be
favorable to be underconfident as opposed to overconfident,
e.g., by applying conservative estimates in the sense of be-
ing risk-averse (Herman et al., 2015). We hence include in
our Bayesian approach wide, mechanistically motivated prior
parameter probability distributions (Bakker et al., 2017). Yet,
the flexibility of the BRICK model framework also enables
the implementation of other calibration schemes. This paper
is intended to showcase a useful model framework that is at-
tractive for a sustainable approach to model development, for
example by inspiring fellow researchers to contribute to the
framework, to rethink their coding practice, and maybe even
to adopt some of the demonstrated design objectives in their
future research proposals.

The hindcast skill of the BRICK model has been previ-
ously demonstrated (Bakker et al., 2017). Thus, the present
work focuses on outlining a set of epistemic modeling values
that we believe facilitates advances in the modeling commu-
nity. The remainder of this work is organized as follows. In
Sect. 2, we describe these values and the ways in which the
BRICK model implementation strives to attain them. Sec-
tion 3 contains an overview of the BRICK model components
for climate and the contributions to sea-level rise. Section 4
describes and presents the results of a set of model experi-
ments conducted to demonstrate how BRICK lives up to our
epistemic modeling values. Section 5 summarizes the find-
ings of this work and provides conclusions and guidance for
future work.

2 Framework design

2.1 Model design

The essence of the BRICK physical model is to simulate
changes in global mean surface temperature and sea level,
in response to perturbations in radiative forcing. The socioe-
conomic impacts of the simulated temperature and sea-level
changes may then be assessed. This is depicted in Fig. 1. The
climate component, each individual contribution to global
sea-level rise, and an impacts module are sub-models of
BRICK, or “BRICKs.” We defer details of the specific sub-
models to Sect. 3. The physical model (climate and sea-level
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Figure 1. BRICK model structural diagram. Dashed connectors indicate couplings that are non-essential for projections of global mean
sea level. These dashed couplings are required for projecting regional sea-level and climate impacts. DOECLIM is the Diffusion-Ocean-
Energy balance CLIMate model (Kriegler, 2005); GIC-MAGICC is the Glaciers and Ice Caps module from the MAGICC climate model
(Meinshausen et al., 2011a); TE is the Thermal Expansion model (Grinsted et al., 2010; Mengel et al., 2016); SIMPLE is the Simple Ice-
sheet Model for Projecting Large Ensembles (Bakker et al., 2016); ANTO is the ANTarctic Ocean temperature model; DAIS is the Danish
Center for Earth System Science Antarctic Ice Sheet model (Shaffer, 2014); regional sea-level fingerprinting downscales from global sea-level
contributions to regional (Slangen et al., 2014); and the model of Van Dantzig (1956) assesses flood risk.

rise) components of BRICK are intentionally simple. This
choice is guided by the epistemic modeling values outlined
below.

2.2 Epistemic modeling values

2.2.1 Accessibility

We selected R (R Core Team, 2016) as the base language
for BRICK because it is (i) stable, (ii) freely available and
open source, (iii) relatively easy to use, and (iv) easy to
call subroutines written in faster languages. In the BRICK
source code accompanying this study, the physical sub-
models within the climate and sea-level rise modules are all
provided as both R and Fortran 90 routines. It is our aim that
the full physical–statistical model of BRICK will be acces-
sible using a modern laptop. This means that sizable Monte
Carlo simulations (on the order of a million samples) must
be possible on a timescale of hours. This is made possible by
calling Fortran 90 sub-models from the base code in R.

In addition to conceptual accessibility, it is our view that
useful model codes should be physically accessible too.
Openness with scientific codes is likely to lead to higher
quality codes (Easterbrook, 2014). In an effort to be truly
open source and freely available, all codes – including the
physical model, statistical model, and processing and plot-
ting scripts used for the results shown here – are available
through a download server as well as the Github reposi-
tory provided in the Code Availability section of this article.
Providing all code and data necessary to recreate this study
is a critical component of reproducible research (Murray-
Rust and Murray-Rust, 2014) and can help to build trust be-
tween the general public and the scientific community (East-
erbrook, 2014; Grubb and Easterbrook, 2011).

2.2.2 Transparency

We aim to achieve transparency in two areas: the physical
modeling, including the related model code, and the commu-
nication of scientific findings.
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With regards to transparent physical modeling, we use
simple numerical integration schemes whenever possible.
We use as few global variables as possible, in order to “write
programs for people, not computers” (Wilson et al., 2014).
The essence of these authors’ advice is that users should not
be expected to remember more than a few pieces of informa-
tion as they read and develop code. To this end, in BRICK
we aim to give appropriately suggestive names to our vari-
ables within the code, such that a human intuitively under-
stands what the quantity at hand represents. For example,
when naming a logical or Boolean variable, we prefer for
its name to read as a question that the variable itself answers,
and begin the variable name with the letter “l” to imply it
is a “logical” variable. One example of this in the BRICK
source code is the variable “l.project”, which is true when
the model is configured to make projections of future sea-
level rise and climate, and false when the model is set up
for hindcast simulations. While it may seem fussy to review
these points, practices such as this will facilitate the shar-
ing of scientific codes and enable the community to build
stronger and more efficient collaborations.

Transparency also serves to link the findings of a physical
model to decision-making and policy impacts. BRICK can
be a useful tool to link climate changes (global temperature
and sea-level rise) to decision-making frameworks through
a clear outlet for coupling to socioeconomic models. Perhaps
most importantly, the coupled physical–statistical framework
in BRICK incorporates many sources of uncertainty into the
physical findings on which the decisions will be based. It
is important that these uncertainties in climate projections
are represented in the decision-making framework (Lempert
et al., 2004).

2.2.3 Flexibility

A modular programming approach is taken with BRICK,
which allows each component sub-model to be exchanged
for alternative models. In this way, as the scientific forefront
progresses, the BRICK sub-models may advance as well.
The flexible BRICK framework also permits a quantitative
evaluation of model structural differences, which is valuable
in the event that it is unclear which of two candidate models
should be chosen. In these cases, the BRICK framework is
valuable for model comparison and quantification of struc-
tural uncertainty. As new data sets for the calibration of the
sub-models become available, these can also be incorporated
instead of or in addition to the current data sets. We demon-
strate the flexibility of the BRICK framework through a se-
ries of modeling experiments (Sect. 4).

2.2.4 Efficiency

Code efficiency is enabled primarily through (i) the use of
simple models and (ii) using model versions written in R
for easy preliminary experimentation, and Fortran 90 ver-
sions for production simulations. This practice also follows
the advice of Wilson et al. (2014) for code developers to
“write code in the highest-level language possible, and shift
to lower-level languages like C and Fortran only when they
are sure the performance boost is needed.” This boost indeed
enables the generation of production simulations on most
modern laptops. The simulation of 1 million model iterations
spanning from 1850 to the present, performed on each of four
CPUs (two cores and two threads per core), yields an ensem-
ble of 4 million model realizations. This procedure requires
less than an hour on a model year 2012 laptop with a 2.9 GHz
dual-core processor with 16 GB of RAM. Paleoclimatic sim-
ulations require longer wall clock times, but can still be com-
pleted in less than a day. All simulations for this study were
completed on this machine.

Providing computationally efficient code simplifies its use.
For example, there may be limitations on the computing re-
sources allocated for a particular project, or an instructor
might be interested in enhancing coursework by incorpo-
rating computer modeling exercises. In these cases, trans-
parency is critical (as mentioned above), but the model must
also be sufficiently efficient that it neither (i) expires the com-
putational allotment for the experiment nor (ii) takes too long
to be of any educational use. Our epistemic modeling val-
ues of accessibility, transparency, flexibility, and efficiency
motivate the choice of a relatively simple physical model-
ing framework. Accordingly, a detailed statistical calibration
framework is implemented. Within this framework, physical
model and statistical model parameters are calibrated using
observational data sets and mechanistically motivated prior
ranges. The statistical model is reviewed at greater length
by Bakker et al. (2017), so we provide only an overview in
Sect. 4.1.

