
Geosci. Model Dev., 10, 2591–2614, 2017
https://doi.org/10.5194/gmd-10-2591-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

The carbon cycle in the Australian Community Climate
and Earth System Simulator (ACCESS-ESM1) –
Part 2: Historical simulations
Tilo Ziehn1, Andrew Lenton2, Rachel M. Law1, Richard J. Matear2, and Matthew A. Chamberlain2

1CSIRO Oceans and Atmosphere, PMB 1, Aspendale, Victoria, Australia
2CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Correspondence to: Tilo Ziehn (tilo.ziehn@csiro.au)

Received: 5 February 2016 – Discussion started: 10 May 2016
Revised: 25 January 2017 – Accepted: 10 May 2017 – Published: 6 July 2017

Abstract. Over the last decade many climate models have
evolved into Earth system models (ESMs), which are able
to simulate both physical and biogeochemical processes
through the inclusion of additional components such as the
carbon cycle. The Australian Community Climate and Earth
System Simulator (ACCESS) has been recently extended
to include land and ocean carbon cycle components in its
ACCESS-ESM1 version. A detailed description of ACCESS-
ESM1 components including results from pre-industrial sim-
ulations is provided in Part 1. Here, we focus on the evalu-
ation of ACCESS-ESM1 over the historical period (1850–
2005) in terms of its capability to reproduce climate and
carbon-related variables. Comparisons are performed with
observations, if available, but also with other ESMs to high-
light common weaknesses. We find that climate variables
controlling the exchange of carbon are well reproduced.
However, the aerosol forcing in ACCESS-ESM1 is some-
what larger than in other models, which leads to an overly
strong cooling response in the land from about 1960 on-
wards. The land carbon cycle is evaluated for two scenarios:
running with a prescribed leaf area index (LAI) and running
with a prognostic LAI. We overestimate the seasonal mean
(1.7 vs. 1.4) and peak amplitude (2.0 vs. 1.8) of the prog-
nostic LAI at the global scale, which is common amongst
CMIP5 ESMs. However, the prognostic LAI is our preferred
choice, because it allows for the vegetation feedback through
the coupling between LAI and the leaf carbon pool. Our
globally integrated land–atmosphere flux over the historical
period is 98 PgC for prescribed LAI and 137 PgC for prog-
nostic LAI, which is in line with estimates of land use emis-
sions (ACCESS-ESM1 does not include land use change).

The integrated ocean–atmosphere flux is 83 PgC, which is in
agreement with a recent estimate of 82 PgC from the Global
Carbon Project for the period 1959–2005. The seasonal cycle
of simulated atmospheric CO2 is close to the observed sea-
sonal cycle (up to 1 ppm difference for the station at Mace
Head and up to 2 ppm for the station at Mauna Loa), but
shows a larger amplitude (up to 6 ppm) in the high north-
ern latitudes. Overall, ACCESS-ESM1 performs well over
the historical period, making it a useful tool to explore the
change in land and oceanic carbon uptake in the future.

1 Introduction

Climate models are continuously evolving to include more
processes and interactions at higher resolutions and their
number has increased rapidly in recent years. In addition, a
number of institutes worldwide have been developing Earth
system models (ESMs), which are able to simulate both
physical and biogeochemical processes through the inclusion
of the land and ocean carbon cycles.

The evaluation of ESMs in terms of their capability to re-
produce climate and carbon-related variables over the his-
torical period (i.e. 1850–2005) is crucial prior to using such
models for future predictions. Comparisons are usually per-
formed with observation-based products, if available, but
also with other ESMs to identify common weaknesses.

The performance of 18 ESMs that participated in the Cou-
pled Model Intercomparison Project phase 5 (CMIP5) (Tay-
lor et al., 2012) has been evaluated in Anav et al. (2013) for
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the present-day climate. They found that all models correctly
reproduce the main climate variables controlling the spatial
and temporal variability of the carbon cycle. However, large
differences exist when reproducing specific fields. In terms
of the land carbon cycle, an overestimation of photosynthesis
and leaf area index (LAI) was found for most of the models.
In contrast, for the ocean an underestimation of the net pri-
mary production (NPP) was noted for a number of models.
Anav et al. (2013) also found significant regional variations
in model performance.

Eight of these CMIP5 ESMs were also evaluated in Shao
et al. (2013), highlighting that temporal correlations between
annual-mean carbon cycle and climate variables vary sub-
stantially among the eight models. Large inter-model dis-
agreements were found for NPP and heterotrophic respira-
tion (Rh). In agreement with Anav et al. (2013), Shao et al.
(2013) also noted that the CMIP5 historical simulations tend
to overestimate photosynthesis and LAI.

Todd-Brown et al. (2013) compared and evaluated 11
CMIP5 ESMs in terms of their variations in soil carbon.
The correct representation of soil carbon in the model is im-
portant in order to accurately predict future climate–carbon
feedbacks. Soil carbon simulations of the 11 models were
compared against empirical data from the Harmonized World
Soil Database (HWSD) and from the Northern Circumpolar
Soil Carbon Database (NCSCD). A large spread across all
models was found (nearly 6 fold) and the spatial distribution
of soil carbon, especially in the northern latitudes was found
to be poor in comparison to HWSD and NCSCD, which
means that most ESMs were poorly representing grid-scale
soil carbon.

Frölicher et al. (2015) showed that CMIP5 models ap-
peared to capture the observed pattern of anthropogenic car-
bon storage in the ocean, particularly in the Southern Ocean.
However, overall they underestimate the magnitude of the
observed oceanic global anthropogenic carbon storage since
the pre-industrial.

The representation of the global carbon cycle in ESMs
continues to be challenging. For example, large uncertainties
exist for the climate–carbon feedback, which can be mainly
attributed to terrestrial carbon cycle components (Friedling-
stein et al., 2006; Arora et al., 2013). Terrestrial ecosystem
models show large variations when driven with future cli-
mate scenarios (Shao et al., 2013; Friend et al., 2014) due to
differences in model formulation and uncertainties in process
parameters (Knorr and Heimann, 2001; Booth et al., 2012).

The Australian Community Climate and Earth System
Simulator (ACCESS) participated in CMIP5, but in a
climate-model-only version. A selection of CMIP5 simula-
tions have now been performed with the ESM version of AC-
CESS, ACCESS-ESM1 (Law et al., 2017). Here, we present
the performance of the land and ocean carbon cycle compo-
nents of ACCESS-ESM1 over the historical period (1850–
2005). First, we briefly assess ACCESS-ESM1 simulation
of climate variables that are relevant to the carbon cycle

(Sect. 3). We then focus on the response of the carbon cy-
cle to the historical forcing (Sect. 4) and comparison of var-
ious present-day simulated carbon variables with observa-
tions (Sect. 5). Law et al. (2017) provides complementary
analysis of the ACCESS-ESM1 pre-industrial simulation.

2 Model configuration, simulations and comparison
data

Historical simulations (Sect. 2.2) are performed with two
model configurations (Sect. 2.1) and the results compared
with other CMIP5 ESMs (Sect. 2.3) and a number of ob-
served data products (Sect. 2.4).

2.1 Model configuration

ACCESS-ESM1 is based on the ACCESS climate model (Bi
et al., 2013), but with the addition of biogeochemical com-
ponents for ocean and land as described in Part 1 of this pa-
per (Law et al., 2017). The climate model version underlying
the ESM version is ACCESS1.4, a minor update of the AC-
CESS1.3 version submitted to CMIP5 (Bi et al., 2013; Dix
et al., 2013). The relationship between the ACCESS1.3, AC-
CESS1.4 and ACCESS-ESM1 versions is illustrated in Law
et al. (2017, Fig. 1). Law et al. (2017) also showed that the
climate simulations of the three model versions are very sim-
ilar.

For the ACCESS-ESM1 version, ocean carbon fluxes are
simulated by the World Ocean Model of Biogeochemistry
And Trophic dynamics (WOMBAT) (Oke et al., 2013) and
land carbon fluxes are simulated by the Community Atmo-
sphere Biosphere Land Exchange (CABLE) model (Kowal-
czyk et al., 2006; Wang et al., 2011), which optionally in-
cludes nutrient limitation (nitrogen and phosphorus) for the
terrestrial biosphere through its biogeochemical module, de-
noted CASA-CNP (Wang et al., 2010). This capability is
important because nitrogen, phosphorus and carbon biogeo-
chemical cycles are strongly coupled, and it has been demon-
strated that nutrient limitation has a large impact on the
productivity of terrestrial ecosystems (Wang et al., 2010;
Goll et al., 2012; Zhang et al., 2013). Consequently, global
land carbon uptake can be altered significantly. Here we run
CASA-CNP in “CNP” mode with both nitrogen and phos-
phorus limitation active. This differentiates the ACCESS-
ESM1 simulations presented here from other ESM simula-
tions for CMIP5, few of which included nitrogen and none
of which included phosphorus.

As in Law et al. (2017), two model configurations are
used, differing in their treatment of LAI. LAI is an impor-
tant variable in climate models for describing the biophysi-
cal and biogeochemical properties of the land cover and in
CABLE it can either be prescribed or simulated. When pre-
scribed, monthly values based on MODIS observations are
read in through an external file (Law et al., 2017, Sect. 3.1.1).
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Table 1. The CMIP5 models used to assess the ocean response of ACCESS-ESM1 over the historical period in the study. References for all
models are provided in Lenton et al. (2015).

