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Abstract. Improving international food security under a
changing climate and increasing human population will be
greatly aided by improving our ability to modify, understand
and predict crop growth. What we predominantly have at our
disposal are either process-based models of crop physiology
or statistical analyses of yield datasets, both of which suf-
fer from various sources of error. In this paper, we present a
generic process-based crop model (PeakN-crop v1.0) which
we parametrise using a Bayesian model-fitting algorithm
to three different sources: data—space-based vegetation in-
dices, eddy covariance productivity measurements and re-
gional crop yields. We show that the model parametrised
without data, based on prior knowledge of the parameters,
can largely capture the observed behaviour but the data-
constrained model greatly improves both the model fit and
reduces prediction uncertainty. We investigate the extent to
which each dataset contributes to the model performance and
show that while all data improve on the prior model fit, the
satellite-based data and crop yield estimates are particularly
important for reducing model error and uncertainty. Despite
these improvements, we conclude that there are still signif-
icant knowledge gaps, in terms of available data for model
parametrisation, but our study can help indicate the neces-
sary data collection to improve our predictions of crop yields
and crop responses to environmental changes.

1 Introduction

Improving food security is one of the greatest challenges
currently facing humanity (Schmidhuber and Tubiello, 2007;
Rosegrant and Cline, 2003). The increasing and developing

human population is driving up food demand and changing
demand patterns. This is occurring alongside increasing an-
thropogenic threats to supply, such as climate change. Pre-
dicting and understanding how crops respond to changes in
their environment through the use of mathematical models
are needed to help address such threats, enabling advanced
warning of potential threats and predictions of what alter-
ations to agricultural practices might help prevent or mitigate
problems. A continual challenge when developing models is
knowing the generality of their predictions, either applied to
multiple crops or across different space scales and timescales
(Rosenzweig et al., 2014). Having one model to cover all cir-
cumstances is obviously unrealistic, as are tailor-made mod-
els to every conceivable circumstance. Thus, a challenge in
developing models to help address the current food secu-
rity crisis is identifying those that can be said to be gener-
ally useful over particular scales of application. In the cur-
rent study, we present a proof of concept that such an aim
can be reached through using a process-based crop model
(PeakN-crop v1.0), parametrised to available data using a
model-fitting algorithm.

Most crop models to date can be put into one of two broad
categories: process-based or statistical. Process-based crop
models have some representation of the mechanisms that de-
termine how plants grow in their formulation (e.g. Jamieson
et al., 1998; Jones et al., 2003; Stackle et al., 2003). Pro-
cesses included can cover crop phenology, carbon assimila-
tion and biomass allocation responses to the internal plant
state and the external environment. Such models have tradi-
tionally been specific to a particular crop, partly because of
the nature of studies that employ process-based crop models,
which have tended to focus on individual crops and often de-
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scribe growth phases specific to a particular crop type within
their formulation. However, it is also partly because of the
difficulty in developing generally applicable process-based
crop models; it can be unclear which aspects of the model
formulation can be said to be general versus crop specific
and obtaining data to assess model generality continues to be
a challenge. Some studies have avoided making crop-specific
models by using broad crop categories such as C3 and C4
crops, based on the functional plant type concept (Bondeau
etal., 2007; Osborne et al., 2015). Other models group a fam-
ily of crop-specific parametrisations into a single framework,
which limits generality but does facilitate use across different
scales and crops (Brisson et al., 2003; Stackle et al., 2003).

Statistical crop models aim to capture relationships be-
tween various predictor variables and crop properties without
using any information of how such factors should be related
from biology or ecology. For example, studies have predicted
crop yields based on observed simple relationships between
yield data and climate inputs (Lobell et al., 2011; Lobell and
Field, 2007; Schlenker and Roberts, 2009); these have then
been used to help understand past long-term trends in yields
at large spatial scales and to make forward projections under
climate change scenarios. Often, statistical models are devel-
oped to be generally applicable to multiple crops and applied
over multiple space scales and timescales, as these do not
need to include any plant-specific concepts.

Both the process-based and statistical approaches have
their disadvantages when it comes to obtaining general in-
sights. Process-based models have often only been shown
to be applicable at the individual field scale, making it un-
clear if their predictions might provide information about
crop responses at larger spatial scales. Process-based mod-
els can also be sensitive to chosen parameter values and for-
mulation, which has rarely been identified as applicable over
multiple crop types or locations (Challinor et al., 2009). Sta-
tistical models are limited by the extent to which the rela-
tionships they capture are useful in predicting crop proper-
ties outwith the circumstances that they have been verified
for. This becomes a particularly important limitation given
that one of the leading questions being addressed in food
security is how different crops might grow in environments
and under circumstances that we have not yet observed. For
example, correlative models based on mean annual values
of environmental variables are unlikely to capture the im-
pacts of changes in extreme weather events or increases in
atmospheric CO,, which have been shown to be essential to
understanding changes in crop yield under climate change
(Porter and Semenov, 2005; Deryng et al., 2014). Further-
more, simple statistical analyses rarely incorporate informa-
tion on management agricultural practices such as planting
and harvest dates, irrigation and fertiliser application, which
account for a large proportion of variations in yield across the
globe (Calvino et al., 2003; Zwart and Bastiaanssen, 2004).

An alternative to the extremes of either purely process-
based or purely statistical crop models is to apply statistical
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methods to process-based models to data constrain their pa-
rameters. This technique, which is increasingly used in Earth
system and vegetation modelling studies (Fox et al., 2009;
Raupach et al., 2005), involves allowing some parameters
to have undefined values and inferring those values by com-
paring the model predictions to data; hence, the technique is
called parameter inference or inverse modelling. The specific
methods used vary but the aim is often commonly to deduce
parameters that yield the best model predictive performance
(another common aim is to deduce insight about the underly-
ing processes from the inferred parameter values). The result
is typically a model with improved model predictive ability
(Knorr et al., 2010; Ziehn et al., 2012) when assessed us-
ing empirical data. Importantly, formally data-constraining
model parameters is a technique that can be used to increase
the general applicability of a given model formulation and
for that general applicability to be assessed.

The main problem with data-constraining process-based
models is data availability. Datasets of annual yield, such as
those used in statistical modelling studies, are unlikely to be
sufficient when data constraining the parameters of physio-
logically explicit models because, to put it simply, they are
unlikely to carry enough information to enable identification
of what the different model parameters should be. However,
two other sources of data, widely used in the global vege-
tation modelling but to a lesser extent in agricultural mod-
elling, could be of use in data-constraining crop model pa-
rameters. Space-based remote sensing data can provide spa-
tially and temporally continuous information on vegetation
greenness at a variety of spatial and temporal scales (Glenn
et al., 2008; Tucker et al., 2005). Such data have previously
been used for crop classification purposes (Wardlow et al.,
2007; Howard et al., 2012) and for simple yield estimation
(Doraiswamy et al., 2003; Lobell et al., 2003). The second
source is flux tower eddy covariance (EC) data which pro-
vide high-resolution CO; fluxes at point locations (Baldoc-
chi and Wilson, 2001). Previously, data assimilation methods
have been used for an ecosystem model in croplands with
Earth observation data (Revill et al., 2013; Sus et al., 2013),
but both studies focused on ecosystem carbon fluxes and leaf
area index and included no estimates of yield.