2.3 Code review and sharing

We invite the readers to download and test our code, as well
as provide feedback on how best to further develop BRICK
to fulfill the four epistemic values outlined above. Frequent
and thorough code review by other team members as well
as outside agents is another critical step towards good scien-
tific coding practices (Wilson et al., 2014), and “peer review
needs to be supplemented with a number of other mecha-
nisms that help to establish the correctness and credibility of
scientific research” (Grubb and Easterbrook, 2011). Wilson
et al. (2014) also note that a number of high-profile research
articles have been retracted or revised because of errors in
the code. The likelihood of these errors may be greatly re-
duced by thoroughly testing other group members’ codes. In
our own experience conducting the experiments described in
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this study, we have anecdotal evidence for the value of testing
one another’s code. Some errors were corrected through this
process, and many more pieces of code were modified for
clarity. We continue to invite all comments and suggestions
for improvements and modifications (to the corresponding
author).

The use of a version control system greatly expands the
accessibility of a code base, and also facilitates continuous
improvement of the modeling framework itself. This is true
and useful before, during, and after the peer-review process.
Mistakes are inevitable and we assume that BRICK still con-
tains some minor errors, ambiguities, and pieces of code that
do not fully comply with our own standards. Openly sharing
the code and documentation will help to address these issues.
It is our hope that BRICK may be further developed as a com-
munity modeling tool, and that other users may contribute to
the framework through added or revised models and data, or
improved functionality. The use of a version control system
facilitates this type of community effort (Wilson et al., 2014).

3 Model components

3.1 Global mean climate

We adopt DOECLIM (Diffusion Ocean Energy balance
CLIMate model, Kriegler, 2005) as a starting point for
a simple climate model (Fig. 1). DOECLIM is a zero-
dimensional energy balance model coupled to a three-layer,
one-dimensional diffusive ocean model. The DOECLIM
physical model outputs are global mean surface tempera-
ture anomaly (◦C) and ocean heat uptake (1022 J). Calibra-
tion data for DOECLIM include both global surface temper-
ature (Morice et al., 2012) and ocean heat uptake (Gouretski
and Koltermann, 2007). We use a 1-year time step for the
DOECLIM model, and the required input to drive the model
is the radiative forcing time series (Wm−2). This forcing is
partitioned into aerosol and non-aerosol components, to en-
able a representation of the uncertainty associated with these
forcings. The BRICK model considers this as an uncertain
model parameter denoted as the aerosol forcing scaling factor
(αDOECLIM). This aerosol scaling factor has been used else-
where in the literature (Urban et al., 2014; Urban and Keller,
2010) and accounts for some uncertainty in the radiative forc-
ing of aerosols (Meinshausen et al., 2011b). The interested
reader is directed to Kriegler (2005) and Tanaka and Kriegler
(2007) for more information about the DOECLIM model.

We fit a first-order autoregressive (AR1) error model to
the model–data discrepancy between temperature and ocean
heat uptake model output and calibration data. We estimate
the first-order lag autocorrelation parameters (ρT and ρH )
and homoscedastic component of the AR1 innovation vari-
ance (σT and σH ) within the calibration framework as sta-
tistical model parameters. We add the heteroscedastic obser-
vational error estimates for global mean surface temperature

from Morice et al. (2012) and for ocean heat uptake from
Gouretski and Koltermann (2007) in quadrature to σT and
σH (respectively) for the complete heteroscedastic tempera-
ture and ocean heat uptake error estimates. The model cal-
ibration approach implemented here assumes normally dis-
tributed model–data residuals with mean 0 (Higdon et al.,
2004). The AR1 error model has the effect of “whitening”
the residuals to satisfy this assumption. This type of calibra-
tion approach for DOECLIM has been implemented previ-
ously in the literature (Urban et al., 2014; Urban and Keller,
2010), and we direct the interested reader to these studies for
further details.

3.2 Sea-level components

The BRICK global mean sea-level module calculates global
sea-level change as the sum of four individual components:
glaciers and ice caps (GIC), the Greenland Ice Sheet (GIS),
the Antarctic Ice Sheet (AIS), and thermal expansion (TE).
These component sub-models are described in the following
sections. BRICK accounts for land water storage contribu-
tions to global mean sea level using mass balance trends from
the International Panel on Climate Change (IPCC) Fifth As-
sessment Report (AR5, Church et al., 2013) and from the
work of Dieng et al. (2015). The differential equations for
the GIC, GIS, AIS, and TE contributions to global mean sea
level are integrated into BRICK using first-order numerical
integration schemes with a 1-year time step. Initial condi-
tions are specified at a year dictated by the sub-model’s as-
sumed reference point. This differs, in general, among the
sub-models, and some model parameters depend on preserv-
ing this reference year. Starting from this initial condition,
a first-order explicit numerical integration method integrates
forward in time to the end of the simulation and a first-order
implicit (backward differentiation) method integrates back-
ward in time to the earliest year of the simulation. Prelimi-
nary experiments (not shown) demonstrated that the 1-year
time step is sufficiently short to maintain numerical stability.
The total global mean sea-level rise from the coupled BRICK
model is

dS
dt
(t)=

dSGIC

dt
(t)+

dSGIS

dt
(t)+

dSAIS

dt
(t)+

dSTE

dt
(t)

+
dSLWS

dt
(t),

(1)

where S(t) is the global mean sea level (m) in year t , SGIC is
the sea-level contribution from GIC (m), SGIS is the sea-level
contribution from the GIS (m), SAIS is the sea-level contribu-
tion from the AIS (m), STE is the sea-level contribution from
thermal expansion (m), and SLWS is the sea-level contribution
from changes in land water storage. We report projections of
future sea level relative to the 1986–2005 mean.

www.geosci-model-dev.net/10/2741/2017/ Geosci. Model Dev., 10, 2741–2760, 2017



2746 T. E. Wong et al.: BRICK v0.2, a simple, accessible, and transparent model framework

3.2.1 Glaciers and Ice Caps

We adopt a simple zero-dimensional sub-model for the con-
tribution to global sea-level rise from Glaciers and Ice Caps
(GIC) from Wigley and Raper (2005). This same formula-
tion is used in the MAGICC climate model (Meinshausen
et al., 2011a). The parameterization for the GIC contribution
to global sea-level rise is

dSGIC

dt
(t)= β0(Tg(t)− Teq,GIC)

(
1−

SGIC(t)

V0,GIC

)n
. (2)

In Eq. (2), SGIC is the cumulative sea-level contribution from
GIC (m), β0 is the initial mass balance sensitivity to global
temperatures (m ◦C−1 yr−1), Teq,GIC is the theoretical equi-
librium temperature at which the GIC mass balance is at
steady state (◦C), V0,GIC is the initial total volume of GIC
available in 1990 (m sea-level equivalent (SLE)), and n is
an exponent parameter for area-to-volume scaling. An initial
condition, S0,GIC, is provided as an uncertain model param-
eter. Teq,GIC is taken equal to −0.15 ◦C (Wigley and Raper,
2005). Note that in this formulation for GIC contribution to
sea-level rise, whether the GIC mass is increasing or decreas-
ing depends only on Tg(t) relative to Teq,GIC; it is indepen-
dent of the current state SGIC(t). Within this model for the
GIC sea-level contribution, Tg is relative to the 1850–1870
mean global surface temperature (Wigley and Raper, 2005).

The uncertain physical model parameters for GIC-
MAGICC (which will be tested in Sect. 4.2) are β0, V0,GIC,
S0,GIC, and n. We fit an AR1 model to the model–data dis-
crepancy between GIC model output and calibration data
(Dyurgerov and Meier, 2005) in the same manner as the tem-
perature and ocean heat uptake calibration (Sect. 3.1). Uni-
form prior distributions are used for the GIC-MAGICC phys-
ical and statistical model parameters. These prior distribu-
tions, as well as calibrated posterior medians, 5, and 95 %
quantiles, are given in Appendix A.