Model name Institute ID Modelling group

CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis
HadGEM-ES MOHC Met Office Hadley Centre (additional HadGEM2-ES

(additional realisations by INPE) realisations contributed by Instituto Nacional de Pesquisas Espaciais)
GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory
ISPL-CM5A-LR IPSL Institut Pierre-Simon Laplace
IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace
MPI-ESM-LR MPI-M Max-Planck-Institut für Meteorologie

(Max Planck Institute for Meteorology)

The dataset used here is limited by having no inter-annual or
longer timescale variability. Additionally, the same LAI is as-
signed to all plant functional types (PFTs) within a grid cell
even though CABLE simulates multiple PFTs per grid cell.
With prescribed LAI there is no coupling between the LAI
and the leaf carbon pool, which means that vegetation feed-
backs cannot be included. These limitations are removed by
making LAI a prognostic variable with the LAI dependent
on the simulated size of the leaf carbon pool. However, if the
leaf carbon pool is not well simulated then this would lead
to a poor LAI simulation with consequent impacts for the
climate simulation.

2.2 Simulations

All experiments are set up as concentration-driven simula-
tions, which means that (historical) atmospheric CO2 con-
centrations are prescribed as an input to ACCESS-ESM1 and
changes in the land and ocean carbon pools do not feed back
on to atmospheric CO2 concentrations following CMIP5 pro-
tocols (Taylor et al., 2012).

As noted above we run ACCESS-ESM1 in two configu-
rations, with prescribed LAI (PresLAI) and prognostic LAI
(ProgLAI). For PresLAI, the carbon cycle has no impact on
the simulated climate, whereas for ProgLAI there is a small
impact on the climate through biogeophysical feedbacks re-
lated to surface albedo, evaporation and transpiration (Law
et al., 2017, Sect. 4.1). The difference in LAI will also have
an impact on the land carbon fluxes, whereas the impact on
the ocean carbon cycle is negligible, and therefore our analy-
sis of the ocean carbon fluxes focusses only on one scenario
(i.e. PresLAI).

Both configurations of ACCESS-ESM1 were run for
1000 years under pre-industrial climate conditions (year
1850) (Law et al., 2017) with the historical simulations start-
ing from year 800 of these control runs. As noted in Law et al.
(2017) the net carbon fluxes for land and ocean did not equi-
librate to zero. At the end of the control run (i.e. year 800 to
955), global NEE (net ecosystem exchange) is 0.3 PgCyr−1

for PresLAI and 0.08 PgCyr−1 for ProgLAI. The net out-
gassing from the ocean is about 0.6 PgCyr−1 at the end of

the control run. We take this drift into account when we cal-
culate the net uptake of carbon for land and ocean.

The historical simulations use external forcing for 1850–
2005, such as increasing greenhouse gases, aerosols, changes
in solar radiation and volcanic eruptions as used in previous
ACCESS versions (Dix et al., 2013). For example, the pre-
scribed atmospheric CO2 increases from 285 ppm in 1850 to
379 ppm in 2005.

Volcanic eruptions in ACCESS-ESM1 are prescribed
based on monthly global-mean stratospheric volcanic aerosol
optical depth (Sato et al., 2002), which is then averaged over
four equal-area latitude zones, similar to the way it is done in
the Hadley Centre Global Environmental Model (HadGEM)
(Stott et al., 2006; Jones et al., 2011). Globally significant
volcanoes within the historical period are Krakatoa (1883),
Santa Maria (1903), Agung (1963), El Chichón (1982) and
Pinatubo (1991). Tropospheric aerosols are either calculated
interactively (i.e. sea salt and mineral dust) or are based on
emission datasets (i.e. sulfate and organic carbon) and in-
crease rapidly from 1950 (Dix et al., 2013, Fig. 4).

The simulations do not include any land use change; the
distribution of PFTs used in the pre-industrial simulation is
used throughout the historical period.

2.3 Comparison with CMIP5 models

ACCESS-ESM1 is compared against other ESMs that partic-
ipated in CMIP5 and are available on the Earth System Grid.
The models used in this paper are shown in Table 1 with the
references provided in Lenton et al. (2015). As not all years
were available for these simulations, we focussed on the pe-
riod 1870–2005 and used only the first ensemble member for
each ESM. In assessing the response of the CMIP5 models,
we calculated the median and the 10th and 90th percentiles
following Lenton et al. (2015). This allows us to both assess
how well ACCESS-ESM1 captures the median and whether
it falls into the range of existing CMIP5 models.
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2.4 Observations

We use the following observational data products to compare
against ACCESS-ESM1 outputs. Climate variables are as-
sessed, where this is helpful for interpreting the carbon sim-
ulation. For example, the land carbon balance is mainly con-
trolled by surface temperature and precipitation (Piao et al.,
2009), whereas the ocean carbon balance is mainly influ-
enced by sea surface temperature (SST) and mixed layer
depth (MLD) (Martinez et al., 2009).

Land surface temperature and precipitation: Climate Re-
search Unit (CRU) 1901–2013 time series dataset at version
3.22 (Harris et al., 2014; Jones and Harris, 2014), statistically
interpolated to 0.5◦× 0.5◦ from monthly observations at me-
teorological stations across the world’s land area (excluding
Antarctica). A low-resolution version at 5◦ for land surface
temperature anomalies (CRUTEM4, Jones et al., 2012) is
used for the period 1850–1900.

SST: the high-resolution (1◦× 1◦) Hadley SST1 (Rayner
et al., 2003) in the period 1870–2006. We also use data
from the World Ocean Atlas climatology (WOA2005; Gar-
cia et al., 2006a, b) in the Taylor diagram.

Climatological MLDs: de Boyer Montégut et al. (2004) for
the historical period, based on the density mixed layer criteria
of a change density of 0.03 kgm−3 from the surface.

Ocean NPP: from SeaWIFS calculated with the VPGM
algorithm of Behrenfeld and Falkowski (1997).

Global ocean and land carbon flux: Global Carbon Project
(GCP) estimates of annual global carbon budget components
and their uncertainties using a combination of data, algo-
rithms, statistics and model estimates (Le Quéré et al., 2015).
The GCP residual land sink is estimated as the difference of
emissions from fossil fuel and cement production, emissions
from land use and land cover change (LULCC), atmospheric
CO2 growth rate and the mean ocean CO2 sink. The 2014
global carbon budget (Le Quéré et al., 2015) provides annual
values for the period 1959–2013.

Gross primary production (GPP): upscaled data from the
flux network (FLUXNET) using eddy covariance flux data
and various diagnostic models (Beer et al., 2010). Gridded
data at the global scale is provided by Jung et al. (2011) us-
ing a machine learning technique called model tree ensemble
to scale up FLUXNET observations. Global flux fields are
available at a 0.5◦× 0.5◦ spatial resolution and a monthly
temporal resolution from 1982 to 2008.

LAI: global LAI derived from the third generation (3g)
Global Inventory Modelling and Mapping Studies (GIMMS)
normalised difference vegetation index (NDVI)3g dataset.
Neural networks were trained first with best-quality and
significantly post-processed Moderate Resolution Imaging
Spectroradiometer (MODIS) LAI and Very High-Resolution
Radiometer (AVHRR) GIMMS NDVI3g data for the over-
lapping period (2000–2009) to derive the final dataset at
1/12◦ resolution and a temporal resolution of 15 days for
the period 1981–2011 (Zhu et al., 2013).

Soil organic carbon (SOC): the HWSD (FAO, 2012) rep-
resents the most comprehensive and detailed globally consis-
tent database of soil characteristics that is currently available
for global analysis. We use an upscaled and regridded ver-
sion of the HWSD with the area-weighted SOC calculated
from the soil organic carbon (%), bulk density and soil depth
(Wieder et al., 2014).

Salinity, DIC (dissolved inorganic carbon) and alkalinity:
observations for salinity come from the World Ocean Atlas
climatology (WOA2005; Garcia et al., 2006b), while DIC
and alkalinity are from GLobal Ocean Data Analysis Project
(GLODAP) (Key et al., 2004).

Sea–air CO2 fluxes: seasonal climatology of Wanninkhof
et al. (2013) based on the 1◦× 1◦ global measurements of
oceanic pCO2 of Takahashi et al. (2009).

Anthropogenic carbon uptake: column inventory esti-
mated from Sabine et al. (2004) from GLODAP (Key et al.,
2004).

Atmospheric CO2 concentrations: mean atmospheric CO2
seasonal cycles derived from NOAA/ESRL flask samples
as processed in the GLOBALVIEW (GLOBALVIEW-CO2,
2011) data product. These seasonal cycles are designed to be
representative of background, clean air at any given location.
Here, we assess the seasonal cycle for four locations with an
averaging period of about 20 years for Mace Head (53.33◦ N,
9.90◦W), about 25 years for Alert (82.45◦ N, 62.52◦W),
about 35 years for the South Pole (89.98◦ S, 24.80◦W) and
about 40 years for Mauna Loa (19.53◦ N, 155.58◦W).

2.5 Performance evaluation

For climate variables such as land surface temperature and
precipitation, we calculate the model variability index (MVI)
(Gleckler et al., 2008; Scherrer, 2011). The model (mod)
variability at every grid point i is compared against the ob-
served (obs) variability and then averaged over the globe in
the following way:

MVI=
1
n

n∑
i=1

(
smod
i

sobs
i

−
sobs
i

smod
i

)2

, (1)

where s is the standard deviation and n the number of grid
cells. Perfect model – observations agreement would result
in an MVI of zero. The definition of a limit to decide if a
model performs well or poor is rather arbitrary. However,
Scherrer (2011) and Anav et al. (2013) have used a thresh-
old of MVI < 0.5.