Sites where intensive data collection has taken place do
exist and can be very useful in exploring certain aspects of
crop physiology, for example, in the context of the agricul-
tural model intercomparison and improvement project, Ag-
MIP (Rosenzweig et al., 2013). However, here we aim to
explore a general model-data integration system that could
be applied to generic farm locations with generally available
data. This makes the problem more difficult, but the conclu-
sions can be more useful to a general application of the con-
cepts.

In this paper, we present a newly developed general, non-
crop-specific process-based model and use parameter infer-
ence to infer the most likely parameters for 15 locations for
winter wheat and maize using a combination of space-based
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vegetation indices, eddy covariance flux data and reported
agricultural yields. We aim to answer the following ques-
tions:

1. Does our model with data-constrained parameters pre-
dict empirical data better than a model with prior pa-
rameters?

2. Are the data-constrained parameters similar among dif-
ferent sites, and what are the impacts on model predic-
tive accuracy of having site-specific versus site-shared
parameters?

3. To what extent does the inclusion of the different types
of data in the model-fitting process influence the uncer-
tainty in the inferred parameters and model predictions?

We expect the qualitative answer to the first question to
be that utilising empirical data does enable the model to
make better predictions because that is a typical outcome of
our parameter estimation approach. However, we are more
interested in the quantitative answer: i.e. how much. For
example, the generation of a model that could make ex-
tremely precise and accurate predictions would suggest that
data-constraining general models with the datasets we iden-
tify could provide an extremely useful tool for agricultural
predictions and forecasts. Alternatively, the generation of a
model that makes very imprecise predictions would suggest
that more data collection and model improvement are needed
for the model to have practical applications.

In addition to our aims above, our goal with this paper
is to provide a proof-of-concept data-constrained process-
based crop model that could be of use in practical agricul-
tural systems. To this end, we include more descriptions of
the methods than otherwise necessary as well as a more broad
discussion of the applicability of this paper.

While our study is part of a boarder scientific objective
to enable more accurate field-scale predictions, the lack of
availability of field-scale datasets to train and validate our
model means that the scale of model evaluation for our study
here is a mix of field (flux tower) and regional scales (county
and country level for yield estimates and 3 by 3 km scale for
photosynthetic activity).

2 Datasets used
2.1 Study sites

Our analysis focusses on 15 sites for which we can obtain
the combination of eddy covariance data, satellite data and
crop yield data for specific crops (summarised in Table 1),
of which 7 sites were growing maize (Zea mays) and 8 sites
were growing winter wheat (Triticum aestivum; we refer to
this simply as wheat). Most of these sites grow maize or
wheat on a rotation with other crops, and we identify the time
period over which the species of interest is growing from the
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metadata associated with the eddy covariance data. All of the
maize sites are based in the United States. All but one of the
wheat sites are based in western Europe, with one site in the
United States. For the site where information was available,
the crops were not irrigated with the exception of the US-
Mel site (Suyker et al., 2004). All sites have been tilled to a
certain degree, generally in accord with agricultural practices
in the area. European sites have received a moderate amount
of fertiliser (Moors et al., 2010).

2.2 Space-based vegetation indices

We use data on vegetation greenness from the MODIS (Mod-
erate Resolution Imaging Spectroradiometer) Terra instru-
ment. The MODIS fraction of absorbed photosynthetically
active radiation (fAPAR data) from the MOD15A product
was downloaded (https://Ipdaac.usgs.gov/) for geographic re-
gions corresponding to each of the study sites (Table 1) for
the period 2000-2010. These data were subsequently filtered
using the quality assurance (QA) indices provided so that
only data points calculated using the main algorithm were
retained and pixels classified as cultivated land were identi-
fied using the MODIS land cover product (MOD12A) IGBP
classification.

Using the pixel closest to the flux tower site was infea-
sible because of data noise and gaps resulting in an uneven
time series. Instead, we aggregated all pixels within a 3 by
3km square centred on the tower site in a single time se-
ries. The untested assumption behind this aggregation is that
farming practices are constant across this scale. To distin-
guish between different crops, we use a crop phenology ap-
proach (Wardlow et al., 2007). Pixels that a reach maximum
fAPAR before day 150 are classed as winter crops (specifi-
cally as winter wheat), while crops that peak after that date
are classified as summer crops. This procedure is applied for
individual years to account for crop rotations.

2.3 Eddy covariance data

We use eddy covariance data for 15 sites across Europe
and the United States (Table 1), consisting of 19 data years.
The data were obtained from the AmeriFlux database (http:
/lameriflux.1bl.gov/) and the European Fluxes Database Clus-
ter (http://www.europe-fluxdata.eu/). We use level-four data
of CO, fluxes partitioned into gross primary productivity
(GPP) and gap filled using the mDS method (Reichstein
et al., 2005). Sites that have a crop rotation were filtered to
obtain single-species time series. These include the maize—
soybean rotation sites and European mix rotation sites that
include winter wheat.

2.4 Crop yield data and agricultural dates

To obtain information on crop yield, we use data provided
by the US Department for Agriculture (USDA) yearly, at
the county level, available for the entire study period (https:
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/www.nass.usda.gov/). For the European sites, we used
country-level data provided by the EC Eurostat database,
available from 2004 onwards (http://ec.europa.eu/eurostat).

Sowing and harvest dates are required as model inputs and
were extracted from the crop calendar global dataset (Sacks
et al., 2010). We chose this rather than local-level dates for
greater model generality.

Fertiliser input data were obtained from the published site
descriptions (see Table 1 for references) or from the Nitro-
gen Fertilizer Application database (Potter et al., 2010). The
model implemented in this study does not require any addi-
tional information on irrigation or soil properties.

2.5 Environmental input data

We use NASA’s Modern-Era Retrospective Analysis for Re-
search and Application (MERRA) dataset (Rienecker et al.,
2011) at a spatial resolution of 0.5° latitude by 0.66° longi-
tude and a temporal resolution of 3 h which we average to
a day. Temperature as well as direct and diffuse photosyn-
thetically active radiation (PAR) data were extracted for each
site. Comparison with tower-based meteorological data has
shown this to be an accurate estimation of conditions at the
tower site for all variables and we use MERRA data for the
greater generality of the model as this would allow the model
to be applied at any location on the globe.

3 Model description

Our new general model of crop growth is based on the single
plant model of Guilbaud et al. (2014) and, like that model,
assumes that annual plants show optimal biomass alloca-
tion during vegetative growth and optimal flowering in order
to achieve maximum reproductive mass given available re-
sources. Plant growth is divided into three stages, starting at
sowing date and ending at harvest: germination, vegetative
growth and reproductive growth.

3.1 Germination

The germination process is described as a degree-day func-
tion with a fixed base temperature of 0°C up to a parame-
ter germination limit, germy;ip,. The accumulated degree days,
germ,c, are calculated as follows:

germ,. (1) =

germ,, . (t — 1) + (T (1) — Toase)
germ, .(f — 1)

s T(t) > Toase

T (@) < Toase M

Vegetative growth begins once the accumulated degree
days are higher than the limit parameter, germy;y,, which is a
free fitted parameter. Initial seed mass is prescribed and is ex-
pressed as grams per metre squared, incorporating informa-
tion about both seed size and planting density. When the ger-
mination limit is reached, all seed mass is allocated to above-
ground and belowground pools according to the optimality
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criteria described below. Initial model runs have shown that
for values of the germination base temperature T_base and
seed mass within realistic ranges, the model is largely insen-
sitive to the values of these parameters, which is why they
have been fixed.

