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1 Interpolation and Extrapolation in Time

Here we reference Supplemental Figures 1-3. Discussion of these figures is included in Section 3.2 of the main paper.

2 Comparison of Pattern Scaling Between Two Groups of Models

Supplemental Figure 4 further supports the findings in Section 2 of the main paper by showing that the patterns P (x) are not

statistically different for Groups 1 and 2 except for isolated areas. Supplemental Figures 5 and 6 show differences in the recon-5

structions, averaged over years 116–140. More specifically, Supplemental Figure 5 shows differences PGroup 2∆T̄Group 1 −
∆BGroup 2 = PGroup 2∆T̄Group 1−PGroup 2∆T̄Group 2 = PGroup 2(∆T̄Group 1−∆T̄Group 2) and Supplemental Fig-

ure 6 shows differences PGroup 1∆T̄Group 2 −∆BGroup 2 = PGroup 1∆T̄Group 2 −PGroup 2∆T̄Group 2 = ∆T̄Group 2
(PGroup 1 −PGroup 2).

The results in Supplemental Figures 5 and 6 have qualitatively more error than the results in Figure 3 in the main paper, but10

Supplemental Figure 5 has substantially more error than Supplemental Figure 6. This shows that errors introduced by differ-

ences in ∆T̄ among the two groups are larger than errors introduced by differences in P among the two groups. As discussed in

Section 3.2 in the main paper, practically no region is statistically significant for the regression and epoch difference methods

in Supplemental Figures 5 and 6.

3 Pattern Scaling for Non-CO2 Forcings15

In Section 4 of the main portion of the paper, we discuss splitting the RCP8.5 scaling into a CO2 portion and a non-CO2 portion.

We also discussed why we chose not to split the RCP8.5 scaling into a greenhouse gas and non-greenhouse gas portion. Here

we provide more details on the rationale for that choice.

To perform this scaling, we begin with a restatement of Equation 1 in the main paper:

∆B(x, t) ≈ ∆B̂(x, t) = P (x)∆T̄ (t) (1)20

where P (x) describes a time-invariant spatial pattern (the spatial dimension is denoted by x), and ∆T̄ (t) describes a time-

varying (the time dimension is denoted by t) series of the change in global mean temperature, starting from a reference period

t= 0 (often the preindustrial era).

In the first case, we split ∆B into a CO2 portion and a non-CO2 portion:

∆BRCP8.5 = PRCP8.5∆TRCP8.5 = PCO2
∆TRCP8.5

CO2
+Pnon−CO2

∆TRCP8.5
non−CO2

(2)25
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Solving for Pnon−CO2
and assuming separability of temperature change into a CO2 component and a non-CO2 component, we

obtain

Pnon−CO2
=

∆BRCP8.5−PCO2∆TRCP8.5
CO2

∆TRCP8.5
non−CO2

(3)

=
PRCP8.5∆TRCP8.5−PCO2

∆TRCP8.5
CO2

∆TRCP8.5
non−CO2

(4)

=
∆TRCP8.5

CO2
+∆TRCP8.5

non−CO2

∆TRCP8.5
non−CO2

PRCP8.5 −
∆TRCP8.5

CO2

∆TRCP8.5
non−CO2

PCO2
(5)5

= (1 +β)PRCP8.5 −βPCO2
(6)

where β = ∆TRCP8.5
CO2

/∆TRCP8.5
non−CO2

. Because we want the pattern Pnon−CO2
to be state-independent, we perform linear re-

gression of ∆TRCP8.5
CO2

against ∆TRCP8.5
non−CO2

on the latter part (approximately last 50 years) of the simulation where the signal

is clearest. We define the slope to be β = 2.9588; the fit has an R2 value of 0.9883. Rounding, we obtain the expression

Pnon−CO2
= 4.0PRCP8.5 − 3.0PCO2

(7)10

We note that this decomposition works for RCP8.5 because the relationship between ∆TRCP8.5
CO2

and ∆TRCP8.5
non−CO2

is approx-

imately linear. This may not necessarily hold for other scenarios, such as RCP2.6, so a different methodology for recovering

the non-CO2 pattern may be necessary in that case.

