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Abstract. This paper describes a new open-source software
framework for automated pointwise feature tracking that
is applicable to a wide array of climate datasets using ei-
ther structured or unstructured grids. Common climatologi-
cal pointwise features include tropical cyclones, extratropical
cyclones and tropical easterly waves. To enable support for a
wide array of detection schemes, a suite of algorithmic ker-
nels have been developed that capture the core functionality
of algorithmic tracking routines throughout the literature. A
review of efforts related to pointwise feature tracking from
the past 3 decades is included. Selected results using both re-
analysis datasets and unstructured grid simulations are pro-
vided.

1 Introduction

Automated pointwise feature tracking is an algorithmic tech-
nique for objective identification and tracking of meteoro-
logical features, such as extratropical cyclones, tropical cy-
clones and tropical easterly waves, and has emerged as an
important and desirable data processing capability in climate
science. Software tools for feature tracking – typically re-
ferred to as “trackers” – have been employed to evaluate
model performance and answer pressing scientific questions
regarding anticipated changes in atmospheric features under
climate change. Exploration of tracker literature has exposed
a breadth of potential techniques that have been applied to
climate datasets with varied spatial resolution and temporal
frequency (a comprehensive review of the tracking literature
can be found in Appendices A, B and C). Nonetheless, the
definition of an optimal objective criteria for key atmospheric

features has eluded development, and ambiguity in the for-
mal definition of these features suggests that there may be no
singular criteria capable of both perfect detection and zero
false alarm rate. Further, as observed by Walsh et al. (2007)
and Horn et al. (2014) for tropical cyclones and Neu et al.
(2013) for extratropical cyclones, feature tracking schemes
can produce wildly varying results depending on the specific
choice of threshold variables and values. Therefore, we argue
that uncertainties associated with objective tracking criteria
should be addressed with an ensemble of detection thresholds
and variables, whereas blind application of singular tracking
formulations should be avoided. To this end, it is the goal of
this paper to review the vast literature on trackers and use this
information to inform the development of a unified frame-
work (TempestExtremes) that enables a variety of tracking
procedures to be quickly and easily applied across arbitrary
spatial resolution and temporal frequency. This paper focuses
largely on the technical aspects of pointwise feature tracking,
but sets the stage for future studies on parameter sensitivity
and optimization.

Most algorithmic Lagrangian trackers of pointwise fea-
tures (such as cyclones and eddies) share a common proce-
dure:

1. They must identify an initial set of candidate points by
searching for local extrema. Local extrema can be fur-
ther specified, for instance, by requiring that they be suf-
ficiently anomalous when contrasted with their neigh-
bors. For most cyclonic structures, either minima in the
sea level pressure field or maxima in the absolute value
of the relative vorticity are used.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1070 P. A. Ullrich and C. M. Zarzycki: A framework for scale-insensitive pointwise feature tracking

2. They must eliminate candidate points that do not satisfy
a prescribed set of thresholds. For instance, tropical cy-
clones typically require the presence of an upper-level
warm core that is sufficiently near the sea level pressure
minima that defines the storm center. Additional crite-
ria, such as a minimum threshold on relative vorticity,
can be used to eliminate spurious detections.

3. They must connect candidate points together in time (re-
ferred to as “stitching”) to generate feature paths, elimi-
nating paths that are of insufficient length or do not meet
additional criteria.

Although the actual implementations of this procedure does
vary throughout the literature, a review of this material re-
veals several core algorithms (kernels) that are common
across implementations. Based on our analysis, the five most
commonly employed kernels are

– computation of anomalies in a data field from a spatially
averaged mean;

– identification of local extrema in a given 2-D data field
(for instance, sea level pressure minima);

– determination of whether a closed contour exists in a
data field around a particular point;

– determination of whether, in the neighborhood of a par-
ticular point, a data field satisfies a given threshold; and

– stitching of candidates from sequential time slices to
build feature tracks.

The development of a robust implementation of these five
kernels will be the focus of the remainder of this paper.

Feature tracking that is robust across essentially arbitrary
datasets requires some additional considerations. Detection
criteria and thresholds for tracking are often tuned based on
the characteristics of a particular dataset, such as temporal
resolution, spatial resolution and regional coverage. Unfor-
tunately, this has led to an abundance of schemes that often
cannot be directly compared, or applied in a more general
context. To this end, we focus on kernels that are insensitive
to the characteristics of the input data. For instance, averag-
ing or searching over a discrete number of grid points around
each candidate (a common approach) is incompatible with
scale insensitivity since the physical search radius would be
dependent on the spatial resolution of the data. Identifica-
tion of local extrema is also a resolution-sensitive procedure,
since the number of extrema will often scale with the num-
ber of spatial data points; however, a closed contour criteria
based on a physical distance is largely resolution insensitive.
To achieve robust applicability, a general framework should

– use great-circle arcs for all distance calculations (this
avoids issues associated with latitude–longitude dis-
tance that emerges near the poles);

– support structured and unstructured grids (this elimi-
nates the need for post-processing of large native grid
output files and enables detection and characterization
simultaneous with the model execution);

– not contain hard-coded variable names, so as to ensure
robust applicability across reanalysis datasets and appli-
cability to a variety of problems; and

– allow for easy intercomparison of detection schemes by
enabling detection criteria and thresholds that are com-
pactly specified on the command line.

Well-known automated software trackers include TRACK
(Hodges, 1994, 1995, 2015) and the Geophysical Fluid
Dynamics Laboratory (GFDL) TSTORMS package (Vitart
et al., 1997; Zhao et al., 2009). Both of these software pack-
ages have been used extensively to examine pointwise fea-
tures in the atmosphere, but do not completely satisfy the
four requirements above.

The remainder of the paper is organized as follows: Sect. 2
describes the algorithms and kernels that have been imple-
mented in the TempestExtremes software framework. Se-
lected examples of tropical cyclone, extratropical cyclone
and tropical easterly wave detection are then provided in
Sect. 3, followed by conclusions in Sect. 4. The appen-
dices provide a review of relevant literature on pointwise fea-
ture trackers of extratropical cyclones (Appendix A), tropi-
cal cyclones (Appendix B) and tropical easterly waves (Ap-
pendix C). A technical guide to the use of the Tempes-
tExtremes tools DetectCyclonesUnstructured and
StitchNodes is provided in Appendices D and E. Addi-
tional examples and updates are available as part of the soft-
ware package.

2 TempestExtremes algorithms and kernels

This section describes the key building blocks that have been
developed in constructing our detection and characterization
framework. Pseudocode is utilized throughout to describe the
structure of each algorithm.

2.1 Unstructured grid specification

For purposes of determining connectivity of the unstructured
grid, we require the specification of a node graph that enu-
merates the neighbors of each node (one such node graph is
depicted in Fig. 1). The connectivity information is stored
textually as an adjacency list via a variable-length comma-
separated variable file. The total number of nodes (N ) is
specified at the top of the file, followed by N lines contain-
ing the longitude (lon), latitude (lat), associated area, number
of adjacent nodes and finally a 1-indexed list of all adjacent
nodes, such as depicted below:
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Figure 1. An example node graph describing an unstructured grid
(blue lines), where nodes are co-located with volume center-point
locations (solid circles) and edges connect adjacent volumes.

<total number of nodes>, <lon>,<lat>,
<area>, <# adj. nodes>,
<first adj. node>,..,<last adj. node>
...

2.2 Great-circle distance

As mentioned earlier, in order to avoid sensitivity of the de-
tection scheme to grid resolution, great-circle distance has
been employed throughout. In terms of regular latitude–
longitude coordinates, the great-circle distance (r), for a
sphere of radius a, between points (λ1,ϕ1) and (λ2,ϕ2), is
defined via the symmetric operation:

r(λ1,ϕ1;λ2,ϕ2)= a arccos

(sinϕ1 sinϕ2+ cosϕ1 cosϕ2 cos(λ1− λ2)) . (1)

Algorithmically, this calculation is implemented as
gcdist(p,q) for given graph nodes p and q. The
difference between great-circle distance and latitude–
longitude distance is striking at high latitudes, as depicted
in Fig. 2. Whereas latitude–longitude distance is gener-
ally sufficient for tropical cyclone detection, tracking of
high-latitude phenomena such as extratropical cyclones is
expected to be more consistent when great-circle distance is
employed.

2.3 Efficient neighbor search using k-d trees

Three-dimensional (k = 3) k-d trees (Bentley, 1975) are used
throughout our detection code using the implementation of
Tsiombikas (2015). k-d trees are a data structure that enable
O(logN) average time for nearest neighbor search, where
N is the total number of nodes, while also requiring only
O(N logN) construction time and a O(N) data storage re-
quirement. Although k-d trees use 3-D straight-line distance

Figure 2. Grid cells on a latitude–longitude mesh whose centroids
are within 30◦ of a cell at 68◦ N latitude using latitude–longitude
distance (left) and great-circle distance (right).

instead of great-circle distance, we utilize the observation
that straight-line and great-circle distance maintain the same
ordering for points confined to the surface of the sphere.
Three key functions made available by the k-d tree structure
are used:

K = build_kd_tree(P) constructs a k-d tree K
from a point set P.

q = kd_tree_nearest_neighbor(K, p) lo-
cates the nearest neighbor q to point p using the k-d
tree K.