3.2 Vegetative growth

During vegetative growth, biomass is allocated to either
aboveground or belowground fractions to achieve an opti-
mal carbon-to-nitrogen (C : N) ratio at the plant level (p). The
net daily growth is calculated as the minimum of a nitrogen-
limited growth rate, Goot, and a carbon-limited growth rate,
Gieaf-

Nitrogen-limited growth is considered to be a function of
root mass Mo and available soil nitrogen N:

Groot(t) = ON (1) Moot (t — 1)p, ()

where 6 is the nitrogen uptake capacity of the roots expressed
as gN g~ !soil N g~ root Cday~!, N(z) is soil nitrogen at
time ¢ (g) and Moo (2 — 1) is the root mass (g) at the previous
time step. Carbon-limited growth is considered to be equal
to potential net carbon uptake, calculated as the difference
between whole canopy photosynthesis and respiration. Pho-
tosynthesis is calculated using the model for C3 plants, de-
veloped by Farquhar et al. (1980) as described in dePury and
Farquhar (1997), and the alternative model for C4 species
(Collatz et al., 1992; Von Caemmerer, 2000):

Gieat(t) = f(Vemax2s, Jmos, T (1), 1(2), pCO2,
LAI( — 1)) — Rplant- 3

Here, Vemax2s is a parameter representing photosynthetic Ru-
BisCO capacity (umolm~2s~1), Jyos is potential electron
transport rate and 7', I and pCO; are environmental inputs
(temperature, solar radiation and atmospheric CO; partial
pressure, respectively). The electron transport rate Jips is
represented for fitting purposes as the ratio f'J between Ji5
and Vemax2s to partially eliminate model equifinality. Total
absorbed solar radiation / is calculated for direct and dif-
fuse PAR using a sun-shade model (dePury and Farquhar,
1997). Partial pressure of CO, inside the leaf is calculated
assuming a constant optimal ratio A between internal and at-
mospheric CO; in the absence of water stress (Haxeltine and
Prentice, 1996) (see Appendix B for details of the photosyn-
thesis model in Eq. 3). Leaf area index (LAI) is calculated
from leaf mass Mje,r using the leaf mass per area (LMA)
parameter. Whole plant respiration is calculated as a linear
function of total plant mass:

Rplant = Tot (Mieaf + Mroot) - 4

Here, ry represents average respiration per unit plant
mass (gg~'day~!). This total respiration component ac-
counts for growth costs and maintenance including active
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nutrient uptake by the roots and is a function of tempera-
ture. Given the optimal whole plant C: N ratio that drives
the vegetative biomass allocation, this formulation is ulti-
mately equivalent to the nitrogen-dependent function com-
monly used in vegetation models without the need to intro-
duce further parameters for root- and leaf-specific C: N ra-
tios.

Actual biomass growth is then the minimum between
nitrogen- and carbon-limited growth:

Get = Min(Groot, Gleat)- (5)

This biomass is allocated to the limiting fraction, either
aboveground or belowground in order to adjust the C : N sup-
ply. Crops are considered to be not water limited, as all sites
are in areas with high annual precipitation. We lacked any in-
formation on soil water availability, and initial trials to data
constrain a model that included the effects of varying soil wa-
ter availability led to poorly constrained parameters related to
soil water constraints (see Sect. 7).

3.3 Optimal flowering and reproductive growth

Reproductive growth starts at a point where the supply of any
of the resources, carbon or nitrogen, reaches a maximum,
which we term “peak resource”. This is the point in time
which will result in the maximum final reproductive mass
as further increases in vegetative fractions would not result
in an overall increase in growth rate and lead to suboptimal
growth (see Guilbaud et al., 2014, for an in-depth discussion
of this).

The peak nitrogen condition is achieved when an increase
in root mass does not result in an increase in nitrogen up-
take. This condition is achieved in nitrogen-limited environ-
ments where the nitrogen available in the soil is depleted
through the period of vegetative growth. This assumption
can be considered valid in agricultural systems where the
major nitrogen input into the system during the growing pe-
riod comes solely from agricultural fertilisers. Soil nitrogen
decays monotonically through the season in our model due
to the simplicity with which we model nitrogen uptake, and
thus detecting the peak nitrogen condition is straightforward.
Similarly, the peak carbon flowering condition is triggered
when the addition of aboveground biomass would not lead
to an increase in net carbon gain due to self-shading in the
canopy. To calculate the peak carbon trigger, we use the en-
vironmental variables averaged over p days, to avoid flower-
ing being triggered by short-term environmental fluctuations.
We infer p alongside the other parameters in our model.

During the reproductive phase, all new biomass produced
is assigned to reproductive tissues. Nitrogen and carbon are
translocated to reproductive organs at a constant rate, 7 yans.
As all biomass within the model is calculated as mass of car-
bon, and agricultural yield data are reported as total dry mass,
we use a conversion parameter to account for the carbon frac-
tion, Crrac. This parameter also accounts for the differences
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in total reproductive mass and actual mass harvested and re-
ported as yield.

4 Parameter estimation technique

We use Bayesian parameter inference techniques to infer the
parameters for the model described above. The technique in-
volves solving Bayes’ theorem which, in this context, states

P(obs|0)P(0)
[ P(obs|0)P(6)do’

P(6|obs) = (6)

where P denotes a probability, obs is the empirical data and
0 is the set of parameters to be inferred (Gilks, 1996). The
term in the denominator can be treated as a normalising con-
stant in our study, and so we omit it here. Thus, our prob-
lem reduces to P (8|obs) =~ P(obs|0)P(0), where P (obs|0)
is usually referred to as the likelihood of the data given the
model and P(6) is the prior probability of the parameters.
Prior probabilities of parameters can be determined by pre-
vious empirical evidence such as field measurements. In our
case, we do not have any prior expectations about what the
prior parameter values should be and so we specify that each
parameter is equally likely to fall within a wide range of val-
ues (flat priors). This means that our study reduces to infer-
ring the joint probability distribution of the parameters based
on the likelihood of the data given all possible parameter
combinations. We cannot solve this inference problem ex-
actly. Instead, we use Markov chain Monte Carlo techniques
with the Metropolis—Hastings algorithm to approximate the
likelihood and its associated joint parameter probability dis-
tribution, which we implemented using the Filzbach infer-
ence library as detailed in Caldararu et al. (2012). This al-
gorithm works by iteratively making random mutations to an
existing parameter set, computing the likelihood associated
with the new set of parameters and then replacing the ex-
isting parameter set with the new set based on the ratio of
their likelihoods according to the Metropolis—Hastings algo-
rithm (Gilks, 1996). Parameter ranges were set based on lit-
erature and our understanding of plausible biological ranges
for these crop species and agricultural scenarios as well as
additional adjustment to ensure parameter convergence dur-
ing inference.

