
iFlow modelling framework

User manual & technical description

Yoeri Dijkstra

Copyright c© 2017. Y.M. Dijkstra

When using iFlow, please cite Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and
Schramkowski, G. P. (Manuscript submitted to Geoscientific Model Development). The
iFlow Modelling Framework v2.4. A modular idealised process-based model for flow and
transport in estuaries.
Additionally you may refer to this manual as Dijkstra, Y. M. (2017). iFlow modelling frame-
work. User manual & technical description.
Note the license obligations that come with iFlow.

Contents

1 Introduction . 5
1.1 What is iFlow . 5
1.2 Overview of the some important elements . 5
1.3 Terms of use . 7
1.4 How to read this manual . 7

2 Getting started . 9
2.1 Installation and requirements . 9
2.2 Running a simulation . 9

3 Starting to use iFlow . 11
3.1 Building and using modules . 11
3.2 Input files . 15
3.3 Variable names and sources . 16
3.4 Dimensions and grids . 17
3.5 Accessing data . 21
3.6 Specifying analytical functions . 26
3.7 Shape of array data . 28
3.8 Output storage . 29

4 Advanced features . 31
4.1 Numerical functions . 31
4.2 Iterative modules . 33
4.3 Dynamic options for registries . 34
4.4 The NiFTy toolbox . 36

4.5 The STeP toolbox . 42

A Object-oriented programming . 47

1. Introduction

1.1 What is iFlow
The iFlow Modelling Framework (in short: iFlow) is an extendible, modular modelling frame-
work. As such, the framework provides tools that support and simplify the development of
a scientific model. It specialises in supporting modular models; i.e. models that can be
subdivided in different tasks, or modules. These modules may interact with one-another in
a sequential or iterative way.

iFlow facilitates the model development by arranging the interaction between modules,
by arranging input and output, and by providing tools for common scientific operations,
such as numerical differentiation, integration and interpolation. The modelling framework
additionally supports collaborative model development. This is because the modular
structure is defined in such a way that one developer/user can use a module written by
someone else, without having to bother about the way this module is coded. Modules
written by different programmers can thus easily interact in a single program.

One of the unique features of iFlow is the seamless integration of both numerical and
analytical model components. This means that one can choose to implement a task
using either numerical mathematical methods or analytical functions, but access the
computed data in the same way. This makes the modelling framework especially suitable
for idealised models, in which certain task are simplified to such an extent that they
can still be performed using analytical formulations, while other tasks need to be solved
numerically. The analytical functions bring accuracy and speed to the model, while the
numerical methods allow for flexibility and a wide range of applications.

1.2 Overview of the some important elements
Before explaining the iFlow in all its details in the next chapters, we will shortly explore
some main elements of iFlow here. We will skip over many important features and omit
any specific instructions. Instead, this section is meant to familiarise one with some of the
basic concepts of iFlow.

6 Chapter 1. Introduction

The iFlow program is programmed in Python using Object-Oriented Programming (OOP,
see Appendix A for a short introduction). We will often refer to basic OOP related terms
such as classes, methods and inheritance in this manual. We will also show some examples
of Python code throughout this manual, which can likely be understood using some
basic knowledge of notation and data-types in python and experience in any other
programming language.

iFlow can be subdivided into two main elements: the modelling framework and the pack-
ages of modules and functions. The modelling framework is that part of iFlow that arranges
all overhead, input, output requirements, access to data and variables. The framework
additionally provides some scientific operations, such as numerical differentiation, integra-
tion and interpolation. In essence the modelling framework is an ’empty shell’, i.e. it does
not contain any content. The content is provided in the form of packages of modules and
functions that can be developed for any scientific modelling application.

Modules are the basic building blocks of a model in iFlow. A module is essentially a class
with the additional requirement that it contains a (public) method called ’run’ and that
takes no arguments. Modules get their input through an argument in the init method.
The output of a module should be provided as a single dictionary that is returned in the
run method. Within a module, one can use any additional methods, use other classes or
functions, access files etcetera. Modules should however not call or interfere with other
modules.

Modules should be included in packages (i.e. folders with an empty file called __init__.py)
which can be placed at any location on the local machine or on a network disk. A
package can include multiple modules, sub-packages, functions, classes or other files. A
top-level package (i.e. not sub-packages) containing modules is required to contain a file
called ’register.txt’. In this file one should register the modules in the package and specify
the input requirements and output variables of each module. Any other class, function or
file in the package does not need to be registered.

The interaction between modules works through a system of shared variable names; i.e.
each variable is assigned a string name that it keeps throughout the program. Using this
string name, a module can access the variables that are specified for it in the input file and
the variables specified by modules run earlier. As a consequence, a collaborative project
requires the different authors to agree on the names of the variables used in their modules.
A variable can take a number of data types. It can be a scalar, string, list, numpy array or
reference to a (possibly analytical) function description. Whatever the type of the variable,
the way it is accessed has been made uniform through the wrapper class ’DataContainer’.
This wrapper class provides methods to access any variable by its string name and any
other relevant arguments. The DataContainer is an extremely powerful feature of iFlow. If
for example the variable accessed is a numerical array, the DataContainer will return the
requested data points and will automatically interpolate the numerical data if necessary. If
on the other hand the variable is a reference to an analytical function, the DataContainer
will evaluate this function on the requested data points. The DataContainer can also
be used to access derived quantities of both numerical and analytical data, such as
the derivative of a variable. It will then automatically search if an analytical derivative is
specified and will otherwise compute the numerical derivative.

The modelling framework coordinates the data management and the running of modules.
From the input file, the framework will make an inventory of the modules specified. It will
then use the registry of the module to check if all input variables are provided. Conse-
quently it will use the registry to determine the order in which the modules should be run
and whether an iterative procedure might be required. It can even decide to completely
ignore a module if it is not necessary. After running a module, the modelling framework will
make sure that the returned data is added to a DataContainer so that becomes available

1.3 Terms of use 7

for all other modules. At the end, the framework makes sure that the output is saved to a
specified output folder.

1.3 Terms of use
When using iFlow in any scientific publication, technical report or otherwise formal writing,
authors are strongly requested to cite
Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P. (Manuscript
submitted to Geoscientific Model Development). The iFlow Modelling Framework v2.4. A
modular idealised process-based model for flow and transport in estuaries

The iFlow code is property of the Flemish Dutch Scheldt Committee (VNSC) and is licensed
under LGPL (GNU Lesser General Public License). In summary, this means that the code
is open source and may be used freely for non-commercial and commercial purposes.
Any alterations to the iFlow source code (core and modules) must be licensed under LGPL
as well. However, new modules or a coupling between iFlow and other software may be
published under a different licence. Nevertheless users of iFlow are encouraged to make
their own developed modules and model applications open source as well.

1.4 How to read this manual
The aim of this manual is twofold: it functions as study material to learn how to work with
iFlow, but is also a reference document useful for looking-up details while programming.
We have tried to suit both goals by providing textual explanations as well as lists, tables
and code samples for quick reference. Throughout the first chapters in this manual we
take the viewpoint of a user and model developer. We will explain the features of iFlow
and explain how to use them. We advise first users to start by reading these chapters, as
the background knowledge is absolutely necessary in order to operate iFlow and develop
modules for it.

This manual is structured as follows: Chapters 3 and 4 take a model user/developer
viewpoint. Chapter 3 treats the basic building blocks of iFlow, such as modules, input,
output, access of variables, analytical functions and numerical grids. These are the
elements that are guaranteed to be relevant to the development and use of a model
and we strongly advise first users to read this chapter. Chapter 4 discusses some more
advanced features that might not be required in a first program. However, the features
treated here are not too exotic and it is likely that a somewhat more involved project
uses these. We therefore recommend to scan this chapter and read sections when they
become relevant to your project. Finally, Chapter ?? presents the internal structure of the
modelling framework. This chapter is not directly relevant to users/developers of models,
but is important when one wants to make changes to the modelling framework itself.

2. Getting started

2.1 Installation and requirements
The iFlow modelling framework is written in Python, which is a free, open source program-
ming language. In order to run iFlow you need to install Python 2.7 and a number of
additional packages that enhance Python’s functionality. We recommend to use one
of the many freely available a pre-built Python bundles, which combine Python with the
most commonly used packages. We provide our experience with some tested packages
below

Python bundle Notes
Anaconda 2.4.1 Recommended bundle
Anaconda 4.0.0 Newer version than Anaconda 2.4.1, but has problems in

combination with loading exported files from Matlab
Canopy 1.5.2 Similar to Anaconda, but uses a different version of the plot-

ting packages, which is not compatible with the standard
plotting tools in iFlow.

These packages have been tested on all platforms.

In addition, the iFlow package semi_ analytical Brouwer (2017) requires the package
scikits.bvp_ solver, which requires a Fortran compiler.

iFlow can be run using either the command line and any code editing program or any
IDE. An IDE provides an integrated environment for code development, running and
debugging and is therefore recommended. We recommend using PyCharm, which is a
free IDE especially developed for Python programs.

2.2 Running a simulation
To start using iFlow we recommend to do our tutorials, which are available with the source
code. These provide a step-by-step introduction to using the most important features of
iFlow and are focussed on those who want to use iFlow, not develop new modules. This

10 Chapter 2. Getting started

manual treats all features of iFlow, but takes a more detailed approach suitable for iFlow
users and developers.

To run iFlow, start the command line or the python IDE. Next run the file main.py in the iFlow
root directory. To do this from the command line, browse to the iFlow root directory and
type python main.py. When using an IDE, please consult tutorials for your IDE to run the
program. iFlow will display its main menu, such as in Code sample 2.1.

� Code sample 2.1 — iFlow main menu.

1 '''

2 iFlow version 2.3 beta

3

4 No working directory set. Now working from the iFlow root directory.

5 Enter cwd to change the working directory.

6

7 Please choose an input file from the list of recent files:

8 1 input/base_model.txt

9 2 input/advanced_model.txt

10 3 input/expert_model.txt

11 or enter the path to a new input file:

12 '''

�

After the version number on the first line, the next line displays the current working directory. working
directoryIf no working directory is set, iFlow will work from its root directory. It is recommended

to work from a directory other than the iFlow root directory. The working directory is the
standard directory from which iFlow runs its input files and where it writes its output files. The
working directory can also be used for additional project-specific scripts, e.g. for plotting
results. To change the working directory, type cwd, press enter and type the absolute path
to the working directory.

iFlow works with input provided in a text file. The next lines in the menu allow you to select input file
an input file. The numbered items show the maximum five most recently used files. To
select either one of these, type the number in front of the file name and press enter. To run
the most recently used file, one can alternatively press enter without typing anything. A
different input file can be entered by typing either the absolute path to the file or the path
relative to the working directory. The file name should be entered including the extension.

3. Starting to use iFlow

3.1 Building and using modules
Modules are the basic building blocks of an iFlow model. A module is particular task of aWhat is a

module model that can be performed relatively independently. That is, a task that may possibly
take input from other tasks and produce output needed for other tasks, but is otherwise
independent. A set of modules may be executed in a single sequence or in a loop. At this
stage we will focus on single sequences of modules. A loop over modules can be forced
by implementing iterative modules, which will be treated in Section 4.2.

The design of the module structure is the first task that a model developer should focus on.
It is strongly advised to define modules as substantial tasks that make immediate sense to
anyone that is somewhat involved in the model. In other words, a module should represent
the calculation of one or more variables, while stowing the details of the implementation
away inside the module.

A module is a python class, the minimal form of which is shown in Code sample 3.1.Basic module
structure

� Code sample 3.1 — Minimal form of a module.

1 """

2 MyModule

3 In this location, write comments that make sense to anyone that wants to use this module.

4 Here we specify a dummy module that returns a variable 'pi' which is a scalar

5

6 Date:

7 Authors:

8 """

9 class MyModule:

10 # Variables

11

12 # Methods

13 def __init__(self, input):

14 self.input = input

15 return

16

12 Chapter 3. Starting to use iFlow

17 def run(self):

18 d = {}

19 d['pi'] = 3.14

20 return d

�

The essential elements of a module given below.
• ln. 9. The module is defined in the class definition. By convention the module name

has a capitalised first letter.
• ln. 13-15. The initialisation method receives one argument: ’input’, which is loaded

into a class variables so that it can be accessed later. The variable ’input’ is a
DataContainer instance, which is the access point for input variables and all variables
calculated by other modules. More on the use of DataContainers will follow in Section
3.5. Here it suffices to know that ’input’ contains all the variables specified for this
module in the input file and all variables returned by previously executed modules.

