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Abstract. This study focuses on two new aspects of inverse
modelling of volcanic emissions. First, we derive an observa-
tion operator for satellite retrievals of plume height, and sec-
ond, we solve the inverse problem using an algorithm based
on the 4D-Var data assimilation method. The approach is first
tested in a twin experiment with simulated observations and
further evaluated by assimilating IASI SO2 plume height and
total column retrievals in a source term inversion for the 2010
eruption of Eyjafjallajökull. The inversion resulted in tempo-
ral and vertical reconstruction of the SO2 emissions during
1–20 May 2010 with formal vertical and temporal resolu-
tions of 500 m and 12 h.

The plume height observation operator is based on simul-
taneous assimilation of the plume height and total column
retrievals. The plume height is taken to represent the vertical
centre of mass, which is transformed into the first moment of
mass (centre of mass times total mass). This makes the obser-
vation operator linear and simple to implement. The neces-
sary modifications to the observation error covariance matrix
are derived.

Regularization by truncated iteration is investigated as a
simple and efficient regularization method for the 4D-Var-
based inversion. In the twin experiments, the truncated itera-
tion was found to perform similarly to the commonly used
Tikhonov regularization, which in turn is equivalent to a
Gaussian a priori source term. However, the truncated iter-
ation allows the level of regularization to be determined a
posteriori without repeating the inversion.

In the twin experiments, assimilating the plume height
retrievals resulted in a 5–20 % improvement in root mean

squared error but simultaneously introduced a 10–20 % low
bias on the total emission depending on assumed emission
profile. The results are consistent with those obtained with
real data. For Eyjafjallajökull, comparisons with observa-
tions showed that assimilating the plume height retrievals
reduced the overestimation of injection height during indi-
vidual periods of 1–3 days, but for most of the simulated
20 days, the injection height was constrained by meteoro-
logical conditions, and assimilation of the plume height re-
trievals had only small impact. The a posteriori source term
for Eyjafjallajökull consisted of 0.29 Tg (with total column
and plume height retrievals) or 0.33 Tg (with total column
retrievals only) erupted SO2 of which 95 % was injected be-
low 11 or 12 km, respectively.

1 Introduction

Sulfur dioxide (SO2) is one of the major gas-phase species
released in volcanic eruptions. Large SO2 releases pose a
hazard to aviation, decrease air quality and, as precursors to
sulfate aerosols, have a potential impact on Earth’s radiative
balance (Bernard and Rose, 1990; Robock, 2000; Schmidt et
al., 2015). Volcanic SO2 plumes can be detected by satellite
instruments measuring in either ultraviolet (UV) or infrared
(IR) wavelengths; however, reliably forecasting the atmo-
spheric transport of volcanic plumes is hindered by the lack
of in situ measurements to characterize the emission fluxes of
volcanic species (Carn et al., 2009; Stohl et al., 2011; Zehner,
2012).
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While methods based purely on satellite retrievals (Theys
et al., 2013, and references therein) exist for inferring the
total SO2 flux for a given eruption, a successful predic-
tion of volcanic tracers generally requires information on
the vertical profile of emissions. An important technique
for assessing both vertical and temporal distribution of the
emission fluxes is provided by inverse dispersion modelling,
first demonstrated for volcanic emissions by Eckhardt et
al. (2008).

Inverse modelling of volcanic emissions has been based on
using total column retrievals of SO2 or volcanic ash together
with Lagrangian (Kristiansen et al., 2010; Stohl et al., 2011)
or Eulerian (Boichu et al., 2013; Boichu and Clarisse, 2014)
dispersion models. In addition, Flemming and Inness (2013)
devised a trajectory-based scheme to evaluate the vertical
emission profile, which was used together with assimila-
tion of SO2 retrievals with the IFS (Integrated Forecast Sys-
tem) weather prediction system. The previous studies have
demonstrated that the vertical distribution of emissions can
be inferred from total column retrievals in the presence of
sufficient vertical wind shear. However, in the case of the Ey-
jafjallajökull eruption in 2010, both Boichu et al. (2013) and
Flemming and Inness (2013) pointed out a lack of wind shear
and a subsequent difficulty in estimating the vertical distribu-
tion of emissions.

Retrievals of SO2 plume height have been performed with
various satellite instruments (Carboni et al., 2012; Rix et al.,
2012). Nevertheless, only a few studies have incorporated
these data into models. Wang et al. (2013) derived a three-
dimensional SO2 distribution from retrievals by the Ozone
Monitoring Instrument (OMI) and used the distribution to
initialize chemistry transport model simulations for the 2008
eruption of Kasatochi. Wilkins et al. (2016) used 1D-Var ash
retrievals for initializing dispersion simulations. However,
neither of the studies used plume height retrievals in inverse
modelling of volcanic emissions.

The first objective of the present paper is to assess the use-
fulness of assimilating SO2 plume height retrievals from the
Infrared Atmospheric Sounding Interferometer (IASI) instru-
ment in a source term inversion. Throughout this paper, the
term plume height will refer to the vertical centre of mass,
which is consistent with the IASI retrievals of this study.
Following this definition of plume height, we introduce in
Sect. 3.2 an observation operator for the vertical centre of
mass.

Since the observation operator only depends on the cen-
tre of mass and column loading, the vertical profile is only
partly constrained. However, in contrast to the previous stud-
ies, this approach makes no further assumptions about the
shape or thickness of the SO2 layer. This could be advan-
tageous, since volcanic ash or SO2 layers vary considerably
in depth (Dacre et al., 2015) and can be emitted in multiple,
overlapping layers (Kristiansen et al., 2010). Although the
variability of the vertical profiles may introduce uncertainty
into the retrieval of the plume height, by assimilating only the

centre of mass, we avoid forcing the model into a prescribed
vertical profile whose uncertainty may be difficult to quan-
tify. In contrast, our approach makes full use of the retrieval
error estimates provided with the IASI data for both column
mass and plume height, including the estimated correlation
between plume height and mass errors.

The second objective of this paper is to explore the con-
nection between the source term inversion and the 4D-Var
data assimilation widely used in numerical weather predic-
tion. Elbern et al. (2000) showed that the 4D-Var assimila-
tion method (Le Dimet and Talagrand, 1986) can be easily
extended into estimating emission fluxes with a chemistry
transport model. Elbern et al. (2007) further evaluated the
joint estimation of emission flux and airborne concentration
as a strategy for improving air quality forecasts. However, in
this study, the 4D-Var method is formulated to include only
the emission forcing, which results in a least-squares prob-
lem similar to that solved by many existing inversion algo-
rithms. The iterative solution employed in 4D-Var favours a
different regularization approach, which is in Sect. 4 com-
pared to a more classical regularization technique.

Finally, we test the variational inversion method and as-
similation of plume height retrievals for estimating temporal
and vertical distribution of SO2 emission during the 2010
eruption of Eyjafjallajökull. Results of the inversion, pre-
sented in Sect. 5, indicate that although the vertical distri-
bution of emissions is mostly constrained by the total col-
umn retrievals and the meteorological conditions, assimila-
tion of plume height retrievals results in more vertically con-
centrated emission profile. In particular, emissions above 8–
10 km between 5 and 9 May 2010 are reduced substantially,
which is consistent with the observations of the eruption col-
umn height as well as the IASI retrievals.

2 Model setup and observational data

2.1 Dispersion model

The transport and removal of SO2 were evaluated using the
dispersion model SILAM (system for integrated modelling
of atmospheric composition; Sofiev et al., 2015, http://silam.
fmi.fi) version 5.3. The model includes chemical removal of
SO2 as described by Sofiev (2000) with the OH climatol-
ogy of Spivakovsky et al. (2000). The computations were
driven by ERA-Interim meteorological reanalysis (Dee et al.,
2011) except for evaluating the simulated satellite retrievals
described in Sect. 4, where operational ECMWF forecasts
were used.

SILAM includes a variational data assimilation module,
which was previously used for assimilation of air quality
monitoring data of SO2 by Vira and Sofiev (2012). The same
4D-Var implementation, including the adjoint codes, is used
in this study, but instead of estimating a refinement for a re-
gional emission inventory, we seek to reconstruct the emis-
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sions for a single volcanic eruption as a function of time and
injection height.