For a number of carbon-related variables, we calculate the
inter-annual variability (IAV), defined as the standard devia-
tion of detrended annual-mean values.

To assess the performance of the ocean carbon cycle
against observations we use a Taylor diagram (Taylor, 2001).
We also apply the same analysis to archived CMIP5 simu-
lations (Taylor et al., 2012) to benchmark the performance
of ACCESS-ESM1 relative to other CMIP5 models. A Tay-
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lor diagram allows us to summarise the bias, relative vari-
ability and correlations of the simulations with the observa-
tions. In the plot, the radial distance of a given simulation
from the origin gives the standard deviation of the simula-
tion normalised by the standard deviation of the observa-
tions. The angle from the x axis provides the spatial cor-
relation coefficient between the simulations and the obser-
vations. The radial distance from the point marked obser-
vations gives a measure of the root mean squared differ-
ence between the simulation and observations normalised
by the standard deviation of the observations. The point’s
colour represent the bias in the simulation given as the rel-
ative difference in the globally averaged values between
simulation and observations calculated as (mean_model
– mean_observations)/mean_observations; positive values
show the model is overestimating the observed value.

3 ACCESS-ESM1 climatology

3.1 Land temperature and precipitation

Carbon fluxes across the historical period will be directly in-
fluenced by increasing atmospheric CO2 and indirectly in-
fluenced by changes in the climate, driven by the increas-
ing atmospheric CO2 and modulated by other external forc-
ings, such as anthropogenic and volcanic aerosols. In addi-
tion, each climate simulation generates its own internal vari-
ability, with major modes of climate variability such as the El
Niño–Southern Oscillation (ENSO) known to generate large
variability in carbon exchange between the atmosphere and
both the ocean and land (Zeng et al., 2005).

The evolution of temperature and precipitation in
ACCESS-ESM1 (Fig. 1) over land shows similar character-
istics to ACCESS1.3 historical simulations (Dix et al., 2013;
Lewis and Karoly, 2014) as well as those of ACCESS1.4 (P.
Vohlarik, personal communication, 2015). Global land sur-
face air temperature anomalies (relative to 1901–1930) are
shown in Fig. 1. Both ACCESS-ESM1 simulation scenarios
(PresLAI and ProgLAI) show similar temperature anomalies
over most of the historical period, being close to the observed
anomalies through most of the period (decadal-mean differ-
ence smaller than 0.2 K), apart from the 1940s where the
PresLAI scenario shows a larger negative anomaly (decadal-
mean difference of about 0.37 K), which will be discussed
later. From about 1965 to 2005, anomalies are by up to 0.4 K
(decadal-mean difference) lower than observations for both
scenarios. This is attributed by Lewis and Karoly (2014) to
a likely overly strong cooling response in ACCESS1.3 to an-
thropogenic aerosols, offsetting the warming due to green-
house gas increases for which ACCESS1.3 responds simi-
larly to a CMIP5 mean (Lewis and Karoly, 2014, Figs. 2a,
3a). Strong aerosol cooling is supported by Rotstayn et al.
(2015), who found that ACCESS1.3 showed a large global-
mean aerosol effective radiative forcing over the historical

-1
-

Figure 1. Anomalies (reference period: 1901–1930) for (a) glob-
ally averaged surface air temperature and (b) globally averaged
precipitation for land points only for ACCESS-ESM1 (PresLAI,
blue; ProgLAI, red) and observed CRU (black-dashed; before
1901). Major volcanic eruptions are marked with dashed lines:
Krakatoa (1983), Santa Maria (1903), Mt. Agung (1963), El
Chichón (1982) and Mt. Pinatubo (1991).

period of −1.56 Wm−2, which is much larger than the IPCC
best estimate (−0.9 Wm−2) (Boucher et al., 2013) but still
within the uncertainty range.

The inter-annual variability in temperature is well repro-
duced by both ACCESS-ESM1 scenarios, showing an MVI
of 0.3 (PresLAI) and 0.4 (ProgLAI) for the period 1901–
2005. According to Anav et al. (2013) only a few CMIP5
models show an MVI of lower than 0.5 (although their cal-
culation is based on present day, i.e. 1986–2005).

Both ACCESS-ESM1 simulations exhibit cooling follow-
ing major volcanic eruptions (marked in Fig. 1). At first sight,
the ProgLAI run seems to be more sensitive to volcanic erup-
tions, showing a stronger cooling particularly for the two
most recent major eruptions, El Chichón in 1982 and Mt.
Pinatubo in 1991. However, this difference might be due to
a different ENSO phase for the two runs at the time of the
eruptions. Lewis and Karoly (2014) assessed the tempera-
ture impact of Agung, El Chichón and Pinatubo in three AC-
CESS1.3 simulations (e.g. their Fig. 7), and mean temper-
ature anomalies from the two ACCESS-ESM1 simulations
lie within or only slightly outside the ACCESS1.3 ensem-
ble range. It is worth noting that Lewis and Karoly (2014)
found that the simulated temperature anomalies from volca-
noes tended to be larger in ACCESS than observed, and this
was common across CMIP5 models.

www.geosci-model-dev.net/10/2591/2017/ Geosci. Model Dev., 10, 2591–2614, 2017
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Differences in the year to year temperature anomalies be-
tween the two ACCESS-ESM1 scenarios are likely due to
internal climate variability. For example, between the years
1940 and 1950, the PresLAI run shows a large negative
temperature anomaly and the ProgLAI run shows a positive
anomaly. The negative anomaly for the PresLAI is proba-
bly related to a strong La Niña event (Nino3 index of −1.2)
around the year 1945 (Fig. 1c), whereas in the ProgLAI case
we see a small El Niño event (Nino3 index of 0.6) around the
same time.

The temperature anomalies hide an absolute temperature
difference between the two ACCESS-ESM1 simulations;
the ProgLAI scenario produces a slightly warmer climate
(0.56 K difference in mean land surface air temperature aver-
aged over 1850–2005) than the PresLAI run. This is consis-
tent with the difference in surface air temperature found for
the pre-industrial simulations (Law et al., 2017, Sect. 4.1).
As noted in Law et al. (2017), the warmer climate can be ex-
plained by the difference in LAI, which is generally higher in
the prognostic case. This leads to a lower albedo, especially
for evergreen needleleaf forests during the winter months in
the Northern Hemisphere, and consequently to an increase
in absorbed radiation. The difference in LAI for both sce-
narios is explored in more detail in Sect. 5.1.2. Compared
to the observations the ACCESS-ESM1 runs show a cooler
land surface air temperature by about 0.5 K for the ProgLAI
scenario and 1.1 K for the PresLAI scenario averaged over
1901–2005.

Precipitation anomalies over the land are presented in
Fig. 1b. Larger differences in the anomalies for the two
ACCESS-ESM1 simulations can be observed around the
years 1870–1880, where the PresLAI scenario shows a posi-
tive anomaly and the ProgLAI scenario shows a mainly neg-
ative anomaly. The difference over the remaining time pe-
riod for the two runs is generally small. ACCESS-ESM1
simulations compare well with observed rainfall anoma-
lies until about 1960 (decadal-mean difference smaller than
8 mmyr−1), with the exception of the period 1911–1920
for PresLAI (decadal-mean difference of about 12 mmyr−1)
and the period 1951–1960 for ProgLAI (decadal-mean dif-
ference of about 17 mmyr−1). After that, observed anoma-
lies are mostly higher than the simulation results (decadal-
mean difference of up to 41 mmyr−1), a feature also seen
in the ACCESS1.3 historical ensemble (Lewis and Karoly,
2014, Fig. 6a). The comparison of absolute rainfall for the
two ACCESS-ESM1 scenarios suggests a dryer climate (ap-
prox. 20 mmyr−1) for the ProgLAI run.

For precipitation we calculate an MVI of 1.7 (PresLAI)
and 1.8 (ProgLAI) for the period 1901–2005, which sug-
gests that the IAV is not well represented in ACCESS-ESM1.
However, according to Anav et al. (2013) none of the CMIP5
models had an MVI close to the threshold of 0.5. Also note
that for the calculation of the MVI for precipitation we had
to exclude 60 land points (mainly coastal points) due to in-
consistencies in the regridding.

Figure 2. Globally averaged sea surface temperature (K) be-
tween 1850 and 2005: red is ACCESS-ESM1 and black is
HadiSST (Rayner et al., 2003). Major volcanic eruptions are
marked with dashed lines: Krakatoa (1983), Santa Maria (1903),
Mt. Agung (1963), El Chichón (1982) and Mt. Pinatubo (1991).

A reduction in precipitation can be observed following
the eruption of major volcanoes for both ACCESS-ESM1
scenarios, apart from the 1903 Santa Maria eruption and
the 1982 El Chichón eruption, where the PresLAI scenario
does not show a strong anomaly and the ProgLAI anomaly
is likely too late to be due to the volcano. As for temper-
ature, the precipitation anomalies lie within or close to the
ACCESS1.3 ensemble of anomalies presented by Lewis and
Karoly (2014, Fig. 9).

3.2 Sea surface temperature and mixed layer depth

To assist in the assessment of responses of the ocean NPP
and sea–air CO2 fluxes, the responses of SST and MLD are
first assessed.

The ocean response from ACCESS-ESM1 is compared
with the time series of HadiSST v1 (Rayner et al., 2003) in
Fig. 2. Here we see, that there is a warm bias in the early part
of the historical period. This warm bias in ACCESS-ESM1 is
the same as reported by Bi et al. (2013) over the period 1870–
1899 in ACCESS 1.3 (0.26 K). In the period 1870–1970, we
see that the warming of the oceans appears to be less climate
sensitive than the observations. However, by the end of the
historical simulation (1970–2005) we notice that ACCESS-
ESM1 captures well the observed response of HadiSST in
the later period.