S = kd_tree_all_neighbors(K, p,
dist) locates all points that are within a distance
dist of a point p within the k-d tree K.

An example k-d tree in two dimensions is depicted in Fig. 3,
along with a brief description of how the nearest-neighbor
algorithm is performed.

2.4 Computing a spatially averaged mean

Many existing tracking algorithms use either a spatially av-
eraged mean field (over a given distance) or an anomaly
field computed against the spatially averaged mean (Haarsma
et al., 1993; Bengtsson et al., 1995). The mean operation (im-
plemented in TempestExtremes as _MEAN() in the variable
specification) is computed on unstructured grids via graph
search (see Algorithm 1). Anomalies from the mean can then
be computed in conjunction with the _DIFF operator (see
Appendix D1).

www.geosci-model-dev.net/10/1069/2017/ Geosci. Model Dev., 10, 1069–1090, 2017



1072 P. A. Ullrich and C. M. Zarzycki: A framework for scale-insensitive pointwise feature trackingP. A. Ullrich and C. M. Zarzycki: A Framework for Scale-Insensitive Pointwise Feature Tracking 17

Walsh, K., Fiorino, M., Landsea, C., and McInnes, K.: Objectively
determined resolution-dependent threshold criteria for the detec-
tion of tropical cyclones in climate models and reanalyses, J. Cli-
mate, 20, 2307–2314, 2007.

Walsh, K. J. and Katzfey, J. J.: The impact of climate change on5

the poleward movement of tropical cyclone-like vortices in a re-
gional climate model, J. Climate, 13, 1116–1132, 2000.

Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner,
J., Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C.,
Scoccimarro, E., Sobel, A. H., Strazzo, S., Villarini, G., Wehner,10

M., Zhao, M., Kossin, J. P., LaRow, T., Oouchi, K., Schubert, S.,
Wang, H., Bacmeister, J., Chang, P., Chauvin, F., Jablonowski,
C., Kumar, A., Murakami, H., Ose, T., Reed, K. A., Saravanan,
R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas, J. A., and
Henderson, N.: Hurricanes and climate: the U.S. CLIVAR work-15

ing group on hurricanes, B. Am. Meteorol. Soc., 96, 997—1017,
doi:10.1175/BAMS-D-13-00242.1, 2015.

Whittaker, L. M. and Horn, L.: Atlas of Northern Hemisphere ex-
tratropical cyclone activity, 1958–1977, 1982.TS22

Williamson, D. L.: Storm track representation and verification, Tel-20

lus, 33, 513–530, 1981.
Wu, G. and Lau, N.-C.: A GCM simulation of the relationship be-

tween tropical-storm formation and ENSO, Mon. Weather Rev.,
120, 958–977, 1992.

Zarzycki, C. M. and Jablonowski, C.: A multidecadal simulation of25

Atlantic tropical cyclones using a variable-resolution global at-
mospheric general circulation model, J. Adv. Model. Earth Syst.,
6, 805–828, doi:10.1002/2014MS000352, 2014.

Zarzycki, C. M. and Jablonowski, C.: Experimental tropical cyclone
forecasts using a variable-resolution global model, Mon. Weather30

Rev., 143, 4012–4037, doi:10.1175/MWR-D-15-0159.1, 2015.
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable

Resolution Meshes to Model Tropical Cyclones in the Commu-
nity Atmosphere Model, Mon. Weather Rev., 142, 1221–1239,
doi:10.1175/MWR-D-13-00179.1, 2014a.35

Zarzycki, C. M., Levy, M. N., Jablonowski, C., Overfelt, J. R.,
Taylor, M. A., and Ullrich, P. A.: Aquaplanet experiments us-
ing CAM’s variable-resolution dynamical core, J. Climate, 27,
5481–5503, doi:10.1175/JCLI-D-14-00004.1, 2014b.

Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations40

of global hurricane climatology, interannual variability, and re-
sponse to global warming using a 50-km resolution GCM, J. Cli-
mate, 22, 6653–6678, 2009.

Zolina, O. and Gulev, S. K.: Improving the accuracy of mapping
cyclone numbers and frequencies, Mon. Weather Rev., 130, 748–45

759, 2002.

Algorithm 1 Compute the spatial mean value of a field G
over a region of radius dist using graph search on an un-
structured grid.

field F = mean(field G, dist)
for each node p
total_area = 0
F[p] = 0
visited = []
tovisit = [p]
while tovisit is not empty

q = remove node from tovisit
add q to visited
F[p] = F[p] + G[q] * area[q]
total_area = total_area + area[q]
for each neighbor s of q

if (gcd(p,s) < dist) and
(s is not in visited) then

add s to tovisit
F[p] = F[p] / total_area

Algorithm 2 Locate the set of all nodes P that are local min-
ima for a field G (for instance, SLP) defined on an unstruc-
tured grid. The procedure for locating maxima is analogous.

set P =
find_all_minima(field G)

for each node f
is_minima[f] = true
for each neighbor node v of f

if G[v] < G[f] then
is_minima[f] = false

if is_minima[f] then
insert f into P

Algorithm 3 Given a field G defined on an unstructured grid
and a set of candidate points P, remove candidate minima
that are within a distance dist of a more extreme minimum,
and return the new candidate set Q.

set Q =
merge_candidates_minima(field G, set P, dist)

K = build_kd_tree(P)
for each candidate p in P
retain_p = true
N = kd_tree_all_neighbors(K, p, dist)
for all q in N

if (G[q] < G[p]) then retain_p = false
if retain_p then insert p into Q
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2.5 Extrema detection

For purposes of computational efficiency, candidate points
are initially located by identifying local extrema in a
given field (for instance, sea level pressure (SLP)) via
find_all_minima (Algorithm 2). This algorithm com-
pares all nodes against their associated neighbors and
only tags points that are less/greater than those neigh-
bors. Candidates are then eliminated if they are “too
close” to stronger extrema (Algorithm 3) (e.g., Pinto
et al., 2005). This algorithm is performed by eliminat-
ing candidate nodes that are within a given distance of
a stronger extrema. The initial search field is specified
to TempestExtremes either via the --searchbymin or
--searchbymax command line argument. The merge dis-
tance used in merge_candidates_minima is specified
via the --mergedist command line argument.

P. A. Ullrich and C. M. Zarzycki: A Framework for Scale-Insensitive Pointwise Feature Tracking 17

Walsh, K., Fiorino, M., Landsea, C., and McInnes, K.: Objectively
determined resolution-dependent threshold criteria for the detec-
tion of tropical cyclones in climate models and reanalyses, J. Cli-
mate, 20, 2307–2314, 2007.

Walsh, K. J. and Katzfey, J. J.: The impact of climate change on5

the poleward movement of tropical cyclone-like vortices in a re-
gional climate model, J. Climate, 13, 1116–1132, 2000.

Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner,
J., Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C.,
Scoccimarro, E., Sobel, A. H., Strazzo, S., Villarini, G., Wehner,10

M., Zhao, M., Kossin, J. P., LaRow, T., Oouchi, K., Schubert, S.,
Wang, H., Bacmeister, J., Chang, P., Chauvin, F., Jablonowski,
C., Kumar, A., Murakami, H., Ose, T., Reed, K. A., Saravanan,
R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas, J. A., and
Henderson, N.: Hurricanes and climate: the U.S. CLIVAR work-15

ing group on hurricanes, B. Am. Meteorol. Soc., 96, 997—1017,
doi:10.1175/BAMS-D-13-00242.1, 2015.

Whittaker, L. M. and Horn, L.: Atlas of Northern Hemisphere ex-
tratropical cyclone activity, 1958–1977, 1982.TS22

Williamson, D. L.: Storm track representation and verification, Tel-20

lus, 33, 513–530, 1981.
Wu, G. and Lau, N.-C.: A GCM simulation of the relationship be-

tween tropical-storm formation and ENSO, Mon. Weather Rev.,
120, 958–977, 1992.

Zarzycki, C. M. and Jablonowski, C.: A multidecadal simulation of25

Atlantic tropical cyclones using a variable-resolution global at-
mospheric general circulation model, J. Adv. Model. Earth Syst.,
6, 805–828, doi:10.1002/2014MS000352, 2014.

Zarzycki, C. M. and Jablonowski, C.: Experimental tropical cyclone
forecasts using a variable-resolution global model, Mon. Weather30

Rev., 143, 4012–4037, doi:10.1175/MWR-D-15-0159.1, 2015.
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable

Resolution Meshes to Model Tropical Cyclones in the Commu-
nity Atmosphere Model, Mon. Weather Rev., 142, 1221–1239,
doi:10.1175/MWR-D-13-00179.1, 2014a.35

Zarzycki, C. M., Levy, M. N., Jablonowski, C., Overfelt, J. R.,
Taylor, M. A., and Ullrich, P. A.: Aquaplanet experiments us-
ing CAM’s variable-resolution dynamical core, J. Climate, 27,
5481–5503, doi:10.1175/JCLI-D-14-00004.1, 2014b.

Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations40

of global hurricane climatology, interannual variability, and re-
sponse to global warming using a 50-km resolution GCM, J. Cli-
mate, 22, 6653–6678, 2009.

Zolina, O. and Gulev, S. K.: Improving the accuracy of mapping
cyclone numbers and frequencies, Mon. Weather Rev., 130, 748–45

759, 2002.

Algorithm 1 Compute the spatial mean value of a field G
over a region of radius dist using graph search on an un-
structured grid.

field F = mean(field G, dist)
for each node p
total_area = 0
F[p] = 0
visited = []
tovisit = [p]
while tovisit is not empty

q = remove node from tovisit
add q to visited
F[p] = F[p] + G[q] * area[q]
total_area = total_area + area[q]
for each neighbor s of q

if (gcd(p,s) < dist) and
(s is not in visited) then

add s to tovisit
F[p] = F[p] / total_area

Algorithm 2 Locate the set of all nodes P that are local min-
ima for a field G (for instance, SLP) defined on an unstruc-
tured grid. The procedure for locating maxima is analogous.

set P =
find_all_minima(field G)

for each node f
is_minima[f] = true
for each neighbor node v of f
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Algorithm 3 Given a field G defined on an unstructured grid
and a set of candidate points P, remove candidate minima
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and return the new candidate set Q.
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Algorithm 1 Compute the spatial mean value of a field G
over a region of radius dist using graph search on an un-
structured grid.TS23

field F = mean(field G, dist)
for each node p
total_area = 0
F[p] = 0
visited = []
tovisit = [p]
while tovisit is not empty

q = remove node from tovisit
add q to visited
F[p] = F[p] + G[q] * area[q]
total_area = total_area + area[q]
for each neighbor s of q

if (gcd(p,s) < dist) and
(s is not in visited) then

add s to tovisit
F[p] = F[p] / total_area

Algorithm 2 Locate the set of all nodes P that are local min-
ima for a field G (for instance, SLP) defined on an unstruc-
tured grid. The procedure for locating maxima is analogous.

set P =
find_all_minima(field G)

for each node f
is_minima[f] = true
for each neighbor node v of f

if G[v] < G[f] then
is_minima[f] = false

if is_minima[f] then
insert f into P

Algorithm 3 Given a field G defined on an unstructured grid
and a set of candidate points P, remove candidate minima
that are within a distance dist of a more extreme minimum,
and return the new candidate set Q.

set Q =
merge_candidates_minima(field G, set P, dist)

K = build_kd_tree(P)
for each candidate p in P
retain_p = true
N = kd_tree_all_neighbors(K, p, dist)
for all q in N

if (G[q] < G[p]) then retain_p = false
if retain_p then insert p into Q
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2.6 Closed contour criteria

Although a first pass at candidate points may be made by
looking for local extrema (comparing against all neighbor-
ing nodes), this criteria is not robust across model resolu-
tion. That is, the distance between a node and its neighbors
decreases proportionally to the local grid spacing, and so
does not define a “physical” criterion. Consequently, we in-
stead advocate for a “closed contour criteria” to define candi-
date nodes. Closed contours were first employed by Bell and
Bosart (1989), who used a 30 m 500 hPa geopotential height
contour to identify closed circulation centers. Their approach
used radial arms generated at 15◦ intervals over a great-circle
distance of 2◦ and required that geopotential heights rise by
at least 30 m along each arm. Unfortunately, the use of radial
arms to define the closed contour is again sensitive to model
resolution, since it has the potential to only sample as many
neighbors as radial arms employed.

Here, we propose an alternative closed contour criteria
that is largely insensitive to model resolution, using graph
search to ensure that all paths along the unstructured grid
from an initial location p0 lead to a sufficiently large de-
crease (or increase) in a given field G before reaching a
specified radius. This criteria is illustrated in Fig. 4, and
is implemented in Algorithms 4 and 5 (for closed contours
around local maxima). The closed contour criteria is im-
plemented in TempestExtremes via the command line argu-
ment --closedcontourcmd. An analogous command
line argument, --noclosedcontourcmd, is also pro-
vided, which has similar functionality but discards candi-
dates that satisfy the closed contour criteria (this may be de-
sirable, for instance, to identify cyclonic structures that do
not have a warm core).
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Algorithm 4 Find the node pmax containing the maximal
value of the field G within a distance maxdist of the node
p. An analogous procedure find_min_near is provided
for locating nodes containing minimal values of the field.

node pmax =
find_max_near(node p, field G, maxdist)
set visited = {}
set tovisit = {p}
pmax = p
while tovisit is not empty

q = remove node from tovisit
if (q in visited) then continue
add q to visited
if (gcdist(p,q) > maxdist) then continue
if (G[q] > G[pmax]) then pmax = q

Algorithm 5 Determine if there is a closed contour in
field G of magnitude thresh around the point p0, defined
by p0 = find_max_near(p, G, maxdist), within
distance dist. That is, along all paths away from p0, the
field G must drop by at least thresh within distance dist.
The closed contour criteria is depicted in Fig. 54. An anal-
ogous procedure is defined for closed contours around min-
ima.

closed_contour_max(point p,
field G, dist, maxdist, thresh)
p0 = find_max_near(p, G, maxdist)
set visited = {}
set tovisit = {p0}
while tovisit is not empty

q = remove point from tovisit
if (q in visited) then continue
add q to visited
if (gcdist(p0,q) > dist) then return false
if (G[p0] - G[q] < thresh) then

add all neighbors of q to tovisit
return true

Algorithm 6 Determine if a candidate node p satisfies the
requirement that there exists another node p0within distance
dist of p with G[p] > thresh.

threshold_max(node p,
field G, dist, thresh)
p0 = find_max_near(p, G, dist)
if (G[p0] < thresh) then

return false
else

return true

Algorithm 7 Determine all feature paths S, given array of
candidate nodes P[1..T] and maximum great-circle dis-
tance between nodes at subsequent time levels dist.

path set S = stitch_nodes(set
array P[1..T], dist, maxgap)

for each time level t = 1..T
K[t] = build_kd_tree(P[t])

for each time level t = 1..T
while P[t] is not empty

initialize empty path s
p = remove next candidate from P[t]
add p into s
gap = 0
for time level u = t+1..T

q = kd_tree_nearest_neighbor(K[u], p)
if (q in P[u]) and (gcdist(p,q) < dist)

then
add q into s
remove q from P[u]
p = q

else if (gap < maxgap) then
gap = gap + 1

else
break

add s into S

Figure 51. An example node graph describing an unstructured grid
(blue lines), where nodes are co-located with volume centerpoint
locations (solid circles) and edges connect adjacent volumes.
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2.7 Thresholding

Additional threshold criteria may be applied at the detection
stage in order to further eliminate undesirable candidates. For
example, a common threshold criteria requires that a field
G satisfy some minimum value within a distance dist of
the candidate, as implemented in Algorithm 6. TempestEx-
tremes implements thresholding via the command line argu-
ment --thresholdcmd and includes thresholds for a par-
ticular field at candidate nodes to be greater than, less than,
equal to or not equal to a specified value.
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2.8 Stitching

The basic track stitching procedure (which represents the Re-
duce() stage in MapReduce) is implemented in Algorithm 7
using the output from the detection procedure at each time
level (stored in set array P[1..T]). It requires additional
parameters to specify a maximum great-circle distance be-
tween in-sequence nodes (dist), and a maximum gap size
(maxgap). Here, gap size refers to the maximum number
of sequential non-detections that can occur before a path is
considered terminated. This argument is useful, for instance,
for tracking tropical storms that temporarily weaken below
acceptable criteria before restrengthening.
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For simplicity, k-d trees are constructed at each time level
in order to maximize the efficiency of the search. Each can-
didate pair (time, node) can only be used in one path, and so
construction simply requires exhausting the list of available
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Figure 3. An example two-dimensional k-d tree (k = 2) built from nodes a through h. Dividing planes are constructed by cycling through
each coordinate and determining the median node (left). This gives rise to a tree structure (right) that, in conjunction with an input node, can
then be searched recursively for a corresponding rectangular domain in physical space. The last leaf node is labeled as the best candidate for
nearest neighbor and the tree is “unwound” to test other potential candidates. The number of nodes that need to be examined is limited to
domains that overlap a hypersphere with origin at the input node and with distance to the current candidate.

Figure 4. An illustration of the closed contour criteria. Nodes
shaded in white (gray) satisfy (do not satisfy) the threshold of the
field value at p0. Since only edge neighbors are included, B con-
stitutes a boundary to the interior of the closed contour. Because A
lays outside the solid circle, the contour with distance d0 is not a
closed contour, whereas the dashed contour with distance d1 does
satisfy the closed contour criteria.

candidates. Once paths have been constructed, additional cri-
teria can be applied – for instance, minimum path length or
additional criteria based on minimum path length or mini-
mum distance between the start and endpoints of the path
(see Appendix E). Thresholds based on field values may also
be applied; e.g., wind speed must be greater than a particular
value for at least eight time steps of each track.