The model was configured for a domain covering 50◦ E to
30◦W and 30 to 80◦ N. A horizontal resolution of 0.5◦ was
used for the inversion, while the a posteriori simulations were
run with a higher 0.25◦ resolution. The vertical grid consists
of 34 terrain-following z levels with a 500 m resolution at the
top of the domain increasing to 50 m near the surface.

2.2 The IASI dataset

IASI is an infrared Fourier transform interferometer that
measures in the spectral range (645–2760 cm−1) with spec-
tral sampling of 0.25 cm−1 (apodized spectral resolution of
0.5 cm−1) and has global coverage every 12 h. The lev1b
dataset from EUMETSAT/CEDA archive is used in this
study.

The algorithm and the IASI SO2 dataset (column amount
and altitude) are explained in more detail by Carboni et
al. (2012). The same algorithm has been applied to other
volcanic eruptions and successfully compared with other
datasets (Carboni et al., 2016; Fromm et al., 2014; Koukouli
et al., 2014; Schmidt et al., 2015; Spinetti et al., 2014).

The main points of the retrieval scheme are

– Retrievals are performed for the pixels that were identi-
fied by the SO2 detection scheme (Walker et al., 2011,
2012).

– All the channels between 1100–1200 and 1300–
1410 cm−1 are used in the iterative optimal estimation
retrieval scheme to obtain SO2 column amount and al-
titude of the plume (in pressure, under the assumption
that the vertical concentration of SO2 follows a Gaus-
sian distribution) together with the surface temperature.
The scheme determines the column amount and altitude
(mean of a Gaussian profile) of the SO2 plume with
high precision (up to 0.3 DU error in SO2 amount if the
plume is near the tropopause), and it is well suited for
plumes in lower troposphere.

– The IASI SO2 retrieval is not affected by underlying
clouds. If the SO2 is within or below an ash or cloud
layer, its signal will be masked and the retrieval will un-
derestimate the SO2 amount. In the case of ash, this is
discernible a posteriori by the value of the cost func-
tion. The altitude retrieved for the Eyjafjallajökull erup-
tion plume (using the same dataset as in this paper) in
the presence of underlying cloud is consistent with the
CALIPSO vertical backscatter profile (Carboni et al.,
2016, Figs. 1, 2, 3).

A comprehensive error budget for every pixel is included
in the retrieval. This is derived from an error covariance ma-
trix Sε that is based on the SO2-free climatology of the dif-
ferences between the IASI and forward modelled spectra.

Note that the error covariance, Sε, is defined to represent
the effects of atmospheric variability not represented in the
forward model, as well as instrument noise. This includes
the effects of cloud and trace gases which are not explic-
itly modelled. The matrix is constructed from differences be-
tween forward model calculations (for clear sky) and actual
IASI observations for a wide range of conditions, when we
are confident that negligible amounts of SO2 are present. It
follows that a rigorous error propagation, including the in-
corporation of forward model and forward model parameter
error, is built into the system, providing quality control and
error estimates on the retrieved state. The retrieval state error
covariance matrix, used for the assimilation in this work, is
directly provided as output of the retrieval pixel by pixel.

2.3 Other observations

Section 5 presents comparisons of the a posteriori simulation
and the source term with the IASI plume height and total col-
umn observations. However, additional datasets are required
for evaluating the vertical structure of the inversion results.
Due to the scarcity of vertically resolved SO2 data, the com-
parison is based on aerosol observations. The vertical profiles
of the emitted plumes are compared with the backscatter pro-
files by a satellite-borne lidar, and the SO2 injection height is
compared to plume top time series obtained with a C-band
weather radar. The potentially different emission and trans-
port of volcanic ash and SO2 introduces some ambiguity to
the comparisons; however, as found in Sect. 5, the different
data sources together with the IASI retrievals nevertheless
form a fairly coherent picture. This supports the conclusion
of Thomas and Prata (2011), who found that ash and SO2
were mostly collocated with each other during the Eyjafjal-
lajökull eruption.

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) instrument (Winker et al., 2009) on board the
CALIPSO satellite is a near-nadir viewing, two-wavelength,
polarization-sensitive lidar. The comparisons in this study
are shown for the 532 nm total backscatter. Hence, two main
challenges are involved in using lidar data for evaluation of
simulated SO2 plumes. First, the comparison relies on the
assumption that the SO2 plume is collocated with an aerosol
plume consisting either of primary particles (mainly volcanic
ash) emitted in the eruption, or secondary particles (mainly
sulfates) formed during the transport. Second, the volcanic
plumes need to be distinguished from water or ice clouds. Al-
though the vertical feature mask available with the CALIOP
products provides a classification of aerosol and cloud types,
as pointed out Liu et al. (2009) and Winker et al. (2012),
thick volcanic ash plumes are frequently misclassified as ice
clouds by the standard algorithm.

The comparisons shown in Sect. 5 and Appendix A consist
of CALIOP overpasses intersecting the simulated Eyjafjalla-
jökull plumes. Cases where the CALIOP track is parallel to
the plume are omitted, because this makes the profiles ex-
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tracted from the model very sensitive to horizontal displace-
ment errors. Three of the CALIOP profiles have been collo-
cated with the IASI retrievals under the criteria of less than
2 h time difference and less than 150 km horizontal displace-
ment. The three collocated CALIOP tracks were previously
analysed for SO2 by Carboni et al. (2016) along with two
additional ones for 14 and 16 May; these tracks only inter-
sected the edge of the SO2 plume and did not offer a useful
comparison with the model.

The estimated SO2 injection height is compared to the ob-
servations of plume top described by Arason et al. (2011).
The dataset includes two plume top time series, one esti-
mated from a C-band weather radar located at Keflavík Air-
port 155 km from the volcano, and one estimated from im-
agery taken with a web camera located 34 km from the vol-
cano. The 5 min radar data and the hourly web camera data
are averaged in time to facilitate the comparison with the esti-
mated emission. The radar data include values which indicate
presence of a plume below the lowest observed height, and
in order to maintain consistency with the published 6-hourly
time series (Arason et al., 2011; Petersen et al., 2012a) and
to avoid a high bias in the averaged values, the altitude of
2.5 km above sea level is assigned to these points.

Both datasets represent the highest altitude with measur-
able signal from the volcanic plume, and thus the observed
plume height might differ from the midpoint of the emitted
layer. The radar data are consequently compared with 80th
and 95th percentiles (altitudes with 80 or 95 % mass emitted
below) of the emission.

2.4 Inversion experiments

The inversion algorithm is evaluated with two sets of exper-
iments based on the eruption of Eyjafjallajökull in 2010, de-
scribed in detail by Gudmundsson et al. (2012). The exper-
iments covered the time between 1 May and 21 May 2010
which, as shown by Flemming and Inness (2013), included
the most significant SO2 releases.

The observation operator and the variational inversion
technique were first evaluated in experiments with synthetic
data (Sect. 4), where the simulated observations mimicking
the IASI retrievals are extracted from a model simulation.
The simulations are repeated for several assumed artificial
source terms. The synthetic experiments evaluate the impact
of assimilating plume height retrievals in addition to total
columns, and additionally compare two options for regular-
izing the inverse problem.

The IASI data were subsequently assimilated to invert for
the SO2 emissions in the Eyjafjallajökull eruption. The in-
version was performed both with and without assimilation
of the plume height retrievals, keeping the setups otherwise
identical.

In all inversion experiments, the emission flux density
(kg m−1 s−1) was estimated for each model level in steps
of 12 h. The model setup used in the synthetic experiments

was otherwise identical to that used with the IASI data, but
a lower vertical resolution of 1 km was used to reduce the
computational cost.

3 Assimilation and inversion methods

The forward problem for volcanic tracer transport is defined
by the advection–diffusion equation: given the emission forc-
ing f , solve

∂c

∂t
+∇ · (cV )−∇ · (K∇c)= f (x, t)− s(c,x, t), (1)

where c is the tracer concentration, V is the wind vector, K
is the turbulent diffusivity tensor and s(c,x, t) denotes chem-
ical and other sinks, which in this study include the wet and
dry deposition of SO2 and its chemical conversion to SO4.

