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Abstract. A data assimilation capability has been built for
the NMMB-MONARCH chemical weather prediction sys-
tem, with a focus on mineral dust, a prominent type of
aerosol. An ensemble-based Kalman filter technique (namely
the local ensemble transform Kalman filter — LETKF) has
been utilized to optimally combine model background and
satellite retrievals. Our implementation of the ensemble is
based on known uncertainties in the physical parametriza-
tions of the dust emission scheme. Experiments showed that
MODIS AOD retrievals using the Dark Target algorithm can
help NMMB-MONARCH to better characterize atmospheric
dust. This is particularly true for the analysis of the dust out-
flow in the Sahel region and over the African Atlantic coast.
The assimilation of MODIS AOD retrievals based on the
Deep Blue algorithm has a further positive impact in the anal-
ysis downwind from the strongest dust sources of the Sahara
and in the Arabian Peninsula. An analysis-initialized fore-
cast performs better (lower forecast error and higher corre-
lation with observations) than a standard forecast, with the
exception of underestimating dust in the long-range Atlantic
transport and degradation of the temporal evolution of dust
in some regions after day 1. Particularly relevant is the im-
proved forecast over the Sahara throughout the forecast range
thanks to the assimilation of Deep Blue retrievals over areas
not easily covered by other observational datasets.

The present study on mineral dust is a first step towards
data assimilation with a complete aerosol prediction system
that includes multiple aerosol species.

1 Introduction

Among the different aerosol species, mineral dust is one of
the main components of the atmospheric aerosol loading and
is of great interest for a variety of reasons. Mineral dust plays
an important role in the earth’s energy balance and has a
relevant impact on economical activities, on the ecosystem,
on health, as well as on weather and climate (Knippertz and
Stuut, 2014). The strong dust storms occurring near emission
sources constitute a big hazard to air traffic and road trans-
port as they can reduce the visibility down to few metres.
However, dust does not affect only local economies: because
of its transport over thousands of kilometres, it has an impact
from local to global scales. Dust deposition provides nutri-
ents to continental and marine ecosystems. African dust for
example has a role in fertilization of the Amazon rainforest
(Yu et al., 2015), while dust deposition over oceans has im-
plications for sea biogeochemistry as the iron contained in
the dust particles is a nutrient for phytoplankton, whose pho-
tosynthetic activity in turn affects the carbon cycle (Jickels
et al., 2005). Dust has health implications both close to and
far from sources. For example, studies have shown the use-
fulness of dust aerosol climatologies in predicting part of the
year-to-year variability of the seasonal incidence of menin-
gitis in Niger (Pérez Garcia-Pando et al., 2014), while par-
ticulate matter measurements taken in areas far from sources
show that Saharan dust outbreaks have adverse effects of car-
diovascular and respiratory conditions (Mallone et al., 2011;
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Morman and Plumlee, 2013; Pandolfi at al., 2014). Min-
eral particles perturb the earth-atmosphere’s radiation bud-
get through their interaction with the short-wave radiation,
through scattering and absorption, and long-wave radiation,
through absorption and re-emission. Due to this redistribu-
tion of the energy, dust aerosols can have a strong impact
on atmospheric processes at short (weather) and long (cli-
mate) term periods, while they can affect atmospheric cir-
culations at large spatial scales (e.g. Asian monsoons; Lau
et al., 2006). Furthermore, this can generate feedback pro-
cesses since changes in weather and climate can in turn lead
to changes in the dust cycle.

Different types of ground-based (e.g., Kim et al., 2011;
Pey at al., 2013) and space-borne (e.g., Kaufman et al., 2005;
Luo et al., 2015) observations have been utilized to describe
the variability of atmospheric dust. However, due to either
insufficient spatial representativeness or accuracy, the spatio-
temporal features of dust aerosols are not fully captured
by the current observing system. Neither do models accu-
rately describe atmospheric and surface dust concentrations
(Huneeus et al., 2011). High uncertainties are also in our
knowledge of the optical and micro-physical properties of
dust, and in our representation of its vertical structure. The
latter has implications for the radiation’s budget and trans-
port. On the other hand, an accurate quantification of dust’s
spatial and temporal distribution is key in correctly charac-
terizing the effect that it has on the earth’s energy balance, as
well as in improving the skill in forecasting its concentrations
in the atmosphere as well as in forecasting the weather (Pérez
Garcia-Pando at al., 2006; Grini et al., 2006; Chaboureau et
al., 2011).

Regional and global centres, predicting the most important
aerosol species or dust only, participate in different model
inter-comparison initiatives like the Aerosol Comparisons
between Observations and Models (AeroCom; Tsigaridis et
al., 2007) project, the International Cooperative for Aerosol
Prediction (ICAP; Sessions et al., 2015) initiative, and the
WMO Sand and Dust Storm Warning Advisory and Assess-
ment System (SDS-WAS; Terradellas et al., 2015). Multi-
model ensemble spreads give an indication of large uncer-
tainties in the modelling schemes and confirm the need for
a better characterization of aerosols. Relatively recently be-
cause of these large uncertainties, the atmospheric compo-
sition community has begun to make use of data assimila-
tion (DA) for better characterization and prediction of atmo-
spheric constituents such as aerosols and trace gases (Boc-
quet et al., 2015). Though their dynamic is mainly driven by
forcings such as emissions, recent studies showed that the us-
age of observations through data assimilation has improved
significantly the accuracy of short-term forecast and the
global monitoring of both aerosols and trace gases (Benedetti
et al., 2009; Elbern and Schmidt, 2001). Since the first exper-
iments in the early 2000s, the assimilation of aerosol obser-
vations is now operational in some of the main aerosol fore-
casting centres (Sessions et al., 2015). Zhang et al. (2014)
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have highlighted in particular the importance of a combined
assimilation of satellite products for aerosol forecast.

The Earth Sciences Department of the Barcelona Super-
computing Center (ES-BSC) is implementing a gas-aerosol
module able to predict atmospheric composition at differ-
ent spatial and temporal scales within the NMMB (Non-
hydrostatic Multi-scale Model on the B grid; Janjic and Gall,
2012) state-of-art meteorological model. This modelling sys-
tem is known as the Multiscale Online Nonhydrostatic At-
mospheRe CHemistry mode (NMMB-MONARCH). We re-
port here on the extension of NMMB-MONARCH with a
data assimilation functionality using satellite aerosol optical
depth. NMMB-MONARCH version 1.0, as in Pérez et al.
(2011, where the model was previously named NMMB/BSC-
CTM), considers dust only, but other aerosols are being im-
plemented (Spada et al., 2017). The focus of this work on
mineral dust is justified by the operational services provided
by NMMB-MONARCH. This model provides an operational
dust forecast for the Barcelona Dust Forecast Centre under an
initiative of the World Meteorological Organization. It par-
ticipates in the multi-model dust ensemble of the aforemen-
tioned ICAP initiative, providing daily global dust forecasts
of up to 120 h. It also provides daily regional forecasts of up
to 60 h to the WMO SDS-WAS system. Before this work, the
system did not have an aerosol data assimilation capability
and dust was produced uniquely from model estimated sur-
face emission fluxes. The present study on mineral dust is a
first step towards data assimilation with a complete aerosol
prediction system that includes multiple aerosol species (not
only dust but also sea salt, sulfate, and organics).