However, despite little global bias in the latter period we
see that the ACCESS-ESM1 SST response, consistent with
ACCESS 1.3 (Bi et al., 2013), produces strong spatial dif-
ferences from observations. Figure 3 shows clear spatially
coherent differences between ACCESS-ESM1 and observa-
tions (1986–2005). Some of these regions show a strong
summer warming bias (> 3 K) in areas such as the high-
latitude Southern and Pacific oceans, while in other regions
such as the subtropical Atlantic, a strong cooling bias is
present during the same season. This is in contrast to other
regions, such as the high-latitude North Atlantic, that has a
strong year round warming bias. These biases are broadly
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Feb SST: ACCESS-ESM1 - HadISST

Aug SST: ACCESS-ESM1 - HadISST

(a)

(b)

K

Figure 3. Differences in sea surface temperature (K) between
ACCESS-ESM1 and HadiSST for (a) February and (b) August.

consistent with known errors associated with the UK Met
Office Unified Model (Williams et al., 2015), which is em-
ployed as the atmospheric model in ACCESS-ESM1. Our
SST response is also broadly consistent with other ESMs,
such as HadGEM2 (Martin et al., 2011), which also use the
UK Met Office Unified Model.

The magnitude of the inter-annual variability of simulated
SST is of similar magnitude as the observations. In response
to large aerosol injections associated with volcanic eruptions,
overlain on Fig. 2, we see that the ocean does capture a
net cooling, as expected (e.g. Stenchikov et al., 2009) and
consistent with observations. Interestingly, the magnitude of
the cooling is sometimes less than observed in HadiSST
v1 despite the stronger than observed aerosol response in
ACCESS-ESM1.

Ocean MLDs are compared with the observations follow-
ing de Boyer Montégut et al. (2004), based on more than
880 000 depth profiles from research ships and ARGO pro-
files, and based on a 0.03 kgm−3 density change from the
surface. Significant advances in autonomous measurement

platforms have allowed the mixed layer to be increasingly
well constrained in all seasons across the global ocean.

Overall we see in the mid- and lower latitudes that the
MLD is deeper than observed in all seasons (Fig. 4). How-
ever, the very large values likely represent the differences
in the positions of fronts between the relatively coarse-
resolution model relative to the observations rather than very
large differences (Lenton et al., 2013). In the higher lati-
tudes winter mixed layers are well captured by ACCESS-
ESM1 (Fig. 4). This is encouraging given that many ocean
models tend to underestimate winter MLDs (Sallée et al.,
2013; Downes et al., 2015). Simulating winter mixed lay-
ers correctly is critical for setting interior ocean properties
supplying nutrients to the upper ocean to fuel the biologi-
cally active growing season (Rodgers et al., 2014). However,
in contrast to the winter, ACCESS-ESM1 appears to system-
atically underestimate MLDs in the high-latitude ocean in
summer, 60% (or 30–40 m) in the Southern Ocean, Pacific
and Atlantic oceans. In the Southern Ocean, in particular, the
underestimation of summer MLDs is consistent with Sallée
et al. (2013) and Huang et al. (2014), who showed that most
CMIP5 models underestimate summer MLDs. Huang et al.
(2014) attributed this to a lack of vertical mixing in CMIP5
rather than sea surface forcing related to individual models,
this is consistent with Downes et al. (2015), who showed that
these biases are also present in the ocean-only simulations of
ACCESS-ESM1.

4 ACCESS-ESM1 carbon cycle response to historical
forcing

The increase in atmospheric CO2 over the historical period is
expected to have a direct impact on both land and ocean car-
bon fluxes. Additionally, there may be indirect impacts from
the change in climate caused by the increasing atmospheric
CO2. These impacts are explored firstly for land carbon and
then for ocean carbon.

4.1 Land carbon response

The direct impact of increasing atmospheric CO2 is seen
clearly in the simulated global land GPP (Fig. 5a), with in-
creasing GPP for both simulations. The ProgLAI case gives
the larger increase, with fluxes for the final 10 years of the
simulation being 19 % larger than for the first 10 years, com-
pared to an increase of 11 % in the PresLAI case. This is due
to increasing LAI in the ProgLAI simulation (Fig. 5b) com-
pared to the prescribed LAI, which is annually repeating with
no increase. Thus, the PresLAI case captures only the direct
CO2 fertilisation effect of more efficient photosynthesis per
leaf area while the ProgLAI case also allows the growing leaf
biomass to increase the global total assimilation. The IAV in
GPP over the whole historical period for the ProgLAI run is
2.6 PgCyr−1, considerably larger than in the PresLAI case
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ACCESS-ESM1 Feburary MLD ACCESS-ESM1 August MLD

Observed Feburary MLD Observed August MLD

m

(a) (b)

(d)(c)

Feburary MLD: (ACCESS-ESM1 -Obs)/Obs August MLD : (ACCESS-ESM1 -Obs)/Obs 

%

(e) ( f )

Figure 4. Differences in mixed layer depth between ACCESS-ESM1 and observations de Boyer Montégut et al. (2004) for (a, c) February
and for (b, d) August. Panels (e) and (f) show the percentage difference between de Boyer Montégut et al. (2004) and ACCESS-ESM1
calculated as ((OBS – ACCESS-ESM1)/OBS)× 100. The mixed layer is calculated based on a 0.03 kgm−3 density change from the surface
ocean.

(1.7 PgCyr−1), but within the range of other CMIP5 models.
We also notice a large decadal variability of global GPP for
the ProgLAI case, which is much weaker in the PresLAI case
(1.9 vs. 1.3 PgCyr−1 ). Natural variability of the climate is
the main driver for the IAV in GPP for the PresLAI case. The
larger variability in the ProgLAI case is due to the stronger
response to volcanic cooling and climate, causing an increase
in LAI and a positive feedback through increased GPP. In the
PresLAI case, without the LAI feedback, the impact of vol-

canic cooling is sometimes largely offset by natural climate
variability, for example in the Pinatubo (1991) case.

The difference between the two simulations is less obvi-
ous for the net ecosystem exchange (Fig. 5c). NEE is a rela-
tively small flux that represents the difference between respi-
ration (heterotrophic and autotrophic) and GPP. In the current
set-up of ACCESS-ESM1, we do not include disturbances
such as fire and LULCC, which means that in this case NEE
also represents the net flux of carbon from the land to the
atmosphere. Both simulations generally produce small land
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Table 2. Mean carbon (C), nitrogen (N) and phosphorus (P) pools sizes in petagrams (Pg) for pre-industrial (780–799) and present day
(1986–2005). Historical changes (1850–2005) for C are also shown. Biomass comprises leaf, wood and root pool.

Pre-industrial Present day Historical change C

PresLAI ProgLAI PresLAI ProgLAI PresLAI ProgLAI

Pool C N P C N P C N P C N P 1C 1C

Biomass 611 5.7 0.31 731 6.15 0.33 670 6.2 0.34 807 6.8 0.37 69.5 87.2
Litter 117 0.85 0.04 149 1.02 0.05 126 0.9 0.05 163 1.1 0.06 7.6 12.3
SOC 1034 82 9.6 1187 86.1 11.9 1050 83.4 10.1 1217 88.5 12.6 20.5 37∑

1762 88.6 10.0 2067 93.3 12.3 1846 90.5 10.5 2187 96.4 13.0 97.6 136.5

sinks over most of the historical period, with some tendency
to an increasing sink from the 1920s, followed by a possi-
ble reduction in the sink from the mid-1990s to 2005. The
IAV is relatively large and similar for both scenarios (1.4 vs.
1.3 PgCyr−1) and likely caused by variations in GPP (Piao
et al., 2009; Jung et al., 2011) that are moderated by res-
piration, especially in the ProgLAI case. Law et al. (2017,
Table 2) found similar IAV in the pre-industrial simulation
with larger GPP IAV in the ProgLAI case offset by posi-
tively correlated leaf respiration IAV. Decadal variability for
the ProgLAI run is larger than for the PresLAI run (0.7 vs.
0.3 PgCyr−1).

Larger decadal variability in the ProgLAI run can be ex-
plained by the stronger response to volcanic eruptions. In
principle, aerosols scatter incoming solar radiation and there-
fore have a mainly cooling effect. Hence, an increase in
aerosol emissions leads to a decrease in global temperature,
which in turn increases GPP in the tropics and reduces plant
respiration globally in both cases (PresLAI and ProgLAI)
and therefore increases NEE. However, whereas in the Pres-
LAI case the LAI is kept at a constant level, in the ProgLAI
case the LAI is allowed to increase with the leaf carbon pools
(Fig. 5b). This leads to a further increase in GPP at the same
time (Fig. 5a), which further increases NEE in the ProgLAI
case.