3.1 Variational source term inversion

The inverse problem discussed in this paper is to determine
the forcing f , given a set of observations depending on c. We
assume that Eq. (1) has been discretized, and following the
common notation in data assimilation literature, we denote
the tracer concentrations, collectively for all time steps, with
the state vector x. The state vector is related to the unknown
parameter vector f by the model operatorM, and to the ob-
servations y by the observation operatorH as y =H(xt)+ε,
where xt denotes the true state. The random vector ε includes
the effect of observation errors as well as the possible repre-
sentativeness or model errors associated withH.

If the errors follow a multivariate normal distribution with
covariance matrix R, then a solution to the inverse disper-
sion problem can be sought by maximizing the likelihood
function, which is equivalent to minimizing the cost function

J (f )=
1
2
(y−H(x))TR−1(y−H(x)), (2)

where x =M(f ).
The cost function assumes that the airborne concentra-

tions, which comprise the state vector x, are completely de-
termined by the emission. Therefore, contrary to chemical
data assimilation studies such as Elbern et al. (2007), no term
corresponding to the concentration in the beginning of assim-
ilation is included. This is reasonable, since the inversion is
performed in a single step, and the state and observation vec-
tors in Eq. (2) cover the whole simulated period. The total
SO2 loading was low in the beginning of the assimilation due
to the inactive phase of eruption and initial state was there-
fore unlikely to affect the inversion for the emission forcing.

Model errors are not explicitly included in the cost func-
tion, as the relation between concentrations x and the emis-
sion f is taken as a strong constraint. Arranging the inver-
sion into a sequence of shorter assimilation windows with a
background term for the initial state would relax this con-
straint at the boundaries of assimilation windows. However,
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this would still not allow for model errors arising within the
assimilation window, and problematically, the emitted mass
would no longer be conserved between the assimilation win-
dows. Consequently, we use a single assimilation window
and adopt the approach of previous studies (Seibert et al.,
2011; Stohl et al., 2011), where the model uncertainty is in-
corporated to the observation error covariance matrix R. The
form of R is explained in more detail in Sect. 3.2 and 3.3.

If the model and observation operators are linear, repre-
sented by matrices M and H, then Eq. (2) becomes a linear
least-squares problem. For volcanic eruptions with a known
location, the emission vector f is zero almost everywhere,
which makes it feasible to evaluate the matrix HM and solve
Eq. (2) algebraically. This is the basis for inversion meth-
ods of Boichu et al. (2013), Eckhardt et al. (2008) and Lu et
al. (2016).

As an alternative to the algebraic solution, the minimiza-
tion problem Eq. (2) can be solved with gradient-based it-
erative algorithms, which avoids evaluating the matrix HM.
In this study, the cost function is minimized using the L-
BFGS-B (the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm with bound constraints) algorithm of Byrd
et al. (1995) which allows constraining the solution to non-
negative values. Evaluating the gradient requires solving the
adjoint problem for Eq. (1). The iteration is continued until a
stopping criterion is satisfied, e.g. until the norm of the gra-
dient is reduced by a prescribed factor. However, in Sect. 4,
we will discuss truncating the iteration before formal conver-
gence in order to control the regularization.

3.2 Assimilation of plume height retrievals

Given the tracer concentration c(x,y,z) in three dimensions,
the observation operator for column integrated mass mij is
given by

mij =

N∑
k=1

wkc(xi,yj ,zk), (3)

where xi,yj and zk are the grid-point coordinates and wk de-
notes the thickness (in metres) of the kth model level. The
layer concentrations are often weighted with an averaging
kernel (Eskes and Boersma, 2003) to account for the verti-
cally varying sensitivity of the satellite retrieval. In this work,
weighting is not applied because the IASI retrievals treat the
plume height explicitly.

In the retrievals, the plume height is represented by its cen-
tre of mass:

ZCM,ij =
1
mij

N∑
k=1

zkwkcijk. (4)

It would be possible to develop an observation operator for
ZCM; however, the operator would be nonlinear and only de-
fined for non-zero columns. These problems can be over-

come by replacing the centre of mass with the first mo-
ment of mass mZCM. Then, the observations consist of pairs
(mij ,mijZCM,ij ) given by

(
mij
mijZCM,ij

)
=


N∑
k=1

wkcijk

N∑
k=1

zkwkcijk

, (5)

where zk is the height of the kth model level and i and j refer
to the horizontal coordinates. Transforming the observations
of ZCM into mZCM changes the magnitudes of observation
errors, and introduces a correlation between the observation
components m and mZCM. However, this effect can be eval-
uated and included into the observation operator.

The mean and standard deviation of m and ZCM are de-
noted as µm, σm and µz, σz, respectively. Assuming that
the errors of m and ZCM are normally distributed, it can be
shown that the variance of first moment equals

Var[mZCM] = µ
2
mσ

2
z +µ

2
zσ

2
m+ σ

2
mσ

2
z

+ 2µmµzCov[m,ZCM]

+Cov[m,ZCM]
2. (6)

Under similar assumptions, the covariance of m and
mZCM becomes

Cov[m,mZCM] = σ
2
mµz+µmCov[m,ZCM]. (7)

Finally, the expectation of mZCM is shifted due to the corre-
lation between retrievals of m and ZCM:

E[mZCM] = µmµZ +Cov[m,ZCM]. (8)

The retrieval errors of different pixels are assumed to be
uncorrelated. The observation error covariance matrix R is
therefore block diagonal, and its entries can be evaluated us-
ing Eqs. (6) and (7) from the retrieval error estimates σm,
σz and Cov[m,ZCM], which are all included in dataset used
in this study. However, even if the standard deviations are
known accurately, the means µm and µz need to be substi-
tuted with the observed values of m and ZCM. The impact of
this approximation is evaluated numerically in Sect. 4.

Assimilation schemes commonly assume uncorrelated and
unbiased observation errors. A non-diagonal R can be intro-
duced with a transformation of variables; define

LTL= R−1

ỹ = L(y− b)

H̃= LH, (9)

where LTL is the Cholesky factorization of the in-
verse observation error covariance matrix R−1 and b =

(0,Cov[m,ZCM]) corrects for the bias according to Eq. (8).
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Then, substituting the transformations of Eq. (9) into the cost
function (2) shows that assimilation of y with the original R
is equivalent to assimilation of ỹ using the transformed ob-
servation operator H̃ with unit matrix in place of R.

The above formulas can be implemented as a preprocess-
ing step for the observations. In summary, the procedure is
then as follows:

1. For each available IASI pixel i, evaluate the tuple
yi−bi = (mi,miZCM,i−Cov[mi,ZCM,i]) and the cor-
responding 2× 2 covariance matrix Ri .

2. Factorize R−1
i = LTi Li and transform the observations

according to Eq. (9).

3. Store the transformed observations ỹi with their pixel-
specific vertical weighting functions given by rows of
the matrix H̃= LiH.

After the transformation, the observations are handled iden-
tically to regular column observations with a vertical weight-
ing function.

3.3 Observation errors

The IASI retrievals used in this study include pixel-specific
error estimates for total column and plume height retrievals.
The estimates are derived statistically (Carboni et al., 2012)
from differences between the transmission spectra computed
by a forward model and those observed by IASI. Together
with estimates for the correlation between plume height and
total column retrieval errors, this provides the necessary in-
put for Eqs. (6) and (7).

The retrieval error estimates are only provided for pix-
els with positive SO2 detection. For the non-SO2 pixels,
which are assimilated as zero values, a different estimate is
used, based on the detection limits estimated by Walker et
al. (2012). The detection limit was translated into a standard
deviation of a Gaussian random variable assuming, conser-
vatively, a probability of 0.95 for a correct detection.

However, performing the inversions with R defined only
by retrieval errors resulted in poor a posteriori agreement
with the IASI data, which suggested that the retrieval er-
rors are not sufficient to describe the discrepancy between
the simulated and observed values. As will be shown with
the synthetic experiments, the impact of model uncertainty
is significant compared to the retrieval errors, and it needs to
be taken into account. The problem of model errors affecting
the inversion is discussed by Boichu et al. (2013), who found
the impact to depend strongly on treatment of zero-value ob-
servations and consequently chose to keep only every tenth
zero-valued observation.