2.9 Parallelization considerations

Feature tracking fits well into a general framework known as
MapReduce (Dean and Ghemawat, 2008), which is a combi-
nation of a Map(), an embarrassingly parallel candidate iden-
tification procedure applied to individual time slices, and a
Reduce(), which stitches candidates across time to build fea-
ture tracks. A key advantage of employing this framework
is that substantial work has been undertaken to understand
optimal strategies for parallelization of MapReduce-type al-
gorithms (e.g., Prabhat et al., 2012) in order to mitigate bot-
tlenecks associated with I/O and load balancing. TempestEx-
tremes currently implements a simple parallelization strategy
via MPI, although future work on this issue is forthcoming.
As a timing example, TempestExtremes with MPI (16 tasks)
finds and tracks tropical cyclones in 10 years of 6-hourly cli-
mate data on a 0.5◦ latitude–longitude grid in an average of
3.8 min on the National Center for Atmospheric Research’s
(NCAR’s) Yellowstone supercomputer.

3 Selected examples

Several selected examples are now provided. The first three
examples use data from the NCEP Climate Forecast System
Reanalysis (CFSR), available at 0.5◦ global resolution with
6-hourly output from 1979 to the present (Saha et al., 2010).
The remaining example uses a custom variable-resolution
simulation (Zarzycki and Jablonowski, 2014) (6-hourly out-
put on a 110 km base domain that is refined to 28 km in the
northern Atlantic and Pacific ocean basins) on both the native
grid data and the regridded latitude–longitude grid data.
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3.1 Tropical cyclones in CFSR

Our first example employs TempestExtremes for tropical cy-
clones (defined here as a cyclonic structure with a distinct
warm core). The command line we use to detect tropical
cyclone-like features in CFSR is provided below. Climate
data are drawn from three files denoted $uvfile (contain-
ing zonal and meridional velocities), $tpfile (containing
temperature and pressure information) and $hfile (con-
taining topographic height). Three-dimensional (time plus
2-D space) hyperslabs of CFSR data have been extracted,
with TMP_L100 corresponding to 400 hPa air tempera-
ture, and U_GRD_L100 and V_GRD_L100 corresponding
to 850 hPa zonal and meridional wind velocities. Candidates
are initially identified by minima in the sea level pressure
(PRMSL_L101), and then eliminated if a more intense mini-
mum exists within a great-circle distance of 2.0◦. The closed
contour criteria is then applied, requiring an increase in SLP
of at least 200 Pa (2 hPa) within 4◦ of the candidate node, and
a decrease in 400 hPa air temperature of 0.4 K within 8◦ of
the node within 1.1◦ of the candidate with maximum air tem-
perature. Since CFSR is on a structured latitude–longitude
grid, the output format is i,j,lon,lat,psl,maxu,zs,
where i,j are the longitude and latitude coordinates within
the dataset; lon,lat are the actual longitude and latitude of
the candidate; psl is the SLP at the candidate point (equal
to the maximum SLP within 0◦ of the candidate); maxu is
the vector magnitude of the maximum 850 hPa wind within
4◦ of the candidate; and zs is the topographic height at the
candidate point.

./DetectCyclonesUnstructured
--in_data "$uvfile;$tpfile;$hfile"
--out $outf
--searchbymin PRMSL_L101 --mergedist 2.0
--closedcontourcmd "PRMSL_L101,200.,4,0;

TMP_L100,-0.4,8.0,1.1"
--outputcmd "PRMSL_L101,max,0;

_VECMAG(U_GRD_L100,V_GRD_L100),max,4;
HGT_L1,max,0"

All outputs from DetectCyclonesUnstructured are then
concatenated into a single file containing candidates at all
times (pgbhnl.dcu_tc_all.dat). Candidates are then
stitched in time to form paths, with a maximum distance be-
tween candidates of 8.0◦ (great-circle distance), consisting of
at least eight candidates per path, and with a maximum gap
size of two (most consecutive time steps with no associated
candidate). Because localized shallow low-pressure regions
that are unrelated to tropical cyclones can form as a con-
sequence of topographic forcing, we also require that for at
least eight time steps the underlying topographic height (zs)
be at most 100 m. The associated command line for StitchN-
odes is

./StitchNodes
--in pgbhnl.dcu_tc_all.dat
--out pgbhnl.dcu_tc_stitch.dat
--format "i,j,lon,lat,psl,maxu,zs"

Figure 5. Tropical cyclone counts within each 2◦× 2◦ grid cell,
over the period 1979–2010, obtained using the procedure described
in Sect. 3.1.

--range 8.0 --minlength 8 --maxgap 2
--threshold "zs,<=,100.0,8"

Once the complete set of tropical cyclone paths has been
computed, total tropical cyclone counts over each 2◦ grid cell
are plotted in Fig. 5. The results show very good agreement
with reference fields (Gray, 1968; Knapp et al., 2010).

3.2 Extratropical cyclones in CFSR

For our second example, we are interested in tracking ex-
tratropical cyclone features (defined by a cyclonic structure
with no distinct warm core). The command line we have
used to detect cyclonic features without the characteristic
warm core of tropical cyclones (here referred to as extrat-
ropical cyclones) is given below. The command is identical
to the tropical cyclone (TC) detection configuration speci-
fied in Sect. 3.1, except it requires that the feature does not
possess a closed contour in the 400 hPa temperature field (no
warm core).

./DetectCyclonesUnstructured
--in_data "$uvfile;$tpfile;$hfile"
--out $outf
--searchbymin PRMSL_L101 --mergedist 2.0
--closedcontourcmd "PRMSL_L101,200.,4,0"
--noclosedcontourcmd "TMP_L100,

-0.4,8.0,1.1"
--outputcmd "PRMSL_L101,max,0;

_VECMAG(U_GRD_L100,V_GRD_L100),max,4;
HGT_L1,max,0"

Stitching is similarly analogous to Sect. 3.1, except it uses
a slightly more strict criteria on the underlying topographic
height. The topographic filtering proved necessary in order to
adequately filter out an abundance of topographically driven
low pressure systems, particularly in the Himalayas region.
The command line used for stitching is given below:

./StitchNodes
--in pgbhnl.dcu_tc_all.dat

www.geosci-model-dev.net/10/1069/2017/ Geosci. Model Dev., 10, 1069–1090, 2017



1076 P. A. Ullrich and C. M. Zarzycki: A framework for scale-insensitive pointwise feature tracking

Figure 6. Extratropical cyclone counts within each 2◦×2◦ grid cell,
over the period 1979–2010, obtained using the procedure described
in Sect. 3.2.

--out pgbhnl.dcu_tc_stitch.dat
--format "i,j,lon,lat,psl,maxu,zs"
--range 8.0 --minlength 8 --maxgap 2
--threshold "zs,<=,70.0,8"

Once the complete set of extratropical cyclone paths has
been computed, total extratropical cyclone density over each
2◦ grid cell is plotted in Fig. 6. Although not extensively ver-
ified, the qualitative density of extratropical cyclones is well
within the range of results from different trackers, as given
by Neu et al. (2013).

3.3 Tropical easterly waves in CFSR

Tropical easterly waves are our third example of a
pointwise feature that has been assessed in the track-
ing literature. In this example, Northern Hemisphere east-
erly waves (associated with positive relative vorticity)
are tracked separately from Southern Hemisphere east-
erly waves (associated with negative relative vorticity).
DetectCyclonesUnstructured and StitchNodes
are executed separately in both hemispheres and the re-
sultant track files concatenated. All tracking is performed
on the 600 hPa relative vorticity field, using relative vor-
ticity maxima for Northern Hemisphere waves and rel-
ative vorticity minima for Southern Hemisphere waves.
Since CFSR only provides absolute vorticity, relative vor-
ticity must first be extracted by taking the difference be-
tween absolute vorticity and the planetary vorticity (the
Coriolis parameter). This is done on the command line
via _DIFF(ABS_V_L100,_F()), where ABS_V_L100
is the CFSR absolute vorticity variable and _F() is a built-
in function for computing the Coriolis parameter (defined
by f = 2�sinφ). In the Northern Hemisphere, we follow
Thorncroft and Hodges (2001) and isolate tropical easterly
wave features by requiring a drop of relative vorticity equal
to 5× 10−5 s−1. The command line used is as follows:

./DetectCyclonesUnstructured
--in_data "$uvfile;$hfile" --out $outf

--searchbymax "_DIFF(ABS_V_L100(0),_F())"
--mergedist 2.0

--closedcontourcmd "_DIFF(ABS_V_L100(0),
_F()),-5.e-5,4,0"

--outputcmd "ABS_V_L100(0),max,0
;_DIFF(ABS_V_L100(0),_F()),max,0;