3.2.2 Greenland Ice Sheet

BRICK uses the mechanistically motivated, zero-
dimensional SIMPLE (Simple Ice-sheet Model for Pro-
jecting Large Ensembles) model as the parameterization for
the Greenland Ice Sheet (GIS) contribution to global mean
sea-level change (Bakker et al., 2016). SIMPLE estimates
the GIS response to changes in global mean surface tem-
perature by first estimating an equilibrium ice sheet volume
(Veq, GIS, m SLE) at which the sea-level contribution from
the GIS is 0, and estimating the e-folding timescale of GIS
volume changes due to changes in global temperature (τGIS,
yr−1).

Veq, GIS(t)= cGISTg(t)+ bGIS (3)
1

τGIS(t)
= αGISTg(t)+βGIS (4)

In Eqs. (3) and (4), cGIS, bGIS, αGIS, and βGIS are uncertain
physical model parameters. cGIS is the sensitivity of the equi-
librium volume to changes in temperature (mSLE ◦C−1);
bGIS is the equilibrium volume Veq, GIS for 0 temperature
anomaly (mSLE); αGIS is the sensitivity to temperature of
the timescale of GIS volume response to changes in temper-
ature (◦C−1 yr−1); and βGIS is the equilibrium (Tg = 0 ◦C)
timescale of GIS volume response to changes in temperature
(yr−1). Global mean surface temperature, Tg , is taken rela-
tive to the 1961 to 1990 mean. The GIS volume changes can
then be written as

dVGIS

dt
(t)=

1
τGIS(t)

(Veq, GIS(t)−VGIS(t)). (5)

The initial condition V0,GIS is provided as an uncertain model
parameter (mSLE). Using this initial condition, designated
in the year 1961, the sea-level rise due to the GIS is calcu-
lated as the change from V0,GIS to the current GIS volume,
VGIS(t). This formulation, of course, assumes that all GIS
volume lost makes its way into the oceans. An AR1 model is
fitted to the GIS model–data residuals. Due to poor conver-
gence, the first-order lag autocorrelation parameter (ρGIS) is
held constant at a value determined by a preliminary model
simulation that is optimized using a differential evolution op-
timization algorithm (Storn and Price, 1997). The GIS train-
ing data set does not provide heteroscedastic error estimates,
so the AR1 innovation variance is taken to be the estimated
statistical parameter σGIS added in quadrature to the provided
error estimate (Sasgen et al., 2012). All GIS physical and
statistical model parameters are assigned uniform prior dis-
tributions. The ranges for these priors and posterior distribu-
tion medians, 5, and 95 % quantiles are given in Appendix A.
Further details regarding SIMPLE area provided in Bakker
et al. (2016).

3.2.3 Antarctic Ice Sheet

We employ the Danish Center for Earth System Science
Antarctic Ice Sheet (DAIS) model to simulate the Antarc-
tic Ice Sheet contribution to global sea level (Shaffer, 2014).
This is a two-dimensional model for the Antarctic Ice Sheet
that assumes an axisymmetric geometry, shown graphically
in Shaffer (2014), his Fig. 2. The DAIS model tracks changes
in Antarctic Ice Sheet volume, considering contributions
from (i) incident precipitation, (ii) runoff of ice melt, (iii) ice
flow, and (iv) ice sheet disintegration from rising and warm-
ing sea levels. Input forcings for the DAIS model include
Antarctic surface temperature reduced to sea level (TA, ◦C),
high-latitude ocean subsurface temperature (TANTO, ◦C),
global mean sea level (m), and the time rate of change in
global mean sea level (myr−1).

When calibrated as a stand-alone model, the DAIS forc-
ings are provided based on temperature reconstructions (see
Shaffer, 2014). When the DAIS model is run as a compo-
nent in the coupled BRICK model, a separate sub-model is
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needed to convert the global mean surface temperature from
the climate model (DOECLIM) to the Antarctic surface and
ocean subsurface temperatures required by the DAIS model.
The Antarctic surface temperature is estimated from a lin-
ear regression with global mean surface temperature (Morice
et al., 2012; Shaffer, 2014). The Antarctic Ocean tempera-
tures (TANTO) are modeled through a simple relation with the
global mean surface temperature, Tg (relative to the 1850–
1870 mean). TANTO is bounded below at the freezing point
of salt water (Tf =−1.8 ◦C):

TANTO(t)=

Tf +
aANTO · Tg(t)+ bANTO− Tf

1+ exp[−(aANTO · Tg(t)+ bANTO− Tf )/aANTO]
.

(6)

Equation (6) is a modified linear regression between the
global mean surface temperature Tg and the Antarctic Ocean
temperature TANTO, such that the Antarctic Ocean tempera-
ture is bounded below by the freezing temperature of seawa-
ter, Tf . In Eq. (6), aANTO is the sensitivity of the Antarctic
Ocean temperature to global mean surface temperature (unit-
less), and bANTO (◦C) is the approximate Antarctic Ocean
temperature for Tg = 0 ◦C. bANTO is the approximate ocean
temperature because the relationship in Eq. (6) is not a sim-
ple linear regression. aANTO and bANTO are both estimated
as uncertain model parameters. The DAIS model contains
11 physical parameters and 1 statistical parameter, for a total
of 14 Antarctic Ice Sheet parameters to be estimated. The
heavily parameterized Antarctic Ice Sheet module reflects
our focus on including a broad range of model and obser-
vational uncertainties and considering the critical role of the
Antarctic Ice Sheet in driving substantial uncertainty in fu-
ture sea levels (Church et al., 2013).

Here, we use an updated and corrected version of the DAIS
model (Ruckert et al., 2017; Shaffer, 2014). In the original
formulation of the DAIS model, the input forcing from year t
is used to determine the AIS contribution to sea-level rise
in year t . This implicit numerical scheme assumes sea level
and temperatures for the current year are known during that
model iteration. For this study, in which temperatures and
sea level originate in other BRICK model components, the
DAIS model is re-cast using an explicit numerical scheme.
The sea level and temperatures from the year t − 1 are used
to calculate the AIS contribution in year t . Antarctic shore-
average local mean sea level functions as the input to DAIS
when run as a sub-model of the coupled BRICK model. This
is estimated as described in Sect. 3.3.

The dynamical core of the DAIS model is more detailed
than the GIC, GIS, and TE emulators given above. For this
reason, we do not undertake a full review of the model equa-
tions here. The interested reader is directed to Shaffer (2014)
and Ruckert et al. (2017) for further details regarding the
DAIS model and its hindcast forcings. Eq. (3) of Shaffer
(2014) is the main equation of state for the Antarctic Ice

Sheet volume (VAIS, m3):

dVAIS

dt
(t)= Btot(TA,R)+F(S,R). (7)

In Eq. (7), Btot is the total rate of accumulation of mass on
the Antarctic Ice Sheet (m3 yr−1), TA is the Antarctic sur-
face temperature reduced to sea level (◦C), S is the sea level
(m), R is the Antarctic Ice Sheet radius (m), and F is the
ice flux at the grounding line (m3 yr−1). Following Shaf-
fer (2014), we take the present sea-level equivalent Antarctic
Ice Sheet volume to be 57 mSLE, and the initial ice sheet
volume (V0,AIS, m3) to be consistent with an initial ice sheet
radius of 1.86× 106 m. Thus, the Antarctic Ice Sheet contri-
bution to global sea level may be calculated as

dSAIS

dt
(t)=−57 m ·

dVAIS
dt (t)

V0,AIS
. (8)