In this study, the model errors are included by modify-
ing the observation error covariance matrix, which is set to
R= Robs+Rmodel, where Rmodel is constant, diagonal and
determined experimentally. The model error standard devi-
ation for total column observations is set to 2 DU for both

the experiments using synthetic data (Sect. 4) and for the in-
version for Eyjafjallajökull (Sect. 5), while the model error
for the plume height retrievals was set to 2 km for the syn-
thetic experiments and 1 km for the Eyjafjallajökull inver-
sion. Reducing the plume height standard deviation to 1 km
in the synthetic experiments resulted in large negative bias
in the total emission, while increasing the standard deviation
to 2 km did not significantly change the total emission in the
inversion for Eyjafjallajökull.

The model errors for plume height and total column are
assumed uncorrelated and independent of the observation er-
rors. However, their effect is propagated to the covariance
matrix for first moment according to Eq. (6). The actual
model errors evolve dynamically and are likely to be vari-
able and correlated in space and between the plume height
and total column components; however, including these ef-
fects appears difficult in the current inversion approach.

3.4 Regularization

The least-squares problem (2) has a unique solution only if
the matrix HM is of full (numerical) rank. Furthermore, if
HM is close to singular, the problem remains ill posed, which
results in a noisy solution. Consequently, some form of regu-
larization has been employed in all previous works based on
the least-squares approach.

A common option is the Tikhonov regularization
(Tikhonov, 1963; Engl et al., 2000), which introduces a
penalty term into the cost function (2), which in the simplest
form becomes

J (f )=
1
2
(y−Hx)T R−1(y−Hx)+α2

∑
k,n

wk|fk,n|
2, (10)

where the summation is over levels k and time steps n. The
weights wk in Eq. (10) are set equal to the thickness of each
model layer; this makes the penalty term consistent with its
continuous counterpart

∫
f (z, t)2dtdz, which in turn ensures

that the regularization term does not depend on the vertical
discretization.

The penalty term can be modified to include a non-zero a
priori source term. However, this approach is not taken in the
present work. Instead, we aim to choose the level of regular-
ization optimally, so as to avoid excessive bias in the regu-
larized solution. The need for regularization depends on the
coverage of observations and accuracy of the forward model
as well as on the meteorological conditions controlling the
dispersion. Thus, the regularization parameter α2 cannot be
chosen a priori.

In this work, a criterion known as the L curve (Hansen,
1992) is used for determining the amount of regularization.
In the L-curve approach, the inversion is performed with var-
ious values of α2, and the residual ‖y−Hx‖ is plotted as
a function of the solution norm ‖f ‖. For ill-posed inverse
problems, the curve is typically L shaped. The residual ini-
tially reduces quickly as the regularization is relaxed; how-
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ever, for some values of α2, the curve flattens and reducing
the regularization further only marginally improves the fit.
This point, where the L curve reaches its maximum curva-
ture, is taken to represent the optimal regularization. In the
present study, the L curve is evaluated without the frequently
used logarithmic transformation.

The main advantage of the L-curve method is that it does
not rely on a priori estimates for the observation error. This
is useful since, in practice, the discrepancy between simu-
lated observations and the data is also affected by model er-
rors, which are poorly known. The L curve was, in effect,
used in inverse modelling of volcanic SO2 also by Boichu et
al. (2013).

Changing the regularization parameter requires the mini-
mization to be started over, which is costly in the variational
inversion scheme where each iteration requires a model in-
tegration. However, as noted by Fleming (1990) and San-
tos (1996), the iteration itself forms a sequence of solutions
with decreasing regularization. Thus, instead of minimizing
the regularized cost function (10), we iterate to minimize the
original cost function (2), and truncate the iteration according
to the L-curve criterion. This approach, known as regulariza-
tion by truncated iteration (Kaipio and Somersalo, 2006), or
iterative regularization (Hansen, 2010), provides a compu-
tationally efficient method to regularize large-scale inverse
problems. In the following section, we show experimentally
that the truncated iteration results in similar solutions for the
source term inversion as the more common Tikhonov regu-
larization.

4 Experiments with synthetic data

Regularization by truncated iteration has been studied in de-
tail especially for Krylov subspace-based algorithms (Cal-
vetti et al., 2002; Fleming, 1990; Kilmer and O’Leary, 2001).
The effect of truncated iteration on quasi-Newton minimiza-
tion methods, such as the L-BFGS-B algorithm used in this
work, has been studied less extensively. To evaluate the trun-
cated iteration in comparison to Tikhonov regularization for
inverse modelling of volcanic emissions, we performed an
experiment with synthetic observations extracted from for-
ward model simulations. In addition to the comparison of
regularization methods, the synthetic experiments enable us
to evaluate robustness of the L-curve method and to assess
the impact of assimilation of plume height retrievals, and to
quantify how model errors affect the source term estimate.

For the sake of computational convenience, the exper-
iments in this section are not performed using the varia-
tional method described in Sect. 3.1, but instead the forward
sensitivity matrix HM is evaluated by running a separate
model simulation for each component of the emission vector
f . The sensitivity matrix is subsequently used for evaluat-
ing the cost functions (Eq. 2 for truncated iteration, Eq. 10
for Tikhonov regularization) and the respective gradients re-

quired by the L-BFGS-B minimization code. Evaluating the
sensitivity matrix also provided an opportunity to numeri-
cally confirm the equivalence of the matrix-based and varia-
tional inversion methods.

The experiments with synthetic data were set up for the
same time (1 to 20 May 2010) as the inversion for Eyjafjal-
lajökull. The synthetic observations were evaluated by run-
ning forward simulations with a set of artificial source pro-
files (cases A to D) shown in the left-most column of Fig. 1.
The synthetic observational data (total columns and first mo-
ments as explained in Sect. 3.2) correspond to the locations
and times covered by the IASI overpasses during the simu-
lated period.

The artificial source terms A and B are defined arbitrarily,
while cases C and D are realizations of a stochastic process
where the total flux (kg s−1) is given by a lognormal, tem-
porally correlated random variable and the eruption height
follows the relation of Mastin et al. (2009). At each time, a
piece-wise constant vertical profile is assumed with a transi-
tion at 75 % of height. The emission rate is distributed evenly
between the two sections.

The simulations with artificial source terms were driven
by the meteorological data valid for the simulated period.
Two sets of meteorological input were used: the synthetic
observations were generated using the operational ECMWF
forecast fields, but to simulate the effect of model errors, the
sensitivity matrix used in the inversions was evaluated us-
ing the ERA-Interim as the meteorological driver. Although
changing the meteorological driver does not cover all sources
of model error, we expect the resulting perturbation to have
statistical properties similar to the real model uncertainty.

The effect of retrieval errors was simulated by perturbing
the extracted (simulated) observations with additive Gaus-
sian noise. In order to perturb the simulated plume height
retrievals, the unperturbed simulated first moments and total
columns were first converted back to the centre of mass and
total column for the pixels with column density higher than
0.2 DU in the forward run. Then, both the simulated centre of
mass and the total column were perturbed and transformed
back to the (perturbed) total columns and first moments. The
total columns were perturbed with standard deviation equal
to 0.1 DU +10 % of the true value; the centres of mass were
perturbed with a constant standard deviation of 1 km. A neg-
ative correlation coefficient of −0.9 was assumed between
the perturbations to the total column and centre of mass.

The error covariance matrix used in the inversion was sup-
plemented with 2 DU and 2 km “model error” as described in
Sect. 3.3. For the inversions using simulated plume height re-
trievals, the observation error covariance matrices were trans-
formed according to Eqs. (6)–(8) using the perturbed centre
of mass and total column values for µZ and µm.