Three different datasets were used in combination to infer
our model parameters —- MODIS fAPAR, flux tower GPP and
crop yield data. Each dataset contributes to the assessment
of the model likelihood but each one of these has different
temporal resolutions and covers different time periods, re-
sulting in a variable number of data points. To prevent our in-
ferred parameters from being overly based towards explain-
ing the datasets with the greatest quantity of data points, we
down-weighted the contributions to our likelihood estimates
from each data point according to the quantity of data in each
dataset. The likelihood function used in Filzbach is therefore
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H(ZelOr) =D 1

D Nx’Dz(x,D)
ln[n(YObS(xv Da t)a Ypred(xa thvgx)aax,D)]v (7)

where 0, is the vector of model parameters at site x, Ny is
the number of data points in each dataset D at each location
and n(Yobs(x, D, 1), Ypred(x, D, t,6x), 0x) denotes the prob-
ability density for observing Yops(x, D, t) given a normal dis-
tribution with mean Ypeq(x, D, t, 0) and standard deviation
ox,p which expresses the magnitude of unexplained varia-
tion in the variable Y. Y refers to the model variables corre-
sponding to the three datasets. Note that with this definition
of the likelihood we are treating every data point as inde-
pendent; that is, the likelihood of a value at time ¢ is treated
independently from the likelihoods at preceding times. This
is only an approximation but is commonly used in param-
eter estimation studies because the additional mathemati-
cal and computational complexity of accounting for non-
independent data.

We adopt different techniques to estimate the standard de-
viation oy p above, depending on the dataset D at each lo-
cation. Generally, we assume that the variation in the model
predictions about the data is solely due to uncertainty in the
data. We address the limitations of this assumption and fu-
ture improvements in the Discussion section. The GPP data
do not have an estimate of uncertainty, and so we infer the un-
certainty associated with those data as the parameter ox p. In
the case of MODIS fAPAR data, we explicitly incorporate a
measure of variation in the data within the geographical area
used to compute the mean fAPAR while inferring a parame-
ter representing additional unexplained variation. We include
this parameter to account for known issues in space-based re-
motely sensed data, such as background soil reflectance. The
crop yield data already have estimates of observational un-
certainty associated with them, and so we use those data to
define oy p.

5 Experimental protocol

In order to assess whether the model with data-constrained
parameters predicts empirical data better than a model with
prior parameters, we infer the parameters for each site in-
dividually using all of the empirical data and compare the
model predictive performance to one site in which the pa-
rameter values are sampled randomly from the prior range.
We compare the inferred parameters and predictive perfor-
mance of models with parameters inferred using data from
individual sites (the one-site model) or from multiple sites
together (all-site model), always keeping maize and winter
wheat sites separate, to assess the effects of allowing param-
eters to differ between the sites. Preliminary investigations
revealed that similar model parameter distributions were in-
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ferred once data from more than three sites were used in com-
bination when inferring the parameters. We therefore also
take the opportunity to assess the performance of the mod-
els with parameters shared between sites in predicting data
that have not been used in parameter inference (evaluation
model).

To assess the importance of different types of data con-
straints, we perform a data knock-out experiment and we in-
fer the model parameters for individual sites using only one
or two of the different empirical datasets and assess inferred
model parameters and model performance.

In general, we assess model predictive performance by
quantifying the root mean squared error (RMSE) between
the model predictions and the empirical data to access model
precision and the mean error to assess model bias. We nor-
malise both these metrics by the mean value of the different
empirical dataset types to aid in comparison. We calculate
parameter uncertainty as the 95th percentile confidence in-
terval from the posterior distribution (Sect. 4).

To calculate uncertainty for the model predictions, we
sample parameter values from their respective posterior dis-
tribution and compute predictions with each parameter com-
bination, which results in a corresponding distribution of
model predictions. We report this prediction distribution un-
certainty using 95th percentile confidence intervals. This pre-
dicted distribution does not include the prescribed or inferred
uncertainty about observations, oy p; our predicted distribu-
tions correspond to the state being predicted and not the ob-
servations of that state.

6 Results
6.1 Prior and posterior model predictions

In general, and as expected, the predictive accuracy of both
the wheat and maize models is improved by inferring their
parameters; the root mean squared error and bias of the
model predictions is reduced for predicting all empirical
datasets compared to the prior model (Table 3). These im-
provements are about a 40 % reduction in RMSE for both
GPP and fAPAR and an 80 % reduction in RMSE for yield.
Visual inspection of the predicted time series for the models
with prior and posterior parameter distributions (e.g. Fig. 1
for wheat in one site) highlights that the model with prior
parameters predicts the same qualitative behaviour as the
model with inferred parameters but that parameter inference
reduces the posterior uncertainty in the predictions of the
model.

In terms of uncertainty, the posterior models show a large
reduction when compared to the prior models of above-
ground biomass (86 %) and yield (97 %), but a smaller re-
duction for the belowground variables (67 % for root biomass
and 20 % for soil nitrogen), as there are no data in the fitting
procedure to directly constrain these. Visual inspection also
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Figure 1. Comparison of prior model predictions (dark grey, dashed line) and posterior model predictions (light grey, continuous line) at one
wheat (DK-Ris) site. Panels show (a) aboveground biomass, (b) belowground biomass, (¢) reproductive biomass, (d) fAPAR, (e) GPP and

(f) soil nitrogen.

emphasises the importance of model structural constraints on
the model dynamics; e.g. the model predicts a narrow range
of dynamics in some properties at certain times of the year
(e.g. biomass in leaves, roots and reproductive parts soon af-
ter sowing) irrespective of the parameter values.

6.2 One site’s versus all sites’ fit

On average, the RMSEs are very similar between the models
with parameters inferred for individual sites to when param-
eters are inferred for all sites together (Table 3). In general,
we expect that if we were to infer a single set of parame-
ters for individual sites, then the predictive performance of
that model will always be at least as good as when the set of
parameters has been inferred for all sites. This may not nec-
essarily be the case when inferring parameter probability dis-
tributions: the lower quantity of data could result in greater
parameter uncertainty which may on average lead to a lower
predictive accuracy than that using the more constrained pa-
rameter distributions obtained by inferring parameters from
all sites. This explains why some of the mean RMSE scores
are higher for the model with parameters inferred from indi-
vidual sites. The bias scores are also very similar, although
the bias tends to be smaller on average for the models with
parameters inferred using all sites.

www.geosci-model-dev.net/10/1679/2017/

As expected, the uncertainty in the predicted GPP, fAPAR
and yield is lower for the models with parameters inferred us-
ing all sites because more data are used to infer the parameter
values for those models, leading to lower uncertainty in the
inferred parameter distributions (Fig. 2). When parameters
are inferred for individual sites, uncertainty is around 134 %
for GPP, 121 % for fAPAR and 33 % for yield, with simi-
lar values at wheat sites (Table 3). This is reduced to around
45 % for GPP, 100 % for fAPAR and 12 % for yield estimates
when parameters are inferred using data for all sites. Visual
inspection of the change in uncertainty over time highlights
that prediction uncertainty due to parameter uncertainty is
highest at the start and end of the season (over 100 %) but
decreases to 50 % on average for all variables in the middle
of the growing period (Fig. 4).