• ln. 17. A module is required to contain a ’run’ method that takes no arguments. This
method is called by the modelling framework to execute the module.

• ln. 18-20. A module should return a dictionary containing any number of entries (an
empty dictionary is also allowed). The dictionary should contain the data that needs
to be kept in memory after the module terminates. Other modules can access this
variable using the key, e.g. in this case the variable ’pi’ can be accessed from other
modules returning a value 3.14.

Within the module it is allowed to define additional methods, import and call functions
or classes or even call other programs or programming languages. It is strongly advised
not to import or call other modules. With the freedom allowed in modules, a module can
become very complex. There is nothing against complicated modules; iFlow is designed in
such a way that collaborating programmers need not understand the implementation of
a module. It is however highly recommended to add comments to the top of the module
that state the aim of the module, its restrictions (e.g. a limited domain of application or
assumptions), the input required and the output variables that will be calculated.

3.1.1 Submodules

Additional to modules, iFlow supports the optional feature of submodules. Submodules
are independent, often similar, subtasks within a module. They are identified by a string
name assigned to each submodule. As an example imagine a module that solves a
linear equation Au = b for u and for a set of right-hand sides b. One can define each of
the right-hand sides as a submodule. Let us say that there are two right-hand sides and
therefore two submodules which we will call ’effect1’ and ’effect2’. The iFlow modelling
framework supports a number of features concerning these submodules.

Firstly, to support submodules with highly similar tasks, iFlow facilitates a special data Saving results
structure for submodules. In terms of the above example the two submodules ’effect1’
and ’effect2’ result in two solutions, say u1 and u2. One can formally choose to save this in
two ways. The straightforward way would be:

� Code sample 3.2 — Unrecommended way of saving results of submodules with similar tasks.

1 d={}

2 d['u_1'] = u_1

3 d['u_2'] = u_2

�

which saves two variables with the name ’u_1’ and ’u_2’. This is quite clumsy and there is
little motivation to the names ’u_1’ and ’u_2’.

An alternative and preferable way of saving this data is the following:

3.1 Building and using modules 13

� Code sample 3.3 — Recommended way of saving results of submodules with similar tasks.

1 d={}

2 d['u'] = {}

3 d['u']['effect1'] = u_1

4 d['u']['effect2'] = u_2

�

This saves a single variable ’u’ which is then separated into two subvariables: ’effect1’ and
’effect2’. This way of saving data is generally cleaner, especially with a large number of
submodules. Additionally, the access to this data (via a DataContainer, see Section 3.5) is
more effective. The data can for example be accessed by calling the pair ’u’, ’effect1’,
which returns the specific submodule, but can also be accessed by calling ’u’ only. In this
case the data of ’effect1’ and ’effect2’ are automatically summed and returned as a
single variable.

Secondly, it can be specified in the input file which submodules need to be calculated.Reduce
calculations This information is passed to the variable ’submodules’ available under the module input

(i.e. the argument of the __init__ method. If one for example only requires ’effect1’ then
’submodules’ is a list of one element, i.e. [’effect1’]. This variable may be used to check
which submodules need to be calculated and which do not. As such, it provides a tool to
keep the number of calculations (and thus computation time) to a minimum.

Finally, one can specify input requirements separately for each submodule. Imagine forLimiting input
requirements example that ’effect1’ requires no other modules to run first, while ’effect2’ depends on

the results of multiple other modules. When one is at some point only interested in the
results of ’effect1’, it is possible to request only ’effect1’ in the input file. The modelling
framework then automatically establishes that no other modules are required and will not
run these modules. This can potentially reduce the complexity and computational time of
a model significantly.

3.1.2 Module packages

Modules should be included in packages (i.e. a folder that contains an empty __init__.py
file). It is recommended to create packages with a common theme or a common main
author so that its easy to find modules. The names of packages should be unique and byNaming

convention convention should be lower case. Within a package, the names of modules should be
unique, but module names can be reused for different packages.

Packages can be placed anywhere on the local machine or on a network disk. ThePackage
location package location can then be imported to iFlow via the input file. Three options apply:

• the iFlow packages folder. Packages placed in this folder are automatically imported
to iFlow.

• your python source folder. Packages in the python source folder are automatically
visible to python and therefore also available to iFlow.
• other locations. Packages on other locations can be imported to iFlow by including

a special ’import [path]’ statement in the input file. For example for a package
’mypackage’ at location C:\MyStuff\Python\ the import statement is:
import C:\MyStuff\Python\mypackage

Packages are not only limited to contain modules. A package that contains modulesOther
packages can also contain other python classes, functions or other files. It is also possible to create

packages without modules, such as a toolbox package with general functions. The
same rules for package locations apply to packages without modules. Packages can
additionally contain any branching structure of sub-packages containing modules or any
other file.

14 Chapter 3. Starting to use iFlow

3.1.3 Registering modules

All modules should be registered in a special ’registry.reg’ file. Each package has its
own registry file, which should be placed in the root of the main package (i.e. not in
sub-packages). The registry is iFlow’s reference to a module’s input requirements and
expected return variables and is essential to the correct execution of the module.

The registry file is a simple ASCII file. A basic example of a registry file with two entries is Example
registry filegiven in Code sample 3.4.

� Code sample 3.4 — A registry file ’registry.reg’.

1 # Registry file of package mypackage

2 # this package specialises in dummy packages used as an example

3

4 # Module MyModule #

5 module MyModule

6 packagePath folder1/

7 name MyModule

8 input foo bar

9 output pi

10

11 # Module AdvancedModule #

12 module AdvancedModule

13 input grid pi

14 output u

15 submodules effect1 effect2

16 effect1 input

17 output

18 effect2 input var

19 output

�

This code is explained below.
• ln. 1, 2, 4, 11. Comment lines denoted by #
• ln. 5,12. Start of a module entry, denoted by the keyword ’module’. The value

(’MyModule’ or ’AdvancedModule’) corresponds to the way this module is called.
• ln. 6. Subfolder of the module within the package. ’MyModule’ is located in a

sub-package called ’folder1’. ’AdvancedModule’ is located in the root of the main
package so that packagePath can be omitted.

• ln. 8, 13, 16, 18. Input variables. These variables can be supplied in the input file,
calculated by other modules or specified in the standard configuration file (see
Section 3.3 for more information on sources of variables). The modelling framework
uses this list to determine whether the input is complete and to determine the order
in which to run modules. Note that input requirements can be defined for the whole
module (all submodules) with separate additional requirements per submodule.

• ln. 9, 14, 17, 19. Output variables provided by this module. This should list all the
variables that are put in the dictionary returned by a module’s run method. Similar to
input, output can be provided for the whole module (all submodules) with additional
output per submodule. Note that the submodules ’effect1’ and ’effect2’ both output
a variable ’u’, which should then be saved according to the convention of Code
sample 3.3.

• ln. 15. List of submodules that only needs to be included if the module has submod-
ules. ’AdvancedModule’ has two submodules ’effect1’ and ’effect2’. The keywords
’input’ and ’output’ may be specified per submodule.

The keys ’input’ and ’output’ only specify the variable name and not its meaning, shape
or data type. Please provide this information in the comment tag of the module or in a

3.2 Input files 15

manual corresponding to the module.

There are more options for registries, which are fully explained in Section 4.3. These optionsAdvanced
features include tags for iterative modules, tags to force a module to run regardless of its output,

tags for making the registry dynamically dependent on the input and a tag for indicating
that a module writes output.

3.2 Input files
The input file is the way to provide iFlow with information on which modules to load, which
input parameters to use and which output to compute. The input file can be placedLocation
anywhere on the machine and can have any name and extension.

On starting iFlow, you will be prompted by a simple menu requesting the input file to startUser interface
a simulation. The menu presents the five most-recently used input files and a user prompt..
There are three possible ways to answer this prompt:
• press enter. If no information, it will run the last used input file
• enter a number between 1 and 5. iFlow will run the corresponding input file from the

list of most-recently used files.
• file path incl. extension. Enter an absolute file path or a path relative to the iFlow

directory. The corresponding file is used.

An input file is an ASCII file with information for every module. An example is given in CodeExample input
file sample 3.5.

� Code sample 3.5 — Example input file.

1 # Input file

2 #

3 # Date:

4 # Authors:

5 import C:\MyStuff\Python\mypackage

6 import C:\MyStuff\Python\otherpackage

7

8 # MyModule

9 module mypackage.MyModule

10 foo always 10

11 bar yes

12

13 # Load two modules at once

14 module mypackage.AdvancedModule otherpackage.YetAnotherModule

15 submodules effect1

16 H 20

17 B type Polynomial

18 C 1000 0.1 0.01

19

20 # Output

21 module general.Output

22 path output/test

23 filename my_output_file

24

25 requirements

26 variables u v

�

This input file loads four modules: ’MyModule’ and ’AdvancedModule’ from the packageImporting
packages ’mypackage’, ’YetAnotherModule’ from the package ’otherpackage’ and a standard

output module ’Output’ from the package ’general’. On lines 5 and 6 we find import
statements to import the packages ’mypackage’ and ’otherpackage’. The package

16 Chapter 3. Starting to use iFlow

’general’ is not imported explicitly and should therefore be at one of the readily imported
locations (see Section 3.1.2).

The input file consists of blocks of modules started by the keyword ’module’. For read- Module blocks
ability these blocks are separated by comment lines signalled by the tag #. The keyword
module can be followed by one or more modules. Modules are loaded as [package-
name].[modulename] (see e.g. ln. 8). The module block contains the variables that the
module(s) require from input. For example in the first block ’MyModule’ specifies two input
variables ’foo’ and ’bar’ (ln. 8-10). The second block loads two modules ’AdvancedMod-
ule’ and ’YetAnotherModule’. This block therefore contains all the variables that these two
modules need; in this case two variables ’H’ and ’B’ (ln. 13-17).

The input file supports several shapes of input data. Firstly, one can give a single string or Shape of input
scalar (ln. 10, 14). Secondly, one can provide a row of values such as in ln. 9. This will be
saved as a list, i.e. 'always', 10]. Finally, one can provide a multi-line block of data such as
in ln. 15-16. This will be saved as a dictionary, i.e. ('type': 'Polynomial', 'C': [1000 0.1 0.01]).
We will see later in Section 3.5 that data can be retrieved from this block by using the pair
(’B’, ’type’) or (’B’, ’C’).

The output is written by a module. The standard output module is ’Output’ in the package Specifying the
output’general’. We provide more details on output in Section 3.8 and here only discuss the

way output is requested in the input file. Input variables needed by the standard Output
module include ’path’ and ’filename”. The variable ’path’ specifies the output folder,
while ’filename’ (without extension) provides the preferred name of the output file. If the
file name already exists in the output folder, the filename will be appended by the the first
integer number > that creates a unique file name.

The block of the Output module additionally contains the keyword ’requirements’. The Required
variablesinformation following this keyword is required by Output. The also allows the program to

find the following information even if no output module is specified. The tag ’requirements’
is followed by the mandatory tag ’variables’ and the optional tag ’submodules’. The tag
’variables’ indicates the variables to be written to output. The submodules to be written
per module may be specified under ’submodules’, with each variable and its submodules
each on a separate indented line. The variables and submodules required on output
will be used to determine which modules and submodules to run. The specification of
output requirements is an important part of the input file. iFlow is designed to execute
as few modules as possible to get the requested output. It will thus only execute those
modules that calculate the output variables or that are needed somewhere in the process
of calculating them. Conversely, iFlow will also provide a warning if you did not specify the
proper modules to compute all the requested output.

3.3 Variable names and sources
All quantities given on input, returned by modules or provided as configuration parameters
are referred to as variables. Variables are identified using a name in a dictionary-like way;
i.e. if one requests the variable name, say 'x', the system provides the variable value, say
an array of floats (all details on this are provided in Section 3.5). This means that names of
variables should be unique. If there are two modules providing some variable named ’u’,
then the second module will overwrite the entry of the first module. Similarly, if ’u’ is also
given on input, it will be overwritten by results of the modules.

As stated above, there are three ways of providing variables to the system:
1. returned by a module in a dictionary,
2. in the input file, or
3. in the standard configuration file.