The residual and solution norms, which define the L
curves, are evaluated consistently to the penalized cost func-
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Figure 1. Estimated emission flux (kg m−1 s−1) in source term inversions with simulated data. True source terms for the four cases (A to
D) are shown in the left column. The remaining columns show the inversion results using Tikhonov regularization, using truncated iteration
with total column data and using truncated iteration with total column and plume height data.

tion (10):

‖Hx− y‖ =

√
(Hx− y)TR−1 (Hx− y)

‖f ‖ =
√∑
k,n

wk|f k,n|
2 , (11)

where f denotes the emission, x =Mf and wk is the thick-
ness of the kth model layer. To evaluate the L curve for
Tikhonov regularization, the parameter α2 was incremented
in discrete steps given by α2

i = 107. . .2−i for i = 0,1,2, . . ..
The L-BFGS-B minimization method with non-negativity
constraint was used for both Tikhonov regularization and the
truncated iteration; in the case of Tikhonov regularization,
the iteration was continued for each α2

i either until conver-

gence or for a maximum of 50 iterations. A zero-valued so-
lution was always used as the first guess in the iteration. With
the truncated iteration, the weights wk , required by Eqs. (10)
and (11), are not explicitly included in the cost function. In-
stead, the same effect is achieved by transforming the param-
eter vector as f ′k,n = w

1/2
k fk,n.

The point where the L curve flattens, which is taken as the
final solution, was determined numerically. First, the points
(‖f ‖ ,‖Hx− y‖) are sorted according to increasing ‖f ‖.
Then, the points where the residual increases are removed,
and finally, the optimal point is chosen using the “triangle”
algorithm of Castellanos et al. (2002).

Geosci. Model Dev., 10, 1985–2008, 2017 www.geosci-model-dev.net/10/1985/2017/



J. Vira et al.: Assimilation of IASI SO2 1993

Figure 2. Estimated emission flux with synthetic data: inversion
results for case B in Fig. 1, assuming a perfect forward model.

Figure 1 presents the inversion results using Tikhonov reg-
ularization with total column observations, truncated itera-
tion with total column observations and truncated iteration
with total column and plume height observations. Regardless
of the assumed source term or inversion method, the emis-
sion timing is well captured within the 12 h resolution. The
overall vertical profiles are also recovered; however, spurious
features are present especially in cases B and C.

For comparison, Fig. 2 presents the solution correspond-
ing to the case B in Fig. 1 but evaluated without model er-
rors; that is, using the same sensitivity matrix HM for both
evaluating the observations and performing the inversion. In
this case, regularization was not needed, and the true solu-
tion was recovered almost perfectly despite the noisy obser-
vations. Thus, the noise present in the estimated solutions in
Fig. 1 is mainly due to model error, which affects the ele-
ments of matrix M. All other results presented in this section
are obtained in the presence of model errors.

Numerical evaluation of the inversion results in terms of
RMSE and relative bias is presented in Table 1. The scores
are evaluated for both truncated iteration and Tikhonov regu-
larization, each with and without plume height observations.
Furthermore, two numbers are given for each case: the opti-
mal value, corresponding to the regularization (for Tikhonov,
the value of α2; for truncated iteration, the iteration num-
ber) with lowest RMSE and the L-curve value correspond-
ing to the choice of regularization as determined from the L
curve explained above. Clearly, the regularization with opti-
mal RMSE is not necessarily optimal with respect to bias.

For all cases, the optimally truncated iteration had lower
RMSE than the optimally tuned Tikhonov regularization.
However, this advantage was not always realized when the
truncation was determined from the L curves, which are
shown in Figs. 3 and 4. For the Tikhonov regularization, the

Figure 3. L curve (left) and rms error (right) for inversions with
simulated data for cases A and B in Fig. 1. The iterate (for truncated
iteration) or the regularization parameter (for Tikhonov regulariza-
tion) chosen from the L curve is marked with a star.

L-curve solution was generally closer to the optimal. The dif-
ference is caused by differing features of the L curves for the
two regularization methods: for the Tikhonov regularization,
the L curve forms a convex graph varying smoothly with
α2, while the curves formed by the L-BFGS-B iterates are
neither smooth nor even monotonous. Although the points
where the residual increases are omitted from the search, the
points with a locally large curvature remain in the curve, and
such points are responsible for the under-regularized L-curve
solutions in cases A and D when only total column was as-
similated.

In Figs. 3 and 4, the root mean squared error (RMSE) of
the solution is shown next to each L curve as a function of the
regularization parameter. As expected, the RMSE initially
drops as the regularization is relaxed, reaches a minimum
and eventually increases as the solution becomes contam-
inated by noise. This behaviour was especially clear when
only total column observations were assimilated. When cen-
tres of mass were also assimilated, the minima in RMSE be-
came weaker, and the RMSE with the maximum number of
iterations was only slightly higher than optimal. Thus, assim-
ilating the centres of mass had the unintended but potentially
useful side effect of making the inversion less sensitive to
under-regularization.

Since the regularized cost function (10) favours solutions
with a small squared norm, the inversion is expected to un-
derestimate the true emission. If only total column observa-
tions are used, the underestimation remains small, being 5–
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Table 1. Bias and RMSE with respect to the true source term (cases A–D) in experiments with synthetic data with assimilation of total
column (TC) and total column and plume height (TC plus CM). Values are shown for both optimal regularization (regularization parameter
or iteration number with the lowest RMSE) and for the regularization chosen from the L curve. Relative bias is defined as the difference
between estimated and true total emission divided by the true total emission.

Case Tikhonov regularization Truncated iteration
RMSE Relative bias RMSE Relative bias

Optimal L curve Optimal L curve Optimal L curve Optimal L curve

A TC 48.0 48.0 −5 % −5 % 45.2 51.2 −3 % −2 %
TC+CM 39.8 39.8 −19 % −19 % 36.5 36.7 −17 % −17 %

B TC 65.1 65.6 −8 % −12 % 61.4 61.9 −8 % −8 %
TC+CM 59.3 60.2 −18 % −23 % 56.9 58.4 −18 % −17 %

C TC 21.1 21.1 −13 % −13 % 20.6 21.9 −8 % −4 %
TC+CM 18.5 18.6 −20 % −24 % 17.8 18.1 −17 % −17 %

D TC 32.4 33.6 −15 % −11 % 31.1 38.0 −8 % −6 %
TC+CM 29.3 29.5 −27 % −24 % 27.3 28.0 −24 % −21 %

Figure 4. L curve (left) and rms error (right) for inversions with
simulated data for cases C and D in Fig. 1. The iterate (for truncated
iteration) or regularization parameter (for Tikhonov regularization)
chosen from the L curve is marked with a star.

10 % for the L-curve solutions with truncated iteration, and
up to 15 % for the corresponding Tikhonov regularized solu-
tions. However, when the plume height observations were in-
cluded, the negative biases increased to 15–25 % even when
using truncated iteration.

The magnitude of the negative bias turned out to be sen-
sitive to the assumed model uncertainty as described by the
covariance matrix Rmdl. Reducing the standard deviation for
plume height errors to 1 km resulted in negative biases be-
tween 25 and 35 %. As a further sensitivity test, we evaluated
the effect of approximating the true values for total column

and plume height with the respective observed values when
transforming the observation error covariance matrix, as ex-
plained in Sect. 3.2. Using, unrealistically, the true values in
the inversion, the relative biases were reduced to 16–21 %.
The RMSE was reduced by up to ∼ 15 %. It can be noted
that none of the tested setups describe an observation error
covariance matrix that would perfectly match the perturba-
tions applied to the simulated observations, since the model
errors, simulated by using a different meteorological driver,
are not well described by additive white noise. Taking the
cross correlations and spatial variation of model errors into
account might lead to different optimal Rmdl.

While the experiments in this section were performed by
pre-evaluating the matrix HM, in 4D-Var, the multiplications
by HM and its transpose are replaced by forward and ad-
joint model evaluations. Although the approaches are for-
mally equivalent, this change results in a slightly different
sequence of iterations from which the L curve is evaluated.
To investigate this difference, we performed the inversion us-
ing the real IASI data using both approaches. The two solu-
tions are shown in Fig. 5. The total released mass differs by
less than 1 % between the solutions, and the emission pat-
terns are qualitatively similar. The differences for individual
values, although larger, appear small compared to the inver-
sion errors.