3.2.4 Thermal expansion

BRICK uses a simple parameterization for the contribution
of thermal expansion (TE) of the Earth’s oceans to sea-level
rise. We make the simplifying assumption that thermal ex-
pansion of the oceans occurs uniformly around the globe.
While this is, of course, not strictly true, the next obvious
step forward in model complexity would be to use a verti-
cally and latitudinally resolved model for thermal expansion,
incorporating the DOECLIM model output for ocean heat
uptake. This two-dimensional ocean model is beyond the
scope of the simple model framework described presently,
but is an excellent subject for future work. Here, we employ
a simple zero-dimensional thermal expansion emulator based
on the parameterizations of the sea-level rise sub-models of
Mengel et al. (2016) and that was originally used by Grin-
sted et al. (2010) to model the total global mean sea-level
changes. First, an equilibrium sea-level rise from thermal ex-
pansion, due to changing global surface temperature (Seq,TE,
m), is calculated as

Seq,TE(t)= aTE Tg(t)+ bTE. (9)

In Eq. (9), aTE is the sensitivity of the equilibrium sea-level
rise from thermal expansion, due to changing global surface
temperatures (m ◦C−1), and bTE is the equilibrium sea-level
rise from thermal expansion with no temperature anomaly
(m). The sea-level rise due to thermal expansion evolves with
time as

dSTE

dt
(t)=

1
τTE

(Seq,TE(t)− STE(t)), (10)

where the quantity τTE is the e-folding timescale with which
the current sea level adjusts to the equilibrium state, and
1/τTE is taken as an uncertain model parameter. This pa-
rameter is assigned a gamma prior distribution with shape
1.81 and scale 0.00275, which places the 5th and 95th quan-
tiles for τTE at 82 and 1290 years (Mengel et al., 2016). This
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choice of prior distribution is motivated by the fact that τTE
functions similarly to the uncertain timescale associated with
an exponentially distributed random variable. A gamma dis-
tribution is the conjugate prior for such a random variable.
The initial condition S0,TE is provided as an uncertain model
parameter (m), designated in year 1850. To match this ac-
counting for sea-level rise relative to pre-industrial, forcing
temperature is taken relative to its 1850–1870 mean. We cal-
ibrate the thermal expansion component of sea-level rise us-
ing trends reported by the IPCC (Church et al., 2013).

3.3 Regional sea-level patterns

In order to link the projections of global mean sea-level
change from BRICK to a local coastal adaptation, informa-
tion on regional sea-level change is needed. Thus, the global
mean sea level from BRICK is downscaled to regional sea
level using previously published maps of scaling factors for
the glacier and ice sheet components of sea-level change
(Slangen et al., 2014). Any redistributions of mass between
the cryosphere and the ocean (e.g., ice melt) lead not only to
a change in the total mass of the ocean, but also to changes
in regional sea level as a result of variations in the gravita-
tional field of the Earth, which in turn affect the solid Earth
and the rotation of the Earth (e.g., Mitrovica et al., 2001).
This typically (and counterintuitively) leads to a sea-level fall
close to the source of mass loss and larger-than-average sea-
level rise at larger distances (> 6700 km) from the source.
These so-called regional sea-level “fingerprints” are constant
for the timescales used in this study, as long as the location of
the ice mass change remains the same. The fingerprints can
therefore be used to relate global glacier and ice sheet con-
tributions to sea level (Sects. 3.2.1–3.2.3) to their regional
sea-level contribution. We couple changes in global sea level
to the Antarctic Ice Sheet model using an Antarctic shore-
average fingerprint ratio of −1.0 for the AIS contribution to
global sea level, and Antarctic shore-average fingerprint fac-
tors of 1.0 for the other contributions to sea-level rise from
all BRICK sub-models (Slangen et al., 2014). Preliminary
experiments indicated that our results are not sensitive to the
precise choices of these fingerprints.

The glacier fingerprint is based on projected changes in
glacier mass in 2100 using a glacier model driven by temper-
ature and precipitation information from the Fifth Climate
Model Intercomparison Project database (Taylor et al., 2012)
under the Representative Concentration Pathway 8.5 climate
change scenario (RCP8.5, Moss et al., 2010), as presented in
Slangen et al. (2014). It is assumed that the mass change ra-
tios between the different glacier regions on Earth remain the
same throughout the 20th and 21st centuries, which is a valid
assumption as long as none of the glacier regions “finish”
(which is not expected to happen in the next century). For
the Greenland and Antarctic ice sheets, it is assumed that ice
melt takes place uniformly over the ice sheet surface. Within

the BRICK model structure, users may define a latitude and
longitude to obtain regional sea-level change.

4 Model experiments

4.1 Model calibration

We calibrate the model through a coupled physical–statistical
calibration framework. The relatively simple physical mod-
eling framework of BRICK is motivated by our epistemic
modeling values (Sect. 2.1). This efficient model permits the
use of a sophisticated model calibration technique. The cal-
ibration uses a robust adaptive Markov chain Monte Carlo
(MCMC) approach (Vihola, 2012). The specifics of how it
is applied to the BRICK model as well as a demonstration
of calibrated BRICK model hindcast skill are documented in
Bakker et al. (2017).

The vastly different timescales and characterizations of
uncertainty in the Antarctic paleoclimatic calibration period
and the modern period (1850 to present) lead to two sepa-
rate sets of calibration parameters: (i) DAIS parameters, cal-
ibrated using paleoclimatic data, and (ii) DOECLIM, GIC,
GIS, and TE parameters, jointly calibrated using modern
data. The paleoclimatic calibration is done using four par-
allel MCMC chains of 500 000 iterations each. The first
120 000 iterations of each chain are removed for burn-in.
The paleoclimatic calibration requires about 10 h on a laptop
with a 2.9 GHz dual-core processor with 16 GB of RAM. The
modern calibration is done using four parallel MCMC chains
of 1× 106 iterations each. The first 500 000 iterations of each
chain are removed for burn-in. This requires less than 1 h on
the same machine as the paleoclimatic calibration. Conver-
gence and burn-in lengths are assessed using Gelman and
Rubin diagnostics (Gelman and Rubin, 1992).

We combine these two disjoint sets of parameters to form
concomitant full BRICK model parameter sets, and calibrate
these to global mean sea-level data (Church and White, 2011)
using rejection sampling (Votaw Jr. and Rafferty, 1951). Prior
to rejection sampling, contributions from land water storage
are estimated using trends from the IPCC (Church et al.,
2013) and subtracted from global mean sea level. When pro-
jecting global mean sea-level rise, we estimate land water
storage contributions by extrapolating using the 2003–2013
trend of 0.30± 0.18 mmyr−1 found by Dieng et al. (2015).
This approximation may not hold in reality (Wada et al.,
2012), but serves as a starting point for future model devel-
opments. The use of rejection sampling and the estimation
of land water storage contributions to sea level are the two
aspects in which our calibration approach differs from that
of Bakker et al. (2017). In this rejection sampling step, each
full BRICK parameter set is constructed by parsing a random
draw from the calibrated DAIS parameter sets with a random
draw from the DOECLIM-GIC-GIS-TE calibrated parame-
ter sets. This full BRICK model has the major components
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of global mean sea-level rise represented, so only at this
stage is calibration using global mean sea-level data possi-
ble. The calibration to global sea-level data initially proposes
135 000 full BRICK model parameter sets. We use a joint
Gaussian normal likelihood function centered at the time se-
ries of the global mean sea-level data, with standard devia-
tion given by the observational uncertainty of the sea-level
data (corrected to account for land water storage). For rejec-
tion sampling, the enveloping distribution is this likelihood
function evaluated at the observed sea-level time series it-
self. Thus, no model simulation can yield a realization of the
likelihood function that exceeds this value. Rejection sam-
pling accepts each model simulation with probability equal
to the ratio of the likelihood function evaluated at the se-
lected model simulation to the maximal value of the likeli-
hood function; 10 589 ensemble members remain after the
calibration to global mean sea-level data. These model real-
izations serve as the control ensemble for analysis. The entire
analysis for the control model, including paleoclimatic sim-
ulations and the risk assessment presented in Sect. 4.4, re-
quires about 4 h on a modern laptop, but constructing smaller
ensembles is much faster (an ensemble of about 600 mem-
bers requires less than 10 min).