HGT_L1,max,0"
--minlat -35.0 --maxlat 35.0

Tropical easterly wave paths are constructed using a maxi-
mum distance of 3◦ great-circle distance between subsequent
detections, a minimum path length equal to eight sequential
detections, no allowed gaps, and a distance of at least 10◦
between track start and endpoint. Northern (Southern) Hemi-
sphere waves must also be present in the Northern (Southern)
Hemisphere for at least eight time steps (2 days). The com-
mand line for Northern Hemisphere waves is as follows:

./StitchNodes
--in pgbhnl.dcu_aew_nh_all.dat
--out pgbhnl.dcu_aew_nh_stitch.dat
--format "i,j,lon,lat,relv,zs"
--range 3.0 --minlength 8 --maxgap 0
--min_endpoint_dist 10.0
--threshold "lat,<=,25.0,8;lat,>=,0.0,8"

An analogous procedure is applied in the Southern Hemi-
sphere, except it searches for minima in the relative vorticity
field and limits the latitudinal range in StitchNodes to
[25S,0] for at least eight time steps. Counts of total (North-
ern Hemisphere plus Southern Hemisphere) tropical easterly
waves within each 2◦ grid volume are given in Fig. 7, show-
ing heavy wave activity throughout the Atlantic and Pacific
basins. These results are very similar to other reported east-
erly wave densities, such as in Belanger et al. (2014) and
Thorncroft and Hodges (2001), except for (a) the substan-
tially enhanced tropical easterly wave count reported over
eastern Africa (which could be eliminated by filtering over
topography) and (b) essentially no observed wave activity off
of the western coast of South America. Nonetheless, it is well
known that easterly wave climatology varies strongly across
reanalysis datasets and exhibits sensitivity to the choice of
tracking scheme (Hodges et al., 2003).

3.4 Tropical cyclone forecast trajectories

For our third example, we have used TempestExtremes to
track forecasted tropical cyclones in numerical weather pre-
diction simulations. Here, we show two deterministic fore-
casts (initialized at 00Z on 21 and 22 October 2012) for
Hurricane Sandy using the Community Atmosphere Model
(CAM) with a 0.125◦ (14 km) grid spacing over the North
Atlantic basin. Details about the model setup, forecast skill
of CAM, and a case study of Hurricane Sandy results can
be found in Zarzycki and Jablonowski (2015). Both forecasts
were initialized prior to the National Hurricane Center declar-
ing Sandy as a tropical depression, which occurred at 12Z
on 22 October (Blake et al., 2013). In Fig. 8, black dots in-
dicate Sandy’s forecast trajectory when applying the opera-
tional tracker used by the National Centers for Environmental
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Figure 7. Tropical easterly wave counts within each 2◦× 2◦ grid
cell, over the period 1979–2010, obtained using the procedure de-
scribed in Sect. 3.3.

Figure 8. Forecast CAM trajectories for Hurricane Sandy initial-
ized at 00Z on (a) 21 and (b) 22 October 2012. Black dots indicate
trajectories defined using the NCEP operational vortex tracker with
red dots denoting trajectories defined using a sample configuration
of TempestExtremes.

Prediction (NCEP) (Marchok, 2002) while red dots show the
same using a sample configuration of TempestExtremes. This
configuration finds local minima in the 6-hourly SLP (slp)
fields, which cannot lie within a great-circle distance of 10.0◦
of another. An increase in SLP of at least 0.5 hPa within 5◦
of the candidate node is required (closed contour) as is a de-
crease in 300 hPa air temperature (tm) of 0.1 K within 5◦ of
the node, with a 1.0◦ offset permitted between the upper-level
warm core maximum and sea level pressure minimum (rele-
vant for sheared TCs where the vortex may be tilted). Note
that no “best guess initial location” of the cyclone is defined,
as is the case with many operational tracking systems. The
tracker command line is as follows:

./DetectCyclonesUnstructured
--in_data $ffile --out $outf

--mergedist 10.0
--closedcontourcmd "slp,0.5,5.0,0;tm,

Figure 9. An illustration of how connectivity is defined in this work
for nodes on a spectral element mesh. Arrows indicate connectivity
for nodes A and B.

-0.1,5.0,1.0"
--outputcmd slp,min,0;_VECMAG(u850,v850),

max,2;_VECMAG(u_ref,v_ref),max,2"

./StitchNodes --in cand.cyc
--out forecast.traj
--format "i,j,lon,lat,slp,wind850,windbot"
--range 6.0 --minlength 8 --maxgap 2

The results here demonstrate good agreement with
the NCEP vortex tracker, highlighting the capability of this
framework to track even pre-genesis storm features, although
the sensitivity (and associated potential noise) required to
find weak, shallow or sheared storms depends on the thresh-
olds defined in DetectCyclonesUnstructured.
Some differences between tracked storm centers are noted,
particularly at the beginning of the forecasts, where the
storm’s SLP is greater (weaker) than 1005 hPa. This is due
to the fact that the pre-genesis vortex is naturally somewhat
disorganized, and the NCEP tracker uses an average of mul-
tiple primary fixes (e.g., 700 and 850 hPa relative vorticity,
sea level pressure, 700 and 850 hPa geopotential heights)
to define the cyclone center, whereas this configuration of
TempestExtremes defines storm location based on sea level
pressure minimum only.

3.5 Tropical cyclones in a simulation with VR-CAM

For our final example, we assess the differences
in tropical cyclone character obtained from native
and regridded datasets. Using the variable-resolution
spectral element option in CAM (VR-CAM-SE;
Neale et al., 2012; Zarzycki et al., 2014b) to refine the
Northern Hemisphere to 0.25◦ resolution, a simulation of
a hurricane season (June–November) has been performed.
With the high-order spectral element dynamical core used to
solve the fluid equations in the atmosphere, VR-CAM-SE
has been demonstrated to be effective in simulating tropical
cyclone-like features (Zarzycki and Jablonowski, 2014;
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Figure 10. Tropical cyclone trajectories and associated intensities as obtained from the simulation of a single hurricane season in CAM 3.5
using (top) native spectral element grid data and (bottom) data regridded to a regular latitude–longitude grid with 0.25◦ grid spacing.

Zarzycki et al., 2014a; Zarzycki and Jablonowski, 2015).
Since VR-CAM-SE uses an unstructured mesh with degrees
of freedom stored at spectral element Gauss–Lobatto (GL)
nodes, data are typically analyzed only after being regridded
to a regular latitude–longitude mesh of approximately equal
resolution. The regridding procedure has the potential to clip
local extrema and smear out grid-scale features.

For this example, we use the high-order regridding pack-
age TempestRemap (Ullrich and Taylor, 2015; Ullrich et al.,
2016) for remapping the native spectral element output to
a regular latitude–longitude grid with 0.25◦ grid spacing.
For purposes of determining connectivity on the variable-
resolution spectral element mesh, we connect GL nodes
along the coordinate axis of each quadrilateral element (see
Fig. 9). DetectCyclonesUnstructured is then applied to both
the native grid data and the regridded data on the regular
latitude–longitude mesh (using the configuration specified in
Sect. 3.1) and tropical cyclones are categorized (color-coded)
by maximum surface wind speed as defined by the Saffir–
Simpson scale (Simpson, 1974), such that orange and red
trajectories represent the strongest classifications of storms.
The results of this analysis are depicted in Fig. 10. As ex-
pected, the native grid output produces essentially identical
tracks, but an increase in tropical cyclone intensity in some
cases (with some tropical cyclones dropping down by a full
category as a consequence of the remapping procedure and
discrete nature of binning storm strength).

4 Conclusions

Automated pointwise feature trackers have been frequently
and successfully employed over the past several decades to
extract useful information from large climate datasets. With
spatial and temporal resolution increasing rapidly in response
to enhanced computational resources, climate datasets have
grown increasingly unwieldy and so there has been a grow-
ing need for such large dataset processing tools. This pa-
per has outlined a framework for pointwise feature tracking
(TempestExtremes) that exposes a suite of generalized ker-
nels drawn from the literature on trackers of the past several
decades. This framework is sufficiently robust to be appli-
cable to many climate and weather datasets, including data
on unstructured grids. We expect such a framework would
be useful for isolating uncertainties that emerge from partic-
ular parameter choices in tracking schemes, or to compute
optimal threshold values for detecting pointwise features in,
e.g., reanalysis data. Future development plans in Tempes-
tExtremes include the construction of analogous kernels for
tracking areal features (blobs), such as clouds or atmospheric
rivers.