Due to the fact that during the control run our net carbon
flux did not equilibrate to zero (Law et al., 2017, Sect. 4.2.2),
we calculate the carbon uptake for both scenarios by sub-
tracting the mean net flux over the corresponding part of
the control run. We estimate a total uptake of carbon to
the land (using the net ecosystem production (NEP), with
NEP=−1×NEE) over the historical period of 98 PgC for
the PresLAI scenario and 137 PgC for the ProgLAI scenario.
The increase in biomass over the historical period is 70 PgC
for PresLAI and 87 PgC for ProgLAI, (see also Table 2). This
is similar to results from CMIP5 models that also do not con-
sider LULCC. For, example the Beijing Climate Center Cli-
mate System Model (BCC-CSM1.1) estimates an increase in
biomass of about 83 PgC over the historical period and the
Institute of Numerical Mathematics Coupled Model (INM-
CM4.0) reports an increase of about 70 PgC (Jones et al.,
2013). The increase in combined soil and litter carbon over

-1
-1

Figure 5. Temporal evolution of (a) GPP (PgCyr−1), (b) LAI and
(c) NEE (PgCyr−1). GCP estimates for NEE are shown for compar-
ison in black for the years 1959–2005. ACCESS-ESM1 results are
shown for PresLAI (blue line) and ProgLAI (red line) with annual
values marked in thin dashed lines and a 5-year-running mean in
heavy solid lines. Major volcanic eruptions are marked with dashed
lines: Krakatoa (1983), Santa Maria (1903), Mt. Agung (1963), El
Chichón (1982) and Mt. Pinatubo (1991).

the historical period is smaller in ACCESS-ESM1 (28 PgC
for PresLAI and 49 PgC for ProgLAI) than in the two CMIP5
models without LULCC (64 PgC for both, BCC-CSM1.1 and
INM-CM4.0).

We can compare the total carbon uptake (here cumulative
NEP) from ACCESS-ESM1 with other models and estimates
in two ways.

1. Comparison against land use emission estimates:

the observation-based cumulative historical land carbon
uptake is estimated to be −11± 47 PgC (Arora et al.,
2011), which suggests an almost neutral behaviour of
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Figure 6. Comparison of Integrated net primary production
(PgCyr−1) in the period 1850–2005 between CMIP5 and ACCESS-
ESM1. The solid red line represents the integrated carbon uptake
in PgCyr−1 from ACCESS-ESM1, while the green line represents
the median of the CMIP5 model with the range overlain (as shaded
area) as the 10th and 90th percentiles. Overlain on this plot are the
observed values from SeaWIFS over the period 1998–2005 in black.

the land over that period. Since we do not include dis-
turbances in our model, we do not expect our simula-
tions to match those results. However, we can compare
our calculated cumulative uptake against estimates of
land use emissions to see if they are in a similar range.
For example, Houghton (2010) reported land use emis-
sions of 108–188 PgC for 1850–2000, comparable to
the ACCESS-ESM1 cumulative uptakes.

2. Comparison against CMIP5 estimates of cumulative
NEP: simulation results from CMIP5 ESMs that include
LULCC provide a large range for the total carbon up-
take. Shao et al. (2013, Table 4), for example, reported
the separate contributions of NEP and disturbance to cu-
mulative land carbon uptake for eight CMIP5 models.
While NEP ranges from 24 to 1730 (median 387) PgC
and disturbance ranges from 3 to 1729 PgC, the range
for land uptake is smaller with two outlying models
(−120 and 211 PgC) and the remainder ranging from
−59 to 18 PgC. The estimates of cumulative NEP from
ACCESS-ESM1 are at the low end of the CMIP5 range
reported in Shao et al. (2013), possibly due to the in-
clusion of nitrogen (N) and phosphorus (P) limitation;
Zhang et al. (2013) found a reduction of 1850–2005
NEP from 210 PgC for a carbon-only simulation to
85 PgC with N and P limitation when using CABLE in
a low-resolution Earth system model.

4.2 Ocean carbon response

Figure 6 shows that, consistent with other CMIP5 models,
there is no statistically significant trend of ocean NPP glob-
ally over the historical period. The global-mean NPP from
ACCESS-ESM1 of 51 PgCyr−1 is close to that calculated

Figure 7. Comparison of sea–air CO2 fluxes (PgCyr−1) in the pe-
riod 1850–2005 carbon uptake from ACCESS-ESM1. The solid
green line represents the median of the CMIP5, while the shaded
area represents the 10th and 90th percentiles of the CMIP5 model.
Overlain on this is the estimated sea–air fluxes from the Global Car-
bon Project (Le Quéré et al., 2015) in black; and the timing of major
volcano eruptions over the historical period.

from the SeaWIFS data of 50 PgCyr−1 for 1998–2005. Fur-
thermore, it is also in agreement with estimates, based on
observations, of global NPP of between 45 and 50 PgCyr−1

(Behrenfeld and Falkowski, 1997). The ACCESS-ESM1
NPP is larger than the median CMIP5 model value of
37 PgC; however, NPP in CMIP5 models is associated with
a very large range (Anav et al., 2013).

The evolution of sea–air CO2 fluxes in the period 1850–
2005 is shown in Fig. 7. Overlain on this plot is the tim-
ing of the major volcanic eruptions, the estimated sea–air
CO2 flux from the GCP (Le Quéré et al., 2015) and results
from the CMIP5 model archive. We also take into account
the drift over the corresponding part of the control run. Here
we see very good agreement with the CMIP5 models in the
period 1870–1960, with the ACCESS-ESM1 sitting close to
the median of the CMIP5 models, and well within the range
of the CMIP5 models. After 1960, ACCESS-ESM1 shows
greater uptake than the median of CMIP5 models, and ap-
pears to more closely follow the observed value from the
GCP, lying at the 10th percentile of the CMIP5 range. For
1960–2005, ACCESS-ESM1 gives a mean sea–air CO2 flux
of 1.8± 0.1 PgCyr−1 in good agreement with the estimated
GCP value of 1.9±0.3 PgCyr−1, and larger than the estimate
from CMIP5 models of 1.56±0.1 PgCyr−1. For 1986–2005,
the sea–air CO2 is 2.2±0.1 PgCyr−1 from ACCESS-ESM1,
the same as from the GCP (2.2± 0.2 PgCyr−1), and larger
than the median CMIP5 model value of 1.8± 0.1 PgCyr−1.
The cumulative uptake of carbon by air–sea CO2 fluxes in the
period 1959–2005 from ACCESS-ESM1 is 83 PgC, which is
in good agreement with the GCP value of 82 PgC (Le Quéré
et al., 2015) over the same period. These results highlight
that ACCESS-ESM1 show good skill at capturing the glob-
ally integrated ocean carbon uptake at the global scale.
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Figure 8. Mean annual cycle of GPP (PgCmonth−1) for the period 1986–2005. ACCESS-ESM1 results are shown in blue (PresLAI) and
red (ProgLAI). Observation-based estimates are shown in black.

5 Evaluation of the present-day carbon cycle

The last 20 years of the historical simulation (1986–2005)
is used to evaluate the simulated carbon cycle against
observation-based products. Analysis considers the land,
ocean and atmosphere in turn.

5.1 Land carbon

5.1.1 GPP

Both ACCESS-ESM1 runs (PresLAI and ProgLAI) provide
a mean GPP of about 130 PgCyr−1 for 1986–2005. The
observation-based estimate of Jung et al. (2011) suggests a
GPP of about 119 PgCyr−1 for the same period. Other stud-
ies also suggest a global GPP within the same range: Beer
et al. (2010) reported an estimate also based on FLUXNET
data of 123± 8 PgCyr−1 for the period 1998–2005; Ziehn
et al. (2011) used plant traits to constrain parameters of
the Farquhar photosynthesis model and estimated the global
GPP for the same period to be 121 PgCyr−1 (95 % confi-
dence interval from 110 to 130 PgCyr−1) and the IPCC in its
AR4 report states a global value of 120 PgC for 1995 (Den-
man et al., 2007). If compared with other CMIP5 Earth sys-
tem models, which were divided into two groups by Anav
et al. (2013), ACCESS-ESM1 lies in the middle of the lower
group with the range 106 to 140 PgCyr−1. It was also noted
by Anav et al. (2013), that the group of CMIP5 models with
a GPP above 150 PgC did not include nitrogen limitation and
might therefore overestimate GPP. ACCESS-ESM1 contains
both nitrogen and phosphorus limitation, which may provide
a more realistic simulation of carbon uptake by the terrestrial
biosphere.

A number of studies that base their estimates on obser-
vations suggest that a global GPP of about 120 PgCyr−1

may be somewhat too low. For example, Welp et al. (2011)
provided a best guess of 150–175 PgCyr−1 and Koffi et al.
(2012) an estimate of 146± 19 PgCyr−1. However, the esti-
mate by Jung et al. (2011) is based on the largest set of obser-
vations and also provides a spatial distribution of GPP. In the
following, we therefore use this product for the validation of
the ACCESS-ESM1 land carbon component.

The mean annual cycle of GPP as simulated by the
ACCESS-ESM1 is shown in Fig. 8 for both scenarios as
Anav et al. (2013, Fig. 8). Observation-based estimates
by Jung et al. (2011) are also shown for comparison. At
the global scale both ACCESS-ESM1 runs show a sim-
ilar behaviour and they both overestimate GPP by about
2 PgCmonth−1 (peak amplitude) if compared with the ob-
servations as discussed earlier. However, when we split GPP
into its contributions from three latitudinal regions we notice
larger differences between the two ACCESS-ESM1 simula-
tions. The ProgLAI simulation shows a much more produc-
tive northern region (by about 2 PgCmonth−1) and a lower
GPP in the tropics (by about 0.2 PgCmonth−1), which com-
pensated for at the global scale. Overall, both ACCESS-
ESM1 simulations show good agreement with the observa-
tions in terms of the amplitude, with only a small bias of up
to 2.2 PgCmonth−1 for the globe and the Northern Hemi-
sphere. In contrast, a large number of CMIP5 models pro-
duce a strong positive bias during June–August on a global
scale and for the Northern Hemisphere (Anav et al., 2013).
Agreement with observations in terms of the phase is gen-
erally good, accept for the tropics, where ACCESS-ESM1
fails to accurately reproduce the phase. However, as noted by
Anav et al. (2013) this is common amongst CMIP5 models.

www.geosci-model-dev.net/10/2591/2017/ Geosci. Model Dev., 10, 2591–2614, 2017



2602 T. Ziehn et al.: ACCESS-ESM1 historical simulations

Figure 9. Spatial distribution of (a, c, e) GPP and (b, d, f) GPP IAV (kgCm−2 yr−1) for (a, b) PresLAI, (c, d) ProgLAI and (e, f) observation-
based estimates.