In the spirit of our epistemic values, calibration routines
are provided with the available BRICK source code. These
routines use modern methods readily available in R. It is our
aim that the interested user can easily substitute their own
likelihood function (as physical scientific knowledge pro-
gresses), a new calibration method (as the statistical state-of-
the-art progresses), or both. To this end, we provide a sub-
routinized likelihood function, called from an R-packaged
calibration method (Vihola, 2012). We also provide individ-
ual likelihood functions and calibration scripts for each sub-
model of BRICK individually, to enable interested users to
perform experiments using stand-alone sub-models or pre-
calibration (Edwards et al., 2011).

In the interest of accessibility and transparency, with the
available BRICK source code we also provide the sets of cal-
ibrated model parameters for all experiments presented here.
The purpose of this is 2-fold. First, it greatly enhances the re-
producibility of these results. Second, these data sets enable
users who would like to run their own ensembles and make
projections of local sea levels to do so. This supports our goal
of accessibility. The calibrated parameter sets are provided in
netCDF format, with ensemble member as the “unlimited”
dimension. This permits concatenation of multiple data sets
by using netCDF operators (NCO) such as “ncrcat” (Zender,
2008). These are freely available tools for manipulating data
stored in netCDF format.

4.2 Testing alternative model components: a sea-level
rise module intercomparison

4.2.1 Experimental description

We achieve the accessibility, transparency, and computa-
tional efficiency of the BRICK modeling framework through
use of simple models written in a simple programming en-
vironment (R, R Core Team, 2016). It remains to be demon-
strated that this framework is flexible and efficient in post-
processing.

We demonstrate BRICK’s flexibility and efficiency by im-
plementing and switching in an alternative formulation for
the global mean sea level, S(t). We exchange the more de-
tailed model configuration for global mean sea level (the
BRICK control; see Fig. 1) for the simple emulator described
by Rahmstorf (2007). This is

dS
dt
(t)= aGMSL(Tg(t)− Teq,GMSL), (11)

where t is time (years), S is the global mean sea level
(m), aGMSL is a sensitivity constant (m ◦C−1 yr−1), Tg
is the global mean surface temperature anomaly (◦C),
and Teq,GMSL is the theoretical temperature at which the
global sea level is steady ( ◦C). The parameters aGMSL and
Teq,GMSL, as well as the statistical parameters ρGMSL (the
first-order lag) and σGMSL (the homoscedastic component
of the innovation variance), are calibrated using the same
global mean sea-level data set as the full BRICK sea-level
rise module (Church and White, 2011). The BRICK-GMSL
model performance using Eq. (11) for the sea-level rise mod-
ule (while still coupled to DOECLIM as the climate mod-
ule) is compared against the full BRICK model configura-
tion. This BRICK-GMSL model configuration is calibrated
using four parallel MCMC chains of 100 000 iterations each.
The first 50 000 iterations are removed for burn-in, as de-
termined using Gelman and Rubin diagnostics (Gelman and
Rubin, 1992). We randomly sample from the resulting pos-
terior distribution to form an ensemble for analysis of 10 589
model realizations. This ensemble size is chosen to be consis-
tent with the BRICK control model ensemble size. The prior
ranges and posterior medians, 5 %, and 95 % quantiles for the
BRICK-GMSL parameters are provided in Appendix A.

Note that the Rahmstorf (2007) emulator is arguably not
the state-of-the-art anymore (Grinsted et al., 2010; Kopp
et al., 2016). However, it serves here the purpose of demon-
strating the ease with which alternative model formulations
can be tested. This greatly simplifies, for example, model
intercomparisons and improvements. Some advantages of
a simple emulator such as this include fewer parameters to
estimate and a transparent analysis. Disadvantages of such
a model include the inability to resolve individual contri-
butions to global mean sea level. This disables the use of
sea-level fingerprinting to obtain regional sea-level patterns.
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Figure 2. Comparison of global mean sea-level rise hindcast skill
relative to sea-level data (Church and White, 2011), using (a) the
full sub-model approach (GIC, GIS, TE, and AIS) and (b) the model
for global mean sea-level rise of Rahmstorf (2007). Sea level is rel-
ative to 1961–1990 global mean sea level. Both model configura-
tions use DOECLIM as the climate module. Lower values of the
Akaike information criterion (AIC), the Bayesian information cri-
terion (BIC), and root-mean-squared error (RMSE) indicate a better
model fit to the data. These error metrics are all calculated using the
maximum likelihood ensemble member, which is represented by
the solid blue line. Green highlighting indicates the model structure
suggested by each comparison metric.

Thus, the choice of model should be motivated not only by
goodness-of-fit metrics, but also by applications.

4.2.2 Metrics for model–data comparison

Many goodness-of-fit metrics are available for the compari-
son of models and data. We focus on three metrics that are
motivated by the heavily parameterized full BRICK model
framework. There are 39 free parameters in the coupled
climate/sea-level rise model. By contrast, BRICK-GMSL has
13 free parameters. We use the global mean sea-level time
series of Church and White (2011) for the model–data com-
parisons in skill hindcasting global mean sea level.

Root-mean-squared error (RMSE) is a commonly used
error metric, so we employ it here. For consistency with other
error criteria defined below, we define the RMSE for a model
as the RMSE of the model ensemble member that maximizes
the likelihood function.

The Akaike information criterion (AIC) is a measure of
the relative goodness-of-fit between two potential models for
the same data (Akaike, 1974).

AIC =−2ln(Lmax)+ 2N (12)

In Eq. (12), Lmax is the maximum value of the likelihood
function and N is the number of model parameters. Lower
values of the AIC provide a better match between model out-
put and data, and consider a penalty for over-parameterizing
a model.

The Bayesian information criterion (BIC) is formulated
similarly to the AIC, but enacts a different penalty for over-
parameterization (Schwarz, 1978).

BIC =−2ln(Lmax)+N ln(Nobs) (13)

In Eq. (13), Nobs is the number of observational data points
used in the model–data comparison. Thus, for Nobs > e

2,
the BIC metric penalizes over-parameterization more harshly
than does the AIC.

4.2.3 Experimental results: sea-level rise module
intercomparison

The full BRICK sea-level rise module (Fig. 1) performs bet-
ter than the GMSL emulator (Eq. 11) according to RMSE;
the full sea-level rise module has an RMSE of 0.0057 m,
which is about half the GMSL emulator RMSE of 0.015 m
(Fig. 2). These hindcasts are presented as sea level relative
to 1961–1990 global mean sea level. This is of course ex-
pected, because the number of free model parameters in the
full BRICK model is 39, while the GMSL emulator contains
only 13 free parameters. The BIC metric gives the expected
result for this disparity in model complexity. The BIC for the
full BRICK model with respect to the sea-level data is 60.4
higher than the BIC for the GMSL emulator. The AIC is ac-
tually lower (by 14.2) for the full BRICK model than for the
BRICK-GMSL emulator. These mixed results for the model
comparison metrics indicate that the full BRICK sea-level
rise module is not unreasonably over-parameterized; if the
full BRICK model were obviously over-parameterized, we
would expect the AIC for the GMSL emulator experiment to
be lower than for the full BRICK model.