Previous studies of assimilation of dust aerosol only have
been conducted for the Chinese Unified Atmospheric Chem-
istry Environment — Dust (CUACE/Dust) forecast system
(Niu et al., 2008; Wang and Niu, 2013). These studies
have used variational data assimilation techniques (3D-Var)
which require, in their most practical implementation, pre-
calculated and constant in time model error structures. Al-
ternatively, ensemble-based techniques use flow-dependent
model error amplitudes and structures which evolve during
forecast and, in theory, should be able to capture better in-
stabilities in the background flow (Evensen, 1994; Kalnay et
al., 2007). Dust AOD is currently assimilated at the UK Met
Office with a hybrid variational data assimilation technique
(hybrid 4D-Var).

In this work we present the coupling of NMMB-
MONARCH with an ensemble-based technique known as lo-
cal ensemble transform Kalman filter (LETKF; Hunt et al.,
2007; Miyoshi and Yamane, 2007). The LETKF scheme has
been shown to be particularly suitable for the assimilation
of aerosol information since it has been observed by An-
derson et al. (2003), Shinozuka and Redemann (2011), and
Schutgens et al. (2013) that aerosol fields have limited spa-
tial correlations. Long-range transport of dust could be an
exception to this. Since detailed studies of spatial correlation
length scales for dust long-range transport are still missing in
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the literature, in this work we assume that what has been de-
rived (limited spatial correlations) in general for aerosols is
valid for dust. The utility of ensemble-based techniques for
global aerosol simulations has been shown in previous stud-
ies (Schutgens et al., 2010a; Sekiyama et al., 2010; Rubin
et al., 2016; and more recently Yumimoto et al., 2016). The
main novelty in our study is the creation of the ensemble,
our implementation is based on known uncertainties in the
physical parametrizations of the sophisticated dust emission
scheme used by the NMMB-MONARCH model, as well as
in the use of observations particularly relevant for dust appli-
cations, like MODIS Deep Blue.

The NMMB-MONARCH chemical weather prediction
system is described in more detail in Sect. 2, with empha-
sis on its dust module. A description of the data assimilation
scheme and of the assimilated observations follows respec-
tively in Sects. 3 and 4. We report then in Sect. 5 about the
characteristics of the simulations that we have run, in Sect. 6
about the evaluation methodology that we have followed, and
in Sect. 7 about the evaluation results of our simulation ex-
periments. The final section concludes the paper with a sum-
mary of this development, the main results achieved, and fu-
ture perspectives.

2 The NMMB-MONARCH model and its mineral dust
component

The ES-BSC is implementing a new gas-aerosol mod-
ule within the NMMB meteorological model from the
Unites States National Centers for Environmental Prediction
(NCEP). The new modelling system is known as NMMB-
MONARCH (Pérez et al., 2011; Jorba et al., 2012; Spada
et al.,, 2013; Badia et al., 2016, where it was previously
named NMMB/BSC-CTM), and is developed in collabora-
tion with NCEP and other research institutions. The chem-
istry (aerosols included) and meteorology are fully online in-
tegrated. NMMB-MONARCH is able to work with a wide
range of spatial scales thanks to its unified non-hydrostatic
dynamical core, keeping consistent parametrizations at dif-
ferent spatial and temporal scales. Furthermore, the dy-
namical core and the coupled modules are computationally
highly efficient, satisfying current and projected operational
requirements. The rest of this section will briefly describe
some characteristics of the dust component of NMMB-
MONARCH, with particular focus on the emission scheme.

The dust emission scheme implemented in NMMB-
MONARCH follows the empirical relationship of Marti-
corena and Bergametti (1995) and Marticorena et al. (1995)
according to which the vertical dust flux is proportional to
the horizontal sand flux. The horizontal to vertical flux ra-
tio reflects the availability of dust in four soil populations
(clay, silt, fine/medium sand, and coarse sand) (Tegen et al.,
2002). The horizontal sand flux is modelled as the flux of the
saltating particles H simulated according to White (1979)
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and is proportional to the third power of the wind friction
velocity. A soil moisture-dependent threshold on the friction
velocity determines the velocity above which the soil parti-
cles begin to move in horizontal saltation flux. This thresh-
old is dynamically estimated according to soil characteris-
tics. Soil moisture effects are included following Fécan et
al. (1999) through the soil moisture correction parameter in-
cluded in the expression for the threshold on the friction ve-
locity. A sectional approach is used for the transport of dust
particles, i.e. the dust size distribution is decomposed into
small size bins. More exactly, dust is modelled using eight
dust size bins varying from 0.1 to 10 microns, and, within
each transport bin, dust is assumed to have a time-invariant
lognormal distribution (Zender et al., 2003). The total ver-
tical flux mass is distributed among the dust transport bins
according to a specific dust distribution at sources. NMMB-
MONARCH uses a distribution over sources derived from
D’ Almeida (1987) which assumes that the vertical dust flux
is size distributed according to three lognormal background
source modes. More explicitly, the dust vertical mass flux Fp
(kgs~'m~2) in a given transport bin b at each grid cell is
given by

3
Fy=CS(1—=V)aH> mMy, b=1...8, (1)
i=0

where S is a source erodibility factor defined on bare ground
surfaces, representing the probability of having accumu-
lated sediments in the given grid cell that are potential dust
sources; (1 — V) is the grid’s fraction of bare soil; « (m~h)
is the horizontal to vertical flux ratio calculated for four soil
population classes (clay, silt, fine/medium sand, and coarse
sand); H (kg s m™1) is the horizontal sand flux; M; i is
the mass fraction of background source mode i carried in a
transport bin k calculated following Zender et al. (2003), and
weighted by a specific background source mode coefficient
m;; and C is a global tuning factor empirically set to 0.768,
which is meant to compensate for the uncertainty associated
with the different components of Fi. More details about the
above formulation of dust emission can be found in Pérez et
al. (2011).

The mineral dust module has been extensively evaluated
in studies at global and regional scales (Pérez et al., 2011;
Haustein et al., 2012; Huneeus et al., 2011, 2016), showing
that its evaluation scores lie in the upper range of the AERO-
COM model evaluation performance scores. However, these
evaluation efforts confirmed, similarly to other modelling
systems, different sources of uncertainty in the NMMB-
MONARCH dust modelling.

3 The data assimilation scheme

We have coupled NMMB-MONARCH with the LETKF
scheme (Hunt et al.,, 2007; Miyoshi and Yamane, 2007;
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Schutgens et al., 2010a, 2013) with four-dimensional ex-
tension as described in Hunt et al. (2007), in order to es-
timate optimal initial conditions for our dust model. The
overall scheme implements an iterative approach consisting
in a forecast step and state estimation step. The state es-
timation step combines information from mineral dust ob-
servations and a prior first guess, or background from our
model. A short-term forecast is used as background in-
formation. The background incorporates information from
past observations; therefore, the analysis is estimated using
both current and past observations. LETKF is a develop-
ment of the ensemble-based transform Kalman filter (ETKF;
Bishop et al., 2001) and of the local ensemble Kalman filter
(LEKEF; Ott et al., 2004), and is particularly suited to high-
performance computing applications. A very attractive fea-
ture of an ensemble-based technique is the use of a flow-
dependent background error covariance, which is derived
from the ensemble of model states at the assimilation time,
and evolves during forecast. At any given time in fact the
state estimate is represented by an ensemble of system states
and its uncertainty is derived from the ensemble. LETKF has
the advantageous feature that it applies localization, i.e. it
performs the analysis locally (at each grid point only obser-
vations within a certain distance are assimilated), allowing
the global analysis to explore a much higher-dimensional
space than the subspace spanned by the ensemble (whose
dimensionality is limited by the number of ensemble mem-
bers). Localization also reduces the effect of spurious long-
range covariances, effectively eliminating them after a given
distance. This is particularly suitable for the assimilation of
aerosol information since, as mentioned in the introduction,
it has been observed that aerosol fields have limited spatial
correlations (~ 100km). Schutgens et al. (2010a, b) have
already shown the positive impact of assimilating aerosol
ground station observations using a LETKF assimilation sys-
tem for the SPRINTARS model, while Sekiyama et al. (2010)
used it to assimilate CALIOP vertical profiles in the MASIN-
GAR model and Dai et al. (2013) used it to ingest MODIS
observations in the NICAM-SPRINTARS model.