Inspection of the inferred parameter distributions (Fig. 2)
shows, as expected, that the posterior parameter uncertainty
tends to be higher when parameters are inferred using data
from individual sites versus using all sites together, although
these distributions overlap for almost every site and every
parameter. In general, these inferred parameter distributions
show greater differences between winter wheat crops and
maize crops than they do as a result of using more sites for
inference. One exception is the sole winter wheat site in the
United States, which is inferred to have a lower soil nitro-
gen, respiration rate and translocation rate of mass from veg-

Geosci. Model Dev., 10, 1679-1701, 2017
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Table 1. Study sites are listed; all sites correspond to eddy covariance measurement sites.

Site name Coordinates ~ Crop Country Irrigation  Reference
Mead 1 41.1651, —96.4766  Maize United States  Irrigated  Suyker et al. (2004)
Mead 2 41.1651, —96.4766  Maize rotation ~ United States  Irrigated ~ Suyker et al. (2004)
Mead 3 41.1651, —96.4766  Maize rotation ~ United States Rainfed  Suyker et al. (2004)
Bondville 40.0062, —88.2904 Maize rotation  United States Rainfed  Meyers and Hollinger (2004)
Rosemount 1 447217, —93.0893  Maize rotation  United States NA Griffis et al. (2007)
Rosemount 3 447217, —93.0893  Maize rotation  United States NA Griffis et al. (2007)
Fermi 41.8593, —88.2227  Maize rotation  United States NA -
ARM Great Plains  36.6058, —97.4889  Wheat United States NA Fischer et al. (2007)
Risbyholm 55.5303, 12.0972  Wheat rotation = Denmark Rain fed Moors et al. (2010)
Auradé 43.5494, 1.1078 Wheat rotation  France NA Moors et al. (2010)
Gebesee 51.1001, 10.9143  Wheat rotation ~ Germany Rain fed  Moors et al. (2010)
Grignon 48.844,1.9524 Wheat rotation  France Rain fed Moors et al. (2010)
Klingenberg 50.8929, 13.5225 Wheat rotation ~ Germany Rainfed  Moors et al. (2010)
Lonzée 50.5522,4.7448  Wheat rotation ~ Belgium Rain fed Moors et al. (2010)
Lutjewad 53.3833,6.3667 Wheat rotation  Netherlands Rain fed Moors et al. (2010)
NA = not available
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Figure 2. Estimated model parameters for all sites, fitted to individual locations (circles) and all locations combined (black line). Values
are posterior medians, and error bars and shaded areas represent 95th percentiles of the posterior parameter distribution for the one-site and
all-site parametrisation, respectively.
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Table 2. Model parameters, upper and lower bounds and initial values used in the model-fitting procedure.

1687

Symbol  Units Description Lower bound  Upper bound  Initial value  Fixed

germjj, °C Number of degree days required 100.0 400.0 150.0 no
for germination

Tbgerm °C Base temperature for germination - - 0.0 yes

P - Optimal carbon-to-nitrogen ratio in - - 25.0 yes
vegetative tissue

Ny g Initial N content of the soil 10.0 100.0 150 no

0 gNg I Ng=1Cday~! Root nitrogen extraction factor 0.0005 0.01 0.0005 no

Vemax25 pmolrrf2 s™ Photosynthetic carboxylation capacity at 25 °C 50.0 400.0 80.0 no

fJ - Ratio of electron transport to 2.0 10.0 2.1 no
carboxylation capacity at 25 °C

AQ - Ratio of atmospheric and leaf CO; 50.0 400.0 80.0 no
concentration

LMA g m~2 Leaf mass per area 60.0 400.0 100.0 no

Ftot gg! Average plant respiration rate 0.001 0.3 0.1 no

Mtrans g day’l Mass translocation rate from vegetative 0.1 20.0 2.0 no
to reproductive tissue

Ctrac - Carbon fraction of reproductive tissue 0.2 1.0 0.7 no

p days Time period for averaging environmental 1.0 30.0 10.0 no

conditions for flowering trigger

Table 3. Model RMSE, bias and uncertainty for the one-site and all-site parametrisation as well as the model evaluation run.

RMSE RMSE RMSE Bias Bias Bias  Uncertainty Uncertainty  Uncertainty
GPP fAPAR yield GPP fAPAR yield GPP fAPAR yield
Maize
Prior 0.18 0.27 0.83 —-0.77 -0.79 —-0.82 7.07 5.15 9.87
One site 0.11 0.14 0.12 —-0.16 0.10 —0.03 1.34 1.21 0.33
All sites 0.08 0.16 0.10 —-0.12 —-0.04 —-0.00 0.45 1.02 0.12
Evaluation 0.09 0.15 0.11  -0.10 -0.09 —-0.00 0.47 1.08 0.15
Wheat
Prior 0.27 0.25 0.67 —0.64 -0.83  -0.83 7.92 5.46 12.27
One site 0.19 0.08 006 —-044 025 —0.01 1.68 1.21 0.16
All sites 0.17 0.08 0.07 -0.21 0.02 0.02 0.51 0.45 0.06
Evaluation 0.17 0.09 0.07 -—-0.05 —-0.26 0.02 0.75 0.89 0.08

etative to reproductive tissue. These inferred differences are
probably due to differences in winter wheat crops between
the US site and the European sites, such as different crop va-
rieties or agronomic practices.

Visual inspection of the predicted time series of GPP, fA-
PAR and yield for maize and winter wheat predominantly
show very similar predictions between the models with pa-
rameters estimated from one site versus all sites (Fig. 3 shows
predictions for representative sites; Appendix A shows time
series for all sites with associated uncertainty). There tends to
be greater differences between the model predictions and the
empirical data when the model has site-specific parametrisa-
tions than when parametrisations are shared between sites.
The one notable exception is again the winter wheat site in
the US, for which inferring parameters for the specific site

www.geosci-model-dev.net/10/1679/2017/

leads to much more accurate predictions compared to the
model with parameters inferred for all sites (Fig. Al). Other
than that site, the time series for GPP, fAPAR and yield for
maize show larger discrepancies between the data and the
model predictions than from the predictions of different mod-
els. GPP tends to be reproduced well, relative to the other
time series, with an average correlation coefficient of around
r2 =0.7. fAPAR is predicted less well (around r2=0.4)
which is at least partly due to a systematic underprediction
of fAPAR at the start and end of the year. We attribute this
to the fact that the fAPAR data reflect the light absorption by
plants in a region that includes vegetated areas outwith just
the fields, whereas the model is predicting only light absorp-
tion by the crop (discussed further below). Annual yields are
predicted the least well by our models (around 2 = 0.1), and

Geosci. Model Dev., 10, 1679-1701, 2017
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Figure 3. GPP, fAPAR and yield model predictions at one maize site (US-Ro3) and one wheat site (DE-Gri). The figure shows posterior
mean predictions for one site, all sites and the evaluation model fit. Neither site has been included in the evaluation fitting.

we attribute this at least in part to the data themselves having
a relatively high uncertainty (discussed further below).