3.4 Dimensions and grids 17

This list also prescribes a hierarchy: if variables have the same name, then configuration
variables are overwritten by input variables, which are overwritten by module output. This
hierarchy can be used to one’s advantage. Consider for example a variable, say 'omega',
that has a generally fixed value and is therefore prescribed in the configuration file. If one
then does a series of experiments with a different value of 'omega', this value can be given
on input and the value from the configuration file is automatically overwritten. Be careful
though that a variable is only ever overwritten by a variable of the same data type, i.e.
float by float, array by array.

3.4 Dimensions and grids
One of the important features of almost any modelling problem are the dimensions (or
axes) of the problem and grid on which its results are saved or calculated, in case of a
numerical computation. In this section we will discuss how the dimensions and grids are
defined in iFlow. We will also provide an example on how to design a module to make a
grid.

3.4.1 Dimensions

The iFlow framework has some special functionalities concerning interpolation and con-
version between analytical and numerical data. These functionalities require the system
to have knowledge about the dimensions that are used and the names assigned to
these dimensions. As an example let us imagine a modelling problem in two spatial
dimensions and in a frequency domain. A sensible set of dimensions would then be
'dimensions'= ['x', 'y', 't']. The program looks for 'dimensions' in the dictionary vari-
able 'grid'. The variable structure thus reads ['grid']['dimensions'] = ['x', 'y', 't']. The
program then knows that we have a problem in three dimensions called ’x’, ’y’ and ’t’.

It is important to point out that the order of the dimensions is important. Numerical dataDimension
order
important

sets should obey the order of the dimensions. This means that some function f (t) translates
to a numerical array of 3 dimensions. Its first 2 dimensions correspond to ’x’ and ’y’
and have length 1, because f is constant along the x and y axes. The third dimension
corresponds to ’t’ and has a length greater than 1. So, for a run using 100 time steps,
the numerical representation of f will have size (1× 1× 100). iFlow allows that length-1
dimensions at the end are omitted. This means that a function g(x) may be represented by
a one-dimensional array. Similarly a function h(y) may be represented by a two-dimensional
array, where the first element is a length-1 dimension (i.e. no variation in x). Analytical
functions (or numerical functions) allow for some flexibility and can work in a somewhat
adjusted set of dimensions. More information on these shape rules is provided in Section
3.7

3.4.2 Grids

An iFlow program works principally with a single grid for calculations and a possibly different
grid for storing its output. Additionally some support for multiple different calculation grids
is offered in numerical functions (Section 4.1). Similar to any other variable, grids are
identified by a string name. iFlow allows for the following options:
• ’grid’. This is the standard calculation grid used throughout the program. It is used

for numerical calculation of data and may be omitted in a model that uses only
analytical functions.

• ’outputgrid’. This is the grid that is used to save the result on. The output grid is
required for every model.

• other grids. Other grids with custom names may be defined when e.g. reading
data defined on a different grid, calculating a variable on a refined grid or using
staggered grids. The use of other grids is supported through Numerical Functions,

18 Chapter 3. Starting to use iFlow

which will be discussed in Section 4.1.

The program supports regular collocated non-equidistant grid axes. In the case of multi- Supported
grid typedimensional grids, a curvilinear grid is created. In order to illustrate the restrictions and

possibilities we take a two-dimensional example of axes (x, y). The grid is constructed
from two independent grid axes with the only exception that the boundary of x may
depend on y and vice versa. This is illustrated in Figure 3.1. This must be in such a way
that the corner points form a rectangle (figure a). If the corners do not form a rectangle
(figure b)), a ghost corner should be constructed. The relevant boundary should then be
extrapolated and it should be straight. The grid is fixed after its constructed and cannot
be dynamically adjusted to calculated variables. This implies e.g. that σ -grids are not
supported.

y1 = f3(x)

y0 = f1(x)

x1 = f2(y) x0 = f4(y)

y1 = f3(x)

y0 = f1(x)

x1 = f2 x0 = f4(y)

Extrapolation of f2

a) b)

Figure 3.1: Illustration of two allowed domains. The boundary of x may depend on y and
vice versa. This must be in such a way that the corner points form a rectangle (figure a). If
the corners do not form a rectangle (figure b), a ghost corner should be constructed. The
relevant boundary should then be extrapolated and it should be straight.

The grid is saved as separate grid axes. Each axis is defined as a set of dimensionless points Supported
axis typesbetween 0 and 1 and a dimensional specification for the boundaries. There are several

readily implemented axis types, which are identified by a string name. These are:
• ’equidistant’. Equidistant axis with grid points on the boundaries. It takes the maxi-

mum grid index as argument
• ’logarithmic’. Points are distributed as

(
eγX −1

)
/(eγ−1), where X is a set of equidistant

points and γ is a steepness factor. It takes the maximum grid index and steepness
factor as arguments

• ’list’. Define axis directly by prescribing the coordinates. It takes a list of either
dimensional or dimensionless values as input

• ’integer’. Axis with integer steps, practical for discrete dimensions. This axis type
is an exception as it is not saved as points between 0 and 1 and does not require
boundary definitions.

• ’file’. Reads grid points from an ASCII file. The file path should be given as an argu-
ment. The file should contain a single column of grid points between 0 and 1.

Additional standard grid axes can be defined in the function
src.Tools.Grid.makeCollocatedGrid.

The axes (except ’integer’ axes) are saved as dimensionless points between 0 and 1 ac- Grid data
structurecompanied by a boundary definition. So, in order to convert the grid axes to dimensional

curvi-linear coordinates, one needs to combine the axes and boundary definitions. The
full set of data stored in a grid definition is given in Table 3.1

The variable 'contraction' needs some explanation. The contraction denotes how the
axis-boundaries depend on other variables. Here it says that the boundaries of the first
dimension (x) depend on y, that the boundaries of the second dimension (y) depend on x
and that the boundaries of the third dimension has no dependencies.

3.4 Dimensions and grids 19

key sub-key sub-
sub-
key

example value explanation

'grid 'gridtype' 'Regular' only ’Regular’ implemented
'dimensions' ['x', 'y', 't'] any list of string names of dimensions
'axis' 'x' array(501) grid points between 0 and 1.

'y' array(1, 201) subkeys correspond to dimensions.
't' array(1,1,101) the example is of a (501× 201× 101)

grid.
'low' 'x' function(y) boundary at grid points 0.

'y' function(x) example is of grid in Figure 3.1b.
't' None the example time axis is an integer

axis.
'high' 'x' function(y) boundary at grid grid points 1.

'y' function(x)

't' None

'maxindex' 'x' 500 maximum index of each grid axis.
'y' 200 note this is 1 smaller than the length.
't' 100

'contraction' [['y'],['x'],[]] maximum index of each grid axis.

Table 3.1: Grid data structure

3.4.3 Example module for defining dimensions and grids

iFlow contains a predefined function that makes it easy to define a grid. This function is
named src.Tools.Grid.makeRegularGrid. Nevertheless, every model needs a special module
to construct the grid, because the type of dimensions, axes and domain boundaries
depend on the model. To assist building such a module Code sample 3.6 shows an
example of a module for defining dimensions and grids. Code sample 3.7 provides the
corresponding input file. The example corresponds results in the data structure of Table 3.1.
Some important aspects of the code are explained below.

� Code sample 3.6 — Example module for defining dimensions and grids.

1 """

2 GridDesign

3 Example module for defining the dimensions and grids

4

5 Date: 01-09-15

6 Authors: Y.M. Dijkstra

7 """

8 from src.Tools.Grid import makeRegularGrid

9

10

11 class GridDesign:

12 # Variables

13

14 # Methods

15 def __init__(self, input, submodulesToRun):

16 self.input = input

17 return

18

19 def run(self):

20 """Prepare a regular grid

21

22 Returns:

23 Dictionary containing:

24 grid: dimensions (list) - list [x,y,t]

20 Chapter 3. Starting to use iFlow

25 gridType (str) - 'Regular'

26 axis: x,y,t (ndarray) - grid axes between 0 and 1

27 high: x,y,t (any) - dimension-full limit belonging to point 1

28 low: x,y,t (any) - dimension-full limit belonging to point 0

29 maxIndex: x,y,t (int) - maximum index number

30 outgrid: idem

31 """

32 d = {}

33

34 dimensions = ['x', 'y', 't']

35 enclosures = [(self.input.v('lower_x'), self.input.v('upper_x')),

36 (self.input.v('lower_y'), self.input.v('upper_y')),

37 None]

38 contraction = [['y'], ['x'], []]

39

40 # Define 'grid'; the standard calculation grid

41 axisTypes = []

42 axisSize = []

43 variableNames = ['xgrid', 'ygrid', 'tgrid']

44 for var in variableNames:

45 axisTypes.append(self.input.v(var)[0])

46 axisSize.append(self.input.v(var)[1])

47 d['grid'] = makeRegularGrid(dimensions, axisTypes, axisSize, enclosures)

48

49 # Define 'outputgrid'; the grid for storing data

50 axisTypes = []

51 axisSize = []

52 variableNames = ['xoutputgrid', 'youtputgrid', 'toutputgrid']

53 for var in variableNames:

54 axisTypes.append(self.input.v(var)[0])

55 axisSize.append(self.input.v(var)[1])

56 d['outputgrid'] = makeRegularGrid(dimensions, axisTypes, axisSize, enclosures)

57

58 return d

�

Note in this example code
• ln. 34. The dimensions are hard-coded here. This choice is made here because we

want to fix the dimensions and the names of this model. Alternatively, it is possible to
work with variable dimension names that are given in the input file.
• ln. 35-37. The enclosures variable loads a list of tuples with lower and upper bound-

aries. These boundaries have been determined in a different module. Note that no
boundaries are needed for dimension ’t’ that we fix as integer axis. The command
self.input.v(...) retrieves the required boundary data. This command is explained
in detail in Section 3.5.

• ln. 41-46. Get the axis types and lengths from the input file.
• ln. 47. Use src.Tools.Grid.makeRegularGrid to construct the grid and save this under

the key ’grid’. This makes the standard calculation grid.
• ln. 49-56. Do the same as in ln 40-46, but now for ’outputgrid’. This makes the grid for

saving data.

� Code sample 3.7 — Part of input file for module GridDesign.

1 **GridDesign**

2 module mypackage.GridDesign

3 xgrid equidistant 500

4 ygrid equidistant 200

5 tgrid integer 100

6

7 xoutputgrid equidistant 50

3.5 Accessing data 21

8 youtputgrid equidistant 50

9 toutputgrid integer 100

�

3.5 Accessing data
The data access structure is one of the unique selling points of the iFlow modelling frame-
work. iFlow provides a data wrapper class DataContainer that provides a number of options
for accessing different data types in the same way. Among these data types are numerical
arrays and analytical function prescriptions, so that its easy to switch between analytical
and numerical calculation methods, without affecting the way data should be retrieved.
This section will show the ways of accessing data via the DataContainer class.

We start by providing an overview of the data types and examples of their use in Table 3.2.Data types

Data type Use
Scalar/string From single input/output value.
List From multiple input/output values. Do not use lists for a

variable that varies along a dimension (meaning axis), but
use numpy ndarrays instead.

Numpy ndarray (in short:
array)

The preferred data type for numerical data that varies along
one or more dimensions. Arrays are never generated from
input file data.

Function reference For specifying analytical functions of any number of vari-
ables and for numerical functions (will be introduced in Sec-
tion 4.1).

Dictionaries Cannot be retrieved directly using a DataContainer. The
DataContainer class is designed to retrieve values on the basis
of one or more keys and other arguments. It is therefore in
some sense an extension of the dictionary data type.

Table 3.2: Python data types and their use in iFlow.

3.5.1 The .v() method

The most important DataContainer method for retrieving data is .v() (where v is short for
value). The DataContainer is based on the principal of dictionaries: the value is found by
requesting a key. The DataContainer .v() method extends this principle by making it possible
to look up keys with possible sub-keys, coordinates, array indices or other arguments. We
will illustrate this by the example data structure of Table 3.3.

Let us assume that the example of Table 3.3 is saved in a class variable self.input. TheCommand
structure structure of a .v() call is then:

self.input.v(key, [(opt) subkey(s)], [(opt) coordinates/indices]).