Here we discuss the basic concepts behind the LETKF al-
gorithm; a more detailed description of the scheme can be
found in Hunt et al. (2007). Consider a state vector x of the
dynamic variables of a system (for our application these are
dust mass mixing ratios). The mean analysis increment at a
grid point is estimated as a linear combination of the back-
ground ensemble perturbations X°:

¥ =%+ X w, )

where we use the superscripts “a” and “b” to denote respec-
tively the analysis and background state vector, and where
the ith column of the matrix X? is x?® —)?b, {i=1,2,...,k}
with k ensemble members, i.e. the difference between the ith
ensemble forecast xP@) and the ensemble forecast mean x°.
w is termed the “weight” matrix specifying what linear com-

bination of the background ensemble perturbations is added
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to the background mean to obtain the analysis ensemble. The
“weight” matrix is given by

w=[Y'R'Y° + (k — DIIT'YPR™! (30 — 3P), (3)

where Y is the background ensemble perturbation matrix in
observation space (or background observation ensemble per-
turbation matrix), R is the observation error covariance ma-
trix which we assume diagonal, I is the identity matrix, y°
is the vector of observations, and ib is the mean background
observation ensemble. The background observation ensem-
ble is obtained by applying the observation operator A(-) to
the ensemble forecast members x?@ i.e. y?@) = p(x?®).
LETKF uses R-localization, i.e. the localization is per-
formed in the observation error covariance matrix, making
the influence of an observation on the analysis decay gradu-
ally toward zero as the distance from the analysis location in-
creases. To achieve this, the observation error is divided by a

distance-dependent function that decays to zero with increas-
_ dist?
ing distance: ¢ 2 , where “dist” is the distance in the grid

space between an observation and the model grid in which
the analysis is calculated, and / is the horizontal localization
factor.

3.1 Ensemble perturbations

We run the data assimilation scheme under an imperfect
model scenario assumption: each ensemble member is run
with a different perturbation of uncertain model parameters
in the dust emission scheme. In dust modelling, the emission
source term is a particularly large contributor to model error
(Huneeus et al., 2011). In the case of NMMB-MONARCH
one of the components of the uncertainty in the emission term
has been identified for example in the vertical flux distribu-
tion at sources (Gama et al., 2016).

The model ensemble is created by perturbing the vertical
flux of dust in each of the eight dust bins. As described in
Sect. 2, NMMB-MONARCH follows a sectional approach
for dust, i.e. the size distribution is decomposed into small
size bins that from bin 1 to bin 8 go from 0.1 to 10 um with
division intervals at 0.18, 0.3, 0.6, 1, 1.8, 3, and 6 um. This
is equivalent to perturbing the total vertical flux as well as its
size distribution at sources. The perturbations are extracted
imposing some physical constraint: correlated noise is used
across the bins so that noise correlation decreases with in-
creased difference of the normalized cubic radius among the
bins; the noise is applied multiplicatively and has mean 1
and standard deviation of 30 % of the unperturbed value in
each bin; and the final distribution is unimodal. Figure 1
shows how the vertical flux is perturbed in our ensemble
simulations. Additionally, we have perturbed the threshold
friction velocity for dust emission by extracting a multiplica-
tive random factor from a normal distribution with mean 1
and spread 0.4. This considers the uncertainty of the model
with respect to both surface winds and soil humidity. At low
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Figure 1. Distribution of the mass vertical flux at sources across the
eight dust transport bins for the different ensemble members in dif-
ferent colours, where the bin sizes from bin 1 to bin 8 go from 0.1
to 10 um with division intervals at 0.18, 0.3, 0.6, 1, 1.8, 3, and 6 um.
The distribution derived from D’Almeida (1987), and used in the
standard forecast, is the dashed red line, with horizontal bars indi-
cating the standard deviation of the noise used to create the pertur-
bations. The mean of the ensemble perturbations is the dash-dotted
line.

resolution, model surface winds are typically underestimated
over dust sources. Also, the model uses the scheme of Fécan
et al. (1999) to calculate the increase in the threshold friction
velocity with soil humidity, which is typically overestimated
in arid regions (Haustein et al., 2015). The spin-up period
for the ensemble ensures that perturbations applied at the
sources propagate everywhere in the globe. For this reason
at this first stage of development of our ensemble system we
did not consider a combined meteorology and source pertur-
bation necessary. The structure of our source perturbations,
for both types of perturbations, is temporally and spatially
constant.

3.2 Observation operator

Our state vector is the dust mass mixing ratios. Therefore an
observation operator is needed to map the ensemble mean
state vector into the observation space. The simulated AOD
at wavelength A is calculated at a given observation location
according to the following linear operator:

8
3
AOD, = E —— M Qjp, “4)
= 4pvrp

where pp (kg m~?) is the particle mass density, rp (m) is the
effective radius, My, (kgm~2) is the dust column mass load-
ing calculated from each dust bin mixing ratio, and Q) is the
extinction efficiency factor which is calculated for using the
Mie scattering theory assuming dust spherical, non-soluble
particles, and, within a bin, a lognormal distribution for dust
with a geometric radius of 0.2986 um and a standard devia-
tion of 2.0.
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When using in the state vector the total mass mixing ratio,
as we will explain in Sect. 5, an ensemble averaged extinc-
tion efficiency is calculated as in Schutgens et al. (2010b) as
an average of the extinction efficiency of the individual bins
weighted by the bin mixing ratios.

Hereafter, when we will use the term AOD without speci-
fying the wavelength, we imply that we refer to aerosol opti-
cal depth at a wavelength of 550 nm, which is the most com-
monly reported value in the literature.