We evaluate the model transferability by inferring the
model parameters using a subset of the sites and assess-
ing model predictive performance against the remaining sites
(Fig. 3 and Table 3). In general, the model RMSE and bias
do not differ between the sites that were used for parame-
ter estimation and those that were not. Moreover, the model
predictive performance is similar to that resulting when fit-
ting to all sites. The uncertainty for GPP, fAPAR and yield
at maize sites is similar to that obtained by fitting to all sites,
but for the wheat sites the uncertainty in GPP and fAPAR
increases, while the yield uncertainty remains at the level ob-
tained when fitting to all sites (Table 3).

6.3 Impacts of using different data types

Our data-type hold-out experiments show clear differences in
the roles played by different data types in improving model
predictive accuracy, but the effects are similar for both crop
types (Fig. 5 — this figure only shows model RMSE and bias
when parameters are inferred using data for individual sites,
but the results are similar when all sites are used to infer
model parameters). The largest effect of adding a given data
type is when yield data are included, which significantly re-
duces RMSE and bias for predicting yield. This makes intu-
itive sense, although interestingly including yield data alone

Geosci. Model Dev., 10, 1679-1701, 2017

and as part of a combination also tends to improve model pre-
dictive performance for GPP and fAPAR. Counterintuitively,
including GPP data alone or fAPAR data alone only has sub-
tle effects on the model RMSE and bias for predicting those
variables and yield, but including those datasets in combina-
tion does indeed lead to improvements in RMSE and bias.

The greatest improvements in model predictive perfor-
mance for all response variables is obtained when all data
types are used for parameter inference. This is not inevitable
as an overall more likely model might be achieved by sacri-
ficing predictive accuracy for one data type in order to im-
prove predictive accuracy for another. For example, adding
fAPAR data alone slightly improves model RMSE for fA-
PAR data, but makes it worse for GPP and yield predic-
tions when compared to the model with prior parameter
distributions. Indeed, the crops do not flower for maize or
wheat when only fAPAR data are used for parameter infer-
ence. Comparing knockouts with and without fAPAR data
included implies a trade-off between predicting the fAPAR
data well and predicting GPP well (Fig. 5). Interestingly, all
models underestimate GPP, although this bias is least when
all data are used to infer the model parameters.

The uncertainty in model predictions (Fig. 6) follows a
similar pattern to model error, with the fAPAR-only model
having the highest uncertainty (up to 900 % for GPP) while
the GPP and fAPAR model performs best with uncertainty

www.geosci-model-dev.net/10/1679/2017/
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Figure 4. Normalised uncertainty for GPP, fAPAR and yield model predictions at one maize site (US-Ro3) and one wheat site (DE-Gri).
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Table 4. RMSE, bias and uncertainty values in the data knock-out experiments for wheat and maize.

Data RMSE RMSE RMSE Bias Bias Bias  Uncertainty Uncertainty = Uncertainty
fitted to GPP fAPAR yield GPP fAPAR yield GPP fAPAR yield
Maize

Prior 0.18 0.26 08 -—-0.75 -0.79 -0.85 6.91 5.19 9.25
All data 0.11 0.14 0.12 —0.16 0.10 —0.03 1.34 1.21 0.33
fAPAR 0.31 0.21 1.00 —-0.90 —-0.86 —1.00 8.99 3.53 -
GPP 0.12 0.20 0.80 —0.28 0.20 -0.79 1.66 1.24 2.83
Yield 0.17 0.17 0.12 —-048 0.30 —0.05 3.61 1.42 0.33
GPP+yield 0.12 0.18 0.79 —-0.30 0.08 —0.78 1.58 1.26 2.72
fAPAR+yield 0.11 0.15 0.11  —-0.17 0.07 —0.03 1.23 1.28 0.31
fAPAR+GPP 0.18 0.15 0.11  —-0.50 0.07 —-0.04 3.69 1.57 0.32
Wheat

Prior 0.28 0.25 070 —-0.66 —0.84 —0.88 8.49 5.90 12.98
All data 0.19 0.08 006 —-044 —-025 -0.01 1.68 1.21 0.16
fAPAR 0.37 0.19 080 —-092 -0.82 —1.00 8.02 3.59 -
GPP 0.32 0.12 0.73 —0.81 —-048 —-0.92 4.04 2.21 -
Yield 0.28 0.08 0.06 —-0.60 —0.23 —-0.01 3.55 1.67 0.16
GPP+yield 0.28 0.11 069 —-073 —-040 —0.86 3.38 1.94 -
fAPAR+yield 0.21 0.09 0.06 —-0.50 —-0.28 —0.02 1.63 1.21 0.16
fAPAR+GPP 0.25 0.08 006 —-058 —-0.27 -0.01 3.05 1.55 0.16

www.geosci-model-dev.net/10/1679/2017/ Geosci. Model Dev., 10, 1679-1701, 2017
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Figure 5. Model RMSE and bias for all data hold-out experiments averaged over all wheat and maize sites, respectively. Error bars represent
variation across sites. All values have been normalised to the mean value of that variable at each site. Black bars indicate models that do not

reach flowering.

values of 123, 128 and 32 % for GPP, fAPAR and yield, re-
spectively — values which are close to those obtained through
fitting to all the data. The GPP and yield model also has rel-
atively low uncertainty values for GPP and fAPAR estimates
but fails to produce any yield at the wheat sites (the plants do
not proceed to the flowering stage).

7 Discussion

7.1 Model performance

We show that a process-based crop model (PeakN-crop v1.0)
constrained using EC data, satellite fAPAR observations and
regional yield estimates can improve model performance
compared to the model run with prior parameter ranges and
greatly reduces the uncertainty in model output. However,
the resulting uncertainty in both state variables and model
parameters is still relatively high.

Model uncertainty is difficult to compare with previous
crop modelling studies, as models with fixed parameter val-
ues do not often provide uncertainty estimates. In fact, pro-
viding uncertainty values for all model variables and param-

Geosci. Model Dev., 10, 1679-1701, 2017

eters is one of the advantages of a data-constrained model.
In the current model, uncertainty is highest at the start of the
season for all variables but decreases rapidly and final yield
uncertainty is much lower. This is due to thresholds: abrupt
changes from one growing stage to another when small dif-
ferences in parameters can lead to large differences in result-
ing variables. It is, however, important to note that the uncer-
tainty in our yield predictions remains high and the model
in its current form is unlikely to provide accurate predic-
tions for practical applications without the addition of new
data (Sect. 7.4). We have, however, shown that the use of
three different data types does reduce prediction uncertainty
— pointing to an avenue for future model improvement.

Our estimates of model parameter uncertainty, and conse-
quently model prediction uncertainty, are influenced by our
assumption that the model is correct and that any departure
of the data from predictions is due to measurement error.
This is undoubtedly false but makes our parameter estima-
tion method simpler. Overall prediction uncertainty can be
decomposed into initial condition uncertainty, parameter un-
certainty and model uncertainty and methods exist for mak-
ing these uncertainty estimates and building them into pre-
dictions (Wallach et al., 2016b, a). Such estimates should be

www.geosci-model-dev.net/10/1679/2017/
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that do not reach flowering.

made if our model is applied to real agricultural prediction
scenarios.