22 Chapter 3. Starting to use iFlow

key sub-key sub-sub-key value
'grid' 'gridtype' 'Regular'

'dimensions' ['x', 'y', 't']

'axis' 'x' array(501)

'y' array(1, 201)

't' array(1,1,101)

'low' 'x' function(y)

'y' function(x)

't' None

'high' 'x' function(y)

'y' function(x)

't' None

'maxindex' 'x' 500

'y' 200

't' 100

'foo' ['always', 10]

'bar' 'yes'

'H' 20

'B' 'type' 'Polynomial'

'C' [1000, 0.1, 0.01]

'u' 'effect1' 3d ndarray (501×201×101)
'effect2' 3d ndarray (501×201×101)

'v' 'effect1' function reference (2d function)
'effect2' 2d ndarray (501×201)

Table 3.3: Example data structure

First we will look closer at a .v() call for data that does not vary with the dimensions x, y or
t. These data are generally either strings or lists and sometimes scalars. We give a number
of examples:

� Code sample 3.8

1 self.input.v('foo')

2 > ['always', 10]

3 self.input.v('foo', 0) # use index to get first element from list 'foo'

4 > 'always'

5 self.input.v('B', 'C') # use key and sub-key

6 > [1000, 0.1, 0.01]

7 self.input.v('B', 'C', 1) # use key, sub-key and index to get 2nd element from ('B', 'C')

8 > 0.1

9 self.input.v('bar')

10 > 'yes'

�

Next we look at the response to ’illegal’ calls. These are either calls to a non-existing key
or calls that would return a dictionary. In the case of non-existing keys, the DataContainer

will return None to signal nothing was found. In the case where a dictionary is found, the
DataContainer will not return that dictionary. Instead it will return True to signal something
was found, but may not be returned. Some examples are given below

� Code sample 3.9

1 self.input.v('Q')

2 > None

3 self.input.v('effect1')

4 > None # 'effect1' is not a main key (only a sub-key)

5 self.input.v('B')

6 > True

7 self.input.v('grid')

3.5 Accessing data 23

8 > True

�

Finally we look at the calls to dimension-varying data. This data will come in the form of
arrays, function references or scalars (i.e. scalars indicate that a quantity is constant in all
dimensions). The data can be requested in three ways:
• coordinates. Request data on one or more (x, y, t)-coordinates. Numerical data

will automatically be interpolated to the requested coordinates. Functions will be
evaluated on the requested coordinates. Note that the (x, y, t)-coordinates should
be dimensionless coordinates between 0 and 1 (with exception of the integer axis t,
see Section 3.4).

• grid indices. Request data using integer grid indices. Numerical data will simply
be returned on the indices. Functions will be evaluated at the (x, y, t)-coordinate
corresponding to the grid indices.

• no specification. If no coordinates or indices are specified, the original format will be
returned. Numerical data will be returned as full array and functions are returned as
function references. This functionality should mainly be used for testing whether a
variable exists. It can also be used when one wants data on the full grid and is 100%
sure that the data is an array.

The data returned will always try to shape itself according to the requested shape. This
means that one can request the 2D variable 'v' on the full 3D grid. The variable will then
copy its values for all t-values. If a variable cannot shape itself according to the request in
some dimension, it will try to return its original form in that dimension.

We illustrate this by giving a wide range of examples. We give these examples in the form
of Code sample 3.10.

� Code sample 3.10 — Requesting dimension-varying data.

1 ##

2 # using no specification

3 ##

4 x = self.input.v('grid', 'axis', 'x')

5 y = self.input.v('grid', 'axis', 'y')

6 t = self.input.v('grid', 'axis', 't')

7 > x = array(501) # returns full numerical array.

8 > y = array(1, 201) # This is ok; axis is always an array.

9 > t = array(1, 1, 101)

10 xmax = self.input.v('grid', 'maxIndex', 'x')

11 ymax = self.input.v('grid', 'maxIndex', 'y')

12 tmax = self.input.v('grid', 'maxIndex', 't')

13 > xmax = 500

14 > ymax = 200

15 > tmax = 100

16

17 u_1 = self.input.v('u', 'effect1')

18 v_1 = self.input.v('v', 'effect1')

19 v_2 = self.input.v('v', 'effect2')

20 > u_1 = array(501,201,101) # returns full array.

21 > v_1 = function # returns function reference.

22 > v_2 = array(501,201) # v_2 is only a 2d array.

23 # NB results are inconsistent; so only recommended

24 # for checking that u and v exist.

25

26 u = self.input.v('u')

27 > u = array(501,201,101) # automatically adds 'effect1' and 'effect2'

28 # then returns full array.

29 v = self.input.v('v')

30 > v = True # Tries to add 'effect1' and 'effect2',

24 Chapter 3. Starting to use iFlow

31 # but cannot add array + function.

32 # Therefore finds a dictionary.

33

34 ##

35 # using coordinates

36 ##

37 # Coordinates are indicated by using x=.., y=.., t=..

38 u_1 = self.input.v('u', 'effect1', x=0.103, y=0.513, t=10) # x,y between 0 and 1,

39 v_1 = self.input.v('v', 'effect1', x=0.103, y=0.513, t=10) # t is an integer axis.

40 > u_1 = 0.824 # value of u at this point; data is interpolated.

41 > v_1 = 0.532 # value of v at this point; function is evaluated.

42 # note that 'v' has no t-axis, but accepts t=10 in the call.

43

44 u = self.input.v('u', x=0.1, y=0.2, t=10)

45 v = self.input.v('v', x=0.1, y=0.2, t=10)

46 > u = 1.213 # adds 'effect1' and 'effect2'.

47 > v = 0.759 # now succeeds at adding 'effect1' and 'effect2'.

48

49 u = self.input.v('u', x=np.arange(0,1,0.1), y=np.arange(0,0.2,0.1), t=10)

50 u = self.input.v('u', x=np.arange(0,1,0.1), y=np.arange(0,0.2,0.1), t=[10])

51 > u = array(10, 2) # 'effect1'+'effect2' on requested points; interpolated.

52 > u = array(10, 2, 1) # uses standard numpy rules:

53 # request t as scalar -> eliminate dimension,

54 # request t as list/array -> keep dimension.

55

56 v = self.input.v('v', x=np.arange(0,1,0.1), y=np.arange(0,0.2,0.1), t=np.arange(0,10))

57 > v = array(10, 2, 10) # note that 'v' has no t-axis.

58 # It will try to fit to the size of the request

59 # by copying its values for all t.

60

61 H = self.input.v('H', x=np.arange(0,1,0.1), y=np.arange(0,0.2,0.1), t=np.arange(0,10))

62 > H = array(10, 2, 10) # also the scalar H will be copied to fit

63 # the size of the request.

64

65 v = self.input.v('v', x=x, y=y, t=t)

66 > v = array(501, 201, 101) # evaluate v on full grid using

67 # x, y, t in ln. 4-6.

68 # Adds 'effect1' and 'effect2'

69

70 ##

71 # using indices

72 ##

73 # Indices are indicated by NOT using x=.., y=.., z=..

74 # The same rules apply as when using coordinates

75 u_1 = self.input.v('u', 'effect1', 3, 198, 53) # indices on the grid

76 v_1 = self.input.v('v', 'effect1', 3, 198, 53)

77 > u_1 = 0.654 # value of u at this point.

78 > v_1 = 0.465 # value of v at this point; function is evaluated

79

80 u = self.input.v('u', x=range(0, 20), y=range(0, 42), t=10)

81 u = self.input.v('u', x=range(0, 20), y=range(0, 42), t=[10])

82 > u = array(20, 42) # 'effect1'+'effect2' on requested points

83 > u = array(20, 42, 1)

84

85 v = self.input.v('v', x=range(0, xmax+1), y=range(0, ymax+1), t=range(0, tmax+1))

86 > v = array(501, 201, 101) # evaluate v on full grid using

87 # xmax, ymax, tmax in ln. 10-12.

88 # Adds 'effect1' and 'effect2'

�

3.5 Accessing data 25

3.5.2 The .n() and .d() methods

The methods .n() and .d() compute the negative and derivative respectively. These
commands are closely related to .v() and inherit all of its functionality. The .n() command
will try to return −1 times the value, if the return value is a scalar, array or function. If the
return data is a list, string, True or None, it will not alter this.

The .d() command computes the derivative of a value if the value is a scalar, function or
array. If the derivative of an analytical function has been implemented, .d() will use this1.
Else, if the data is numerical, .d() will compute the numerical derivative.

It is recommended to use indices instead of coordinates with .d() if possible. This is be-
cause the use of coordinates is inefficient when requesting data from an array on few
points. The method will then compute the derivative of the numerical array on the whole
grid and then interpolate.

A call to .d() requires the addition of the dimension to take the derivative in. The call looks
like
self.input.d(key, [(opt) subkey(s)], [(opt) coordinates/indices],

dim=name(s) of dimension(s)).
The added argument dim takes the scalar name(s) of the dimension(s) with respect to
which the derivative is required. In case of higher-order derivatives dim can take a string of
names, such as 'xx' to denote the second derivative with respect to x, or 'xy' to denote
the mixed derivative.

3.5.3 Other methods

The slice(key, [(opt) sub-key(s)]) method returns a new DataContainer instance containingslice
only the variable requested with the arguments ’key’ and optional ’sub-key(s)’. This is for
example useful when one needs to provide a function with the grid (in a DataContainer)
as an argument. The call self.input.v('grid') then returns a new DataContainer containing
only the grid and all its sub-keys.

The addData('key', 'value') statement adds ’value’ to the DataContainer under the nameaddData
’key’. This command does not allow for specifying sub-keys. This is however still possible
making ’value’ a dictionary. For example the statement addData('B', dict('C2': [0, 1]))

creates a key 'B', sub-key 'C2' and value [0,1].

The merge(dc) statement merges DataContainer instance dc with this DataContainer instance. Ifmerge
dc contains duplicate keys, then it will overwrite the keys in self.input. This will be done on
the lowest sub-key level. For example if self.input contains (’u’, ’effect1’) and dc contains
(’u’, ’effect2’), then the resulting container will contain both.

The copy() method returns a shallow copy of the DataContainer. This means that the datacopy
inside the DataContainer is not copied, but that it is put into a new DataContainer instance.

The command getAllKeys() returns a list with all keys. Key-subkey pairs are returned asgetAllKeys
tuples in this list.

The command getKeysOf(key, [(opt) subkeys]) returns a list with all keys under the argumentgetKeysOf
key and possible sub-keys. This method only returns one level of keys and not its sub-keys.

1.d() will give an error when the derivative of an analytical function is not implemented. iFlow does not
automatically switch to numerical derivatives.

26 Chapter 3. Starting to use iFlow

3.6 Specifying analytical functions
iFlow contains a set of functionalities that make it easy to define analytical functions
and make them accessible from a DataContainer. An analytical function should be de- Function as

sub-classfined as a class that extends (i.e. is a sub-class of) src.FunctionTemplates.FunctionBase. This
FunctionBase superclass implements all the functionalities to make a function accessible
from a DataContainer.

A function class should contain at least two methods and supports one standard optional Methods
method:
• __init__(self, dimNames, parameters).
• value(self, [(opt) dimensions], kwargs).
• optional derivative(self, [(opt) dimensions], kwargs).

Additionally one is free to add any other method to a function class and call these methods
from either one of the above methods. The arguments have the following meaning:
• dimNames fixes the names of the dimensions of this function when the function is

instantiated. It should be given as a single string (1 dimension) or a list of strings
(multiple dimensions). As a consequence, e.g. a function of 1 variable can be
implemented using a variable x, but this does not fix this function to actually vary
with the dimension named 'x'. The function class can be instantiated using e.g.
dimNames='y'. At that moment, the function is made a function of 'y'.
The dimNames have to correspond to names from the defined dimensions. If dimNames
contains multiple elements, the order should be the same as defined in the dimen-
sions, but omitting unnecessary dimensions.

• parameters can be any parameter or set of parameters (in list, tuple, dictionary or
DataContainer). The __init__ method should load these to public class variables.

• dimensions is a single argument for a function of 1 variable and are multiple arguments
for multiple variables. It should be given as either a scalar, list or array. These are
the points to evaluate the function on. The arguments can be either scalar or array
make sure that the function can handle both scalar and array arguments.

• kwargs should always be accepted by the methods value and derivative, even if not
used. The method derivative has one standard entry in kwargs: 'dim'. This gives the
dimensions of the derivative, e.g. 'xx' for the second derivative with respect to x.