4 Observational data
4.1 MODIS Dark Target and OMI

We consider for assimilation the MODIS Level 3 AOD prod-
uct produced by the US NRL and the University of North
Dakota (hereafter called NRL MODIS). The NRL MODIS
product is produced for the purpose of assimilation into
aerosol transport models (Zhang and Reid, 2006; Hyer et al.,
2010; Shi et al., 2011), post-processing the Level 2 MODIS
Dark Target product from the so-called Collection 5 (Remer
et al., 2008; Levy et al., 2007a, b), and is available over both
land and ocean. The MODIS Level 2 product is an average of
the 1 km by 1 km retrievals (at nominal resolution) generated
by the Dark Target algorithm applied to top-of-atmosphere
reflectances observed by the MODIS sensor onboard NASA
polar-orbiting satellites Terra and Aqua. The NRL MODIS
Level 3 product is filtered and corrected in order to eliminate
outliers and gross systematic biases, spatially aggregated into
a 1° by 1° mesh in order to avoid the assimilation of sub-
grid features, and an error is estimated for each observation.
The product is generated every 6h at 00:00, 06:00, 12:00,
and 18:00 UTC and is based on MODIS Level 2 observa-
tions in a 6 h interval around those times. The retrieval errors
estimated by NRL/University of North Dakota were used for
the observation errors. They include the instrumental error
variance and the spatial representation error variance. Fol-
lowing the approach in Zhang et al. (2008), we assume un-
correlated observation errors. These observations pertain to
the total atmospheric aerosol column, not just to dust AOD.
The selection of observations in dust-dominated conditions
is performed using retrievals of the Angstrom exponent (AE)
from the original MODIS Level 3 product (Hubanks et al.,
2008), for information about the size of the particles, and
using retrievals of the Aerosol Absorbing Index (AAI) from
the Ozone Monitoring Instrument (OMI) sensor (Torres et
al., 2007), for information about the absorption character-
istics of the particles. Angstrom exponent (AE) values are
based on quality-assurance-weighted 470 and 660 nm opti-
cal depths over land, and 550 and 865 nm optical depths over
sea. Observations are selected when daily MODIS Aqua or
Terra products contain a value for AE < 0.75 and daily OMI
products contain a value for AAI > 1.5. Figure 2 shows an
example of the NRL MODIS Level 3 product for a day of
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Figure 2. Aerosol optical depth (top) and its associated observation
error (bottom) for 10 May 2007 for the NRL MODIS Level 3 prod-
uct after the application of a filter for dust-dominated conditions.

May 2007 after the filter for dust-dominated conditions is
applied.

4.2 MODIS Deep Blue

The MODIS Dark Target product does not provide informa-
tion over very bright reflective surfaces, including deserts, as
the retrieval algorithm assumes low surface albedo. We con-
sider the assimilation of the MODIS Deep Blue Level 3 daily
AQOD product from Collection 6 whose algorithm retrieves
AQD also over bright arid land surfaces, such as deserts. The
Collection 6 product covers all cloud-free and snow-free sur-
faces, and can be potentially very useful for mineral dust ap-
plications as it is able to provide an observational constraint
close to dust sources. The Deep Blue algorithm uses top-of-
atmosphere reflectances at 412 and 470 nm. In the presence
of heavy dust load the reflectance at 650 nm is also used. The
algorithm exploits the fact that, over most surfaces, a darker
surface and stronger aerosol signal is seen in the blue wave-
length range than at longer wavelengths. The quality of the
MODIS Deep Blue AOD product is improved in Collection 6
compared to Collection 5, as the work of Sayer et al. (2014),
based on Level 2 retrievals, showed. Similar findings, for the
northern African and Middle East deserts, were reported by
Gkikas et al. (2015), who used Level 3 retrievals over the
period 2002-2014.

We have applied to this product the same filter for dust-
dominated conditions described in Sect. 4.1. In addition we
have masked out Level 3 retrievals obtained with less than
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Figure 3. Aerosol optical depth (top) and its associated observation
error (bottom) for 10 May 2007 for the MODIS Deep Blue Col-
lection 6 Level 3 product after the application of a filter for dust-
dominated conditions.

30 Level 2 retrievals, since Gkikas et al. (2016) showed
that the agreement between MODIS-AERONET is improved
when the sub-pixel spatial representativeness is increased.
The MODIS Deep Blue observations are not corrected for
possible systematic biases; however, we are aware that for
future applications we should address any possible bias in
the product. It is important to notice that the Level 3 product
is an aggregation of Level 2 retrievals that is produced us-
ing the highest-quality retrievals (i.e. retrievals with quality-
assurance flag value 3). Furthermore, we have applied a qual-
ity control to all the assimilated observations based on nor-
malized first-guess departures. As a proxy for the normaliza-
tion factor, we have used the standard deviation of first-guess
departures.

A study by Sayer et al. (2014) shows that the highest-
quality data have an absolute uncertainty of approximately
(0.086 4 0.56 AODss0) / AMF, where AMF is the geomet-
ric air mass factor with a typical AMF value of 2.8. We
have used this quantification of the uncertainty for the Level
3 product. Furthermore, we have defined the representation
component of the error as the standard deviation of the val-
ues used in the aggregated product. Although a more accu-
rate treatment for the representation error could be envisaged
following for example the approach of van Leeuwen (2014),
we deem small the impact that our approximation has on the
analysis. Figure 3 shows an example of the MODIS Deep
Blue Collection 6 Level 3 product for a day of May 2007
after the filter for dust-dominated conditions is applied.
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Table 1. Characteristics of the simulation runs.

Experiment Ensemble Dust initial conditions ~ Spin-up  Dust initial conditions
name configuration at 00:00UTConday 1 period at 00:00 UTC after day 1
Control No Cold start 1 month FC+424

from previous day run
ENS-free-run  Yes Warm start 11days FC+24

from Control

of the individual members
from previous day run

DA-NRL Yes Warm start

from ENS-Free-run

None Analysis at 00:00 UTC
of the individual members
from previous day DA cycle

DA-NRL-DB Yes Warm start

from ENS-Free-run

None Analysis at 00:00 UTC
of the individual members
from previous day DA cycle

AN-initialized No Warm start

from Control

None Ensemble mean analysis
from DA-NRL-DB

The number of MODIS Deep Blue and Dark Target obser-
vations used over the experimental period is shown in Fig. 4.

4.3 AERONET

For validation purposes we have used observations from
the ground-based stations of the global Aerosol Robotic
Network (AERONET; Holben et al., 1998) of direct-sun
photometers. These observations have not been assimilated
in our test simulations. In particular, we have used their
retrievals of column-integrated aerosol optical depth from
direct-sun photometric measurements. The retrievals are ob-
tained observing the extinction of direct solar radiation due
to the presence of aerosols in the atmosphere. For this rea-
son AERONET retrievals are not available under cloudy sky
conditions and during night-time. These observations suffer
from a relatively sparse spatial coverage but are very valu-
able for validation purposes as their uncertainty in these re-
trievals is estimated to be between 0.01 and 0.02 (Eck et
al., 1999). Several studies have in fact used the AERONET
data for validation purposes, or for the correction of bi-
ases in satellite measurements (Zhang and Reid, 2006; Hyer
et al., 2010). We considered cloud-screened and quality-
assured (Level 2.0) direct-sun AOD retrievals between 440
and 870 nm. AERONET AOD at 550 nm was obtained using
the Angstrém law.

5 Numerical simulation set-up

We have run a set of different experiments (listed in Table 1):
a control experiment to produce a 5-day forecast (hereafter
called the Control experiment) with the same operational
configuration (but at a coarser resolution) and version that
provides daily global forecast to the aforementioned ICAP

www.geosci-model-dev.net/10/1107/2017/

Counts of assimilated observations

Figure 4. Number of NRL MODIS and MODIS Deep Blue Level 3
observations assimilated between May and August 2007.

multi-model ensemble, and which is initialized for dust from
the previous day 24 h forecast (FC 4- 24). Assimilation exper-
iments were run with NRL MODIS AOD (hereafter called
the DA-NRL experiment) and with NRL MODIS AOD and
MODIS Deep Blue AOD (hereafter called the DA-NRL-DB
experiment) with a pre-processing to the observations as de-
scribed in Sect. 4. Additionally, we have also run free ensem-
ble simulations without assimilating any observation (here-
after called ENS-free-run). We have also run a 5-day fore-
cast experiment initialized from the analysis produced by the
DA-NRL-DB experiment (hereafter called the AN-initialized
experiment) in order to evaluate the impact of the analysis on
the forecast. The Control experiment was run for 5 months in
the spring/summer period of 2007 (from 1 April to 31 August
2007) starting from a cold start for dust and with a spin-up
period of 1 month (April 2007) which is excluded from the
analysis of the results. Also, the ensemble is spun up before
data assimilation is applied.