5 Code availability

The open-source software described in this pa-
per has been released as part of the TempestEx-
tremes software package, and is available for use
under the Lesser GNU Public License (LGPL). Soft-
ware and examples can be obtained from GitHub at
https://github.com/ClimateGlobalChange/tempestextremes.
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Appendix A: A review of extratropical cyclone tracking
algorithms

This appendix reviews the existing literature on extratropical
cyclone tracking, one of the earliest and most common in-
stances of both manual and automated feature tracking. Man-
ual counts of cyclones were performed by Petterssen (1956)
in the Northern Hemisphere from 1899 to 1939, and latter
binned by Klein (1957) to determine the spatial distribution
of such storms. These techniques were later refined by Whit-
taker and Horn (1982) by accounting for cyclone trajecto-
ries. A similar survey in the Southern Hemisphere was per-
formed by Taljaard (1967) for July 1957–December 1958.
Manual tracking and characterization of cyclones was also
performed by Akyildiz (1985) using ECMWF forecast data
for the 1981/1982 winter.

One of the first automated detection and tracking for ex-
tratropical cyclones was developed by Williamson (1981) us-
ing nonlinear optimization to fit cyclonic profiles to anoma-
lies in the 500 mb geopotential height field. Storms were then
tracked over a short forecast period using the best fit to the
cyclone’s center point. Counts of cyclones neglecting the cy-
clone trajectory were automatically generated from climate
model output for both hemispheres by Lambert (1988) using
local minima in 1000 hPa geopotential height. This method
had some shortcomings, including mischaracterization of lo-
cal lows due to Gibbs’ ringing and topographically driven
lows. To overcome these problems, Alpert et al. (1990) pro-
posed an additional minimum threshold on the local pressure
gradient. Similarly, Le Treut and Kalnay (1990) detected cy-
clones in ECMWF pressure data using a local minima in the
sea level pressure that must also be 4 hPa below the aver-
age sea level pressure of neighboring grid points, and must
persist for three successive 6 or 12 h intervals. Murray and
Simmonds (1991) extracted low pressure centers from inter-
polated general circulation model (GCM) data using local
optimization, based on earlier work in Rice (1982). These
original papers primarily sought minima in the SLP field or
looked for maxima in the Laplacian of the SLP field.

Several modern extratropical cyclone detection algorithms
remain in use, having built on this earlier work. Short de-
scriptions of many of these schemes are given here. Some of
these algorithms use the notion of a local neighborhood or
periphery, as defined in Fig. A1.

– Serreze et al. (1993); Serreze (1995) tracked cyclones
in a ∼ 381–400 km Arctic dataset. Candidates were
identified using a local minimum SLP at least 2 hPa
higher than immediate neighbors. Tracking was per-
formed with a maximum search distance of 1400 km per
12 h period.

– Sinclair (1994, 1997) tracked cyclones in a 2.5◦
ECMWF dataset over the Southern Hemisphere. Can-
didates were identified using a local minimum in the
1000 hPa geostrophic vorticity field ζg (computed from

Figure A1. The local neighborhood of a central node (shaded) typi-
cally refers to the surrounding eight nodes (diagonal hatching). The
periphery, used by Tsutsui and Kasahara (1996), refers to the set of
nodes that surround the local neighborhood (unshaded nodes).

the Laplacian of the 1000 hPa geopotential), adjusted
for topography and the presence of heat lows (see paper
for details), which further satisfied ζg <−2× 10−5s−1.

– Blender et al. (1997) tracked cyclones in T106
(∼ 125 km) ECMWF analyses. Candidates were iden-
tified using a local minimum in the 1000 hPa geopoten-
tial height field, and required to have a positive mean
gradient in the 1000 hPa geopotential height field in a
1000× 1000 km2 area around each candidate. Tracking
was performed using a nearest-neighbor search with a
maximum displacement velocity of 80 km h−1, elimi-
nating cyclones with tracks shorter than 3 days.

– Lionello et al. (2002) tracked cyclones in a T106
(∼ 125 km) ECHAM-4 dataset. Candidates were iden-
tified using a local minimum in the SLP field. Track-
ing was performed using previous cyclone velocity to
demarcate a prediction region, and candidates were dis-
carded if they do not continue into the prediction region.

– Zolina and Gulev (2002) tracked cyclones in a T106
(∼ 125 km) and a T42 (∼ 300 km) dataset. Candidates
were identified using a local minimum in the SLP field.

– Hoskins and Hodges (2002); Catto et al. (2009); Dacre
et al. (2012) tracked cyclones in various reanalysis and
climate datasets with wavenumber ≤ 5 removed in all
fields and a relative vorticity field spectrally truncated
to T42. Candidates were identified from maxima in the
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850 hPa relative vorticity field. Trajectories were com-
puted by searching for nearest neighbors and smoothed
by minimizing a cost function. Cyclones were required
to persist for 4 days.

– Pinto et al. (2005) tracked cyclones in T42 (∼ 300 km)
NCEP reanalysis, regridded onto a 0.75◦ grid by cu-
bic spline interpolation. Candidates were identified us-
ing local minima in the pressure field that were within
1200 km of a maximum in the quasi-geostrophic rela-
tive vorticity, which was computed from the Laplacian
of pressure. Candidates that were over a topography of
above 1500 m were removed. They further required that
the quasi-geostrophic relative vorticity was greater than
0.1 hPa/(◦lat) and only the strongest candidates within
3◦ were retained. Cyclone tracking required a prediction
velocity and search following Murray and Simmonds
(1991).

– Benestad and Chen (2006) tracked cyclones in 2.5◦
ERA40 data. Candidates were identified using multiple
least-squares regression to estimate the values of the co-
efficients of a Fourier approximation to the SLP field (in
effect a smoothing operator), followed by a 1-D search
in the north–south and east–west directions.

– Simmonds et al. (2008) tracked cyclones in several 2.5◦
datasets over the Arctic. Candidates were identified us-
ing local minima in the Laplacian of pressure, reject-
ing cyclones over topography above 1000 m and re-
quiring the presence of a nearby pressure minimum.
Identified lows must satisfy a Laplacian with value >
0.2 hPa/(◦ lat)2 over a radius of 2◦. Tracking used a
probability estimate using a predicted position.

Appendix B: A review of tropical cyclone tracking
algorithms

More recently, and as higher-resolution climate data have
become available, extratropical cyclone tracking techniques
have been modified in order to support tropical cyclone
tracking. To eliminate “false positives” associated with ex-
tratropical cyclones and weak cyclonic depressions, many
schemes require that the candidate be associated with a
nearby warm core and be associated with a minimum thresh-
old on surface winds for at least 1–3 days. The definition
of a “warm core” varies between modeling centers, includ-
ing such options as air temperature anomaly on pressure
surfaces (Vitart et al., 1997; Zhao et al., 2009; Murakami
et al., 2012), geopotential thickness (Tsutsui and Kasahara,
1996) and decay of vorticity with height (Bengtsson et al.,
2007a; Strachan et al., 2013). Additional filtering of candi-
date storms over topography or within a specified latitudi-
nal range may be required. To better match observations, ad-
ditional geographical-, model- or feature-dependent criteria

may be applied (Camargo and Zebiak, 2002; Walsh et al.,
2007; Murakami and Sugi, 2010a; Murakami et al., 2012).
It is widely acknowledged that weaker tropical storms are
difficult to track, and the observational record of these less-
intense, short-lived storms is questionable (Landsea et al.,
2010).

A tabulated overview of the thresholds utilized by many
of these schemes can be found in Walsh et al. (2007), along
with several proposed guidelines on detection schemes. We
extend this tabulation with the following short descriptions
of many published schemes.

– Bengtsson et al. (1982) tracked tropical cyclones in
one year of ∼ 200 km forecast model output. Candi-
dates were identified with latitude < 30◦ for collocated
850 hPa wind > 25 m s−1 and 850 hPa relative vorticity
maxima > 7× 10−5 s−1 in a 7.5◦× 7.5◦ area.

– Broccoli and Manabe (1990) tracked tropical cyclones
in a R15 (∼ 600 km) dataset and a R30 (∼ 300 km)
dataset. Candidates were identified from PSL that
had a 1.5 hPa local min (R15) or 0.75 hPa local min
(R30), with local surface wind velocity > 17 m s−1,
and latitude < 30◦. Tracking was performed using
nearest-neighbor search with a maximum velocity of
1200 km day−1.

– Wu and Lau (1992) tracked tropical cyclones in a
7.5◦ longitude × 4.5◦ latitude dataset. Candidates were
identified by local minima in 1000 hPa geopotential
height with a positive 950 hPa relative vorticity, negative
950 hPa divergence, positive 500 hPa vertical velocity,
latitude< 40.5◦, locally maximal 200 h minus 1000 hPa
layer thickness that exceeded the average layer thick-
ness within 1500 km west to east by 60 m, and 950 hPa
wind greater than 17.2 m s−1 locally. Tracking imposed
a maximum tropical cyclone velocity of 7.5◦ longitude
or 9◦ latitude per day.

– Haarsma et al. (1993) tracked tropical cyclones in a
∼ 300 km dataset. Candidates were identified from lo-
cal minimum PSL, with 850 hPa relative vorticity >

3.5×10−5 s−1. Temperature anomaly1T was required
to satisfy1T 250> 0.5K at 250 hPa,1T 500>−0.5K
at 500 hPa, and 1T 250−1T 850>−1.0K, where the
anomaly is computed against a 15◦× 15◦ spatial mean
around the center of the storm. Tracking required tropi-
cal cyclones to be persistent for a minimum of 3 days.