An example of a function class Polynomial in 1 variable is given in Code sample 3.11. Example
function

� Code sample 3.11 — Example of a polynomial function in one dimension.

1 """

2 Polynomial function for 1 variable between 0 and 1

3 Implementation of FunctionBase.

4

5 Requires parameters 'C': list/array of coefficients of the polynomial

6 ranging from the higher to the lowest order term

7 The length of the list sets the order of the polynomial

8 'L': length of system

9

10 Date: 23-07-15

11 Authors: Y.M. Dijkstra, R.L. Brouwer

12 """

13

14 import numpy as np

15 from src.FunctionTemplates.FunctionBase import FunctionBase

16

17

18 class Polynomial(FunctionBase):

19 #Variables

20

21 #Methods

3.6 Specifying analytical functions 27

22 def __init__(self, dimNames, parameters):

23 FunctionBase.__init__(self, dimNames) # instantiate superclass & fix dimNames.

24 self.L = parameters.v('L') # this functions uses parameters L and C,

25 self.C = np.array(parameters.v('C')) # which should be given in a

26 # DataContainer 'parameters'.

27

28 # FunctionBase provides a method to check if indeed C and L have been set:

29 FunctionBase.checkVariables(self, ('C', self.C), ('L', self.L))

30 return

31

32 def value(self, x, **kwargs):

33 """

34 Parameters:

35 x - value between 0 and 1

36 """

37 x = x*self.L

38 return np.polyval(self.C, x)

39

40 def derivative(self, x, **kwargs):

41 """

42 Parameters:

43 x - value between 0 and 1

44 """

45 x = x*self.L

46 Cx = np.polyder(self.C)

47 if kwargs['dim'] == 'x':

48 return np.polyval(Cx, x)

49 elif kwargs['dim'] == 'xx':

50 Cxx = np.polyder(Cx)

51 return np.polyval(Cxx, x)

52 else:

53 FunctionBase.derivative(self) # makes sure to return a useful error message

54 return

�

Code sample 3.12 shows how a function class can be assigned to a variable and thenAssigning a
function used. For the example imagine that the polynomial function defined above is needed for

a height profile variable named 'height'.

� Code sample 3.12 — Assigning and using a function.

1 from functions.Polynomial import Polynomial

2

3 # First instantiate the analytical function class using a temporary variable poly.

4 # It is made a function of 'y'. self.input is a DataContainer containing L and C.

5 # Then assign it to height using .function (no brackets)

6 poly = Polynomial('y', self.input)

7 height = poly.function

8

9 # We can use the function by first putting it in a DataContainer

10 # and then calling its data

11 self.input.addData('height', height)

12 h_1 = self.input.v('height', y=0.5)

13 h_y = self.input.v('height', y=np.arange(0,1,0.1))

14 > h_1 = 3.53

15 > h_y = array(10)

�

28 Chapter 3. Starting to use iFlow

3.7 Shape of array data
Many of the variables in a model will be provided in the form of arrays. Arrays represent
data that varies in one or more of the model dimensions and typically result from numerical
computations or evaluating analytical functions. The allowed shape of arrays is restricted.
We will discuss these shape restrictions in this section.

Firstly, the shape of the array should respect the order of the dimensions. In our example respect
dimensionswhere dimensions = ['x', 'y', 't'], a variation of an array in x-direction should always

be represented in the first argument of the array, a variation in y-direction in the second
argument and a variation in t-direction in the third argument. Variations of the array
variable over other dimensions are allowed in additional arguments, but this should be
used only within a single module and not as output of a module. Note also that additional
dimensions in arrays can only be read by using indices, not using coordinates.

It is important to realise that (analytical) functions operate on a potentially different set dimensions in
functionsof dimensions than the above dimensions variable. As such, functions provide a different

environment to work in. The dimensions of a function are set on instantiation. These
dimensions should still obey the order of the dimensions variable, but dimensions may be
left out. New dimensions may be added at the end, but again this is functionality should
only be used within a single module. Such additional dimensions in functions can only now
be read by using coordinates, not indices.

Secondly, numerically computed data should respect the grid. This means that the number respect grid
of elements in each dimension of an array should be one of the following:
• the same as the number of grid points in each dimension, or
• 1 if the the array variable does not vary in this dimension, or
• nothing if the array variable does not vary in this dimension and this dimension is at

the end of the array (i.e. length-1 dimensions at the end may be omitted).

We provide a few examples to illustrate the shape rules

� Code sample 3.13 — Shape rules for arrays.

1 # Let dimensions = ['x', 'y', 't'] and the grid be (501, 201, 101) in size

2 # Let furthermore u(x, y, t), v(x, y), w(x, t), q(x, lambda)

3 u.shape()

4 > array(501, 201, 101)

5 v.shape()

6 > array(501, 201)

7 w.shape()

8 > array(501, 1, 101)

9 q.shape()

10 > array(501, 1, 1, 50) # assuming dimension lambda has length 50

11

12 # Let f be a function of (x, t): f(x,t) = x*t

13 Class MyFunction(FunctionBase):

14 def __init__(dimNames)

15 FunctionBase.__init__(self, dimNames)

16 return

17

18 def variable(a, b): # note: names of variables can be anything here

19 a = np.asarray(a).reshape(len(a), 1) # need to adjust a, b to the right shape

20 b = np.asarray(b).reshape(1, len(b))

21 f = a*b # f has the right shape: (len(a), len(b))

22 return f

23

24 # This function is instantiated and called as:

25 myfun = MyFunction(['x', 't']) # instantiate

26 self.input.addData('f', myfun.function) # add to DataContainer

3.8 Output storage 29

27 f = self.input.v('f', range(0,10), range(0,20))

28 > f = array(10, 1, 20) # note that the shape of f is different than in the

29 # MyFunction class.

30 # The DataContainer transforms the shape of the

31 # function environment ['x', 't'] to the normal

32 # dimension environment ['x', 'y', 't']

�

3.8 Output storage
iFlow allows you to store calculated variables using an output module. The standard output
module general.Output takes two mandatory input variables. Firstly, the path (relative or
absolute) to the output folder. The path will be created if it does not yet exist.

Secondly, the file name without extension. The file name allows for dynamic naming, which
allows the file name to contain values of one or more variables through the command
varname', options@'. For example, let us consider variables 'L' equal to 10000 and 'Amp'

equal to [0, 1.5, 0, 0]. Then the dynamic file name L'Amp', 1my_output_file_L@'_A@' will
result in my_output_file_L10000_A1.5. The code between the accolades uses calls similar to
those used in the DataContainer v() method, i.e. as first key it takes the variable name and
options can include subkeys, indices or coordinates. The variable used in the dynamic
name may be given in the configuration file, input file or the result of module calculations.
If the file name already exists, iFlow appends the requested file name with the lowest
possible integer, so that files are never overwritten.

The standard output module also allows for the optional arguments iteratesWith, saveAnalyticalOptional
variables and dontConvert. IteratiesWith is followed by the name of an iterative module (see also

Section 4.2) and results in output being written in every loop of the iterative module. This
is e.g. useful for a batch computation. saveAnalytical is followed by variable names. The
program will try to save these variables analytically, which means that a reference to
the analytical function is written including all the class variables of this function. Finally,
dontConvert guarantees that the variable is saved without converting data to the output
grid.

� Code sample 3.14 — Output module in the input file.

1 **Output**

2 module main.Output

3 path output/test

4 filename my_output_file_L@{'L'}_A@{'Amp', 1}

5 iteratesWith general.Sensitivity # optional

6 saveAnalytical v # optional

7 dontConvert u # optional

8

9 requirements u v

�

The output module requires a grid with the name 'outputgrid'. The program will try toOutput grid
convert all variables to the output grid, interpolating data when necessary. A variable
will only not be converted to the output grid if it is not grid-conform or if it is listed under
dontConvert. In general, (analytical) functions will be evaluated on the output grid before
saving.

Derivatives of analytical functions are not saved. Derived quantities in numerical functions(Numerical)
functions on the other hand are saved on the output grid.

The output is written to file using the Pickle module in Python. The resulting files are binaryPickle

30 Chapter 3. Starting to use iFlow

files that can be loaded back to python using the unpickle functionality of the Pickle
module. During output writing, the output is stored in a dictionary format with a slightly
different structure than in the DataContainer. The NiFTy function pickleload may therefore
be used to load stored data back into iFlow. Alternatively the readily available modules
LoadSingle and LoadMultiple are available to load one or multiple files back into iFlow
respectively.

4. Advanced features

4.1 Numerical functions
Numerical functions are a special feature of iFlow that combine the functionality of
analytical functions with numerical data. Numerical functions are especially useful in two
cases:

1. The numerical data comes on a different grid than the standard grid, e.g. when
loading data from measurements or another model, or when computing some
quantity on a refined grid.

2. You would like to save the numerical data with its (analytically calculated) derivative
or second derivative.

Numerical functions take the interface of analytical functions (Section 3.6) and thus look
like a function on the outside. Internally, they contain a value method and optionally
derivative and secondDerivative methods. These methods do however not return a function
prescription, but call numerical data that is defined on some grid. The data will be
interpolated if necessary using the DataContainer’s call-by-coordinate functionality.

4.1.1 Using loading data into a numerical function: NumericalFunctionWrapper

A simple interface exists to transfer already computed or read data to a numerical function
in one to three lines of code. This interface does not require you to construct a new
numerical function class or method, but simply instantiates the NumericalFunctionWrapper

class. We illustrate this in Code sample 4.1.

� Code sample 4.1 — Loading data to a numerical function.

1 # After calculating a variable u and its derivatives u_x and u_xx we load this to a numerical function

2 from src.FunctionTemplates.NumericalFunctionWrapper import NumericalFunctionWrapper

3 nf = NumericalFunctionWrapper(u, self.input.slice('mygrid'), 'mygrid')

4 nf.addDerivative(u_x, 'x')

5 nf.addSecondDerivative(u_xx, 'x')

6

7 d = {}

8 d['u'] = nf.function

32 Chapter 4. Advanced features

�

The NumericalFunctionWrapper is instantiated in line 3. This instantiation requires three
variables:
• the variable. A numerical function can only contain one variable, possibly with its

derivatives and second derivatives.
• the grid. The grid should be loaded to the numerical function as a DataContainer. A

grid can be isolated from a bigger DataContainer instance using the .slice('varname')

method of the DataContainer. This method creates a new DataContainer instance
containing only the variable with name ’varname’. In the above example we use the
grid with name 'grid', which is the standard grid. However, any grid can be defined
and transferred to the numerical function (more on defining a grid in Section 3.4).

• the grid name. The grid name is the name under which the grid (of the second
argument) is known in the DataContainer.

The numerical function automatically determines its dimensions from the variable 'dimensions'

in its grid and the size of the numerical data, i.e. if 'dimensions': [x,y,t] and the numerical
data has one dimension, then the numerical function is a function of 'x'.

Derivatives can be added using the addDerivative and addSecondDerivative commands (line
4 and 5), which take the variable and the dimension of differentiation as arguments. At
the moment, the second derivative can only handle a double derivative along the same
dimension.

4.1.2 Writing your own numerical function: NumericalFunctionBase

If you require more functionality than just loading data to a numerical function, it is possible
to define your own numerical function that, for example, makes computations or reads
data from a file. A custom numerical function can be created by defining a class that
extends the NumericalFunctionBase superclass. Code sample 4.11 shows an exert of an
example of a custom numerical function that loads data from a file. We explain all the
functionalities below.

� Code sample 4.2

1 """

2 Exert from a numerical function to read data from a file

3

4 Date: 10-09-15

5 Authors: Y.M. Dijkstra

6 """

7 from src.FunctionTemplates.NumericalFunctionBase import NumericalFunctionBase

8

9

10 class ReadTxt(NumericalFunctionBase):

11 #Variables

12

13 #Methods

14 def __init__(self, dimNames, data):

15 NumericalFunctionBase.__init__(self, dimNames)

16 self.__file = data.v('file')

17 self.__varname = data.v('varname')

18

19 # check the input.

20 NumericalFunctionBase.checkVariables(self, ('file', self.__file),

21 ('varname', self.__varname))

22

23 return

24

25 def __readtxt(self):

4.2 Iterative modules 33

26 # ...