Geosci. Model Dev., 10, 1107-1129, 2017
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We use a 24 h assimilation window and observations are
considered for assimilation at four time slots within the win-
dow, at 00:00, 06:00, 12:00, and 18:00 UTC. The system uses
as first guess a 1-day forecast with output every 6 h. Simu-
lated observation and background departures are calculated
at each time slot. The time slots are exactly the ones corre-
sponding to the times in which NRL MODIS AOD observa-
tions are available. We are using the LETKF implementation
with a four-dimensional extension as described in Hunt et
al. (2007). The state vector comprises the mixing ratio at all
the time slots considered and so does the observation AOD
vector. Background observation means y; and perturbation
matrices Y are formed at the various time slots j when the
observations are available. They are then vertically concate-
nated to form a combined background observation mean y
and perturbation matrix Y.y and Y are used for the calcu-
lation of a weight matrix w using the standard LETKEF, i.e.
we calculate a single w based on all innovations throughout
the day. This same w is then applied to the state vector at
different times throughout the assimilation window.

We have tuned different aspects of the data assimilation
system, including testing the number of ensemble members,
different perturbations of the ensemble, and a different state
vector for the control variables. Using 24 ensemble mem-
bers did not produce a significant impact on the dust analysis
compared to the use of 12 ensemble members. This could
be explained by our setting of a localization factor which
makes the influence of an observation on the analysis decay
gradually toward zero as the distance from the analysis loca-
tion increases. We have set the horizontal localization factor
to the value 1 in all the data assimilation experiments. This
means that after two grid points the localization function is
very close to zero. The value chosen is in the range of the
ones used in previous studies such as Rubin et al. (2016)
and Yumimoto and Takemura (2011). Covariance localiza-
tion in fact effectively eliminates background spatial correla-
tions after a certain distance, and might have solved possible
sampling errors introduced by the low dimensionality of the
12-member ensemble compared to the 24-member ensemble.
We also apply vertical localization following the Miyoshi and
Yamane (2007) approach of localizing the error covariance
vertically for radiance assimilation. The observation error is
divided by the square of the model AOD normalized sensi-
tivity function.

We have tested the usage of different perturbations of the
dust emission scheme: a perturbation of the mass vertical flux
per dust bin, or a perturbation of both the mass vertical flux
and the threshold on the wind friction velocity. As we show
in the next section, the latter configuration was deemed better
as it spans a larger space of possible system states.

We have tested two different options for the state vector: a
control variable consisting of the mixing ratio of eight indi-
vidual dust bins or the total dust mixing ratio defined as the
sum of the eight dust bins at each grid point and for all the
vertical levels. In the latter case the mixing ratios for the in-
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dividual dust bin after data assimilation are determined from
the background, i.e. from their relative fractions before as-
similation. The observation operator is calculated using the
original mixing ratio following the approach for the observa-
tion operator in Schutgens et al. (2010b). The tests that we
have performed show that representing individually the bins
in the state vector does not have any significant impact on
the analysis, while it increases the computational cost of the
assimilation compared to using the total mixing ratio. More-
over, the use of a bulk approach is common in systems as-
similating total AOD values as the observations are not able
to fully constrain the individual bin profiles. We should note
that this choice of state vector makes still meaningful the cre-
ation of the ensemble perturbing the vertical flux for the in-
dividual bins, as this allows us to express in the background
the uncertainty in the size distribution at sources, and to span
a larger space of possible system states.

In the next section we show the results of assimilating
NRL MODIS NRL and MODIS Deep Blue observations us-
ing 12 ensemble members obtained by perturbing the mass
vertical flux per bin at sources together with the threshold on
the wind friction velocity, as described in Sect. 3.1, and using
the total dust mixing ratio as the analysis variable in the state
vector. All simulations were run on a global domain with 40
hybrid pressure-o layers, 5 hPa top pressure, and a horizontal
resolution of 2.8° by 2°. The NCEP final analysis at 1° by 1°
at 00:00 UTC was used to initialize the meteorology at every
forecast run.

6 Methodology for the evaluation of the simulations

The evaluation of the simulations is done in three stages:
(a) an internal check of the data assimilation system; (b) eval-
uation of the analysis using as reference independent obser-
vations; (c) evaluation of a 5-day forecast with and without
analysis initialization using as reference independent obser-
vations.

The consistency of the data assimilation system is checked
through considerations of statistics of the ensemble, of simu-
lation departures from assimilated observations, and of the
temporal mean of assimilation increments. The ensemble
mean and the coefficient of variation for the ensemble are cal-
culated with and without data assimilation. The coefficient of
variation is defined as the ratio of the standard deviation of
the ensemble to the ensemble mean. Additionally, statistics
for first-guess (FG) and analysis (AN) departures are cal-
culated, where departures are defined as the difference be-
tween assimilated observations and simulations (first-guess
or analysis), while mean increments are defined as the tem-
poral mean of differences between analysis and first guess at
the different time slots of the assimilation window.

The evaluation of analysis and forecast with respect to
independent observations are performed in terms of statis-
tics of model field errors ¢; from observations, where ¢; =

www.geosci-model-dev.net/10/1107/2017/
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Table 2. Regional domains and respective groups of AERONET stations used for validation purposes.

Regional domain (short name)

AERONET stations

Long Atlantic transport (LongAtl)
Short Atlantic transport (ShortAtl)
Sub-Sahel (SubSahel)

Sahara (Sahara)

Extended Mediterranean (ExtMediter)

Middle East (MiddleEast)
Central Asia (CenAsia)

La_Parguera, White_Sands_HELSTEF, Univ_of Houston
Capo_Verde, Dakar, La_Laguna

IER_Cinzana, Banizoumbou, Ilorin, Agoufou
Tamanrasset_INM

Saada, FORTH_CRETE, Lecce_University, Rome_Tor_Vergata
Villefranche, Avignon, Evora, Barcelona, Granada
SEDE_BOKER, Solar Village, Hamim

East Asia (EastAsia)

AERONET stations and regional domains
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Figure 5. Map of AERONET stations and of the different regional domains used for validation purposes. The regional domains are indicated
with different colours: Long Atlantic transport (LongAtl) in blue, Short Atlantic transport (ShortAtl) in red, Sub-Sahel (SubSahel) in orange,
Sahara (Sahara) in green, Extended Mediterranean (ExtMediter) in yellow, Middle East (MiddleEast) in pink, Central Asia (CenAsia) in

granada, and East Asia (EastAsia) in cyan.

m; — oj, with index i indicating an instance of observation
o; and where m; is the model field in observation space,
bi-linearly interpolated at the observation location. We con-
sider the root mean square error (RMSE), the mean er-
ror (BIAS), the standard deviation of the error (SD), the
fraction gross error (FRGE), and the correlation coefficient
(CORR) of the model AOD compared to either quality-
assured (Level 2.0) AERONET or satellite retrievals. The

FRGE = 237 |25
set of statistics for the error as it behaves symmetrically with
respect to underestimation and overestimation without em-
phasizing the outliers, and is normalized to the sum of ob-
servation and simulation values. The SD of the error, though
it can be derived from the other statistics, is also reported so
as to make more explicit the changes in the bias-free mean
square error and aid the interpretation of the evaluation re-
sults. The above set of evaluation statistics are calculated for
measurements from individual ground-based stations, groups

is added to the most widely used
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of stations, regional domains observed by satellite sensors,
and globally.