These results also show that the sea-level hindcast in
the full BRICK model smoothes much of the year-to-year
variability in sea-level rise. This can be seen by contrast-
ing the full BRICK maximum likelihood ensemble member
(solid blue line) in Fig. 2a with the BRICK-GMSL emulator
maximum likelihood ensemble member in Fig. 2b. The full
BRICK simulation does not capture the annual variation in
global mean sea level that the BRICK-GMSL simulation suc-
cessfully captures. This is attributed to the smoothing effect
of averaging over the model ensemble the four major con-
tributions to global mean sea level, as opposed to calibrat-
ing the BRICK-GMSL simulations directly to global mean
sea-level data. This does not affect ensemble statistics, how-
ever, which can be seen from the shaded envelopes around
the model simulations in Fig. 2. The BRICK model has been
developed with efficiency and large ensemble simulations in
mind, so missing annual variability is of little concern.
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This demonstrates the ease with which model intercom-
parisons may be undertaken using BRICK. Deactivating the
glaciers and ice caps, thermal expansion, and Greenland and
Antarctic Ice Sheet components and integrating the GMSL
emulator into BRICK involves low overhead in computer
code. GMSL is the main output of the BRICK physical
model. As such, it is our aim to provide a framework in which
users can easily integrate new processes and models into the
climate and sea-level rise modules as the scientific forefront
progresses.

4.3 Interchanging BRICKs and sub-model
intercomparisons

4.3.1 Experimental description

We conduct an experiment to demonstrate the flexibility of
BRICK to permit easy exchanging of a single sub-model for
one component of global sea-level rise. In the control BRICK
model setup, SIMPLE is used to emulate the sea-level rise
contributions from the Greenland Ice Sheet (GIS) and GIC-
MAGICC is used to emulate the contributions from glaciers
and ice caps (GIC). In this model intercomparison experi-
ment, a second version of SIMPLE is calibrated to repre-
sent the GIC component of sea-level rise. This experiment
is motivated by potential structural shortcomings of the GIC-
MAGICC model. In Eq. (2), the implied GIC volume equi-
librium depends only on the current surface temperature rel-
ative to the fixed parameter Teq,GIC. If the GIC volume is
quite low (almost entirely melted), this structure potentially
enables unphysically fast growth of GIC volume. The SIM-
PLE model (Eqs. 3–5) contains an arguably more realistic
representation of the relaxation of ice sheet volume towards
an equilibrium. In this formulation, the timescale of the re-
laxation and the equilibrium itself both depend on the sur-
face temperature state. This type of potential disagreement
within the scientific community regarding model structure is
precisely where the BRICK model framework can be use-
ful. The flexibility of BRICK enables easy exchange of one
component sub-model (GIC-MAGICC) for another (GIC-
SIMPLE). This enables experiments examining the impacts
of model structural choices.

This GIC-SIMPLE model configuration calibrates GIC-
SIMPLE using the same observational data as the control
GIC-MAGICC setup. One key difference is that the prior dis-
tributions of the model parameters for GIC-SIMPLE were
modified to be specific to the GIC conditions instead of the
GIS. These prior distributions are given in Appendix A. The
same calibration method and likelihood functions are used
for the GIC-SIMPLE experiment as in the GIC-MAGICC
control model. We use the same calibration approach as in the
control ensemble, which yields an ensemble of 10 483 model
realizations for analysis in the GIC-SIMPLE experiment. As
in Sect. 4.2, we focus on RMSE, AIC, and BIC as model
goodness-of-fit metrics. The GIC-MAGICC model has six

Figure 3. Comparison of (a) GIC-MAGICC vs. (b) GIC-SIMPLE
model performance in hindcasting the glaciers and ice caps (GIC)
contribution to sea-level rise. GIC sea-level rise is presented rela-
tive to 1960 GIC sea-level contribution. Lower values of the AIC,
BIC, and RMSE indicate a better model fit to the data (Dyurgerov
and Meier, 2005). These error metrics are all calculated using the
maximum likelihood ensemble member, which is represented by
the solid blue line. Green highlighting indicates the model structure
suggested by each comparison metric.

model parameters (four physical parameters, two statistical
ones) and the GIC-SIMPLE model has seven parameters
(five physical parameters, two statistical ones).

4.3.2 Experimental results: glaciers and ice caps
sub-model intercomparison

When the GIC-MAGICC model is used, RMSE, AIC, and
BIC are all lower than when the GIC-SIMPLE model is used
(Fig. 3). But the AIC and BIC are not drastically lower for
GIC-MAGICC than for GIC-SIMPLE. This indicates that
the addition of a model parameter (GIC-SIMPLE) may not
be justified (Kass and Raftery, 1995). The GIC contribution
to global sea level in Fig. 3 is presented relative to 1960
GIC sea-level rise. The median, 5 %, and 95 % quantiles
of the calibrated GIC-SIMPLE parameters are given in Ap-
pendix A.

The two models display similar levels of under-
confidence, illustrated by the wide model ensemble en-
velope around the narrower range of observational data
(Fig. 3) (Dyurgerov and Meier, 2005). That both models
show under-confidence is often judged to be preferable to
over-confidence, especially when physical models are linked
to applications-oriented decision-making frameworks (Her-
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Table 1. Parameter descriptions and prior probability distributions for flood protection cost–benefit analysis.

Parameter Description Distribution

p0 Initial flood frequency (yr−1) with 0 heightening logN(logµ= log(0.0038), logσ = 0.25)
α Exponential flood frequency constant (m−1) N(µ= 2.6, σ = 0.1)
V Value of goods protected by dike ring (billion USD) U(5, 30)
δ Net discount rate (–) U(0.02, 0.06)
Iunc Investment uncertainty (–) U(0.5, 2)
rsubs Land subsidence rate (myr−1) logN(logµ= log(0.0056), logσ = 0.4)

man et al., 2015). This experiment demonstrates BRICK’s
flexibility and ability to allow the user to isolate and examine
any source of uncertainty or dissatisfaction in the modeling
framework. These results also provide guidance for the use of
the BRICK model framework for model intercomparison and
selection experiments. At present we do not make any rec-
ommendations regarding which GIC sub-model to use. The
GIC-MAGICC component has both strengths (e.g., fewer
parameters and appropriate in melting regimes) and weak-
nesses (unphysical GIC growth, does not encourage growth
beyond V0,GIC, state-independent equilibrium).

4.4 Linking an impacts and decision-analysis module
to BRICK

4.4.1 Experimental description

We demonstrate the ability of the BRICK framework to in-
corporate additional structure to link the physical model for
surface temperature and sea-level rise (climate and sea-level
modules, Fig. 1) to socioeconomic implications (impacts
module, Fig. 1). In this example application, we use the cal-
ibrated ensemble in the BRICK control configuration to ob-
tain local sea level projections for New Orleans, Louisiana
(29◦57′ N, 90◦4′W). We use a common didactic model for
coastal flood protection (Van Dantzig, 1956; Jonkman et al.,
2009). In this flood risk model, the policy lever available
to decision-makers is the amount by which to heighten the
dikes protecting the coastal community. We consider a pre-
viously published simple analysis that focuses on the north-
ern dike ring in central New Orleans (Jonkman et al., 2009).
We use this illustrative cost–benefit approach to calculate an
economically efficient dike-heightening by weighing the de-
crease in probable losses due to flooding achieved by build-
ing taller dikes against the increase in costs due to invest-
ments in construction.

The flood risk model implemented here follows a com-
monly used simple approach (Van Dantzig, 1956). The
present implementation considers the current year as 2015
and a time horizon of 85 years (to 2100). We consider dis-
crete dike heightenings in increments of 5 cm, between 0
and 10 m. The average annual flood probability is calculated
from the simulated local sea-level rise, the land subsidence
rate (Dixon et al., 2006), and flood frequency parameters

(Jonkman et al., 2009). We calculate the expected losses (US
dollars) for each proposed dike heightening from the flood
probabilities for each heightening, the value of goods pro-
tected by the dike ring, and the net discount rate (Jonkman
et al., 2009). The total expected costs are the sum of the ex-
pected losses and the expected investments. In this simpli-
fied model, the investment costs only depend on dike height-
ening and are approximated by linear interpolation between
data points provided by Jonkman et al. (2009) (and linear
extrapolation for dike heightenings outside this range), and
the expected losses are an exponentially decreasing function
of dike height above mean sea level. The minimum total ex-
pected cost then is the economically efficient dike heighten-
ing strategy in the framework of this simple illustrative model
(Eq. 14 of Van Dantzig, 1956).