27 # ...all kinds of commands to read a from a file:

28 # - a variable 'u'

29 # - a DataContainer 'grid' containing everything one needs for a grid

30 # ...

31 self.addValue(u)

32 self.addGrid(grid)

33 return

�

The init method of a numerical function class is the same as that of an analytical functioninit
(see also Section 3.6). The method takes two arguments. The first, dimNames, is a string
dimension name or a list of string dimension names which fix the dimension names of the
function at instantiation. The second, data, can be any (set of) parameter(s) in any format,
but is preferably a DataContainer. The init method first needs to call the init of the super
class (ln. 15). The rest of the method can be used in any way, but it is common to load the
parameters to class variables (ln 16-17) and check whether they are properly set (ln 20).

The numerical function should contain the following additional calls:Required
commands • self.addValue(var). Add the return variable var to the numerical function.

• self.addGrid(grid). Add a DataContainer grid to the numerical function. The variable
and grid dimensions and size should correspond (see Section 3.7).

• (optional) self.addDerivative(var, dim). Add derivative var along dimension dim to
the numerical function.

• (optional) self.addSecondDerivative(var, dim). Add second derivative var along di-
mension dim to the numerical function. At the moment the numerical function only
supports differentiation twice along the same dimension.

These calls can be made from any method in the numerical function class (note this is dif-
ferent to analytical functions which require a value() method). The value or derivatives do
not need to be returned by any method like in analytical function. The above commands
will add your data to the numerical function and will make it available to access using a
DataContainer.

The instantiation of a custom numerical function class is exactly the same as an analyticalInstantiating
function, see Section 3.6.

4.2 Iterative modules
Iterative modules are modules that instruct the iFlow core to start an iteration loop over
this and possibly other modules. Iterative modules have to satisfy the same criteria asmethods
normal modules, i.e. they contain an __init__(input) and run() method and the run

method returns a dictionary, and additionally have to contain a method run_init() and
stopping_criterion(iteration). The method run_init() is called instead of the run method
in the first iteration of a loop. Similar to the run method it needs to return a dictionary. This
way, the module can perform a different set of tasks during the first iteration than during
consecutive iterations, when the run method is called. The stopping_criterion method is
called by the iFlow core after each call of run_init or run. As argument it takes the current
iteration number. The stopping_criterion should return a boolean which is set to True to
instruct the core that no more iterations are required and False to instruct the core to
continue the loop.

An iterative method further requires one extra line in its registryregistry
iterative True.
If this line is missing, the core will treat the module like an ordinary module. The registry of
the iterative module (and its submodules) may additionally contain the keyword inputInit.

34 Chapter 4. Advanced features

This, like the keyword input, is followed by the variable names of the variables required as
input to this model, but then specifically for the initial run of the module.

The place of an iterative module in the call stack is determined by the input requirements call stack
for the initial run. In other words, the module is placed in the call stack behind all the
modules needed to satisfy the initial input requirements. If there are multiple modules that
can be placed in the call stack at the same time (i.e. have the same input requirements),
then iterative modules are placed after non-iterative methods. After an iterative module is
placed in the call stack, the iFlow core determines the modules that need to be included
in the iteration loop. The iteration loop contains all modules that come after the iterative
module in the call stack and that are needed to fulfil the input requirements of the iterative
module. That is, those modules that produce output that is in the iterative method’s input
requirements, but not in its initial input requirements.

iFlow can work with multiple iterative modules in one simulation, whether the iteration manual
adjustmentsloops are consecutive or nested. In some cases, the combination of two iterative modules

produce nested loops (i.e. a loop in a loop) where the requirements allow either loop to
be the nested one. It may be obvious to a user that one of the two loops requires fewer
iterations or is less complex and it is more efficient take it as the nested loop. The iFlow core
may however not always be able to determine the most efficient loop, as it has no a-priori
information on the size or complexity of the loops. Which loop is taken as the nested loop
can then be manually adjusted in the input file. iFlow will try to use the iterative method
that comes first in the input file as the initiator of the outer loop. Iterative methods coming
later in the input file will initiate the nested loops.

4.3 Dynamic options for registries
In some cases the input requirements or output of a module depend on the value of
a parameter. As an example imagine a module called TrickOrTreat that takes an input
variable choice with two possible values: ’trick’ or ’treat’. In case it is set to ’trick’, the
module requires no input and outputs a variable trick. In case choice is set to treat, the
module requires the input variable candy and outputs a variable treat. The registry files
allow for a number of options to enable this dynamic behaviour. As an example, Code
sample 4.3 shows two such options for the module TrickOrTreat.

� Code sample 4.3 — Example of dynamic registry functions.

1 Registry entry for module TrickOrTreat

2

3 module TrickOrTreat

4 input choice if{@choice=='treat', candy}

5 output @choice

�

Firstly, the symbol @ in @choice in the code sample indicates that this entry needs to be symbol @
replaced by the value of choice. The output of this module should thus be a variable
with a name equal to the value of choice. Alternatively one can use the notation @{...}.
This may be used in compound statements, where something needs to come before or
after the dynamic statement. For example no@{choice} would yield ’notrick’ or ’notreat’
depending the value of choice. Also one can indicate elements from a vector with this
notation as @{myvector, 1}, which takes the element at index 1 of the vector with name
’myvector’. The notation @{..} automatically converts its result to a string. Therefore, even
if @{myvector, 1} returns a number, say 2, then iFlow will interpret thus as the string ’2’. The
original data types are conserved when @ (i.e. without curly brackets) is used. In any case,
the variables used after @ should be provided as input to this module in the input file.

The last statement holds for all but a final option involving @. One can also use the construct
@output.requirements. This returns the list of variables behind the keyword ’requirements’ in

4.3 Dynamic options for registries 35

the input file. Recall this keyword is used for the output requirements of a simulation and
lists the minimum set of variables that should be computed. This can be useful e.g. for
iterative modules that should set-up a loop over all the following modules. The input in the
registry should then be equal to all variables that are computed in a simulation.

The second dynamic registry option is the construct if{condition, consequence} as in Codeif-statement
sample 4.3. In this example, if the condition is met, i.e. @choice=='treat', the variable name
candy is added to the list of input requirements. Nothing happens if the condition is not
met. As the example illustrates, the dynamic notation with @ may be used inside the
if-statement.

Finally, variable names involving counters can be defined using a short-hand notationsymbol +
(not shown in the example). Variables with counters are e.g. u0, u1, u2 etc. A list of
these variables can be added to the input requirements or output of a module using
the notation variable+{start, stop, increment}, e.g. u+{0, 6}, where the default increment
is set to 1. This returns a list with elements ’u0’ to ’u5’. This notation can also be made
dynamic e.g. u+{0, @{maxorder}, @{increment}}, where the values of two input variables
’maxorder’ and ’increment’ are used to determine the list of input variables. Note that
we use @{maxorder} and @{increment}, instead of @maxorder and @increment (i.e. we use curly
brackets). This is required, because the values of ’maxorder’ and ’increment’ are needed
as strings, so that they can be combined with the rest of the statement.

36 Chapter 4. Advanced features

4.4 The NiFTy toolbox
The NiFTy (Numerical iFlow Tools) toolbox contains a diverse set of functions for oper-
ations on arrays. The functions in this toolbox may be used in modules and may be
imported by importing a specific function from NiFTy or by importing the while package
as import nifty as ny. The following sections present a selection of useful functions in the
NiFTy toolbox.

4.4.1 Numerical differentiation

NiFTy implements numerical differentiation routines that are especially suited to computa-
tions within iFlow’s data structure. The syntax is as follows

� Code sample 4.4 — derivative.

1 derivative(u, dim, grid, (optional) indices, DERMETHOD=None)

2 '''

3 Takes the derivative of u along dimension dim

4 Parameters: u: array

5 Array to take derivative of.

6 dim: string or int

7 String name of the dimension with respect to with the derivative

8 needs to be taken. The name should match the name definition

9 in the grid dimensions variable. Alternatively it can be the integer

10 position of this dimension is the grid dimensions list.

11 grid: DataContainer instance

12 DataContainer containing a full grid variable (with all subvariables).

13 Typically obtained by slicing the modules` main data container,

14 e.g. self.input.slice('grid'). This splits off the part of the data

15 container containing 'grid'. The grid dimensions and shape of u should

16 match. Note: the grid may contain additional dimensions that u does

17 not have and u may have additional dimensions that the grid does

18 not have. In the latter case derivatives cannot be computed with

19 respect to the additional dimensions.

20 indices: (optional) arrays or numbers

21 One or multiple arguments stating the grid-indices along which the

22 output should be returned (as in DataContainer). If not set, returns

23 output along the entire grid

24 DERMETHOD: (optional) string

25 Numerical derivation scheme. Currently allows for 'CENTRAL' and

26 'CENTRAL2'. 'CENTRAL' is a standard central method that degrades

27 to a first-order upwind method at the boundary. 'CENTRAL2' is

28 identical in the interior, but is replaced by a second-order BDF scheme

29 at the boundary. If None, the derivation method is taken from the

30 iFlow standard configuration file (keyword DERMETHOD).

31 '''

�

Similarly, NiFTy contains a method for computing the second derivative along one axis

4.4 The NiFTy toolbox 37

� Code sample 4.5 — secondDerivative.

1 secondDerivative(u, dim, grid, (optional) indices)

2 '''

3 Takes the second derivative of u along dimension dim. Does not compute

4 cross-derivatives over multiple dimensions. See function derivative for

5 explanation of the input

6 '''

�

The second derivative is computed using a central method. At the boundaries it is assumed
that the second derivative is identical to the second derivative one cell from the boundary.

The NiFTy implementations allow for two specific advantages over other methods
1. differentiation and integration over non-uniform grids, and
2. automatic adjustment of the derivative along a grid that is mildly sloping relative to

the axis of derivation.

The latter is explained below.

iFlow works using dimensionless grid axis between 0 and 1. An axis is made dimensional
using grid enclosures that may be a function of any other dimension, creating a curvilinear
grid. A property of curvi-linear grids is that neighbouring grid points are not necessarily
on the same Cartesian axis. This complicates taking numerical derivatives. Consider for
example a quantity u on the grid of Figure 4.1. We will consider the x-derivative of u in the
point (x1,z1). As we cannot determine this derivative directly, we will construct it from the
derivatives along the grid axes. The vertical grid axis is called ξ , the other axis is called χ.
We then have

uχ = uxxχ +uzzχ . (4.1)

Re-ordering this yields expression we find

ux = (uχ −uzzχ)x−1
χ . (4.2)

x

z

χ
(x1, z1)

(x2, z1)

(x0, z1)

(x1, z0)

(x1, z2)

Figure 4.1: Grid with contraction of the z-axis in x-direction. The along-grid directions are
(χ,z), in the Cartesian coordinate system (x,z).

Numerically, we calculate uχ x−1
χ in one step by using a first order Taylor expansion for x(χ),

so that xχ = ∆x
∆χ

. This first-order expansion is reasonable if the grid slopes mildly with respect
to the axes. For example using central derivatives this becomes

uχ(x1,z1)x−1
χ (x1,z1) =

1
2∆χ

(u(x2,z1)−u(x0,z1))
∆χ

∆x
=

1
2∆x

(u(x2,z1)−u(x0,z1)) . (4.3)

38 Chapter 4. Advanced features

Note that ∆χ cancels from the equation. zχ x−1
χ is computed along the same lines. For

simplicity of notation we therefore define

ux̃ = uχ x−1
χ

and write

ux = ux̃−uzzx̃. (4.4)

The second derivative is found by expanding uχχ

uχχ = uxχ xχ +uxxχχ +uzχ zχ +uzzχχ

=
(
uxxxχ +uxzzχ

)
xχ +uxxχχ +

(
uxzxχ +uzzzχ

)
zχ +uzzχχ .

Reordering yields

uxxxχ xχ = uχχ −2uxzzχ xχ −uxxχχ −uzzz2
χ −uzzχχ ,

which is further rewritten to

uxx = ux̃x̃−2uxzzx̃−uzzz2
x̃−uzzx̃x̃−uxxχχ x−2

χ .

We simplify this by assuming

xχχ x−2
χ = xx̃x̃ ≈ 0.

We thus find

uxx = ux̃x̃−2uxzzx̃−uzzz2
x̃−uzzx̃x̃. (4.5)

4.4.2 Numerical integration

NiFTy also includes a function for integration:

� Code sample 4.6 — integration.