For AERONET AOD measurements dust-dominated con-
ditions are identified using the approach of Basart et al.
(2009) as follows: AOD is classified as “Dust” AOD when
the associated AE < 0.75; we set “Dust” AOD to 0 when
the associated AE > 1.3; we identify a mixed aerosol type
when the associated 0.75 < AE < 1.3. The latter values are
excluded from the validation. We use the AERONET AOD
value closest to the model time step and within a 30 min
interval. For satellite AOD retrievals we use the set of satel-
lite observations quality-controlled and filtered for dust-
dominated conditions used in the assimilation step. We use
these satellite observations to validate uniquely the forecast
range following the assimilation window. We show the fore-
cast evaluation statistics corresponding to measurements and
simulations at 12:00 UTC only, so that they refer to an ap-
proximately equal number of pairs of observations and model
simulated values at each forecast lead time that we are con-
sidering. Hence a smaller number of AERONET observa-

Geosci. Model Dev., 10, 1107-1129, 2017
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Figure 6. Dust optical depth averaged for the month of May 2007 for the Control (top left), ENS-free-run (top right), DA-NRL (centre left),
and DA-NRL-DB (centre right) experiments, and dust optical depth difference between the DA-NRL (bottom left), DA-NRL-DB (bottom

right), and ENS-free-run experiment.

tions (at 12:00 UTC only) are used to verify the forecast com-
pared to the ones used in the evaluation of the analysis.

We have identified eight regions of interest for the vali-
dation purposes in our study period, namely Long Atlantic
transport (LongAtl), Short Atlantic transport (ShortAtl),
Sub-Sahel (SubSahel), Sahara (Sahara), Extended Mediter-
ranean (ExtMediter), Middle East (MiddleEast), Central
Asia (CenAsia), and East Asia (EastAsia). These names do
not necessary correspond to the conventional names of ex-
act geographical locations but are meant to identify regional
domains in a convenient way according to dust intrusions
and to group observational stations. Most of the regional do-
mains contain ground-based stations with a minimum num-
ber of observations during the study period (stations with
fewer than 30 “Dust” observations are discarded), with the
exception of Central and East Asia. The ground-based sta-
tions are listed in Table 2 and shown in the map in Fig. 5

Geosci. Model Dev., 10, 1107-1129, 2017

together with regional domains used for the validation of the
experiments against either ground-based or satellite observa-
tions.

7 Evaluation results
7.1 Ensemble, departure, and increment statistics

We compare here the dust fields in the Control, ENS-free-
run, DA-NRL, and DA-NRL-DB experiments in terms of
mean values and, when applicable, ensemble spread. Fig-
ure 6 shows the dust AOD values averaged over a month of
the study period for the four above experiments, and the dif-
ference in AOD between the data assimilation experiments
and the ENS-free-run. By visual inspection it can be no-
ticed that the ensemble mean of the ENS-free-run experiment

www.geosci-model-dev.net/10/1107/2017/
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Figure 7. Coefficient of variation for the month of May 2007 for the ENS-free-run (top), DA-NRL (centre), and DA-NRL-DB (bottom)
experiments, when the ensemble is created perturbing the emitted mass vertical flux for each dust bin and the threshold on the friction

velocity generating dust horizontal flux.

compares well with the Control experiment, which suggests
that the ensemble perturbations are altering only to a small
extent the model mean state as defined by a standard run.
The analysis clearly shows conspicuous changes in the dust
field compared to the Control experiment or the ENS-free-
run. Figure 7 shows the coefficient of variation for AOD in
the

ENS-free-run and the data assimilation experiments. Data
assimilation clearly lowers the values of the coefficient of
variation in the regions where observations are present, with
values lower for the DA-NRL-DB than for the DA-NRL ex-
periment, which indicates a reduction of the ensemble spread

www.geosci-model-dev.net/10/1107/2017/

due to the assimilated observations. The high values of the
coefficient of variation in the Southern Hemisphere, with or
without data assimilation, are due to the perturbation of the
dust sources present in the southern part of the globe. These
values are not negligible due to differences among the en-
semble members normalized to small dust AOD values. The
ensemble of Fig. 7 (and Fig. 6) is created by perturbing the
emitted mass vertical flux for each dust bin and the threshold
on the friction velocity generating dust horizontal flux. Cre-
ating the ensemble without perturbing the threshold on the
friction velocity produces a reduced spread. See Fig. 8§ for
this second configuration of the ensemble with a coefficient

Geosci. Model Dev., 10, 1107-1129, 2017
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Figure 8. Coefficient of variation for the month of May 2007 for the ENS-free-run (left) and DA-NRL-DB (right) experiments, when the
ensemble is created perturbing the emitted mass vertical flux for each dust bin.

Table 3. Statistics of departures of first guess and analysis from assimilated observations, calculated for May to August 2007.

Experiment (departures)  Observations BIAS RMSE CORR FRGE SD
DA-NRL (FG) NRL —0.074 0.37 0.59 0.66 0.36
DA-NRL (AN) NRL —0.118 0.27 0.75 054 0.24
DA-NRL-DB (FG) NRL —0.160 0.35 0.58 0.70 0.31
DA-NRL-DB (AN) NRL —0.169 0.29 0.72 0.61 0.24
DA-NRL-DB (FG) DB —0.001 0.35 0.40 049 035
DA-NRL-DB (AN) DB —0.075 0.23 0.64 035 0.22

of variation for the ENS-free-run in the left panel and for the
experiment with data assimilation in the right panel. Perturb-
ing the threshold on the friction velocity has an impact on the
spread also outside source regions because, as explained ear-
lier, the spin-up period for the ensemble ensures that pertur-
bations applied at the sources propagate everywhere. Further-
more, this ensemble configuration better represents model
uncertainty since the ratio of the prior total spread (the square
root of the sum of the ensemble background variance and the
observation error variance) to the prior RMSE (of the ensem-
ble background against NRL MODIS and MODIS Deep Blue
observations) is closer to 1 compared to when no perturbation
is applied to the threshold on the friction velocity. It should
be noted, however, that this chosen ensemble configuration
under-represents uncertainty since it has a prior total spread
smaller than the RMSE (ratio equal to 0.82). Other better per-
turbations should be tested for a future implementation since
an underrepresentation of the background uncertainty might
translate into giving a lower weight to the observations with
respect to the background.

We evaluate in the rest of this section the assimilation ex-
periments in terms of statistics of the departures of the analy-
sis and first guess from the assimilated satellite observations.
Figure 9 shows for May to August 2007 first-guess dust AOD
(in the left panels) and analysis dust AOD (in the right pan-
els) versus observations for the DA-NRL and DA-NRL-DB
experiments. The departure statistics with respect to the two
sets of observations that we have assimilated are in Table 3.