The uncertain parameters considered in this cost–benefit
analysis include the initial flood frequency with no heighten-
ing (yr−1); the exponential flood frequency constant (m−1);
the value of goods protected by the dike ring (billion US
dollars); the net discount rate (%); the uncertainty in invest-
ment costs (a unitless multiplicative factor); and the land
subsidence rate (myr−1) (Table 1). The central estimates for
the exponential flood frequency constant (α) and the initial
flood frequency with no heightening (p0) are taken from Van
Dantzig (1956). The exponential flood frequency constant re-
lates the increase in flood probability that results from an in-
crease in sea level relative to the dike height. We make the
assumption that this factor should scale (to first order) rela-
tively well from the Dutch case considered by Van Dantzig
(1956) to the test case of New Orleans considered presently.
The initial flood frequency with no heightening (p0) may not
translate directly between these two cases, but highlights our
intent for this experiment to serve as an example of future
applications of the BRICK model to inform decision analy-
ses. The admittedly ad hoc distributions assumed for α and
p0 were selected to sample tightly around the central esti-
mates from Jonkman et al. (2009). A more detailed treatment
of this risk management problem would include using meth-
ods from extreme value theory to address the risks posed by
storm surges (Coles, 2001).

The investment uncertainty considered in the sensitivity
tests of Jonkman et al. (2009) included a base case, 50 %
lower, and 100 % higher than the base case. We use this
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Figure 4. Regional projections of median sea-level changes under
Representative Concentration Pathways (RCPs) (a) 2.6, (b) 4.5, and
(c) 8.5 in the year 2100. Sea-level rise is presented relative to 1986–
2005 global mean sea level (meters).

range for the investment uncertainty, applied as a multiplica-
tive factor ranging from 0.5 to 2. The range for the value
of goods protected by the dike ring is taken from Jonkman
et al. (2009), where the lower bound is the lowest estimate of
the value of goods protected by the three dike rings consid-
ered in that work (USD 5 billion), and the upper bound is the
estimated combined value protected by all three dike rings
(USD 30 billion). The net discount rate range is centered at
4 %, the estimate from Jonkman et al. (2009) accounting for
inflation and interest rate. Those authors’ net discount rate
is decreased to 2 % due to economic growth (1 %) and in-
creased flooding probability due to sea-level rise (1 %). Our
demonstrative example endogenizes the effects of sea-level
rise and accounts for parametric uncertainty in the value of
goods protected by the dike ring. Hence, we center our range
for the net discount rate at 4 % but allow for a ±2 % un-
certainty range. The rate of land subsidence is based on the
estimates of Dixon et al. (2006), with mean 5.6 mmyr−1 and
standard deviation 2.5 mmyr−1. We transform this to a log-
normal distribution to disallow negative rates of land subsi-
dence.

Figure 5. Illustrative cost–benefit analysis for the economically ef-
ficient dike heightening (lower horizontal axis) and return period
(upper horizontal axis) for the northern–central dike ring in New
Orleans, Louisiana. The bold dot denotes the economically efficient
(i.e., cost-minimizing) solution. The shaded region gives the 90 %
ensemble range of trade-off curves, and the bold line denotes the
ensemble mean trade-off curve.

We sample the uncertainty in these parameters via a Latin
hypercube, where the population size is given by the number
of sea-level rise ensemble members that are present (10 589
for the control BRICK ensemble). The distributions from
which the economic model parameters are drawn are given
in Table 1. Each realization of regional sea level is assigned
a concomitant sample of flood risk model parameters. An
economically efficient dike heightening is calculated for each
ensemble member. “Return periods” (years) correspond to
the frequency of storms with the potential to overtop dikes
with the corresponding dike height – essentially, the inverse
of the annual flood probability. Return periods are a conve-
nient and intuitive way to view the probabilities of flooding
in this economic analysis.

We present results for the flood risk management exper-
iment using sea-level projections under RCP8.5. We note
that many factors are not incorporated into this analysis, and
this simple illustration is not designed to be used for real
decision-making. For example, storm surge non-stationarity
and structural failure are not considered (Grinsted et al.,
2013; Moritz et al., 2015). The purpose of this illustration is
to demonstrate the flexibility and transparency of the BRICK
model framework. This experiment highlights the impor-
tance of transparency in particular when linking physical
modeling results to the impacts on socioeconomic modeling
and policy decision-making.

4.4.2 Experimental results: regional sea-level changes

In order to link projections of sea-level rise to problems of lo-
cal coastal adaptation, regional sea level is projected to 2100
under the climate change scenarios of RCP2.6, 4.5, and 8.5
(Fig. 4). These projections use the control configuration of
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the model, with GIC-MAGICC and the full sea-level rise
sub-model setup depicted in Fig. 1. The ensemble median
projection is shown in Fig. 4. Sea level rises by 2100 globally
by about 55 cm (43–72 cm), 74 cm (56–100 cm), and 130 cm
(93–177 cm) under RCP2.6, 4.5, and 8.5, respectively (en-
semble median and 5–95 % range in parentheses). The Arctic
Ocean is an obvious exception to the rest of the ocean. Due
to the Greenland ice mass loss, Arctic regional sea level will
fall as a result of the loss of gravitational attraction. How-
ever, the addition of mass raises sea level in other parts of the
ocean farther away. Arctic sea level (median sea level of all
latitudes higher than 60◦ N) increases by 7 cm under RCP2.6,
but falls by 2 cm under RCP4.5 and by 30 cm under RCP8.5.
By contrast, the tropical sea level (median of all latitudes be-
tween 30◦ S and 30◦ N) rises by 57, 82, and 147 cm under
RCP2.6, 4.5, and 8.5, respectively, which is greater than the
global mean rise. Due to the asymptotically increasing grav-
itational effects in proximity to the melting Greenland Ice
Sheet, sea-level fall below −1.5 m is cut off at −1.5 m.

4.4.3 Experimental results: link to coastal defense
strategies

We now focus on the regional sea-level projections for the
grid cell containing New Orleans, Louisiana, under RCP8.5
(Fig. 4c), to demonstrate the use of these sea-level projec-
tions in a common local flood risk management example. We
find the economically efficient (i.e., cost-minimizing) dike
heightening to be 1.5 m (ensemble mean; the 90 % range is
0.75 to 1.95 m; Fig. 5). This heightening corresponds to a re-
turn period of about 760 years (ensemble mean; the 90 %
range is roughly 200–3000 years; Fig. 5). The simple anal-
ysis presented here should not be used to inform on-the-
ground decisions in New Orleans. This experiment is meant
to demonstrate BRICK’s ability to contribute in risk assess-
ment applications.

5 Conclusions

We present BRICK v0.2, a modeling framework for global
and regional sea-level change. BRICK has been designed
with four epistemic modeling goals: accessibility, trans-
parency, efficiency, and flexibility. BRICK can skillfully
match observational data for individual sea-level contribu-
tions in hindcasts (Bakker et al., 2017). Here we focus on
how BRICK achieves our epistemic values using a set of
modeling experiments.

BRICK is coded in the widely available and simple cod-
ing language R (R Core Team, 2016), to achieve the goals
of accessibility and transparency. The main physics (global
mean temperature and sea-level rise) codes are also (redun-
dantly) transcribed in Fortran 90, for more efficient simula-
tions. BRICK is designed to be transparent, as well as effi-
cient, by coupling previously published simple, mechanisti-

cally motivated models for the major contributors to global
sea level. The efficient physical modeling approach provides
the opportunity to incorporate a rigorous statistical calibra-
tion framework as well, wherein various sources of uncer-
tainty are incorporated into model projections (see Bakker
et al., 2017, for a more detailed discussion of this). Fi-
nally, the model comparison experiments in Sect. 4.2 and 4.3
demonstrate the flexibility of the BRICK modeling frame-
work. These sections bring into focus the importance of these
epistemic modeling values. A modeling framework that is
(in particular) transparent and accessible can help to stream-
line the process of quantifying the local impacts of the phys-
ical model results, to link to decision-analytical models, and
to communicate these results to stakeholders and decision-
makers.