In summary, the experiment with synthetic data showed
that the truncated iteration resulted in solutions similar to
those obtained with the more common Tikhonov regulariza-
tion. This makes the truncated iteration, in combination with
the L curve, an attractive option for regularizing the varia-
tional source term inversion. On the other hand, no regular-
ization was needed in absence of model error which indicates
that the need for regularization is likely to also depend on
quality of the forward model. This emphasizes the need for
a robust method to determine the appropriate regularization
according to the situation at hand.
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5 Inversion results for Eyjafjallajökull

Optimizing the source term following the regularization
strategy (truncated iteration) described in Sect. 3.4 results in
satellite-derived estimates on the temporal and vertical emis-
sion profiles, as well as on the total emitted amount. The so-
lutions presented here correspond to iterates chosen from the
L curve using the algorithm described in Sect. 3.4. For as-
similation of column mass only, the 9th iterate was chosen;
with column mass and plume height assimilation, the 13th it-
erate was chosen. Similarly to the synthetic experiments, the
initial iterate was a zero solution. The L curves are shown in
the Supplement.

Figure 6 shows the temporal and vertical distribution of the
SO2 emission obtained both with and without assimilation of
plume height. The plume height time series estimated from
radar and camera observations (Petersen et al., 2012b) are
plotted on top of the emission distributions. Both the camera
and radar observations represent the top of the visible plume,
and even if the visible plume does not necessarily coincide
with the SO2 plume, the plume height observations provide
an indication of the eruption activity.

Figure 7 shows the vertical profile of emissions integrated
over the whole period. The bulk of emissions are between
2 and 8 km even if only column density is assimilated. As-
similating the plume height retrievals further decreases the
fraction of emissions above 8 km. When the plume height is
assimilated, about 85 % of total emission is estimated below
8 km and about 95 % below 11 km. Without assimilation of
plume heights, the 95 % level rises to 12 km.

The strongest emission occurred during 6 May. However,
the vertical distribution of the peak depends on whether the
plume height is assimilated. While the maximum occurs at 5–
6 km, if plume height is not assimilated, secondary maxima
appear at 11 km, reaching 13 km on 9 May. If plume height
retrievals are assimilated, the emission above about 8 km is
strongly suppressed. Similarly, on 18 May, the isolated emis-
sions at 10 and 15 km are largely removed when the plume
height is assimilated.

A more quantitative view on the effect of assimilating the
plume height retrievals is given by Fig. 8, which compares
the estimated centre of mass of the SO2 emission with the
retrieved plume heights. The plume heights are shown as av-
erages within both 50 and 500 km radius from the volcano.
The averages over wider area have better temporal coverage
and they are likely to be less affected by unresolved tempo-
ral or spatial variations in the plume height. The retrievals
with estimated error larger than 5 km are excluded from the
averaging (although used in assimilation).

In addition, Fig. 8 includes radar and camera observations
of the plume top which are compared with the 80th and 95th
percentiles of the emission. The 95th percentile, although
formally more representative of the top of emissions, shows
very large fluctuations compared to both observations and the
80th percentile, which suggests that the highest percentiles

might not be a robust way to characterize the plume top in
the inversion results.

Over the whole period, the inversion results show a larger
variability of injection height in comparison to both IASI and
the radar or camera time series. Between 4 and 5 May, and
later 10 and 17 May, the average IASI retrievals and the emis-
sion centre of mass agree mostly within 1–2 km, as do the
radar observations with the 80th percentile of emission. An
exception is the evening of 11 May when the injection height
appears overestimated; however, the total emission rate was
low at that time. Assimilation of plume height retrievals had
little impact on the injection height during these times.

Between 6 and 10 May, the injection height is over-
estimated in comparison to both IASI and radar observa-
tions. Assimilating the plume height retrievals improves the
comparison, but the injection height remains 2–5 km too
high compared to the averaged IASI retrievals. A similar
overestimation occurs on 17 and 18 May. Assimilating the
plume height again reduces the overestimation significantly
on those days; however, both the centre of mass and the per-
centiles remain overestimated.

The total released mass of SO2 is 0.33 Tg when the plume
height is not assimilated and 0.29 Tg when the plume height
is assimilated. Fig. 8d, which depicts the emission flux as
a function of time, shows that while the largest difference in
emission rate is during the peaks of 6 May, the assimilation of
plume heights tends to decrease the emission rate throughout
the eruption.

The SO2 column densities simulated a posteriori are
shown for 5–7 May in Fig. 9 along with the correspond-
ing IASI retrievals. The overall patterns are well repro-
duced, although the column density is underestimated for
some parts of the plume, especially on 6 and 7 May. Due to
the smaller total emission, the column densities are slightly
lower when plume height is assimilated. Comparisons of the
total columns for all 20 days are presented in the Supplement.

Figure 10 shows the simulated plume height (evaluated as
centre of mass) for 7–9 May, which corresponds to the period
of overestimated injection height shown in Fig. 8. Compared
to IASI, the inversion using only total columns tends to over-
estimate the plume height for all 3 days. As expected from
Fig. 8, when the plume height retrievals are assimilated, the
overestimation is reduced but not entirely removed.

A more detailed evaluation of the vertical profiles is en-
abled by comparison with the CALIOP lidar backscatter
data. It should be noted that the most prominent features in
the CALIOP data are regular clouds; in particular, this in-
cludes the near-constant layers located at 1–2 km altitude.

In Fig. 11, the simulated SO2 concentration is plotted as
contours together with the CALIOP attenuated backscatter
data collected on 6 and 8 May 2010. On both days, the track
segment intersects the SO2 plume near its source. On 6 May,
this part of the volcanic plume is obscured by a cloud, but a
distinctive aerosol layer is visible south of 60◦ N. This layer
is reproduced by the model; however, the observed vertical
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Figure 5. Inversion results with real observations: emission flux (kg m−1 s−1) obtained using 4D-Var (left) and by evaluating the sensitivity
matrix (right). The inversions are based on total column observations.

Figure 6. Inversion results for Eyjafjallajökull: (a) emission flux (kg m−1 s−1) with assimilation of column mass only; (b) assimilation of
column mass and plume height with full observation error covariance matrix. White dots denote plume height observations by radar; grey
dots denote plume height observations with a camera.

extent is much thinner than modelled, indicating that the ver-
tical variation of the transport was not sufficient to resolve
the emission vertically. The plume height for the thickest part
of the plume is nevertheless reproduced within ∼ 2 km, and
hence assimilating the plume height retrievals had only little
impact on the simulated plume.

On 8 May, the highest simulated concentrations coincide
with a strong backscatter signal at 3–4 km altitude close to
the emission (near 62◦ N). The altitude is consistent with
the averaged IASI plume height retrievals shown in Fig. 8,
whereas the simulated vertical extent between 2 and 7.5 km
is again too wide. While a second layer between 8 and 12 km
is present in the CALIOP data, the horizontal extent of this
feature is far too wide to represent the volcanic plume. A
third simulated SO2 layer is present at 13 km only if plume
height retrievals are not assimilated; this demonstrates the
difference of injection heights seen in Fig. 8.

The CALIOP track on 8 May also crosses an older SO2
plume around 48◦ N, where the simulated vertical extent
is compatible with the CALIOP data. However, a promi-
nent layer extending between 50 and 55◦ N is present in
the CALIOP data. The layer is classified partly as cloud
and partly aerosol in the CALIOP vertical feature mask (not
shown), but the layer does not coincide with the simulated
SO2 plume. However, Figs. 9 and 10 indicate that the simu-
lated plume was erroneously displaced towards the west dur-
ing the evening of 7 May. Taking this into account, it is fea-
sible that the observed backscatter would be caused by the
volcanic plume. The 3–4 km altitude of the layer would agree
with the IASI plume height retrievals (Fig. 10) and support
the below 5 km injection heights indicated by the IASI and
radar data in Fig. 8.