In the second case, we split ∆B into a CO2 portion, a non-CO2 greenhouse gas portion (labeled “other GHG”), and a

non-GHG portion:15

∆BRCP8.5 = PRCP8.5∆TRCP8.5 = PCO2
∆TRCP8.5

CO2
+PotherGHG∆TRCP8.5

otherGHG +Pnon−GHG∆TRCP8.5
non−GHG (8)

Solving as above,

Pnon−GHG =
∆BRCP8.5−PCO2

∆TRCP8.5
CO2

−PotherGHG∆TRCP8.5
otherGHG

∆TRCP8.5
non−GHG

(9)

=
PRCP8.5∆TRCP8.5−PCO2

∆TRCP8.5
CO2

−PotherGHG∆TRCP8.5
otherGHG

∆TRCP8.5
non−GHG

(10)

=
∆TRCP8.5

CO2
+∆TRCP8.5

otherGHG+∆TRCP8.5
non−GHG

∆TRCP8.5
non−GHG

PRCP8.5 −
∆TRCP8.5

CO2

∆TRCP8.5
non−GHG

PCO2
− ∆TRCP8.5

otherGHG

∆TRCP8.5
non−GHG

PotherGHG (11)20

= (1 + γ+ δ)PRCP8.5 − γPCO2
− δPotherGHG (12)

where γ = ∆TRCP8.5
CO2

/∆TRCP8.5
non−GHG and δ = ∆TRCP8.5

otherGHG/∆T
RCP8.5
non−GHG. At this point, the above procedure fails, because ac-

cording to best-fits on the data plotted in Supplemental Figure 7, ∆TRCP8.5
CO2

is approximately quadratic with ∆TRCP8.5
non−GHG, and

∆TRCP8.5
otherGHG is approximately an exponential function of ∆TRCP8.5

non−GHG. Because neither of these relationships is linear, any

derived patterns must be state-dependent if they are to be accurate.25

4 Pattern Scaling for RCP2.6

In Supplemental Section 3, we derived the approximate equivalence

PRCP8.5
non−CO2

= 4PRCP8.5 − 3PCO2
(13)
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Using the same procedure, we can derive a similar equivalence for RCP2.6:

PRCP2.6
non−CO2

= 2.9PRCP8.5 − 1.9PCO2
(14)

We note that the relationship between ∆TRCP2.6
CO2

and ∆TRCP2.6
non−CO2

is somewhat nonlinear, and regression revealed an R2 value

of 0.58.

We now discuss the implications of both of these formulations. First assume that PRCP8.5
non−CO2

= PRCP2.6
non−CO2

. Then5

∆B̂RCP2.6 = ∆TRCP2.6
non−CO2

(4PRCP8.5 − 3PCO2
) + ∆TRCP2.6

CO2
PCO2

(15)

(∆TRCP2.6 −∆TRCP2.6
CO2

)(4PRCP8.5 − 3PCO2
) + ∆TRCP2.6

CO2
PCO2

(16)

By definition, B̂RCP2.6 = ∆TRCP2.6PRCP2.6. Then

PRCP2.6 =
(∆TRCP2.6−∆TRCP2.6

CO2
)

∆TRCP2.6 (4PRCP8.5 − 3PCO2
) +

∆TRCP2.6
CO2

∆TRCP2.6PCO2
(17)

(1−β)(4PRCP8.5 − 3PCO2
) +βPCO2

(18)10

= 4PRCP8.5 − 4βPRCP8.5 − 3PCO2
+ 4βPCO2

(19)

where β = ∆TRCP2.6
CO2

/∆TRCP2.6 ≈ 0.75 by regression. Then

PRCP2.6 = PRCP8.5 (20)

If we assume this equation to be true, then by Equation 18, PRCP8.5 = (1−β)(4PRCP8.5−3PCO2
)+βPCO2

. Then PRCP8.5 =

PCO2
, which is clearly incorrect, invalidating the original assumption that PRCP8.5

non−CO2
= PRCP2.6

non−CO2
.15

Evaluating the other expression PRCP2.6
non−CO2

= 2.9PRCP8.5 − 1.9PCO2 ,

∆B̂RCP2.6 = ∆TRCP2.6
non−CO2

(2.9PRCP2.6 − 1.9PCO2) + ∆TRCP2.6
CO2

PCO2 (21)

(∆TRCP2.6 −∆TRCP2.6
CO2

)(2.9PRCP2.6 − 1.9PCO2) + ∆TRCP2.6
CO2

PCO2 (22)

By definition, B̂RCP2.6 = ∆TRCP2.6PRCP2.6. Then

∆TRCP2.6PRCP2.6 − 2.9PRCP2.6(∆TRCP2.6 −∆TRCP2.6
CO2

) = −1.9PCO2(∆TRCP2.6 −∆TRCP2.6
CO2

) + ∆TRCP2.6
CO2

PCO2 (23)20

Simplifying,

(PRCP2.6 −PCO2)(2.9∆TRCP2.6
CO2

− 1.9∆TRCP2.6) = 0 (24)

So either PRCP2.6 = PCO2 or ∆TRCP2.6
CO2

= 1.9
2.9∆TRCP2.6.