1 integration(u, dim, low, high, grid, (optional) indices, INTMETHOD=None)

2 '''

3 Takes the derivative of u along dimension dim

4 Parameters: u: array

5 Array to take derivative of.

6 dim: string or int

7 String name of the dimension with respect to with the derivative

8 needs to be taken. The name should match the name definition

9 in the grid dimensions variable. Alternatively it can be the integer

10 position of this dimension is the grid dimensions list.

11 low: int

12 Grid index of dimension dim that is used as lower integration bound

13 high: int, list or 1D array

14 Grid index or list/array of indices of dimension dim that is used as upper

15 integration bound

16 grid: DataContainer instance

17 DataContainer containing a full grid variable (with all subvariables).

18 see explanation of derivative for more information

19 indices: (optional) arrays or numbers

20 One or multiple arguments stating the grid-indices along which the

21 output should be returned (as in DataContainer). If not set, returns

22 output along the entire grid

23 INTMETHOD: (optional) string

24 Numerical integration scheme, see below for options.

25 If None, the derivation method is taken from the

26 iFlow standard configuration file (keyword DERMETHOD).

27 '''

4.4 The NiFTy toolbox 39

�

The returned array has the same shape as the original input, but the size of the dimension
along which it is integrated has the same size as the argument ’high’.

The integrate function allows for three quadrature rules:
1. Trapezium rule (or first-order Newton-Cotes integration) (keyword TRAPEZIUM).
2. Simpson’s rule (or second-order Newton-Cotes integration) (keyword SIMPSON).
3. A Simpson-like quadrature using interpolation (keyword INTERPOLSIMPSON).

A closed (i.e. including endpoints) Newton-Cotes quadrature can in general be described
as ∫ xn+N

xn

f dx≈ xn+N− xn

N

N

∑
i=0

wi f (xi), (4.6)

where N is the order of the quadrature and wi are the weights, depending on N and on
the uniformity of the grid. Below we will discuss the implementation of the three methods
in NiFTy with regard to this quadrature formulation.

The trapezium rule has N = 1 and w0 = w1 = 0.5 regardless of the grid. It equals integrating
a simple linear interpolation of the discrete function values. The quadrature (4.6) now
describes a primitive function; i.e. it can also be written as

F(xn+1)≈
xn+N− xn

N

N

∑
i=0

wi f (xi)

where F is a primitive function of f for n > 0 and we choose F(x0) = 0 (by virtue of choosing
the constant of integration).

In the implementation, we compute the primitive in a separate (public) NiFTy function
’primitive’. This only uses addition and multiplication of numpy arrays and is very fast.
The primitive is then summed from F(x0) to any (range of) other x values in the function
’integrate’. This process is most time consuming

The Simpson rule uses N = 2 and the weights depend on the grid spacing. The quadrature
cannot be computed for the second grid point x1 (which would require x−1). Instead,
the method uses an average of 1) the Simpson rule over all but the second grid point,
where it uses the trapezoidal rule and 2) the Simpson rule in reverse integration direction
over all but the second-to-last grid point, where it uses trapezoidal rule. The Simpson rule
does not describe a simple primitive function of non-overlapping grid intervals. So, using
the primitive function for integration requires careful bookkeeping of which elements to
sum-up. An implementation using such a primitive has been tried, but is very slow. This is
because the computation of the weights using the scipy function ’newtoncotes’ is not
vectorised and thus slow (i.e. requires for-loops).

The implementation therefore uses a scipy integration library ’simps’ that computes the
integral immediately. Downside is that the integration needs to be repeated for every
upper bound, so that integration from x0 to multiple x values scales linearly with the number
of upper bounds.

As an alternative, we have implemented a Simpson-like scheme using an interpolating
function. This method uses a refined grid x̃ with one new grid point added in the middle
of each grid cell. The function value in these intermediate points is determined using a
quadratic interpolation and is called f̃ . We can then apply the Simpson rule on this new

40 Chapter 4. Advanced features

grid to calculate a primitive function in the original grid points. In an equation this reads∫ xn+1

xn

f dx =
∫ x̃2n+2

x̃2n

f̃ dx̃≈ x̃2n− x̃2n+2

2
(
w0 f̃ (x̃2n)+w1 f̃ (x̃2n+1)+w2 f̃ (x̃2n+2)

)
=

xn− xn+1

2
(
w0 f (xn)+w1 f̃ (x̃2n+1)+w2 f (xn+1)

)
.

This method has two advantages. Firstly it describes a simple primitive function using
non-overlapping intervals. Secondly, the weights are fixed because, by definition, x̃2n+1 is
always exactly in the middle of the interval. The weights equal w0 = w2 = 1/3 and w1 = 4/3.

We will consider the computation time and accuracy of the integral of the function
f = 1/(x+0.01) on the interval x ∈ [0,1] on a grid with 100 and 500 grid cells. The experiment
is repeated 30 times to get accurate results for the computation time. We compute the
integral

∫ xi
0 f dx,, where xi indicates the grid points. We consider integrating up to all indices

separately and integrating only up to xjmax = 1. The results are presented in Table 4.1. Note
that the error is measured for the case integrating up to all separate indices and we take
the sup-norm.

100 cells 500 cells
Error Time (msec) Time (msec) Error Time (msec) Time (msec)

i ∈ [0, jmax] i = jmax i ∈ [0, jmax] i = jmax
Trapezoidal 0.077 1 1 3.3·10−3 5 4
Simpson 0.013 61 2 3.2·10−4 718 6
Interpolated Simpson 0.013 13 13 4.9·10−5 320 320

Table 4.1: Computation time and accuracy of numerically integrating the function f =
1/(x+ 0.01) using three numerical integration routines in NiFTy . The computation time is
summed over 30 repetitions.

The Simpson rule is about one order of magnitude more accurate than the trapezoidal rule,
but also takes up to two orders of magnitude more computational time. The interpolated
Simpson rule is as accurate as the Simpson rule and even much more accurate on high
resolutions. Also, it is significantly faster when computing the integral with all grid points
as upper boundaries. However, it is relatively slow for computing the integral for only one
upper boundary point. This is because the interpolation of the function takes a fixed
amount of time.

4.4.3 Grids and axes

In order to facilitate the construction of numerical grids, iFlow provides the function Make a grid
makeRegularGrid

� Code sample 4.7 — makeRegularGrid.

1 makeRegularGrid(dimensions, axisType, axisSize, axisOther, enclosures, contraction = None, copy = None)

2 '''Make separate regular grid axes and enclosures for all dimension.

3

4 Parameters: dimensions: str or list of str

5 dimension names

6 axisType: str or list of str

7 Supports several types, see Section on grids

8 axisSize: int or list of int

9 length of axis

10 axisOther:

11 other arguments, depending on the axis type (see Section on grids)

12 enclosures:tuple or list of tuples

13 One tuple for each axis. A tuple consists of two elements:

4.4 The NiFTy toolbox 41

14 lower and upper boundary (scalar, array or function), where

15 lower corresponds to the dimensionless 0 point and upper to

16 the dimensionless 1 point

17 contraction: list of length len(dimension)

18 of lists of length of len(dimension), optional. Requires one sublist

19 per dimension. Sublist i contains the dimension names on which

20 the enclosure of dimension i depends. Assumes empty lists if not

21 provided

22 copy: list of length len(dimension)

23 list containing elements 0 and/or 1. Element 1 indicates that lower-

24 dimensional arrays will automatically be copied over the dimension

25 belonging to the position of the element. A zero indicates the lower-

26 dimensional array will only be copied to the first element of this

27 dimension, appended by zeros. By default, copying is turned on

28 (vector of ones). A zero is useful for e.g. a dimension with harmonic

29 components, where a value should only be copied to the zero-

30 frequency component.

31 '''

�

The grid axes are saved in a dimensionless form with values between 0 and 1. Thedimensions of
axes dimensional axes can be retrieved by combining the dimensionless axes and the grid

enclosures. This is simplified by the NiFTy function dimensionalAxis

� Code sample 4.8

1 dimensionalAxis(grid, dim, args, kwargs)

2 '''Returns the dimensional form of the axes of dimension dim

3

4 Parameters: grid: DataContainer

5 DataContainer instance containing a full iFlow grid

6 dim: int or str

7 Name or number of the dimension of the axis of interest

8 args: tuple of integers or arrays

9 Grid indices to return grid on

10 kwargs: dict of pairs dimname: int or array

11 Dimensionless coordinates to return grid on

12 '''

�

4.4.4 Timing

NiFTy provides the Timer class to track computation times. The Timer class has the methods
• tic() start the timer
• toc() stop the timer and add elapsed time to the total time registered in this timer

instance
• reset() reset this timer instance to zero
• disp(message) print elapsed time preceded by the message and a semicolon
• string(message) as disp, but then returns a string instead of printing it

As these elapsed time between each tic and toc of a Timer instance is saved in a class
variable, multiple timers may be used within the same script to time different components.
Also a single Timer instance may be passed from one function or class to another.

42 Chapter 4. Advanced features

4.4.5 Operations on harmonic components

As many of the standard modules in iFlow work with quantities in harmonic components,
NiFTy implements a number of tools to deal with common operations on harmonic com-
ponents. Consider functions u(t) and v(t) of time t. We will write these functions in terms of
a finite set of p+1 harmonic components

u(t) = Re

(
p

∑
n=0

ûneiωt

)
,

v(t) = Re

(
p

∑
n=0

v̂neiωt

)
,

for some angular frequency ω and complex coefficients ûn and v̂n. The complex coeffi-
cients can be written as numerical vectors û and v̂ with elements ûn and v̂n.

The product of two time series w(t) = u(t)v(t) again yields a time series w(t) that can be
written as a vector of its harmonic components ŵ. This may be computed as

wh = complexAmplitudeProduct(û, v̂,0).

The NiFTy function complexAmplitudeProduct takes two vectors of harmonic components and
the dimension number along which the harmonic components are given (here 0, because
the vectors are 1D). Note that two vectors û and v̂ with p+1 components would yield a
signal ŵ with potentially 2p+1 components. This is truncated to p+1 components.

Similarly, w(t) = u(t)v(t) may be written as the matrix equation ŵ = U v̂. The matrix U is
created using the NiFTy command toMatrix. We can thus write

ŵ = arraydot(toMatrix(û), v̂),

where arraydot is another function that extends the numpy dot product function to func-
tions of more than two variables, where only the last dimensions should be considered in
the matrix or matrix-vector product.

4.5 The STeP toolbox
The STeP (Standard Tools for Plotting) toolbox is created to quickly make standardised
plots of all the available output data created by iFlow. The fact that, with simple single-
line commands, the user can plot almost any combination of variables stored in the
dataContainer or in an output file created by iFlow, highly simplifies the analysis of the
results. Currently, the toolbox contains three types of plots, i.e. lineplot, contourplot and
transportplot_mechanisms. The following sections present an overview of how to import
and use the STeP toolbox and presents a description of the three standardised plotting
commands.

Plotting modules can be used in two ways. First, they may be included in an input file Plot modules
together with other modules that do computations. This way, the results of a computation
can be plotted directly. Second, plot modules may be used in a separate input file and plot
data that was saved before. In the latter case, the plot module needs to be accompanied
by a module that loads saved data (e.g. ReadSingle or ReadMultiple, see manual on the
general module package). In either way, the plot module may look the same, since it
does not care whether its data comes from a file or directly from computations.

4.5.1 General

The STeP toolbox provides two commands to standardise the way plots look. A minimum
example is given below

4.5 The STeP toolbox 43

� Code sample 4.9

1 import step as st

2 from step import Step

3 import matplotlib.pyplot as plt

4

5 class Plot:

6 # Variables

7 logger = logging.getLogger(__name__)

8

9 # Methods

10 def __init__(self, input):

11 self.input = input

12 return

13

14 def run(self):

15 self.logger.info('Module Plot is running')

16

17 # configure plot settings

18 st.configure()

19

20 # some plot code, either using matplotlib ...

21 plt.figure(1, figsize=(1,2))

22 plt.plot(....)

23

24 # ... or using STeP functions

25 step = Step.Step(self.input)

26 step.lineplot(....)