Geosci. Model Dev., 10, 1107-1129, 2017

In both experiments a smaller scatter and a higher correlation
coefficient for the analysis indicate that the assimilation im-
proves the agreement with observations and hence a positive
sanity check of the data assimilation system. The asymmet-
ric behaviour of all the analysis scatter plots suggests that the
system is more successful in correcting too high AOD values
than correcting too low AOD values, which could be due to
the fact that usually we have larger observation errors and a
smaller ensemble spread for low AOD values. The BIAS is
significantly smaller than the RMSE and the RMSE improves
in the analysis over the forecast. The issue of a higher BIAS
in the analysis departures compared to the first-guess depar-
tures has been identified in other assimilation systems (see
Benedetti et al., 2009, Sect. 4) and might be attributed to the
fact that AOD is a positive definite variable, as this provides
a deviation from the Gaussianity condition in the prior which
is assumed in the analysis step. A solution to this problem
worth investigating in the future would consist in applying a
transformation of the state variables into new variables which
present Gaussian features, a procedure known as Gaussian
anamorphosis (Amezcua and Van Leeuwen, 2014).

Figure 10 shows global maps of mean dust AOD analy-
sis increments, i.e. the monthly averaged difference between
analysis and short-term forecast respectively in the case in
which only NRL MODIS AOD observations are assimilated
and in the case in which also MODIS Deep Blue AOD ob-
servations are assimilated. Both experiments show non-zero
systematic increments which are to be interpreted as sys-
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Figure 9. Binned scatter plots of the counts of the logarithm of assimilated observations and first guess (left plot) and analysis (right plot)
for the DA-NRL experiment (top row) and DA-NRL-DB experiment (central and bottom rows), calculated for May to August 2007. A
logarithmic scale is used for the counts.

Dust AOD (55

0 nm) AN -FG, DA-NRL

Dust AOD (550 nm), AN -FG, DA-NRL-DB

mgz\»i

v

o
@ﬁg ;

[\&:‘%’@"éﬂ

b

[\n‘:%fgﬂ

—0.600

_A_—Mwwi
1 I

—0.100 —-0.010 —0.001

0.001

1
0.010 0.100

0.600

Figure 10. Mean dust AOD analysis increments for May to August 2007 at 12:00 UTC for the DA-NRL experiment (left) and for the
DA-NRL-DB experiment (right).
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Figure 11. Time series of AOD values for May and August 2007 in La Parguera (top left), Dakar (top right), Ilorin (centre left), Tamanrasset
INM (centre right), Lecce University (bottom left), and Hamim (bottom right) for the Control (blue), DA-NRL (green), and DA-NRL-
DB (red) experiments, for MODIS AOD (NRL and DB; magenta circles), and for AERONET AOD (black triangles) in dust-dominated
conditions. Analysis values are used for the data assimilation experiments.
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Figure 12. Maps of validation statistics: BIAS, RMSE, CORR, and FRGE for the Control (left), DA-NRL (centre), and DA-NRL-DB (right)
experiments calculated against AERONET AOD for a selection of stations providing observations during the study period (May to August
2007). Maps of the observation counts used for validation are shown in the bottom row.

tematic corrections that these sets of observations are mak-
ing, in particular removing mass close to sources and, to a
lesser extent, adding mass in the outflow. The spatial dis-
tribution of the increments highlights the role that MODIS
Deep Blue observations play in particular over the Sahara
dust sources. There are some regions where the two data as-
similation experiments show opposite increments. This could
be due to unresolved conflicting biases between the two types
of MODIS retrievals.

7.2 Validation of the analysis

We perform in this section a validation of the dust fields
simulated either with or without data assimilation through
a comparison with observations from ground-based stations
that have not been assimilated for May to August 2007. We
calculate the statistics for individual stations and for groups
of stations. Figure 11 shows the time series of dust AOD
values for May to August 2007 for the Control experiment
(blue), for the analysis of the DA-NRL (green) and of the
DA-NRL-DB (red) experiment, and for AERONET obser-

www.geosci-model-dev.net/10/1107/2017/

vations in dust-dominated conditions (black) at six locations
within the different regional domains of Fig. 5, which are in
the proximity of dust sources (Tamanrasset in Algeria), af-
fected by short-range dust transport (Dakar in Senegal, Ilorin
in Nigeria, and Hamim in the United Arab Emirates), or
affected by long-range dust transport in Europe (Lecce in
Italy), and across the Atlantic (La Parguera in Puerto Rico).
For reference, the MODIS AOD observations from the as-
similated dataset (NRL and Deep Blue), which are at the
closest distance and within a 2° radius from the location of
the AERONET station, are also included in the time series
(magenta circles). Note, however, that these latter observa-
tions are not an independent reference for validation of the
analyses, nor are they entirely representative of the observa-
tional constraint used to calculate the analysis in the given
station location. The time series show an overestimation in
the Control experiment of the optical depth near the sources,
and to a smaller extent in the transport, which clearly sug-
gests that the model tends to overestimate dust emissions.
The current calibration for model version 1.0 has the short-
coming of accurately capturing long-range transport at the

Geosci. Model Dev., 10, 1107-1129, 2017
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Figure 13. BIAS, RMSE, CORR, FRGE, and SD for the Control
experiment, for the experiment assimilating MODIS NRL obser-
vations (DA-NRL), and for the experiment assimilating MODIS
NRL and MODIS Deep Blue observations (DA-NRL-DB) calcu-
lated against AERONET observations for all the stations in Fig. 5.
The dust mean AOD for the observations used for validation during
the experiment period is also reported.

expense of an overestimation over the sources. This overes-
timation is reduced with data assimilation. By a first eyeball
inspection, the AOD simulation variance is reduced by data
assimilation and is more in accordance with the AOD obser-
vation variance.

Maps in Fig. 12 show results of validation statistics cal-
culated for the full study period at each AERONET station
for the three experiments performed. These maps allow us
to appreciate the strongest features of the three simulations
at individual AERONET stations and how those stations are
representative of the regional domains that we have identi-
fied. The Control experiment shows that the strongest BIAS
and highest RMSE are in the sub-Sahel region. The BIAS
indicates that the model systematically overpredicts AOD in
that region. The highest FRGEs are in the long transport over
the Atlantic or Europe, as expected in areas of low AOD val-
ues. The correlation between model and observation values
is in general lower near source areas than in outflow regions.
This could be due to the too coarse model resolution not able
to follow as well as the observations the dynamic of the dust
field near source areas. The assimilation of MODIS NRL ob-
servations decreases some of the strongest biases, in partic-
ular in the dust outflow regions in the Sahel and over the
African Atlantic coast, which is reflected in a reduced FRGE
and RMSE, and is associated with improved correlation. The
assimilation of the MODIS Deep Blue observations addition-
ally to the NRL MODIS observations is of further benefit: it
reduces the BIAS and RMSE downwind from the strongest
dust sources of the Sahara. It is also relevant to notice that
the additional assimilation of MODIS Deep Blue observa-
tions improves the correlation over the above areas and in
the Arabian Peninsula.

Geosci. Model Dev., 10, 1107-1129, 2017

The chart plots for the validation statistics calculated
for all the AERONET stations considered (hereafter called
global statistics) and for stations grouped according to re-
gional domains of interest are respectively in Figs. 13 and 14.
Global statistics show that assimilation produces in general
a better representation of dust concentrations in the atmo-
sphere, and that the assimilation of Deep Blue retrievals has
a positive impact over the assimilation of Dark Target re-
trievals only.

When considering the regional domains, the assimilation
of NRL MODIS AOD has a positive impact on the qual-
ity of the analysis everywhere, with the only exception of a
slight increase in RMSE in the Middle East region. This pos-
itive impact is more pronounced in the short Atlantic trans-
port and in the sub-Sahel region. The additional assimilation
of MODIS Deep Blue AOD has a considerable positive im-
pact in the Sahara, sub-Sahel, and Middle East regions, and
is neutral or slightly detrimental in the rest of the transport,
in particular in the long-range Atlantic transport. The cor-
relations for the global domain and for all the regional do-
mains are highly statistically significant with the exception of
the Sahara region (in the Control and DA-NRL experiments
only), where the number of observations is smaller than other
regional domains.