In terms of the posterior parameter distributions, result-
ing parameters show a similar degree of constraint to that
observed in previous model parametrisation studies for nat-
ural ecosystems (Keenan et al., 2012). The photosynthesis-
related parameters are badly constrained despite the fact that
GPP estimates have a relatively low uncertainty. This can be
explained by the structure of the photosynthesis component
which is rigid compared to other components of the model
as these processes are better understood. In contrast, below-
ground processes are both poorly understood and lack the
data to properly constrain model parameters (Pendall et al.,
2004).

In terms of model performance, the model correctly pre-
dicts seasonal trajectories of GPP and final yield data. We
cannot, however, capture the interannual variability in yields,
which is most likely due to the fact that our model does not
include a response to water limitation or heat damage. The
fact that we use regional yield data can also lead to discrep-
ancies between the yield at each specific flux tower site and
the yield data. The model does not capture the fAPAR sea-
sonal cycle well, especially at the maize sites, which is due to
the low spatial resolution of the data. However, the predicted
model fAPAR is more realistic than the fAPAR data, which

www.geosci-model-dev.net/10/1679/2017/

is one of the advantages of using a process-based model with
a more rigid structure than a statistical one.

One additional complication is the different spatial scales
of the three datasets; while the eddy covariance data are at
the scale of the flux tower footprint, which can be seen as
equivalent to the individual field scale, the fAPAR and yield
data correspond to larger scales (county and country level for
the yield data and a 3 by 3 km scale for the fAPAR data). The
assumption behind our analysis is that the conditions at field
scale are representative of the regional scale, so that there
would be no discrepancy between model predictions at these
different scales. This is obviously a source of error, especially
at the wheat sites in Europe, which will be located over a
much more heterogeneous landscape. Further sources of data
at the field scale would be required to identify the model error
caused by the discrepancy in spatial scales.

7.2 Use of the different datasets

Eddy covariance data are to date the most widely used dataset
for parametrisation of vegetation models (Fox et al., 2009;
Xiao et al., 2011). We show that removing these data from
the fitting procedure does not radically decrease model per-
formance. If we consider what information content these data
provide — primary productivity and CO, flux seasonality —

Geosci. Model Dev., 10, 1679-1701, 2017



1692 S. Caldararu et al.: Parameterising a process-based crop model

this fact is maybe not surprising. The seasonality information
is already contained in the fAPAR dataset, while the primary
productivity is highly constrained by the structure of the bio-
chemical photosynthesis model. Furthermore, the GPP-only
fit results in an underestimation of the final yield, indicating
that the sole use of EC data in crop models is not sufficient to
accurately predict yields. Unlike most studies using EC data,
we have used sites with only 1 year of data as these were the
only available agricultural sites, and it is possible that more
GPP data at one site could increase its importance in the fit-
ting. EC data could also be a valuable tool for independent
model evaluation, as they provides information about plant
function not included in the other available data.

Space-based vegetation data have the main advantage of a
large spatial and temporal coverage, so that they can be used
irrespective of the local monitoring infrastructure, providing
a general data source. However, the quality of the data is rel-
atively low, especially at the high spatial resolutions needed
for crop modelling. This problem is particularly obvious in
the case of the maize data, which lack the expected seasonal-
ity and are reflected in the very high error in the fAPAR-only
fit. However, the model fits without fAPAR (GPP and yield
only) show a high error as well, indicating that the informa-
tion content in vegetation indices is needed for constraining
the model but is not sufficient.

Some of these limitations are not general for remotely
sensed data but can be attributed to the spatial and spectral
resolution of the MODIS instrument. The 1km spatial res-
olution can be too coarse for agricultural fields, especially
in areas with heterogeneous land cover. Other existing in-
struments, specifically the Landsat family, have a better spa-
tial resolution (30 m), but a much poorer temporal resolution
which we have found unsuitable for fitting a plant growth
model where developmental changes can be abrupt. More re-
cent missions such as Sentinel-2 will have more suitable spa-
tial and temporal resolutions for use with this type of model
(Herrmann et al., 2011). Some of the errors in the data can
also be attributed to misclassification of pixels. We use a sim-
ple phenology-based approach which is one of the only ones
available for data with a relatively wide bandwidth, such as
MODIS. This method is useful for winter crops which have
different timing compared to the natural vegetation, but less
useful for summer crops such as maize where there is no
clear separation in phenology between cropland and the sur-
rounding vegetation. Hyperspectral data can be used more
accurately for crop identification (Thenkabail, 2001) but to
date no space-based instrument is available that has the re-
quired bandwidth, the spatial and temporal coverage and the
spatial and temporal resolution. However, such data should
be used at local scales if the measurements are available.

Crop yield is the data that are traditionally used for evalu-
ating agricultural models and is arguably the most important
to predict correctly, given that the purpose of the model is to
predict crop productivity. We have used county- and country-
level reported yields rather than field-level measured yield
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because of both the availability of the data and the generality
of the method. The model fitted with yield data only gives a
good fit to yields but gives higher errors for the GPP and fA-
PAR estimates, which raises questions about the correctness
of models which only use final yields to assess performance
and the ability of such models to predict crop yields under
different conditions. Crop yield data provide the final point
of plant crop growth but there is potentially a multitude of
model structures and parameter combinations that can result
in that yield.

In addition to the three datasets used for parametrisation,
the model also requires input data in the form of sowing and
harvest dates and fertiliser inputs. Additional uncertainty is
associated with these datasets which is not available nor ac-
counted for in our analyses. For example, the crop calendar
(Sacks et al., 2010) and Nitrogen Fertilizer Application (Pot-
ter et al., 2010) datasets are global data collections that will
imperfectly represent the value for any given location. Al-
ternatives to these global datasets would be to use location-
specific data or to infer the values. Location-specific data
have the advantage of more accurately reflecting the situa-
tion at a given site and would therefore be useful when the
model is applied at the field scale, but such data are unlikely
to be available for all sites. Successful inference of the val-
ues would depend on if there is enough information in the
datasets used to infer the model parameters. If there are in-
adequate data, then there would be excessive degrees of free-
dom for inference, leading to the wrong parameter values be-
ing inferred and the model performing poorly in novel situa-
tions. Therefore, the decision whether to obtain more data or
infer unknown quantities in future applications of our model
and inference framework depends on the data availability and
the intended scales of application.

7.3 Choice of model

Here, we have chosen a given model structure and exten-
sively tested the way in which constraining the parame-
ters with different datasets results in different configura-
tions. The question that arises is to what extent the chosen
model itself affects the present results. We have chosen a
novel physiology-based model which includes plant optimal-
ity concepts, which on one hand has the advantage that it is
more general than some of the older models and lacks arti-
ficially set thresholds between growth stages, but does have
the disadvantage of being less thoroughly tested against field
observations. An ideal companion paper to this study would
be a comparison of different model structures with a constant
data-constraining framework, providing greater insights into
which parts of the model led to high errors or uncertainty.
However, given the limitations of the current study, we ac-
knowledge this limitation and report most error metrics as
relative to prior model runs in an attempt to isolate errors
created by the data and model fitting from those caused by
the model itself.
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7.4 Future data needs

The fact that our model shows a relatively good fit when con-
strained at multiple sites indicates that it would be possible
to obtain a single parameter set for one cultivar given the
same agricultural practices, so that the model can be fitted at
a small number of locations and then applied more widely.
However, the parameters are badly constrained and part of
the data we have used are not sufficiently accurate to allow
the use of the model at a wider variety of locations and cli-
mate conditions. Accurate yield data are essential but not suf-
ficient and must be accompanied by a growth time series. Our
results indicate that additional EC data are not necessary, es-
pecially given the cost of installing and maintaining a flux
tower. Instead, either biomass or LAI (or fAPAR or other
vegetation indices) data could be easier to obtain at multi-
ple locations. The belowground part of the model, describing
root nitrogen uptake, is only indirectly constrained by the ex-
isting data, and any observation of root mass and function
would have the capacity to add extra information, especially
time series information (Johnson et al., 2001).