Figures 12 through 14 combine the simulated SO2 pro-
files and the CALIOP data with collocated IASI total col-
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Figure 7. Time-integrated emission of SO2 (kg m−1) during the
simulated period as function of height (m) for the source term in-
versions with (red) and without (blue) plume height assimilation.

umn and plume height retrievals. The simulated vertical dis-
tributions are mostly consistent with both the CALIOP and
the IASI data. In Fig. 12, the 3–4 km mean altitude of the
peak reaching 20 DU according to the IASI data is repro-
duced by the model. The altitude of the plume extending to-
wards the south (between 48 and 50◦ N) is also reproduced
given the higher retrieval uncertainty. The column densities
up to 20 DU, however, are not reproduced: the highest simu-
lated values are displaced towards the west and remain below
10 DU.

Figures 13 and 14 show a generally similar level of agree-
ment in the vertical structures. In both figures, the north-
ern part of the plume (55–60◦ N) is partly obscured by a
cloud, which is reflected by the large retrieval error estimates.
In both figures, assimilating only total column retrievals re-
sulted in several isolated SO2 layers between altitudes of 10
and 15 km. Presence of these layers is supported by neither
IASI nor CALIOP data. Even if the corresponding SO2 emis-
sions did not coincide with ash emissions, some CALIOP
signal could be expected due to the sulfate particles forming
in the plume. Altogether, the comparisons in Figs. 12 through
14 and the comparison of the emission profiles (Fig. 8) sup-
port the conclusion that the emissions above 8–10 km on 6–
9 May were an artefact and probably related to insufficient
wind shear.

Further comparisons with CALIOP data on 14 to 17 May
are shown in Appendix A. The simulated vertical distribu-
tions generally coincide with layers observed by CALIOP;
however, assimilation of plume height retrievals had little im-
pact on the simulated plumes at those times.

Figure 8. Inversion results for Eyjafjallajökull. Panels (a) and (b):
centre of mass of SO2 injection and the average IASI plume height
within 50 and 500 km from the volcano; panel (c): 95th and 80th
percentiles of SO2 injection and the plume top altitudes observed
by radar and camera; panel (d): estimated emission rate (kg s−1).
Inversions using only total column retrievals are plotted in blue; in-
versions using total column and plume height retrievals are plotted
in red. Fully correlated errors are assumed for evaluating the error
bars for IASI data. The data with retrieval error estimate larger than
5 km are not included. The radar and camera observations are av-
eraged to time steps of 6 h. The centres of mass and percentiles of
the inversion results are evaluated for the 12 h steps emitting at least
1 % of the total emission. All altitudes are above sea level.

6 Discussion

No a priori assumptions regarding the shape of the emis-
sion profile were made in this study. The comparison with
the IASI retrievals, CALIOP data and weather radar obser-
vations of the plume shows that the resulting vertical distri-
butions were frequently in good agreement with the obser-
vations even if only total column retrievals were used in the
inversion. The most notable exception were the emissions be-
tween 6 and 10 May, when the injection height was strongly
overestimated, and although assimilating the plume height
retrievals improved the agreement, the discrepancy was not
fully resolved. Since the plume height retrievals are intro-
duced as a weak constraint, a complete match between the
inversion results and the observation data is not expected.
However, some of the discrepancies remain too large to be
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Figure 9. SO2 column loading (DU) for the IASI column retrievals (left column), for the a posteriori simulation with assimilation of total
column only (middle) and with assimilation of total column and plume height retrievals. Results for 5, 6 and 7 May 2010 are shown in the
rows from top to bottom. The evening overpasses are shown for IASI; the model fields are valid at 22:00 UTC.

explained by retrieval errors even together with the assumed
model 1 km uncertainty.

Generally, two factors could lead to an inaccurate recon-
struction of the vertical profile from the total column obser-
vations. First, the horizontal transport patterns on different
altitudes might be too similar for resolving the vertical struc-
ture. Second, the simulated horizontal patterns might be too
inaccurate due to errors or low resolution of the transport
model or its input data. Since the inversion does not allow
for systematic model errors, including the plume height re-
trievals in the inversion is expected to improve the vertical
profile mainly in the first case. The discrepancy remaining
between the observed and modelled plume heights suggests
that model errors were at least partly responsible for the over-
estimation of injection heights on 6–10 May.

The main effect of assimilating the plume height retrievals
was the reduction of emissions above 10–12 km. Although

these emissions are not large compared to the total emission,
this outcome has some qualitative significance, since with-
out assimilation of plume heights, some emissions would be
assigned above the tropopause. In addition to the data pre-
sented in the previous section, previous studies based on lidar
data (Ansmann et al., 2010) or aircraft measurements (Schu-
mann et al., 2011) do not suggest significant injection above
the 10 km altitude. However, these studies were mainly fo-
cused on volcanic ash instead of SO2. On the other hand, the
SO2 plume height estimates derived from the GOME-2 satel-
lite instrument by Rix et al. (2012) do indicate heights above
10 km and up to 13 km on 5 May. Neither our data nor in-
verse modelling reproduces this result, as the plume heights
retrieved from IASI data are below 6 km for that day, which
agrees with the modelled plume heights (not shown) even
when only total column retrievals are included in the inver-
sion.

Geosci. Model Dev., 10, 1985–2008, 2017 www.geosci-model-dev.net/10/1985/2017/



J. Vira et al.: Assimilation of IASI SO2 1999

Figure 10. Retrieved SO2 plume height (km, left column) and the simulated plume height (as centre of mass) without and with assimilation of
plume height retrievals for 7–9 (top to bottom row) May 2010. The difference (with plume height – without plume height) of the simulations
is shown in the right-most column.

Among the previous emission estimates for Eyjafjalla-
jökull, Flemming and Inness (2013) estimated a 0.25 Tg total
SO2 release using GOME-2 satellite retrievals and 0.14 Tg
using the OMI retrievals. Our estimates of 0.29–0.33 Tg
are higher, especially compared to OMI, but this is consis-
tent with the higher total SO2 burden estimated (Carboni et
al., 2012) from the IASI data used in this study. Using the
GOME-2 data, Flemming and Inness (2013) furthermore es-
timated SO2 injection heights (defined as centres of 2–3 km
thick layers) to mostly between 4 and 6 km above sea level
with a peak reaching 10 km on 19 May, which agrees reason-
ably well with our mean profile (Fig. 7). However, contrary
to our results without plume height assimilation, Flemming
and Inness (2013) did not obtain the injection heights above
6 km on 6 and 7 May.

Boichu et al. (2013) used the IASI retrievals of Clarisse et
al. (2012) to invert for temporally resolved SO2 emissions of
Eyjafjallajökull between 1 and 12 May 2010, and estimated a

total emission of about 0.17 Tg. Our inversion yielded for the
same time 0.21 (total column and plume height retrievals) or
0.23 (total column only) Tg of SO2. The larger total emission
in our study might be due to assumptions regarding plume
height in the IASI retrievals. The retrievals used by Boichu et
al. (2013) assumed constant 7 km plume height, while the re-
trieved plume heights in this study were frequently lower es-
pecially near the volcano, and this would result in higher re-
trieved values for the total column. For the emission, Boichu
et al. (2013) assumed a constant injection height of 6 km,
which turned out to coincide with the maximum of the mean
profile (Fig. 7) obtained in this study.

Stohl et al. (2011) determined the temporal and vertical
distribution of volcanic ash emissions for the Eyjafjallajökull
eruption with an inversion constrained by SEVIRI ash re-
trievals and an a priori source derived from plume top obser-
vations. Although the ash and SO2 emissions cannot be com-
pared quantitatively, the mean vertical profile obtained using
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Figure 11. Comparison of simulated SO2 with CALIOP data for 14:00 UTC on 6 May (top) and 04:00 UTC on 8 May 2010 (bottom).
Left: the simulated SO2 total column (DU, with assimilation of both total column and plume height) with the CALIPSO track plotted with
dashed line. Right: CALIOP total attenuated backscatter at 532 nm with the simulated SO2 concentration represented by contours. The solid
contours correspond to assimilation of both total column and plume height; the dashed contours correspond to assimilation of total column
only. The contour levels are 10, 50 and 100 µg m−3.

ECMWF meteorological data (Fig. 2 in Stohl et al., 2011) is
not very different from the one in Fig. 7. In both profiles, the
emissions are restricted mainly below 8 km and have maxima
at 6 km.

