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1 Interpolation and Extrapolation in Time

Here we reference Supplemental Figures 1-3. Discussion of these figures is included in Section 3.2 of the main paper.

2 Comparison of Pattern Scaling Between Two Groups of Models

Supplemental Figure 4 further supports the findings in Section 2 of the main paper by showing that the patterns P(x) are not
statistically different for Groups 1 and 2 except for isolated areas. Supplemental Figures 5 and 6 show differences in the recon-
structions, averaged over years 116—140. More specifically, Supplemental Figure 5 shows differences PGroup ZATGroup 1—
ABGroup 2= FGroup ZATGroup 1~ FGroup ZATGroup 2 = FGroup Z(ATGroup 1~ ATGroup 2) and Supplemental Fig-
ure 6 shows differences Fgroyp IATGroup 2~ ABGroup 2 = FGroup 1ATGr0up 2~ PGroup ZATGroup 2= ATGroup 2
(PGroup 1= PGroup 2)-

The results in Supplemental Figures 5 and 6 have qualitatively more error than the results in Figure 3 in the main paper, but
Supplemental Figure 5 has substantially more error than Supplemental Figure 6. This shows that errors introduced by differ-
ences in AT among the two groups are larger than errors introduced by differences in P among the two groups. As discussed in
Section 3.2 in the main paper, practically no region is statistically significant for the regression and epoch difference methods

in Supplemental Figures 5 and 6.

3 Pattern Scaling for Non-CO5 Forcings

In Section 4 of the main portion of the paper, we discuss splitting the RCP8.5 scaling into a CO5 portion and a non-COs portion.
We also discussed why we chose not to split the RCP8.5 scaling into a greenhouse gas and non-greenhouse gas portion. Here
we provide more details on the rationale for that choice.

To perform this scaling, we begin with a restatement of Equation 1 in the main paper:
AB(x,t) ~ AB(x,t) = P(x)AT(t) (1)

where P(x) describes a time-invariant spatial pattern (the spatial dimension is denoted by x), and AT'(t) describes a time-
varying (the time dimension is denoted by t) series of the change in global mean temperature, starting from a reference period
t = 0 (often the preindustrial era).

In the first case, we split AB into a CO5 portion and a non-CO» portion:

ABrcps.s = Preps.s ATTOP85 = Poo, ATEST®® + Paon—co, AT et 60, 2

n
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Solving for P,on—co, and assuming separability of temperature change into a CO, component and a non-CO, component, we

obtain
P, ABrcps.s—Pco, ATgSQPS-E’ 5
7CO = 2
non 2 AT&E{%Oz
Prcps.s ATRCPS5 _Pog, ATé{SESIS

= ATRCPS.S (4)

non—COqy
= AT +AThentth, Prcps.s — Lg’fgﬂsPco ©)

ATRCPRY, O ATECTRS, 2

= (14 ) Prcps.s — BPco, ©

where § = ATESTS5 JATRCPEY, . Because we want the pattern Poon—co, to be state-independent, we perform linear re-

TRCP%%Q on the latter part (approximately last 50 years) of the simulation where the signal

: RCP8.5 , o
gression of AT " against AT,/

is clearest. We define the slope to be 3 = 2.9588; the fit has an R? value of 0.9883. Rounding, we obtain the expression
Poon—co, = 4.0Prcps.5 — 3.0Pco, @)

We note that this decomposition works for RCP8.5 because the relationship between ATEGY®5 and ATRCPE?,  is approx-
imately linear. This may not necessarily hold for other scenarios, such as RCP2.6, so a different methodology for recovering
the non-CO4, pattern may be necessary in that case.

In the second case, we split AB into a COs portion, a non-CO, greenhouse gas portion (labeled “other GHG”), and a

non-GHG portion:
RCPS.5 RCPS.5 RCPS.5 RCP8.5
ABrcps.s = Prepss AT = Pco, AT, =7 + PotheraHc AT Giheréinic T Pron—cuc AT o Glic ¥

Solving as above,

RCPS.5 RCPS.5
ABrcrs.s —Pcoy ATCG, ~ ° —Potheraua ATGihercliG

Puon—aua = )
ATRT

. Preps.s ATROPES _pPog, Ang,fs's —Pothercuc ATRSES S o 10

= ATRCPS.5 (10)
non— GHG

_ ATESATE AT e  ATESR L apmems -

T he 5~ AT, Foos ~ ATRIEEC Fottr
= (1+v+0)Prcrs.s — YPco, — 0 PothercHG (12)

where v = ATESTSS JATRCPES  and § = ATRCESS - JATRCPRS, . At this point, the above procedure fails, because ac-

n O n
cording to best-fits on the data plotted in Supplemental Figure 7, ATES TS5 is approximately quadratic with ATRCP:2, . and

RCP8.5 ; ; - RCPS.5 ; ; ins is li
AT e Gt is approximately an exponential function of AT ¢-"%%;~. Because neither of these relationships is linear, any

derived patterns must be state-dependent if they are to be accurate.

4 Pattern Scaling for RCP2.6

In Supplemental Section 3, we derived the approximate equivalence

PROPEY, = 4Preps.s — 3Pco, (13)

n
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Using the same procedure, we can derive a similar equivalence for RCP2.6:
Pl eh, =2.9Preps.s — 1.9Pco, (14)

We note that the relationship between ATEST?6 and ATRCF%E, is somewhat nonlinear, and regression revealed an R? value
of 0.58.