The spatial distribution of GPP is presented in Fig. 9
along with its IAV for the last 20 years of the historical
period. Generally there is good agreement in the spatial
pattern of GPP between ACCESS-ESM1 with prescribed
LAI and the observation-based estimate (95% of all land
points have errors smaller than 0.5 kgCm−2 yr−1). How-
ever, there are some small differences mainly in tropical
regions (i.e. central Africa). The ACCESS-ESM1 ProgLAI
run shows a larger GPP in the Northern Hemisphere, mostly
in the boreal regions, and a lower GPP for large parts of
South America (86 % of all land points have errors smaller
than 0.5 kgCm−2 yr−1). Comparing the IAV of GPP for the
two ACCESS-ESM1 runs reveals large differences. Whereas
the PresLAI run shows little variability for most areas, the
ProgLAI run shows large hotspots in South America and
south-eastern Australia of up to 0.5 kgCm−2 yr−1, which are

caused by the LAI feedback as discussed previously. The
observation-based estimate of GPP shows large areas of vari-
ability over the continents, but the distribution and magnitude
are quite different to the ACCESS-ESM1 runs. However, as
pointed out in Anav et al. (2013) one of the limitations of the
GPP observational product is the magnitude of the IAV.

5.1.2 LAI

Global LAI estimates are mainly derived from satellite ob-
servations and various products are available. The prescribed
LAI in ACCESS-ESM1 is based on MODIS observations
(Yang et al., 2006) with no IAV. If compared with the
observation-based estimates of Zhu et al. (2013), which uses
a combination of MODIS and AVHRR data, over the last
20 years of the historical period (mean of 1.4), we notice
that our current prescribed LAI is somewhat smaller (mean of
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Figure 10. Mean annual cycle of LAI for the period 1986–2005. ACCESS-ESM1 results are shown in blue (scenario with prescribed LAI)
and red (scenario with prognostic LAI). Observation-based estimates are shown in black.

1.3), but agrees well in terms of its seasonal cycle (Fig. 10).
There is a number of reasons why remote sensing LAI prod-
ucts differ from each other, i.e. because different sensors and
algorithms are used (Los et al., 2000).

The prognostic LAI, which is calculated by CASA-CNP,
is significantly higher at the global scale (mean: 1.7) and
also shows a different seasonality with its peak in August,
whereas the observations suggest the peak is in July (Fig. 10).
In CABLE the phenology phase is currently prescribed and
the leaf onset might be defined as too late for deciduous veg-
etation, which leads to a shift in the LAI peak by about 1
month.

The global seasonal cycle of LAI is mainly influenced by
the northern extra-tropics and we notice that leaf coverage
throughout the year and especially in autumn and winter is
too high in the ProgLAI case. We clearly overestimate the
mean LAI (observations suggest a mean of 1.3) and under-
estimate the seasonal variability. On a PFT level the main
contributor to this is evergreen needle leaf forest, which pro-
duces a large value (mean 3.8) over the whole year with only
a very small seasonal cycle. In the tropics we underestimate
LAI by a significant amount (mean of 1.5 in comparison to
2.3 as suggested by observations). This is mainly due to C4
grass showing an LAI, which is about a factor of 5 smaller
than the observations. Law et al. (2017) attributed the low
simulated LAI of C4 grass to a large sensitivity to rainfall
and the inability of CABLE to grow back C4 grass after a die
back.

The overestimation of the LAI for evergreen needle leaf
forest and the underestimation for C4 grass have a direct im-
pact on GPP, which is also too large for evergreen needle
leaf and too low for C4 grass. In CABLE, the calculation

of GPP is related to APAR (absorbed photosynthetic active
radiation), which is the product of FPAR (fraction of photo-
synthetically active radiation) and PAR (photosynthetically
active radiation) with FPAR calculated from the LAI.

At the global scale, most CMIP5 Earth system models also
tend to overestimate LAI (Anav et al., 2013, Fig. 11), ranging
from 1.5 in December–January to almost 3.5 in June–August.
Anav et al. (2013) reported that only two models captured the
main feature of the global LAI pattern, whereas the remain-
ing 16 models overestimate the global LAI with some even
exceeding a mean of 2.4. At the regional scale the ACCESS-
ESM1 prognostic LAI is within the CMIP5 range for both
hemispheres, but below the CMIP5 range for the tropics.

5.1.3 NEE

We compare our NEE results against estimates of the resid-
ual land sink from the GCP (Le Quéré et al., 2015) for
1959–2005 (Fig. 5c). The mean residual land sink and inter-
annual variability for this period is estimated to be about
1.9± 1.0 PgCy−1 compared to 1.4± 1.3 PgCy−1 for Pres-
LAI and 1.8± 1.6 PgCy−1 for ProgLAI. In all cases the
IAV is large relative to the mean uptake, but more so in the
ACCESS-ESM1 simulations. The large IAV makes it diffi-
cult to be definitive about land uptake trends over this period,
though there is some suggestion of slightly increasing uptake
in the GCP budget estimates but slightly decreasing uptake
in the ACCESS-ESM1 simulations. This might be better as-
sessed using an ensemble of simulations and extending the
analysis closer to 2015 through use of the RCP (Represen-
tative Concentration Pathway) scenario simulations. Simula-
tions without anthropogenic aerosols would also be useful to
determine whether the relatively strong cooling due to tropo-
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(a)

(b)

(c)

Figure 11. Spatial distribution of organic soil carbon (kgCm−2) (a)
using prescribed LAI, (b) prognostic LAI and (c) observation-based
estimated from HWSD.

spheric aerosols in ACCESS-ESM1 is impacting the decadal
evolution of land carbon uptake.

5.1.4 CNP pool sizes

The amount of carbon, nitrogen and phosphorus stored in the
biomass and soil of terrestrial ecosystems as simulated by
ACCESS-ESM1 is compared against other estimates from
the literature. Here, we refer to the terrestrial biomass as
the sum of living above-ground (leaf and wood) and below-
ground (roots) material. All mean pool sizes and spatial dis-
tributions derived from ACCESS-ESM1 are calculated over
the last 20 years of the historical period (1986–2005).

Carbon pool sizes simulated with ACCESS-ESM1 are in
general smaller for the PresLAI scenario as shown in Ta-
ble 2. The total carbon in the terrestrial biomass amounts
to 670 (PresLAI) and 807 PgC (ProgLAI). The IPCC (Pren-
tice et al., 2001) reports two different estimates of 466 and
654 PgC for the global plant carbon stock, depending on
the data being used. This would imply that our plant car-
bon pools are somewhat to large, especially for the ProgLAI
scenario. However, we have to take into account that we do
not consider LULCC, which might be the reason why we

overestimate the size of our carbon pools. Other studies such
as Houghton et al. (2009) suggest a range of 800–1300 PgC
for the global terrestrial biomass. The large range is a result
of inconsistent definitions of forest, uncertain estimates of
forest area, paucity of ground measurements and the lack of
reliable mechanisms for upscaling ground measurements to
larger areas (Houghton et al., 2009).

A large number of observational-based estimates for
global SOC exists with most studies reporting a global es-
timate of about 1500 PgC (Scharlemann et al., 2014). SOC
pools simulated by ACCESS-ESM1 are somewhat smaller
with 1050 PgC for the PresLAI scenario and about 1200 PgC
for the ProgLAI scenario. However, these numbers agree
well with the best estimate of 1260 PgC derived from the
HWSD (FAO, 2012) and considering the large range of 510–
3040 PgC of global SOC simulated by CMIP5 models (Todd-
Brown et al., 2013) this is an encouraging result.

The HWSD also provides a spatial distribution of the SOC
density, which is shown in Fig. 11 along with the results
from ACCESS-ESM1. In general there is good agreement
between the two ACCESS-ESM1 scenarios, showing a simi-
lar pattern, but with a slightly larger density in the Northern
Hemisphere boreal region for the ProgLAI run. The agree-
ment between the HWSD and ACCESS-ESM1 is also gen-
erally good. However, the HWSD suggest localised hot spots
of high SOC density in North America and Siberia, which
are not covered by ACCESS-ESM1. We also underestimate
SOC in the tropics especially in the maritime continent re-
gion. On the other hand, both ACCESS-ESM1 scenarios sug-
gest a high SOC density in the north Asian region, which is
not apparent in the HWSD.

In addition to other environmental constraints such as
water, light and temperature, carbon storage by terrestrial
ecosystems may also be limited by nutrients, predominantly
nitrogen and phosphorus (Wang and Houlton, 2009; Wang
et al., 2010; Zhang et al., 2013). However, few estimates
are available of total nitrogen and phosphorus pool sizes and
their global spatial distribution is even more uncertain.