27

28 # display plots

29 st.show()

�

The STeP toolbox is imported as import step as st, from which the functions st.configure()configure and
show and st.show() can be called. The former function configures font, resolution and axes con-

form iFlow standards. The latter function replaces the plt.show() function of matplotlib.pyplot
conform iFlow standards and corrects among others figure size, background color and
tight layout.

STeP follows a customised figure size scheme. For users of matplotlib.pyplot (here importedfigsize
as plt) one can use this as
plt.figure(fignum, figsize=(v_units, h_units),
replacing fignum (figure number), v_units (vertical units) and h_units (horizontal units) by
integers. Here, one vertical unit represents one standard height for one subplot. Two
vertical units are used for figures with two subplots in the vertical direction etcetera. One
or two horizontal units may be used. One horizontal unit represents a figure of 7 cm, which
we define as half an A4 page or one column in a two-column layout. Two horizontal units
then equals 14 cm or a full A4 width.

To use the standardised plotting functions, from the STeP toolbox the Step module needs
to be imported by from step import Step and subsequently an object is instantiated by
step = Step.Step(self.input). Here, the argument self.input passes the data from the
dataContainer to the step object, from which the data can be plotted by using any of the
three plot functions described in the next sections.

44 Chapter 4. Advanced features

4.5.2 Lineplot

To make a line plot of a certain variable over a certain axis, the STeP module provides the
function lineplot

� Code sample 4.10

1 lineplot(axis1, axis2, args, kwargs)

2 """ Makes a lineplot of a variable over a certain axes

3

4 Parameters: axis1: string

5 name of the dimension (of grid) or variable to plot on the horizontal axis

6 axis2: string

7 name of the dimension (of grid) or variable to plot on the vertical axis

8 NB. of axis1 and axis2 one should be a grid dimension and one should be a variable

9 args: Optional, strings

10 optional names of subkeys of the variable in axis1 or axis2

11 grid dimensions: coordinates (between 0 and 1 for non-integer axes) in a single

12 number or array

13 grid dimensions other than in axis1 or axis2. For a grid

14 with axes 'x', 'z', 'f' with a plot over dimension 'x', one can specify e.g.

15 z=[0, 1] and f=0. This will generate 2 lines, for f=0, z=0 and f=0, z=1

16 which are plotted in one figure or subplots (see argument subplot below)

17 sublevel: boolean

18 show sub-level data or not, i.e. separate contributions under subkeys of the

19 variable to plot. If True, the sub-level data is either shown in one figure or

20 in subplots as specified by the argument subplot (see below)

21 subplots: string

22 Allows for 'sublevel' or the string name of a grid dimension. If there

23 are more sublevels or more lines for the grid dimensions (see above),

24 the argument subplots places this in subplots rather than multiple lines

25 in one figure.

26 plotno: integer

27 plot number

28 operation: python function

29 makes an operation on the physical variable using the python function.

30 This function could be for instance a numpy function (e.g. np.abs,

31 np.angle, np.imag or np.real) or a nifty function (e.g. ny.scalemax)

32 """

�

4.5.3 Contourplot

To make a 2DV contour plot of a certain variable over two axes, the STeP module provides
the function contourplot

4.5 The STeP toolbox 45

� Code sample 4.11

1 contourplot(axis1, axis2, value_label, args, kwargs)

2 """ Plots 2DV contourplots of a variable over two axes

3

4 Parameters:axis1: string

5 name of the grid dimension to plot on the horizontal axis

6 axis2: string

7 name of the grid dimension to plot on the vertical axis

8 value_label: string

9 name of the physical variable for which the controurplot needs to be made

10 args: Optional, strings

11 optional names of subkeys of the variable in value_label

12 grid dimensions: coordinates (between 0 and 1 for non-integer axes) in a single

13 number or array

14 grid dimensions other than in axis1 and axis2. For a grid

15 with axes 'x', 'z', 'f' with a plot over dimension 'x', one can specify e.g.

16 z=[0, 1] and f=0. This will generate 2 lines, for f=0, z=0 and f=0, z=1

17 which are plotted in one figure or subplots (see argument subplot below)

18 sublevel: boolean

19 show sub-level data or not, i.e. separate contributions under subkeys of the

20 variable to plot. If True, the sub-level data is either shown in one figure or

21 in subplots as specified by the argument subplot (see below)

22 subplots: string

23 Allows for 'sublevel' or the string name of a grid dimension. If there

24 are more sublevels or more lines for the grid dimensions (see above),

25 the argument subplots places this in subplots rather than multiple lines

26 plotno: integer

27 plot number

28 operation: python function

29 makes an operation on the physical variable using the python function.

30 This function could be for instance a numpy function (e.g. np.abs,

31 np.angle, np.imag or np.real) or a nifty function (e.g. ny.scalemax)

32 """

�

4.5.4 Transportplot mechanisms

To plot the transport mechanisms calculated by the sediment modules of the numerical2DV

and semi_analytical2DV packages, the STeP module provides the function transport mechanisms

� Code sample 4.12 — transportplot mechanisms.

1 transportplot_mechanisms(kwargs)

2 """ Plots the advective transport based on the physical mechanisms that force it.

3

4 Parameters: sublevel: string

5 displays underlying levels of the associated mechanisms: 'sublevel',

6 'subsublevel' or False

7 plotno: integer

8 plot number

9 display: integer or list of strings

10 displays the underlying mechanisms indicated. An integer

11 plots the largest contributions up to that integer and a list

12 of strings plots the mechanisms in that list

13 scale: boolean

14 scales the transport contributions to the maximum value

15 of all contributions

16 concentration: boolean

17 plots the depth-mean, sub-tidal concentration in the background

46 Chapter 4. Advanced features

18 """

�

A. Object-oriented programming

This chapter is a short introduction to object-oriented programming. Focus is on the basic
concept and terminology necessary for understanding iFlow. The explanation here is
largely independent of the programming language, but we will give a few hints to the
names used in Pyton.

In object-oriented programming, a program consists of interacting objects. Objects are
instantiated from classes. A class is the programming script that contains all functions or
instructions a specific object might have. While running a program, objects are instantiated,
meaning that we make an actual object that inherits all the functions or instructions of
the class. For example one can define a class Calculator (class names are capitalised by
convention) with a set of functionalities. During a simulation we may make two instances
of a Calculator, e.g. myCalculator and yourCalculator. These instances work independently.
Therefore if we make a computation using myCalculator, then the yourCalculator does not
have any notion of this.

Classes consist of functionalities, called methods, and knowledge, called class variables.
Methods are like functions. They can take arguments and return results. Common practice
is that methods are either queries or assignments. Queries do not set class variables
and preferably do little computations, however they return some variable. Assignments
on the other hand can set class variables and do extensive computations, but do not
return variables. The reasons for this are explained below. Class variables are the global
knowledge of a class, so that a class variable set in one method of a class can be used in
another method of the same class.

A class is obliged to contain a constructor (__init__ in Python). This is a method that is
invoked when an object is instantiated from a class and may contain any set of instructions
to set up the object. An instance is created by implicitly calling the constructor. In Python
this is done as
myCalculator = Calculator().
This automatically calls the __init__ method of Calculator and creates a new instance.

48 Chapter A. Object-oriented programming

Different objects interact by calling each other’s methods. It is common practice to do
this using a strict hierarchy. That is, if Object A calls a method of Object B, Object B should
be seen as a subordinate of Object A and should not call any method of Object A (i.e.
a subordinate does not tell his boss what to do). In many cases this is very intuitive. For
example consider two classes Student and Calculator. Clearly it should be the student that
calls methods of Calculator and it would be odd if Calculator were to call any methods
of Student. Along the same lines one should prevent triangle-relationships, i.e. If Object A
calls a method of Object B which in turn calls a method of Object C, Object C should not
call a method of Object A (i.e. else it would be as if a junior employee tells the CEO what
to do). In designing a code, it may sometimes be tempting to violate the rules of the strict
hierarchy. However, this ultimately leads to a code that becomes unwieldy and difficult to
track. In almost all cases, strictly hierarchical designs are possible.

Another important concept in object-oriented programming is responsibility. Responsibility
relates to the idea that an object should have a clear and preferably intuitive set of
tasks and knowledge. In the example of the calculator it makes sense that this class
has functions to make computations, but it would not make sense if it had a method
sumTwoNumbers, where it makes up two numbers itself and sums them. Finding the numbers
to put into a calculator is not the responsibility of the calculator itself. Likewise it would not
make sense if the calculator had a class variable weather, which stores the current state
of the weather. Thinking about responsibility of an object early in the design of a code
helps to make intuitively understandable and meaningful classes. As a rule-of-thumb the
design of code needs to be revisited if it is difficult to find a short name for a class, if a
class name does not cover all tasks/knowledge of the class or if the class name becomes
too conceptual or is not a noun. Such problems typically point to a problem with class
responsibility.

From the concept of responsibility it follows that objects are responsible for what they know,
i.e. their class variables. Therefore an object should not set or change the class variable of
another object. Common practice is even that an object should not directly see the class
variables of another object. Instead, a class variable may be seen through invoking a
method. In the example of the calculator, we could add a method getResult(), that returns
the result. This way an object is responsible for what portion of its knowledge it wants to
disclose. To see how this helps program design, consider two classes Manager and Researcher.
Say that Researcher has a method doResearch() that results in the class variables allDetails

and mainResults. Intuitively it makes sense that Researcher has a method returnMainResults,
but does not disclose the variable allDetails. This is helpful, as it is not the responsibility of
Manager to know all the details of a research project. Therefore not offering the temptation
by not disclosing allDetails helps to obey the responsibilities. This is one of the reasons
why methods are often strictly separated into queries and assignments (see above).
Assignments generate knowledge. This knowledge is owned by the object that generated
it and should not automatically be given to another object1.

Related to the concept of responsibility is the concept of contracts. Contracts are typically
focussed on method level and concern arrangements between the caller of a method
and the owner of a method. Again consider the example of the student and the calculator.
The implicit contract between them is that Calculator promises to function normally if the
input from Student makes sense. Calculator cannot promise anything if the input is nonsense.
This means that, in case of nonsense input, the calculator may either seemingly work fine
or crash. As a consequence of this contract Calculator does not have to check if the
input to its methods makes sense. Similarly, Student does not have to check if the output of
Calculator is correct. He can trust it is correct if his input makes sense. This potentially saves
a lot of programming work spent on checking. The terms of the contract of each method
are written in comment lines directly under the method definition, called the docstring.

1Note that the strict separation between queries and assignments is purposefully ignored in many places in
iFlow, most notably in the run method of a module

49

The docstring provides a short description of the method, the input data and data types
expected and the output data and data types that may be expected if the input is
correct. To clearly see the relation between contracts and responsibilities it is helpful to
remember that a subordinate object has the responsibility to do his work well assuming his
superior (i.e. the object that calls his method) keeps his responsibility and gives a correct
command.

There are a view cases where reasonable input may lead to a crash of a method. An
example is when Student uses Calculator to compute 0/0. While the calculator could
demand from the student that the denominator is non-zero, it can be argued that this
is too much to ask of Student. In this case it is allowed that Calculator does not pose the
non-zero input requirement and crashes when the denominator of a division is zero. The
Calculator should however foresee this and should provide a clear error message upon
crashing.

Many more things might be said about object-oriented programming, but this gives
a sufficient background for understanding this manual and understanding iFlow. For
interested readers, next topics to look up include subclasses and public versus private.

Bibliography

Brouwer, R. L. (2017). Semi-analytical 2DV perturbation model. Package for iFlow.

Dijkstra, Y. M. (2017). iFlow modelling framework. User manual & technical description.

Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P. (Manuscript
submitted to Geoscientific Model Development). The iFlow Modelling Framework v2.4. A
modular idealised process-based model for flow and transport in estuaries.

	1 Introduction
	1.1 What is iFlow
	1.2 Overview of the some important elements
	1.3 Terms of use
	1.4 How to read this manual

	2 Getting started
	2.1 Installation and requirements
	2.2 Running a simulation

	3 Starting to use iFlow
	3.1 Building and using modules
	3.2 Input files
	3.3 Variable names and sources
	3.4 Dimensions and grids
	3.5 Accessing data
	3.6 Specifying analytical functions
	3.7 Shape of array data
	3.8 Output storage

	4 Advanced features
	4.1 Numerical functions
	4.2 Iterative modules
	4.3 Dynamic options for registries
	4.4 The NiFTy toolbox
	4.5 The STeP toolbox

	A Object-oriented programming