– Bengtsson et al. (1995, 1996) tracked tropical cyclones
in a T106 (∼ 125 km) dataset. Candidates were identi-
fied as points where 850 hPa relative vorticity > 3.5×
10−5 s−1, with a 850 hPa wind maximum > 15 m s−1,
local SLP minimum, and mean 850 hPa wind greater
than mean 300 hPa wind within 7× 7 grid points of
the candidate. Temperature anomaly sum was also re-
quired to satisfy 1T 700+1T 500+1T 300> 3 K and
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1T 300>1T 850 where the anomaly was computed
against a 7× 7 grid-point average centered on the can-
didate. Tracking required tropical cyclones to be persis-
tent for a minimum of 1.5 days.

– Tsutsui and Kasahara (1996) tracked tropical cyclones
in a T42 (2.8◦, ∼ 300 km) dataset. Candidates were
identified as minima in the 1000 hPa geopotential height
field, with at least an average drop of 20 m among neigh-
boring points, and a further 20 m drop of average among
neighboring points from periphery. Candidates were
further required to satisfy that the average local 900 hPa
vorticity was cyclonic, average local 900 hPa divergence
was negative, average local 500 hPa vertical velocity
was upward, 200 hPa minus 1000 hPa layer thickness
maximum among neighbors was greater than any value
in periphery, and average local 200 hPa zonal wind ve-
locity was less than 10 m s−1 or local points contained
at least one point with easterly velocity. The latitude
of the candidate was require to be less than 40◦, topo-
graphic height underlying candidates was less than 400
m, one local point had a 900 hPa wind speed of at least
17.2 m s−1, and one local point exceeded 100 mm d−1

over at least 1 day. Tracking required tropical cyclones
to be persistent for a minimum of 2 days.

– Vitart et al. (1997, 1999, 2001, 2003) tracked tropical
cyclones in a T42 (2.8◦, ∼ 300 km) dataset. Candidates
were identified as 850 hPa relative vorticity maxima
> 3.5× 10−5 s−1 with a nearby PSL minimum. They
were required to possess a warm core within 2◦ latitude,
defined as a local average 500 hPa to 200 hPa tempera-
ture maximum with a decrease of 0.5 K in all directions
within 8◦, and a local maximum in the 200–1000 hPa
layer thickness with a decrease of 50 m in all directions
within 8◦. Tracking required the minimum distance be-
tween storms to be 800 km day−1, that tropical cyclones
lasted at least 2 days and that the maximum wind veloc-
ity within 8◦ of the storm center must be 17 m s−1 for at
least 2 (not necessarily consecutive) days.

– Walsh (1997); Walsh and Watterson (1997); Walsh and
Katzfey (2000) tracked tropical cyclones in a 125 km re-
gional climate dataset over Australia. Candidates were
identified as points with 850 hPa relative vorticity >
2.0× 10−5 s−1, temperature anomaly sum 1T 700+
1T 500+1T 300> 0 K and 1T 300>1T 850, with
anomaly computed against the mean over a region 2
grid points north–south and 13 grid points east–west.
Candidates were also required to have 10 m surface
wind > 10 m s−1 and 850 hPa tangential wind speed
> 300 hPa tangential wind speed. Tracking required
tropical cyclones to be persistent for a minimum of
2 days.

– Krishnamurti et al. (1998) tracked tropical cyclones in
a T42 (∼ 300 km) climate dataset. Their approach was

similar to Bengtsson et al. (1995, 1996), except using a
4× 4 grid-point region for the 850 hPa wind maximum,
the SLP minimum and the temperature mean. Tracking
required tropical cyclones to be persistent for a mini-
mum of 1 day.

– Nguyen and Walsh (2001) assessed a 125 km regional
dataset over Australia using a similar approach to Walsh
and Watterson (1997). The vorticity requirement was
changed to 850 hPa relative vorticity > 1.0× 10−5s−1

with a PSL minimum within 250 km. Candidates also
must possess a mean wind speed in a 500 km× 500 km
region at 850 hPa that was larger than mean wind speed
at 300 hPa, and a mean tangental wind speed within a
radius of 1◦ and 2.5◦ greater than 5 m s−1. Tracking re-
quired tropical cyclones to be persistent for a minimum
of 1 day, with relaxed criteria after this time (see paper
for further information).

– Sugi et al. (2002) tracked tropical cyclones in a T106
(∼ 125 km) climate dataset, using tracking criteria sim-
ilar to Bengtsson et al. (1995). Candidates were identi-
fied by local PSL minima that was at least < 1020 hPa.
Tracking required tropical cyclones to be persistent for
a minimum of 2 days.

– Camargo and Zebiak (2002) tracked tropical cyclones
in a T42 (∼ 300 km) climate dataset. Their approach
was similar to Bengtsson et al. (1995, 1996), except
with basin-specific thresholds are applied for 850 hPa
relative vorticity, 850 hPa wind speed, and temperature
anomaly sum 1T 700+1T 500+1T 300. Thresholds
were determined by sampling the tails of probability
density functions for relevant variables in each ocean
basin. Following candidate identification, a relaxed
850 hPa relative vorticity threshold (> 1.5× 10−5 s−1)
in an area of 3× 3 grid points around prior detections
was applied to construct trajectories. Tracking required
tropical cyclones to be persistent for a minimum of 2
(1.5) days in daily (6-hourly) output.

– Tsutsui (2002) tracked tropical cyclones in a T42 (2.8◦,
∼ 300 km) dataset. Their approach was similar to Tsut-
sui and Kasahara (1996), but with simplified criteria.
Candidate PSL was required to be less than the lo-
cal average minus 2 hPa, and local average PSL must
be less than the periphery average minus 2 hPa. Layer
thickness between 200 and 700 hPa, denoted by Z, was
required to satisfy Z0+max(Z±11) > 2max(Z±21),
where Z±11 denotes immediate neighbors and Z±21
denotes the periphery.

– Cheung and Elsberry (2002); Halperin et al. (2013)
tracked tropical cyclones in weather forecast models us-
ing an approach similar to Walsh (1997). Candidates re-
quired a grid-point maximum in 850 hPa relative vortic-
ity larger than all surrounding grid points within 4◦ and
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either a local maximum in 200–500 hPa average temper-
ature or 200–1000 hPa geopotential thickness that was
offset by no more than 2◦ from the associated PSL cen-
ter. In Halperin et al. (2013), tropical cyclones were re-
quired to persist for at least 24 h and have a 925 hPa hor-
izontal wind speed greater than a model-specific thresh-
old within 5◦ of the PSL center.

– Walsh et al. (2004) tracked tropical cyclones in a 30 km
dataset using a similar tracking strategy to Nguyen and
Walsh (2001). Candidates’ temperature anomaly was
computed against a 1200 km longitude × 400 km lati-
tude region, and the mean wind speed was computed
over a 800 km × 800 km region around the storm. Can-
didates were further required to have local 10 m merid-
ional velocity ≥ 17 m s−1.

– McDonald et al. (2005) tracked tropical cyclones in
a 2.5◦ latitude by 3.75◦ longitude dataset. Candidates
were identified as local maxima in the 850 hPa relative
vorticity field with magnitude greater than 5×10−5 s−1,
with temperature anomaly 1T 300> 0 along the track,
1T 300> 0.5 K for any two points along the track and
1T 300>1T 850 for any two points along the track,
where the anomaly was computed against a 15◦× 15◦
mean. Tracking required that the storm’s initial latitude
was< 30◦ and the tropical cyclones persisted for a min-
imum of 2 days.

– Chauvin et al. (2006) tracked tropical cyclones in a
T319 (∼ 50 km) climate time-slice simulation. Can-
didates were identified by local minimum PSL with
850 hPa relative vorticity > 1.4× 10−4 s−1, 850 hPa
wind > 15 m s−1, mean 700–300 hPa temperature
anomaly1T 700− T 300> 3K,1T 300>1T 850, and
850 hPa wind > 300 hPa wind. Anomalies were com-
puted against environmental values 500 km from the cy-
clone center. A similar relaxation technique to Camargo
and Zebiak (2002) was applied to eliminate split trajec-
tories. Tracking required tropical cyclones to be persis-
tent for a minimum of 1.5 days.

– Oouchi et al. (2006) tracked tropical cyclones in a 20 km
dataset using a similar technique to Sugi et al. (2002).
Candidate PSL was required to be 2 hPa lower than
mean over 7× 7 grid box and require a storm center of
latitude < 45◦ with an initial position of < 30◦. Near
the candidate it was further required that the relative
vorticity at 850 hPa was > 3.5× 10−5 s−1, the maxi-
mum wind speed at 850 hPa was > 15 m s−1, the maxi-
mum wind speed at 850 hPa was larger than at 300 hPa,
and the temperature anomaly sum satisfied 1T 700+
1T 500+1T 300> 2 K near the candidate. Tracking
required tropical cyclones to be persistent for a mini-
mum of 1.5 days.