Simulated nitrogen pool sizes are shown in Table 2,
and there is only a small difference between the two
ACCESS-ESM1 scenarios. Our estimate for the nitrogen in
the terrestrial biomass is about 6.5 PgN. Estimates based
on field data reconstructions range from about 3.5 PgN
(Schlesinger, 1997) to 10 PgN (Davidson, 1994), which
places the ACCESS-ESM1 results right in the middle of that
range. Soil organic nitrogen pools are simulated to be about
85 PgN for both ACCESS-ESM1 scenarios, which is slightly
low if compared with estimates based on field data (95 PgC
Post et al., 1985 to 140 PgC Batjes, 1996).

The terrestrial phosphorus cycle at present day is even less
constrained than the nitrogen cycle and modelling and em-
pirical estimates vary greatly. ACCESS-ESM1 results sug-
gest a total of 0.35 PgP in the terrestrial biosphere, which is
lower than the estimated range of 0.5–1 PgP by Smil (2000).
Organic soil phosphorus pool sizes differ to some extent
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between the two ACCESS-ESM1 scenarios. The PresLAI
model run simulates a pool size of about 10 PgP and the
ProgLAI model run gives a pool size of about 12 PgP (see
Table 2). Other estimates range from about 5 PgP to about
200 PgP with the upper end being assessed as unrealistic
(Smil, 2000).

5.2 Ocean carbon

5.2.1 Surface field assessment

Figure 12 shows the Taylor diagram comparing the mean
surface alkalinity, DIC, temperature and salinity fields. The
ACCESS-ESM1 surface fields are 20-year averages (1986–
2005), assessed against observations. Overlain on this plot
are median values from CMIP5. The individual CMIP5 mod-
els are listed in Table 1.

For all variables considered, ACCESS-ESM1 simulations
show good spatial correlations with the observations of better
than 0.7. SST shows the highest correlation (R > 0.98) with
the observations, demonstrates a similar magnitude of vari-
ability with only a small positive bias. This is very similar to
the response of CMIP5 median that shows a similar negative
bias. ACCESS-ESM1 sea surface salinity (SSS) shows a rea-
sonable correlation with observations, of similar magnitude
to CMIP5 median (about 0.82). However, the magnitude of
the spatial variability is underestimated and there is a bias
of similar magnitude to the CMIP5 median value. ACCESS-
ESM1 has known large regional biases in surface salinity (Bi
et al., 2013, Fig. 16) and these biases will in turn also im-
pact the simulated alkalinity. Biases in SSS are not surpris-
ing given the challenges with capturing well the hydrological
cycle in ESMs (Trenberth et al., 2003).

As anticipated alkalinity shows the poorest correlation
with the observations of all the variables at 0.72. While this is
clearly less than the median value from CMIP5, we note that
with for all the CMIP5 median values presented here, alka-
linity also shows the poorest correlation. Encouragingly, the
bias in alkalinity is closer to the observations, and while the
variability is also overestimated it is consistent with CMIP5
values. While some of these biases are clearly attributable to
salinity, to improve alkalinity in ACCESS-ESM1 will also
require further tuning of the export of calcium carbonate
from the upper ocean. For DIC, ACCESS-ESM1 shows a
similar correlation with observations (Fig. 12) as the CMIP5
median, but overestimates the magnitude of the variability
when compared with CMIP5 and observations. The underes-
timation of the mean value, can be attributed to the negative
alkalinity bias reducing the surface DIC concentration that
would be in equilibrium with the atmosphere.

While assessing the simulated values with the median
CMIP5 values provides valuable insights, it does not allow us
to assess the skill of our model with individual CMIP5 mod-
els. To do this the simulated surface DIC and alkalinity val-
ues are compared with individual CMIP5 models (Fig. 13).

Figure 12. Taylor diagram assessing the response of the ACCESS-
ESM1 simulations (circles), and the median of CMIP5 models (di-
amonds) with observations. The numbers correspond to (1) alkalin-
ity, (2) DIC, (3) SST and (4) (sea surface) salinity. For explanation
of how to interpret the diagram please see the text.

For alkalinity (Fig. 13a), the correlation between ACCESS-
ESM1 slightly underestimates correlation returned by the
CMIP5 models, but shows a similar, and in some cases bet-
ter, magnitude of spatial variability. At the same time the bias
in surface alkalinity it is still within the range of the CMIP5
models, and many cases lower than individual CMIP5 mod-
els, but of opposite sign overestimate alkalinity. For DIC, we
see that our simulation sits in the spread of the CMIP5 cor-
relation and magnitude (Fig. 13b). Consistent with alkalinity
simulations, we see negative DIC biases and the ACCESS-
ESM1 is not a significant outlier in terms of its magnitude.
Overall, our simulation has comparable skill to the existing
CMIP5 models.

5.2.2 Net primary production

To assess the seasonal anomaly of ocean NPP, calculated
as the anomaly of vertically integrated primary productiv-
ity through the water column, the global ocean is broken
down into five regions, following (Anav et al., 2013). Fig-
ure 14 shows the NPP seasonal anomaly from ACCESS-
ESM1, CMIP5 models and SeaWIFS over the (SeaWIFS)
observational period 1998–2005. At the global ocean scale,
seasonally we see that the magnitude of NPP from ACCESS-
ESM1 is less than the amplitude of CMIP5 and SeaWIFS,
with poor phasing. This likely reflects the biases in ACCESS-
ESM1 toward lower latitudes, reflecting excess nutrient sup-
ply, and utilisation, to the upper oligotrophic ocean (Law
et al., 2017) associated with deeper than observed mixed lay-
ers. In the northern and southern subtropical gyres ACCESS-
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Figure 13. Taylor diagram assessing the alkalinity (a) and DIC (b) of the ACCESS-ESM1 simulation (circle), the median of CMIP5 models
(diamond) and the individual members of the CMIP5 ensemble (crosses) with observations.

Global

49–90º N

18–49º N

18º S–18º N

18–44º S

44–90º S

Figure 14. The seasonal cycle of NPP anomalies (PgCmonth−1)
from ACCESS-ESM1 in red and SeaWIFS (Behrenfeld and
Falkowski, 1997) in black calculated over the period 1998–2005.
Overlain on this plot is the CMIP5 the median (solid green line)
and the range 10th and 90th percentiles (shaded).

ESM1 (18–49◦ N and 19–44◦ S respectively) appears to over-
estimate the amplitude of the observed seasonal cycle when
compared with SeaWIFS. Again this overestimate of NPP is
associated with deeper than observed mixed layers which in-
crease nutrient supply to the oligotrophic upper ocean. The
phase of the NPP in these regions, where agreement between
observations and CMIP5 is very good, is delayed by about
3 months. This delay may also be explained by a combina-
tion of higher (than observed) concentrations of nutrients and
slower than expected biological productions associated with
cool biases, particularly in the Atlantic Ocean allowing the
bloom to occur later.

In the high-latitude Northern Hemisphere, the magni-
tude of the seasonal cycle of NPP is not well captured in
ACCESS-ESM1. While CMIP5 appears also to underesti-
mate the magnitude of the seasonal cycle, ACCESS-ESM1 is
lower again. In contrast, in the Southern Ocean the amplitude
of the seasonal cycle of NPP in ACCESS-ESM1 shows good
agreement with observations. However, in the high-latitude
oceans the phase of NPP is delayed by about 2 months. This
delay may be attributed to the too shallow mixed layers that
exist in these regions, which means that it is only when mixed
layers start to deepen that biological productivity can start to
occur. As a result the remaining growing season is shorter
(than observed) leading to a reduced total productivity. This
may in part explain why the total NPP Northern Hemisphere
is much less than observed.

Interestingly, in the tropical ocean we see very good agree-
ment in the amplitude of the seasonal cycle with CMIP5 and
SeaWIFS. We note, however, that comparing the phase of
the seasonal cycle from ESMs (ACCESS-ESM1 and CMIP5)
with SeaWIFS is not very meaningful in this region, as they
all simulate their own ENSO cycle with their own timing.
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Figure 15. The integrated sea–air CO2 fluxes over the period 1986–2005 from (a) ACCESS-ESM1 and (b) Wanninkhof et al. (2013).

Therefore, any comparison over a 20-year period between
models has the potential to be biased by the number of El
Niño or La Niña events.

5.2.3 Sea–air CO2 fluxes

Figure 15 shows that, in the period 1986–2005, ACCESS-
ESM1 is in good agreement with the spatial pattern and the
magnitude of sea–air CO2 fluxes of Wanninkhof et al. (2013),
hereafter referred to as W13. In the Southern Ocean (44–
90◦ S), which is an important net sink of carbon, ACCESS-
ESM1 (−0.77 PgC yr−1) captures a larger annual-mean up-
take than the sea–air CO2 flux of W13, which only esti-
mated an uptake of−0.18 PgCyr−1. In the southern subtropi-
cal gyres (44–18◦ S) ACCESS-ESM1 (−0.39 PgCyr−1) cap-
tures, but overestimates, the observed sea–air flux of W13
(−0.23 PgCyr−1). In contrast in the Northern Hemisphere
ACCESS-ESM1 underestimates the uptake at −0.36 and
−0.19 PgCyr−1 in the subtropical, and (sub)polar regions
respectively, while W13 estimated the uptake at −0.69 and
−0.54 PgCyr−1 over the same regions. The uptake in the
tropical ocean is well captured, showing very good agree-
ment between ACESS-ESM1 and W13, which estimate an
uptake of −0.56 and −0.57 PgCyr−1. Spatially the inter-
annual variability in sea–air CO2 flux is presented in a com-
panion paper (Law et al., 2017).