It should be noted, however, when interpreting the above
statistics that the validation against AERONET observations
may introduce significant errors when comparing a global
model grid box against a point observation (Schutgens et al.,
2016).

7.3 Validation of the forecast

We have validated the forecast up to 5 days ahead initial-
ized at 00:00 UTC from either the Control experiment or an
analysis (from DA-NRL-DB). We have calculated for May
to August 2007 the errors for the forecast at 12, 36, 60, 84,
and 108 h (hereafter indicated as FC + 12, FC + 36, FC + 60,
FC + 84, and FC + 108) with respect to either AERONET
observations or satellite observations. As mentioned when
describing our evaluation methodology, we use as a refer-
ence the set of satellite observations from the Dark Target
and Deep Blue algorithm ingested in the assimilation step,
i.e quality-controlled and filtered for dust-dominated condi-
tions. They are used only to validate the forecast range fol-
lowing the assimilation window. As expected, all the vali-
dation statistics worsen with increased forecast step in both
experiments (see Fig. 15 for global statistics). The impact
of initializing the model with a dust analysis is positive
on the first day. The analysis produces a better forecast in
terms of BIAS and RMSE (and also SD of the error) up to
FC + 108, and a better correlation on the first day. The cor-
relation is slightly lower from FC 4 36 onwards. The con-
clusions drawn by validating against AERONET or satellite
observations are equivalent. Results calculated for regional
domains (Fig. 16) show that the Control experiment tends
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Figure 14. BIAS, RMSE, CORR, FRGE, and SD for the Control experiment, the DA-NRL experiments, and the DA-NRL-DB experi-
ment calculated against AERONET observations for groups of stations within the regional domains in Fig. 5. The dust mean AOD for the
observations used for validation during the experiment period is also reported.

to overestimate AOD everywhere with the exception of Cen-
tral and East Asia. This suggests an overestimation in par-
ticular of the Sahara emissions which is consistent with the
bias found in the analysis and which is maintained during
the forecast. The correlations for the global domain and for
all the regional domains, at all forecast lead times, are highly
statistically significant. Initializing the 00:00 UTC forecast
with the DA-NRL-DB dust analysis reduces the overestima-
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tion compared to satellite retrievals on the first day of the
forecast consistently with the improvement observed in the
analysis in the previous section. However, this produces an
underestimation of AOD in the long-range Atlantic transport
during all the forecast lead times, which, because of the rela-
tively small AOD values in that area, is reflected in particular
in the FGRE. Although there is an overestimation of AOD,
there is a better agreement of the temporal evolution in that
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Figure 15. BIAS, RMSE, CORR, and FRGE for the forecast at 12, 36, 60, 84, and 108 h of the Control (blue) and AN-initialized (red)
experiments, i.e. the experiment initialized with the DA-NRL-DB analysis, calculated against AERONET observations (left) and against
global satellite retrievals, both NRL MODIS and MODIS Deep Blue, (right) filtered for dust-dominated conditions. The AERONET stations
are the ones in Fig. 5. The dust mean AOD for the observations used to validate the 12h forecast during the experiment period is also

reported.

region. The underestimation of AOD in the Atlantic trans-
port might be due to too strong a deposition which affects in
particular the long-range transport, and in the standard run
is compensated for by an overestimation over the sources.
As said earlier, a shortcoming of the current model calibra-
tion is to capture well the long-range transport at the expense
of an overestimation over the sources, which data assimila-
tion reduces. To identify the exact cause of it will require,
however, further investigation together with a better adjust-
ment of the current model parameters. With the exception of
this underestimation of AOD across the Atlantic, all the er-
ror statistics and correlation coefficients are improved in the
first day of the forecast in all the regional domains. The er-
ror of the analysis-initialized forecast is lower also in the rest
of the forecast range (up to 5 days), though, after day 1, the
correlation with satellite observations in some regions (Sub-
Sahel and ShortAtl) is lower for the analysis-initialized fore-
cast than for a standard forecast. It is particularly relevant to
notice that the dust forecast over the Sahara is improved for
all the statistics and throughout the forecast range.

8 Conclusions

We have developed a data assimilation system for the
NMMB-MONARCH model version 1.0, which considers
dust only, while other aerosols are being implemented. We
have coupled NMMB-MONARCH with an ensemble-based
data assimilation technique known as LETKF. For this pur-
pose we have created a forecast ensemble based on known
uncertainties in the physical parametrizations of the mineral
dust emission scheme. We have processed satellite aerosol
optical depth retrievals for assimilation with a dust filter. Due
to the presence of other aerosols in the selection of dust-
dominated conditions, uncertainties might have been intro-
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duced into our assimilation process. It should be noted how-
ever that the identification of dust-dominated conditions is
performed in this study as a proof of concept to demon-
strate the potential of using data assimilation in NMMB-
MONARCH, and will not be strictly necessary in a future
model upgrade including all the major aerosol species. Still,
efforts towards aerosol speciation could continue to be pur-
sued when assimilating information about total aerosol op-
tical properties. In this respect, operational centres currently
rely merely on model background to distribute assimilation
increments among the different aerosol species.

Assimilation experiments showed that aerosol optical
depth retrieved with the Dark Target algorithm can help
NMMB-MONARCH to better characterize atmospheric
dust. This is particularly true for the analysis of the dust
outflow in the Sahel region and over the African Atlantic
coast. The additional assimilation of Deep Blue retrievals
has a further positive impact in the analysis downwind from
the strongest dust sources of the Sahara and in the Arabian
Peninsula.

An analysis-initialized forecast performs better (lower
forecast error and higher correlation) than a standard forecast
everywhere on the first day of the forecast. The only excep-
tion to this is an underestimation of the forecast of AOD in
the long-range Atlantic transport. The error of the analysis-
initialized forecast is lower also in the rest of the forecast
range (up to 5 days), though, after day 1, in sub-Sahel and
short Atlantic transport the temporal evolution of dust is less
in agreement with independent observations, compared to a
standard forecast. Particularly relevant is the improved fore-
cast over the Sahara throughout the forecast range thanks to
the assimilation of Deep Blue retrievals over areas not easily
covered by other observational datasets. To the best of our
knowledge, this is the first study quantifying the benefit of
assimilating MODIS Deep Blue from Collection 6 specifi-
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Figure 16. As the right panel of Fig. 15 but for the different regional domains of Fig. 5.
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cally for mineral dust simulations. This product is currently
operationally assimilated by the UK Met Office, who con-
sider only Deep Blue observations over desert, and by the
European Centre for Medium-Range Weather Forecasts.

In our future implementation of the forecast ensemble, we
plan to exploit spatial patterns of variation in model parame-
ter uncertainty, for example source-dependent uncertainties,
as well as uncertainties in the deposition term. A better rep-
resentation of uncertainties in dust emission flux inherently
will help the representation of uncertainties in other parts of
the dust cycle. A recent study by Rubin et al. (2016) shows
that, for their system, combined meteorology and aerosol
source ensembles are necessary to produce sufficient spread
in outflow regions. Notwithstanding that their conclusion
might be system-dependent, we will take into account their
results in our future studies.
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