Including the plume height retrievals in the inversion re-
sulted in a total emission 12 % lower than with total col-
umn retrievals only. Similar differences were observed in the
experiments with synthetic data discussed in Sect. 4, where
the inversion results were biased low by 15–20 % using both
plume height and total column retrievals and by only 2–10 %
using total columns only.

In ideal conditions, assimilating the plume height informa-
tion should not affect the simulated total columns. However,
adding a vertical constraint to the inversion can never im-
prove the agreement for total columns, and in the presence
of realistic model uncertainty, a negative effect can be ex-
pected. The systematic tendency towards smaller emission
may be caused by the regularization, which penalizes the
quadratic norm of the solution. The synthetic experiments
indicated that introducing the plume height retrievals did not

allow relaxing the regularization, since the optimal level (as
identified from the parameter α2) was similar with and with-
out the plume height observations.

On the other hand, the synthetic experiments also indi-
cated that the estimation error for the total emission was only
moderately sensitive to the differences of the assumed source
terms. The estimate for total emission was also robust with
regard to the vertical resolution, as halving the vertical reso-
lution of the reconstruction (compare Figs. 5 and 6) resulted
in only minimal change in the total emission. The estimated
total emission could, nevertheless, be affected by biases in
the satellite retrievals or by model errors not exposed by the
change of meteorological driver.

The experiments with synthetic data furthermore showed
that the need for regularization or, in Bayesian terms, the
need for a priori information, was strongly affected by un-
certainty of the forward model. The efforts needed to handle
zero-valued observations in this and other studies (Boichu et
al., 2013; Seibert et al., 2011) support this conclusion. The
errors arising from the dispersion model are likely to be cor-
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Figure 12. CALIOP total attenuated backscatter, simulated SO2 concentration (contour levels indicated on the figure title) and collocated
IASI plume height retrievals at ∼ 14:00 UTC on 7 May 2010. The solid lines and contours correspond to inversion using total column and
plume height retrievals; dashed lines and contours correspond to inversion using total column retrievals only. The modelled and retrieved
column densities are shown in maps on the left and as a 1-D plot along the CALIOP track on the bottom. The full CALIOP track segment
is marked in the map of simulated SO2 columns (top left), the track segment where the collocated IASI data are extracted is shown in the
map of retrieved SO2 columns (bottom left). The model SO2 columns shown in the map are from the inversion using both total column and
plume height retrievals.

Figure 13. The same as Fig. 12 but for 9 May 2010.
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Figure 14. The same as Fig. 12 but for 10 May 2010. In the 1-D column density plot below the CALIOP curtain, two IASI data points with
values 32± 30 and 19± 26 DU are outside the plot range.

related in space, and therefore introducing the corresponding
non-diagonal elements in the error covariance matrix R could
improve the inversion results. While the regularization used
in this work is equivalent to a zero-valued a priori source,
a more informative a priori source could be accommodated
with a change of variable. Other forms of regularization pro-
posed for the volcanic source term inversion include second-
order temporal smoothing (Boichu et al., 2013), which also
could be handled by truncated iteration as discussed by Cal-
vetti et al. (2002).

The variational inversion method is computationally ef-
ficient if high temporal or vertical resolution is desired for
the reconstruction. In the current configuration, the recon-
structed solution had formally 1360 degrees of freedom.
With each iteration consisting of one forward and one ad-
joint integration, the 25 iterations would require model inte-
grations equivalent to about 1000 simulated days. In compar-
ison, evaluating the matrix HM directly would require 1360
model integrations, and if the sensitivity was evaluated in
windows of, e.g. 72 h, almost 4000 simulated days would be
required. The matrix-based approach is, however, more eas-
ily parallelized, while the parallelization of the variational
method relies on the dispersion model. In our configuration,
one iteration took about 5 min wall-clock time on a 20-core
node of a Cray XC30 supercomputer.

A drawback of the 4D-Var inversion method is that the
a posteriori error covariance matrix for the source term is
difficult to evaluate. However, Monte Carlo techniques could
be used to sample the a posteriori uncertainty.

7 Conclusions

We have presented an observation operator for retrievals of
the vertical centre of mass of a tracer plume. The operator is
based on transforming the centre of mass into first moment
of mass using the retrieval of total column. The approach
was tested by performing a source term inversion using both
artificial data and the SO2 retrievals from the IASI instrument
during the Eyjafjallajökull eruption in May 2010. The inverse
problem was solved with the 4D-Var method embedded into
the SILAM dispersion model, and the truncated iteration is
proposed as an efficient regularization method for the 4D-
Var inversion. Using both real and synthetic data, the 4D-Var
method was shown to produce a similar solution as the more
common algebraic method, but at lower computational cost.

The inversion results for Eyjafjallajökull were compared
to radar-based ash plume observations and CALIOP lidar
profiles. The comparisons show that assimilating the plume
height retrievals reduced the overestimation of injection
height during individual periods of 1–3 days. However, for
most of the simulated 20 days, the injection height was con-
strained by meteorological conditions and assimilation of the
plume height retrievals had only small impact.

When the plume height was assimilated, about 85 % of
the 0.29 Tg total emission was below 8 km and about 95 %
was below 11 km. Compared to previous modelling studies
(Boichu et al., 2013; Flemming and Inness, 2013), the total
emission is 15–20 % larger, taking into account the differ-
ences in temporal coverage of the studies.

Introducing the plume height retrievals in the inversion
may have an adverse effect on the estimated total emission.
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In the experiment with artificial observations, the inversions
with only total column data had a negative bias of 2–10 %
which increased to 15–20 % when the plume height obser-
vations were included. In the inversion for Eyjafjallajökull,
performing the inversion using only total column retrievals
resulted in ∼ 15 % larger total emission, which is consistent
with the experiments with simulated observations.

Experiments with both synthetic and real data suggest that
the inversion is sensitive to errors in the forward model, and
to their assumed uncertainty. Methods more robust to model
errors are a topic suitable for future research.

Code availability. The source code for SILAM v5.3, including the
data assimilation component, is available upon request from the au-
thors (julius.vira@fmi.fi, mikhail.sofiev@fmi.fi).
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Appendix A: Additional comparisons with CALIOP
data

Figure A1. Comparison of simulated SO2 concentration compared to CALIOP total backscatter at 532 nm on 14 (a), 16 (b) and 17 (c)
May 2010. The inversion with only total column retrievals is shown in dashed contours. The contour levels (µg m−3) are 10, 50 and 100 in
(a), 6, 30 and 60 in (b) and 5, 25 and 50 in (c).
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Appendix B: Moments of products of correlated
Gaussian random variables

LetX and Y be scalar random variables with means and vari-
ances µX, µY , σ 2

X and σ 2
Y . Then, it follows from the defini-

tions for variance and covariance that

Var[XY ] =σ 2
Xσ

2
Y +µ

2
Xσ

2
Y +µ

2
Yσ

2
X − 2µXµYCov[X,Y ]

−Cov[X,Y ]2+Cov[X2,Y 2
] (B1)

and

Cov[X,XY ] =E[X2
]E[Y ] +Cov[X2,Y ]

−E[X]E[XY ]. (B2)

To expand Cov[X2,Y 2
] and Cov[X2,Y ], we assume that X

and Y are normally distributed. We first define normalized
auxiliary variables:

X̃ =
X−µX

σx
, Ỹ =

Y −µY

σY
. (B3)

Then, by expressing Ỹ as

Ỹ = cX̃+
√

1− c2Z̃, (B4)

where c = Cov[X̃, Ỹ ] and Z̃ ∼N (0,1) independent of X̃, it
is simple to verify that

Cov[X̃2, Ỹ 2
] = 2c2

Cov[X̃2, Ỹ ] = 0. (B5)

For the original random variablesX and Y , we find by substi-
tuting Eq. (14) into the definition, expanding the terms, and
using identities (16) that

Cov[X2,Y 2
] = 2Cov[X,Y ]2+ 4µXµYCov[X,Y ] (B6)

and

Cov[X2,Y ] = 2µXCov[X,Y ]. (B7)

Equations (6) and (7) now follow by combining Eqs. (17) and
(18) with (12) and (13).
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