The anomaly of the seasonal cycle of the sea–air CO2
fluxes was assessed against observations of W13 and CMIP5,
shown in Fig. 16 for the period 1986–2005. Here, we see
that ACCESS-ESM1 has a larger global amplitude of sea–air
CO2 fluxes than observed (W13) and simulated, but close to
the upper value of the range from CMIP5 models. We also
see that globally the phase of sea–air CO2 fluxes is not well
captured in ACCESS-ESM1, lying outside the range of the
CMIP5 models. To better understand why there are differ-
ences between ACCESS-ESM1, CMIP5 and W13 we sepa-
rate the response of sea–air CO2 into the same regions as for
NPP, again following Anav et al. (2013).

Global

49–90° N

18–49° N

18° S–18° N

18–44° S

44–90° S

Figure 16. The seasonal cycle (1986–2005) of sea–air CO2 flux
anomalies (PgCmonth−1) from ACCESS-ESM1 (red line) and ob-
servations (Wanninkhof et al., 2013; black line). Overlain is the
CMIP5 median (solid green line) and the range as the 10th and 90th
percentiles (shaded).
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mol C m-2

ACCESS-ESM1 Vertical Anthropogenic Inventory GLODAP Vertical Anthropogenic Inventory

(a) (b)

Figure 17. Column inventory of anthropogenic carbon in the ocean (molCm−2) from (a) ACCESS-ESM1 and from (b) GLODAP (Key
et al., 2004 for 1994.

ACCESS-ESM1 appears to capture well the phase of
sea–air CO2 fluxes in the subtropical gyres. In the north-
ern subtropical gyre in particular, we see that the ampli-
tude and phase of the seasonal cycle in ACCESS-ESM1
shows very good agreement with W13, in contrast with other
ESMs (CMIP5). In the southern subtropical gyres, while the
ACCESS-ESM1 appears to overestimate the amplitude rel-
ative to the observations, we see very good agreement with
CMIP5 models. As anticipated the tropical ocean shows very
little seasonality, nevertheless we do see good agreement
with CMIP5 models. However, the comparison of ACCESS-
ESM1 against observations (while shown) is not very mean-
ingful as W13 is based on values of oceanic pCO2 from
Takahashi et al. (2009), which does not include El Niño
years.

The largest differences are seen in the representation of
sea–air CO2 fluxes in the high-latitude ocean. In the high-
latitude Northern Hemisphere, we see that the magnitude is
larger than either CMIP5 or W13 and shows poor phasing.
While the magnitude of the seasonal cycle in the Southern
Ocean lies within the upper range of CMIP5 again poor phas-
ing is seen. That the seasonal cycle is out of phase suggests
that during the summer the solubility response likely dom-
inates over the NPP response, leading to an outgassing in
the summer and uptake in the winter, as discussed in Lenton
et al. (2013). Consequently, we see that the poor global phas-
ing in global sea–air CO2 fluxes is likely due to the solubility
dominated response of the high latitudes during the summer.

5.2.4 Anthropogenic inventory

The global inventory of anthropogenic carbon from
ACCESS-ESM1 is compared with the uptake from GLODAP
(Sabine et al., 2004) for the year 1994 in Fig. 17. Here we
see that the spatial pattern of the column inventory of anthro-
pogenic carbon is very well reproduced, with the large stor-
age occurring in the North Atlantic and large uptake in the

Southern Ocean. The inventory for the period 1850–1994 in
ACCESS-ESM1 is 132 PgC, which is close to the estimated
value from GLODAP of 118± 19 PgC (Sabine et al., 2004)
over the same domain. This suggests that despite a somewhat
limited representation of the seasonal cycle of sea–air CO2
fluxes in key regions of anthropogenic uptake, such as the
Southern Ocean, the ACCESS-ESM1 is doing a very good
job, spatially and temporally, of capturing and storing an-
thropogenic carbon. If the entire domain (including the Arc-
tic Ocean) is integrated, the anthropogenic uptake is 143 PgC
over the same period.

5.3 Atmospheric CO2

The land and ocean carbon fluxes have been put into two at-
mospheric tracers as described in Law et al. (2017, Sect. 2.4).
These tracers have no impact on the model simulation but
allow for the atmospheric CO2 distribution to be assessed.
A reasonable simulation of known features of atmospheric
CO2 can increase our confidence in the simulated carbon
fluxes. For example the seasonal cycle of atmospheric CO2
is strongly driven by the seasonality in land carbon fluxes.
Therefore, our simulated seasonality can be realistically
compared to present-day atmospheric CO2 observations.

The seasonal cycle of atmospheric CO2 is shown for four
locations at different latitudes (Fig. 18, note the different
vertical scale in the upper and lower panels). Seasonal cy-
cles from the PresLAI and ProgLAI cases are calculated
as the mean over the last 20 years of the historical period
(1986–2005) with the annual mean removed from each year.
The seasonality is plotted for the contribution from the land
carbon fluxes only and for both the land and ocean carbon
fluxes combined. The model output was taken from the near-
est grid point to each location with the exception of Mace
Head, where the model was sampled further west to better
approximate the observations, which are selected for clean-
air (ocean) conditions.
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Figure 18. Mean seasonal cycle of atmospheric CO2 for the period 1986–2005 from land carbon fluxes (dashed lines) and both land and
ocean carbon fluxes (solid line). The prescribed LAI case is shown in blue, the prognostic LAI case in red and observations based on flask
data from GLOBALVIEW in black for (a) Alert (82.45◦ N, 62.52◦W), (b) Mace Head (53.33◦ N, 9.90◦W), (c) Mauna Loa (19.53◦ N,
155.58◦W) and (d) the South Pole (89.98◦ S, 24.80◦W).

As observed, the amplitude of the seasonal cycle decreases
from north to south. At Alert (82◦ N, Fig. 18a) both model
simulations overestimate the seasonal amplitude by up to
6 ppm with the growing season starting earlier than currently
observed. The ocean carbon fluxes contribute little to sea-
sonality at this latitude. At Mace Head (53◦ N, Fig. 18b) the
simulated seasonal cycle is comparable to that observed with
only a small difference in the seasonal amplitude (smaller
than 2 ppm), while at Mauna Loa (20◦ N, Fig. 18c) the
ProgLAI case better represents the observed seasonality than
the PresLAI case.

Seasonal cycles in the Southern Hemisphere (e.g. South
Pole) are more challenging to simulate correctly as they
are made up of roughly equal contributions from local land
fluxes, Northern Hemisphere land fluxes and ocean fluxes.
Figure 18d shows for the PresLAI case that the simulated
seasonality from the land carbon fluxes is shifted in phase
when the ocean carbon contribution is included but the phase
shift is away from the observed seasonality. This phase shift
is not apparent for the case with ProgLAI.

6 Conclusions

The evaluation of ACCESS-ESM1 over the historical period
is an essential step before using the model to predict future
uptake of carbon by land and oceans. Here, we performed
two different scenarios for the evaluation of the land car-
bon cycle: running ACCESS-ESM1 with a prescribed LAI

and a prognostic LAI. Running with a prognostic LAI is our
preferred choice, since this includes the vegetation feedback
through the coupling between LAI and the leaf carbon pool.
However, results have shown that we overestimate the am-
plitude of the prognostic LAI annual cycle in the Northern
and Southern hemispheres and underestimate it in the trop-
ics. In future versions we need to improve the performance
of the prognostic LAI, particularly for evergreen needle leaf
and C4 grass.

ACCESS-ESM1 shows a strong cooling response to an-
thropogenic aerosols, which is offsetting the warming due to
increases in greenhouse gases. The aerosol radiative forcing
over the historical period is much stronger than the IPCC best
estimate, but still within the uncertainty range. The impact of
the cooling due to anthropogenic aerosols in ACCESS-ESM1
needs to be quantified in future work.

The land carbon uptake over the historical period is about
40% larger for the run with prognostic LAI in comparison
to the run with prescribed LAI. This is mainly due to the
stronger response to volcanic eruptions, which increases GPP
in the tropics and reduces plant respiration globally, therefore
increasing NEE.

Globally integrated sea–air CO2 fluxes are well captured
and we reproduce very well the cumulative uptake estimate
from the Global Carbon Project (Le Quéré et al., 2015) and
our anthropogenic uptake agrees very well with observed
GLODAP value of Sabine et al. (2004). The spatial distribu-
tion of sea–air CO2 fluxes is also well reproduced by CMIP5
models and observations. At the same time global ocean NPP
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also shows good agreement with observations and lies well
within the range of CMIP5 models. However, seasonal biases
do exist in sea–air CO2 fluxes and NPP, potentially related to
biases in MLD and surface temperature that are present in
ACCESS-ESM1, and will need to be addressed in later ver-
sions of ACCESS-ESM1.

Simulated carbon pool sizes are generally within the range
of estimates provided in the literature. Simulated soil organic
carbon has been compared against the Harmonized World
Soil Database, finding very good agreement in the spatial dis-
tribution and the total size. Nitrogen and phosphorus limita-
tion were active in our simulations and pool sizes seem rea-
sonable if compared with other estimates. However, nitrogen
and phosphorus cycles are poorly constrained and only a few
global estimates exist with large uncertainties.

ACCESS-ESM1 has the capability of putting land and
ocean carbon fluxes into tracers, which provides a way of as-
sessing simulated atmospheric CO2 concentrations. The sim-
ulated seasonal cycle is close to the observed, but we over-
estimate the amplitude in the high northern latitude by up to
6 ppm and we also notice small phase shifts.

Overall, land and ocean carbon modules provide realistic
simulations of land and ocean carbon exchange, suggesting
that ACCESS-ESM1 is a valuable tool to explore the change
in land and oceanic uptake in the future.
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