The model in the version presented in this paper does not
include any water limitation to growth due mainly to a lack of
data constraint on any water-related parameters, as we found
that latent heat data from EC towers are not sufficient. Below-
ground measurements of not only root growth but also soil
water properties would again provide some of the necessary
information. Such belowground data, especially if supple-
mented by nutrient concentrations, can also help constrain a
more complex version of the nitrogen uptake scheme, which
could be improved to include more explicit soil-plant inter-
actions and additional processes such as biological nitrogen
fixation for legumes.

If this model, or any other similar process-based data-
constrained crop model, is to be used for scientific purposes
to understand the response of crops to climate across the
globe, the ideal data would be a global dataset, such as space-
based vegetation observations, combined with high-quality
field-level data that would ideally include growth time series,
final grain yield and information about agricultural practices.
However, if the model is to be used for agricultural purposes,
to aid decision making at the local level, high-quality field-
level data would be sufficient. A valuable evaluation in such
studies, not conducted here for brevity and due to a lack of
location-specific data, would be to compare the predictive ac-
curacy of the model against the predictive accuracy of a sta-
tistical average over the data. Such an analysis would reveal
whether and how much benefit is gained by using a data-
constrained model for predictions.
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8 Conclusions

In this paper, we present a method for data constraining a
process-based agricultural model to three sources of data:
eddy covariance flux measurements, space-based fAPAR and
regional yield estimates. We show that the data-constrained
model performs better than the model with prior parameter
estimates, especially in terms of uncertainty, and even though
the data used are in some cases not sufficient to fully con-
strain posterior parameters, they have sufficient information
values to be used for model parametrisation. We apply the
model to both maize and wheat sites and show that the model
performs equally well for both species. Parameters can be
shared between sites of the same species with a similar per-
formance to local parameters and reduced uncertainty. We
have also investigated the impact of the different datasets on
constraining the model, and we show that all three types of
data contribute to the model performance, but that if in a
data-limited world one of the data types was not available,
the model can be constrained reasonably well with fAPAR
and yield data only. There are still gaps in the data avail-
able for model parametrisation, which are also a limitation
to the models that can be parametrised, in particular in rela-
tion to water limitation on crops, and we believe that a model
parametrisation framework such as that presented here can
help identify those gaps and the data needed to further our
capacity to model crops.

Code and data availability. All model code used in this paper is
available from the authors upon request.

All data used in this paper are freely available and have been fully
referenced in the text.
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Appendix A: Site-level model simulations

Figures A1-A3 show site-level predictions for the one-site
and all-site model parametrisation. Figures A4—A6 show re-
sults from the site knock-out evaluation.

Geosci. Model Dev., 10, 1679-1701, 2017
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Figure A1. Gross primary production predictions for 1 year for all sites fitted using all available data at each individual site and at all sites
together. Grey shaded areas represent 95 % confidence intervals drawn from the posterior distribution.
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Appendix B: Photosynthesis model

In the current study, we use the standard biochemical model
of Farquhar et al. (1980) for C3 photosynthesis, using the pa-
rameter values from dePury and Farquhar (1997). The model
stipulates that the photosynthesis rate is defined as the mini-
mum of two rates, RuBisCO-limited photosynthesis, A,, and
electron-transport-limited photosynthesis:

A =min(A,, A)). (BI)

RuBisCO-limited photosynthesis is a function of the param-
eter Vemax2s, adjusted for temperature, and the internal CO;
partial pressure, c;:

ci—TIy

Ay =Vemax———.
v cmaxci+K,

(B2)
Here, Vimax is the adjusted for temperature value of Vemax2s
using the Arrhenius function (see Table Bl for defini-
tions and values of photosynthetic parameters). The electron
transport-limited rate is calculated as

Ap =g ST (B3)
SERTEES T

where J is the solution to the quadratic equation of

OJ% — (I, + Jn)J + Ldm = 0. (B4)

Here, Jy, is the temperature-adjusted value of the model pa-
rameter Jys, and I, is the PAR absorbed by the photosys-
tem:

a1-15

lh=1——>". (BS)

The parameters Vemax2s and Jyp5 are free parameters in the
model (Table 2) and are the values of carboxylation capacity
and electron transport at a temperature of 25 °C, while Vimax
and J,, are the parameters at the current temperature, calcu-
lated using the Arrhenius function.

The internal CO; partial pressure is calculated based on
the assumption that plants maintain a constant ratio between
atmospheric and internal partial pressure in the absence of
water stress:

Ci

A=t (B6)

Ca
where c, is the atmospheric CO; partial pressure and is a
model input and A is a free model parameter.

In the case of C4 photosynthesis, the standard biochemi-
cal model includes a third limitation, the PEP-carboxylation
rate (Collatz et al., 1992; Von Caemmerer, 2000), and we
have used a simplification of this model, adapted from Hax-
eltine et al. (1996) which uses different biochemical con-
stants to reach an equivalent photosynthesis rate using only
the RuBisCO- and electron transport-limited rates, which is
independent of CO, and temperature in non-extreme condi-
tions.

We calculate the PAR absorbed by the canopy as a sum of
absorbed direct and diffuse radiation:

I = Igirecto (1 — edireet™Aly 4 Ty (1 — ehdittuselAly = (B7)

where kgirect and kgifryse are light extinction coefficients for
the direct and diffuse components of radiation, respectively,
and Igirecto and lgifruseo are the two respective components of
PAR at the top of the canopy and are environmental drivers
for the model. The diffuse radiation coefficient is assumed
to be a constant and set to 0.7 (unitless) while the direct ex-
tinction coefficient varies with the day of year and latitude as
follows:

0.5
kdirect = (BS)
sin 8

where 8 is the sun elevation angle:
sin 8 = sin A sind + cos A cos§. (B9)

Here, A is the site latitude and § is the sun declination angle
calculated at noon, given the model time step of 1 day, as a
function of the day of the year (DOY):

(B10)

DOY + 284
8 =23.45sin (271’ u) .

365

Table B1. Photosynthesis model constants according to dePury and Farquhar (1997) for C3 photosynthesis and adapted from Haxeltine et al.

(1996) for C4 photosynthesis.

Symbol  Units  Description C3 value C4 value
Iy Pa CO, compensation point 3.69 0
K’ Pa Effective Michaelis—Menten constant of RuBisCO 73.8 94.61
® - Curvature of leaf response of electron transport to irradiance 0.7 0.7
f - Spectral correction factor 0.15 0.15

Geosci. Model Dev., 10, 1679-1701, 2017
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