We hope that the accessibility and transparency of BRICK
are helpful to others, and will stimulate the continuous peer-
reviewing, challenging, and improving of the BRICK frame-
work. Of course, although we tried to couple models that fit
our epistemic model values as closely as possible, we assume
that others may prefer other models and may have different
epistemic values. Our framework is designed in such a way
that it is possible to plug in other model components to re-
flect these different values. For example, it would be very
interesting to add the component models used for the semi-
empirical model frameworks of Mengel et al. (2016) and
Nauels et al. (2017).

We demonstrated the flexibility and transparency of
BRICK in connecting projections from the physical model
to the impacts on a local risk and decision-analysis prob-
lem. The simple probabilistic calibration method and cost–
benefit analysis that we adopted for the simple demonstra-
tion can be expanded to incorporate aspects of deep un-
certainties (Lempert et al., 2004; Weaver et al., 2013) as
well as more complex decision-making frameworks (e.g.,
considering multiple objectives, beyond only expected to-
tal costs) (Kasprzyk et al., 2013; Lempert, 2014; Lempert
and Collins, 2007). Climate change poses decision problems
where strong connections across academic disciplines are
critical. Further, the study of climate modeling relies on com-
munal modeling efforts. The need for transparent communi-
cation among modelers and between disciplines is where the
BRICK framework and the epistemic modeling values pre-
sented here can facilitate future developments. Above all, we
hope that BRICK inspires the involved communities to pay
careful attention to enhance flexibility, transparency, and ac-
cessibility of modeling frameworks.

Code and data availability. All BRICK model code is available at
https://github.com/scrim-network/BRICK under the GNU general
public open-source license. Large parameter files as well as model
codes forked from the repository to reproduce this work (including
the sea-level projections) may be found at https://download.scrim.
psu.edu/Wong_etal_BRICK/.
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Appendix A: Prior probability distribution ranges for
the sub-model parameters, and median, 5th, and 95th
quantiles of the calibrated posterior parameter
distributions

Table A1. Prior probability distribution ranges for the DOECLIM
climate model parameters, and median, 5th, and 95th quantiles of
the calibrated posterior parameter distributions. The priors are all
uniformly distributed.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

S ◦C 0.1 10 1.7 2.5 4.1
κDOECLIM cm2 s−1 0.1 4 0.55 2.2 3.8
αDOECLIM – 0 2 0.49 0.80 1.1
T0

◦C −0.3 0.3 −0.084 −0.043 −0.0022
H0 1022 J −50 0 −48 −32 −7.7
σT

◦C 0.05 5 0.069 0.080 0.091
σH 1022 J 0.1 10 0.17 0.92 2.5
ρT – 0 0.999 0.31 0.44 0.56
ρH – 0 0.999 0.62 0.91 0.99

Table A2. Prior probability distribution ranges for the thermal ex-
pansion model parameters, and median, 5th, and 95th quantiles of
the calibrated posterior parameter distributions. The prior distribu-
tion for 1/τTE is a gamma distribution (see main text). The other
priors are all uniformly distributed.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

aTE m◦C−1 0 0.8595 0.11 0.45 0.81
bTE m 0 2.193 0.038 0.35 1.5
1/τTE yr−1 0 1 0.00047 0.0016 0.0046
S0,TE m −0.0484 0.0484 −0.043 0.0019 0.044

Table A3. Prior probability distribution ranges for the GIS-SIMPLE
Greenland Ice Sheet model parameters, and median, 5th, and 95th
quantiles of the calibrated posterior parameter distributions. The
priors are all uniformly distributed. Due to convergence issues, ρGIS
is held fixed at a value calculated from a preliminary optimized
model simulation (see main text).

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

cGIS m◦C−1
−4 −0.001 −3.9 −3.0 −1.6

bGIS m 5.888 8.832 7.4 7.8 8.1
αGIS

◦C−1 yr−1 0 0.001 0.00036 0.00073 0.00097
βGIS yr−1 0 0.001 2.8× 10−5 0.00014 0.00040
V0,GIS m 7.16 7.56 7.2 7.4 7.5
σGIS m 0 0.002 0.00017 2.0× 10−4 0.00025
ρGIS – – – – 0.90 –
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Table A4. Prior probability distribution ranges for the DAIS Antarc-
tic Ice Sheet model parameters, and median, 5th, and 95th quan-
tiles of the calibrated posterior parameter distributions. An in-
verse gamma prior distribution is used for σ 2

DAIS (see Ruckert
et al., 2017). All other prior distributions are uniform.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

aANTO
◦C ◦C−1 0 1 0.037 0.44 0.94

bANTO
◦C 0 2 0.1 1.0 1.9

γ – 0.5 4.25 1.4 3.1 4.1
αDAIS – 0 1 0.038 0.36 0.77
µ m1/2 7.05 13.65 7.4 10 13
ν m−1/2 yr−1/2 0.003 0.015 0.0038 0.0089 0.014
P0 myr−1 0.026 1.5 0.13 0.50 1.3
κDAIS

◦C−1 0.025 0.085 0.029 0.057 0.082
f0 myr−1 0.6 1.8 0.7 1.3 1.8
h0 m 735.5 2206.5 1100 1700 2200
C m◦C−1 47.5 142.5 51 80 120
b0 m 740 820 740 780 820
slope – 0.00045 0.00075 0.00055 0.00065 0.00074
σ 2

DAIS m2 SLE 0 – 0.19 0.51 2.2

Table A5. Prior probability distribution ranges for the GIC-
MAGICC Glaciers and Ice Caps model parameters, and median,
5th, and 95th quantiles of the calibrated posterior parameter distri-
butions. The priors are all uniformly distributed.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

βGIC myr−1 ◦C−1 0 0.041 0.00059 0.00089 0.0013
V0,GIC m 0.3 0.5 0.31 0.40 0.49
N – 0.55 1 0.57 0.78 0.98
S0,GIC m −0.0041 0.0041 −0.0037 −2.0× 10−5 0.0037
σGIC m 0 0.0015 1.7× 10−5 0.00021 0.00064
ρGIC – −0.999 0.999 0.15 0.84 0.99

Table A6. Prior probability distribution ranges for the GIC-
SIMPLE model parameters, and median, 5th, and 95th quantiles
of the calibrated posterior parameter distributions. The priors are all
uniformly distributed.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

cGIC m◦C−1
−4 −0.001 −3.60 −1.80 −0.74

bGIC m 0.3 0.5 0.31 0.39 0.49
αGIC

◦C−1 yr−1 0 0.001 4.3× 10−5 0.00045 0.00093
βGIC yr−1 0 0.001 8.7× 10−5 0.00048 0.00094
V0,GIC m 0.3 0.5 0.31 0.41 0.49
σGIC m 0 0.0015 2.2× 10−5 0.00023 0.00064
ρGIC – −0.999 0.999 0.55 0.90 0.99
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Table A7. Prior probability distribution ranges for the Rahmstorf
(2007) global mean sea-level model parameters, and the median,
5th, and 95th quantiles of the calibrated posterior parameter distri-
butions. The priors are all uniformly distributed.

Parameter Units Lower
bound

Upper
bound

5 % Median 95 %

aGMSL m◦C−1 0 0.0035 0.0012 0.0020 0.0031
Teq,GMSL m −1.5 1.5 −1.1 −0.57 −0.28
σGMSL m 0 0.05 6.2× 10−5 0.00070 0.0020
ρGMSL – 0 0.999 0.36 0.62 0.88
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