We now discuss the implications of both of these formulations. First assume that PROP%?, = PRCPES, - Then

ABrcpag = AT&%EQC'& (4Prcps.s — 3Pco,) + ATEST*6 Peo, (15)

(ATRCP26 _ ATESP26)(4Preps.s — 3Pco,) + ATEST? 0 Peo, (16)

By definition, Brepa.g = ATRCP26 Prpy 6. Then

(ATRCP2'67ATRCP2'6) RCP2.6
Prepos = ~Frerss 2 (4Preps.s — 3Pco,) + xprcrss Poo, (17)
(1—B)(4Prcps.s —3Pco,) + BPco, (18)
= 4Prcps.s — 48Prcps.s — 3Pco, +48FPco, (19)

where 3 = ATESP26 / ATRP26 ~ 0.75 by regression. Then

Prcp2.6 = Preps.s (20)

If we assume this equation to be true, then by Equation 18, Prcps.s = (1 —8)(4Preps.s —3Pco, ) + BPco,- Then Preps.s =

Pco,, which is clearly incorrect, invalidating the original assumption that P&gﬁ%‘?}z = P&gﬁ%gz.

Evaluating the other expression P&gg%%z =2.9Prcps.5 — 1.9Pco,,

ABrcpae = ATRCP2S (2.9 Prepa.s — 1.9Pco,) + ATEST*S Poo, @1
(ATRCP26 — ATEGP26)(2.9 Prepa.s — 1.9Pco,) + ATEGT*6 Peo, (22)

By definition, Brepa.g = ATRCP26 Prpy 6. Then

ATRP20 Prepy g — 2.9Propa.6 (ATHCP?0 — ATESY? ) = —1.9Pco, (ATHCP?0 — ATESY?0) + ATES* Peo,  (23)

Simplifying,
(Prepa.s — Poo,) (2.9ATEST?6 — 1.9ATREP26) = (24)
So either Prcp2.6 = Pco, or ATg‘g;zG = %ATROPQ'G.

If the first condition is true, then Pﬁgg%%z =0, which by Equation 14 implies that Prcp2.6 = 32 Pco,, violating the as-
sumption that Prcp2.6 = Pco,. However, if the second condition is true, then by the above derivations, ATEST 26 /ATRCPES, =
1.9, so through some simple algebra, AT(I}&PQ"S /ATRCP2:6 — () 6504. Performing regression on these two quantities yields a
value of 0.7321 with an R? value of 0.9610. While this value is similar to the one derived above, it is sufficiently different to

indicate a certain amount of nonlinearity for which pattern scaling cannot account.
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Figure 1. Absolute values (left) of and differences (right) in the precipitation scaling pattern P(x) (Equation 1) when different time periods
are used to construct the pattern (years 1-50 versus years 116—140 of the 1pctCO2 simulation). Left column shows values of P;_50, and
right column shows values of P1 50 — Pi16_140 (mm day ' K1), Values in subscripts denote that the associated quantities are calculated
from an average over those years. Top row shows results for the regression method, and bottom row shows the epoch difference method. All
values are calculated for a Group 1 multi-model average for the 1pctCO2 simulation. Stippling indicates a lack of statistical significance in

the pattern of differences (Section 2.2).
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Figure 2. As in Figure 3 in the main paper but where the reconstruction B is built on the pattern P for years 1-50 (Group 1 average of the
1pctCO2 simulation), and global mean temperature AT is averaged over years 116-140. That is, B=P_s (x)AT(116 — 140). Results

shown are for the difference between the reconstruction and the actual model output B— B(x,116 — 140).
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Figure 3. As in Figure 3 in the main paper but where the reconstruction B is built on the pattern P for years 116-140 (Group 1 average of
the 1pctCO2 simulation), and global mean temperature AT is averaged over years 58-82. That is, B = P116_140(x) AT (58 — 82). Results

shown are for the difference between the reconstruction and the actual model output B — B(x,58 —82).
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Figure 4. Absolute values (left) of and differences (right) in time-invariant patterns P(x) among the two groups of models (Table 1),
calculated for the 1pctCO2 simulation. Left column shows the multi-model average for Group 2, and right column shows the differences in
-1

multi-model averages among the two groups. All values shown have units mm day ~* K. Stippling indicates a lack of statistical significance

in the pattern of differences (Section 2.2).
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Figure 5. As in Figure 3 in the main paper but where the reconstruction B is built on the pattern P for Group 2 (average of
years 116-140 of the 1pctCO2 simulation), and global mean temperature AT is averaged over years 116-140 of Group 1. That is,
B = Pcroup2 (%) ATGroup1 (116 — 140). Results shown are for the difference between the reconstruction and the actual model output

B — Beroup2(x,116 — 140).
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Figure 6. As in Figure 3 in the main paper but where the reconstruction B is built on the pattern P for Group 1 (average of
years 116-140 of the 1pctCO2 simulation), and global mean temperature AT is averaged over years 116-140 of Group 2. That is,
B = Paroup1 (X) ATGroup2 (116 — 140). Results shown are for the difference between the reconstruction and the actual model output

B - BGroup2 (X, 116 — 140)
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Figure 7. As in Figure 9 of the main paper but with additional forcings, per the description in Supplemental Section 3. See main Section 4.2

and Supplemental Section 3 for further details on the quantities depicted here.
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