If the first condition is true, then PRCP2.6
non−CO2

= 0, which by Equation 14 implies that PRCP2.6 = 1.9
2.9PCO2

, violating the as-

sumption thatPRCP2.6 = PCO2 . However, if the second condition is true, then by the above derivations, ∆TRCP2.6
CO2

/∆TRCP2.6
non−CO2

=25

1.9, so through some simple algebra, ∆TRCP2.6
CO2

/∆TRCP2.6 = 0.6504. Performing regression on these two quantities yields a

value of 0.7321 with an R2 value of 0.9610. While this value is similar to the one derived above, it is sufficiently different to

indicate a certain amount of nonlinearity for which pattern scaling cannot account.
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Figure 1. Absolute values (left) of and differences (right) in the precipitation scaling pattern P (x) (Equation 1) when different time periods

are used to construct the pattern (years 1–50 versus years 116–140 of the 1pctCO2 simulation). Left column shows values of P1−50, and

right column shows values of P1−50 −P116−140 (mm day−1 K−1). Values in subscripts denote that the associated quantities are calculated

from an average over those years. Top row shows results for the regression method, and bottom row shows the epoch difference method. All

values are calculated for a Group 1 multi-model average for the 1pctCO2 simulation. Stippling indicates a lack of statistical significance in

the pattern of differences (Section 2.2).
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Figure 2. As in Figure 3 in the main paper but where the reconstruction B̂ is built on the pattern P for years 1–50 (Group 1 average of the

1pctCO2 simulation), and global mean temperature ∆T̄ is averaged over years 116–140. That is, B̂ = P1−50(x)∆T̄ (116− 140). Results

shown are for the difference between the reconstruction and the actual model output B̂−B(x,116− 140).
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Figure 3. As in Figure 3 in the main paper but where the reconstruction B̂ is built on the pattern P for years 116–140 (Group 1 average of

the 1pctCO2 simulation), and global mean temperature ∆T̄ is averaged over years 58–82. That is, B̂ = P116−140(x)∆T̄ (58− 82). Results

shown are for the difference between the reconstruction and the actual model output B̂−B(x,58− 82).
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Figure 4. Absolute values (left) of and differences (right) in time-invariant patterns P (x) among the two groups of models (Table 1),

calculated for the 1pctCO2 simulation. Left column shows the multi-model average for Group 2, and right column shows the differences in

multi-model averages among the two groups. All values shown have units mm day−1 K−1. Stippling indicates a lack of statistical significance

in the pattern of differences (Section 2.2).

8



R
e

g
re

s
s
io

n
E

p
o

c
h

 D
if
fe

re
n

c
e

Absolute Difference (mm day-1) Percent Difference

Figure 5. As in Figure 3 in the main paper but where the reconstruction B̂ is built on the pattern P for Group 2 (average of

years 116–140 of the 1pctCO2 simulation), and global mean temperature ∆T̄ is averaged over years 116–140 of Group 1. That is,

B̂ = PGroup2(x)∆T̄Group1(116− 140). Results shown are for the difference between the reconstruction and the actual model output

B̂−BGroup2(x,116− 140).
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Figure 6. As in Figure 3 in the main paper but where the reconstruction B̂ is built on the pattern P for Group 1 (average of

years 116–140 of the 1pctCO2 simulation), and global mean temperature ∆T̄ is averaged over years 116–140 of Group 2. That is,

B̂ = PGroup1(x)∆T̄Group2(116− 140). Results shown are for the difference between the reconstruction and the actual model output

B̂−BGroup2(x,116− 140).
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Figure 7. As in Figure 9 of the main paper but with additional forcings, per the description in Supplemental Section 3. See main Section 4.2

and Supplemental Section 3 for further details on the quantities depicted here.
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