– Bengtsson et al. (2007b) tracked tropical cyclones in
T63, T213 and T319 datasets. Candidates were required
to have 850 hPa relative vorticity minus 250 hPa rela-
tive vorticity exceed 6× 10−5 s−1, 850 hPa relative vor-
ticity > 6× 10−5 s−1 and positive relative vorticity for
all levels between 850 hPa and 250 hPa. Only Northern
Hemisphere cyclones were considered (latitude < 60◦).
Tracking required tropical cyclones to be persistent for
a minimum of 1 day.

– Knutson et al. (2007); Zhao et al. (2009) tracked tropical
cyclones in a ∼ 50 km dataset using a technique similar
to Vitart et al. (1997, 2003). Candidates were required
to have an absolute 850 hPa relative vorticity maxima
> 1.6×10−4 s−1 within a 6◦×6◦ area, a local minimum
in SLP within 2◦ of the detection, and a maximum in av-
erage 300 hPa and 500 hPa layer temperature within 2◦
that was 1 K warmer than the local mean. Tracking re-
quired storms to be persistent for a minimum of 3 days,
with a maximum search radius of 400 km per 6 h, and at
least 3 days with a maximum surface wind speed greater
than 17 m s−1.

– Murakami and Sugi (2010b) tracked tropical cyclones
in four datasets with resolutions from TL95 (∼ 180 km)
to TL959 (∼ 20 km) using a procedure similar to
Oouchi et al. (2006) with a resolution-dependent rela-
tive vorticity criteria.

– Caron et al. (2011, 2013) tracked tropical cyclones
in a 0.3◦ (∼ 35 km) climate model. Candidates were
required to have a local SLP minimum (with candi-
dates merged within 2◦), 850 hPa relative vorticity >
4.0× 10−5 s−1, temperature anomalies 1T 500> 1 K
and1T 250> 0 K (calculated relative to 5◦ radial mean
around the TC center), 850 hPa relative vorticity >

250 hPa relative vorticity, and a resolution-specific sur-
face wind threshold as in Walsh et al. (2007). Track-
ing required storms to be persistent for a minimum of
1 day. Tracks with a relaxed set of thresholds were cal-
culated in parallel and applied to the main tracking to
minimize broken trajectories, similar to Camargo and
Zebiak (2002).

– Murakami et al. (2012) tracked tropical cyclones in four
datasets with resolutions from 20 to 60 km using a pro-
cedure similar to Oouchi et al. (2006) with a resolution-
dependent relative vorticity and temperature anomaly
criteria. Temperature anomalies were computed against
a 10◦×10◦ grid box. Additional filtering was applied in
the northern Indian Ocean by requiring maximum wind
speed to be within 100–200 km of the candidate. Track-
ing further incorporated a maximum gap size of 1 (a
single time-step failure).

– Au-Yeung and Chan (2012); Huang and Chan (2014)
tracked tropical cyclones in a ∼ 60 km dataset. Can-
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didates were identified at points with 850 hPa relative
vorticity > 4.5× 10−4 s−1 and a 300 hPa temperature
anomaly of 1 K defined relative to 15◦ radius around the
vorticity center. Tracking required storms to be persis-
tent for a minimum of 2 days and that storms originated
over the ocean.

– Tory et al. (2013c, b, a) tracked tropical cyclones in sev-
eral datasets at 1◦× 1◦ resolution. Candidates required
Okubo-Weiss-Zeta parameter values > 50× 10−6 s−1

and> 40×10−6 s−1 at 850 and 500 hPa, relative humid-
ity > 70 % and > 50 % at 950 and 700 hPa, and 850–
200 hPa vertical wind shear < 25 m s−1. Tracking re-
quired storms to be persistent for a minimum of 2 days.

– Strachan et al. (2013) tracked tropical cyclones in sev-
eral datasets from ∼ 60 km to ∼ 270 km. At T63 res-
olution, candidates were selected by 850 hPa relative
vorticity > 6× 10−5 s−1, positive relative vorticity at
500 and 200 hPa, and a relative vorticity difference be-
tween 850 and 200 hPa > 6× 10−5 s−1. Tracking re-
quired storms to be persistent for a minimum of 1 day.

– Horn et al. (2014) tracked tropical cyclones in US
Climate Variability and Predictability Research Pro-
gram (CLIVAR) Hurricane Working Group (HWG)
data (Walsh et al., 2015) (∼ 60 km to∼ 110 km). Track-
ing was performed similar to Walsh et al. (2004), except
a resolution-dependent value for surface winds was ap-
plied based on Walsh et al. (2007). Tracking required
storms to originate equatorward of extratropical ridges.

– Zarzycki and Jablonowski (2014) tracked tropical cy-
clones in a ∼ 28 km dataset. Candidates were selected
using absolute 850 hPa relative vorticity maxima >

1.0× 10−4 s−1 with latitude < 45◦ and SLP minimum
within 4◦. Candidates were further required to have a lo-
cal maximum 500–200 hPa average temperature within
2◦ of the storm center which decreases by at least 0.8 K
at a radius of 5◦ in all directions. Tracking required
storms to be persistent for a minimum of 2 days, with
a maximum velocity of 400 km over 6 h, and required
that the maximum surface wind speed within 4◦ of the
candidate was greater than 17 m s−1 for at least 2 days.
Tracking also allowed a maximum gap size of 1 (a sin-
gle time-step failure).

– Reed and Chavas (2015) tracked tropical cyclones on
a planet in radiative-convective equilibrium. Candidates
were identified using SLP minima followed by a closed
contour criteria that requires a pressure increase of at
least 4 hPa in all directions within 5◦ (great-circle dis-
tance), and using an early release of TempestExtremes.

– Bosler et al. (2016) tracked tropical cyclones in a
∼ 14 km dataset. The tracking technique was similar to

Knutson et al. (2007) and Zhao et al. (2009) except us-
ing great-circle distances for spatial calculations instead
of a grid-point search.

– Harris et al. (2016) tracked tropical cyclones in multiple
climate datasets with regional resolution ranging from
∼ 75 km to ∼ 10 km. Candidates were identified from
a minimum smoothed SLP no greater than 1013 hPa
with 2 hPa closed contour not encircling another min-
imum. Candidates were further required to have 2 K
closed contour around 300–500 hPa temperature max-
imum within 500 km and an 850 hPa relative vorticity
> 1.5×10−4 s−1. Cyclones were tracked for a minimum
of 3 days, with a maximum search radius of 750 km per
6 h, and required at least 1.5 consecutive days with a
maximum surface wind speed greater than 17.5 m s−1,
following Chen and Lin (2011)

Appendix C: A (short) review of tropical easterly wave
tracking algorithms

Tropical easterly waves are featured more sparsely within the
literature, but are nonetheless an important pointwise feature
in climate datasets. Pointwise tracking is complementary to
statistical techniques which typically examine the variabil-
ity, for instance, in the African easterly jet (AEJ) (i.e., Ceron
and Gueremy, 1999). The first manual study that identified
and tracked African easterly wave was performed by Reed
et al. (1988) using positive relative vorticity anomalies. This
strategy was also applied by Thorncroft and Hodges (2001),
Hodges et al. (2003) and Serra et al. (2010). Other stud-
ies have used curvature vorticity anomalies (Agudelo et al.,
2011; Belanger et al., 2014; Bain et al., 2014; Brammer and
Thorncroft, 2015) and stream functions (Berry et al., 2007).

Appendix D: Software documentation:
DetectCyclonesUnstructured

This section contains the software documentation for the
executable DetectCyclonesUnstructured from the
TempestExtremes package. The software is provided for use
within a command-line shell, such as bash.

Usage: DetectCyclonesUnstructured
<parameter list>

Parameters: --in_data <string> [""]
--in_data_list <string> [""]
--in_connect <string> [""]
--out <string> [""]
--out_file_list <string> [""]
--searchbymin <string> [""] (default PSL)
--searchbymax <string> [""]
--minlon <double> [0.000000] (degrees)
--maxlon <double> [0.000000] (degrees)
--minlat <double> [0.000000] (degrees)

www.geosci-model-dev.net/10/1069/2017/ Geosci. Model Dev., 10, 1069–1090, 2017



1084 P. A. Ullrich and C. M. Zarzycki: A framework for scale-insensitive pointwise feature tracking

--maxlat <double> [0.000000] (degrees)
--minabslat <double> [0.000000] (degrees)
--topofile <string> [""]
--maxtopoht <double> [0.000000] (m)
--mergedist <double> [0.000000] (degrees)
--closedcontourcmd <string> [""]

[var,delta,dist,minmaxdist;...]
--noclosedcontourcmd <string> [""]

[var,delta,dist,minmaxdist;...]
--thresholdcmd <string> [""]

[var,op,value,dist;...]
--outputcmd <string> [""] [var,op,dist;...]
--timestride <integer> [1]
--regional <bool> [false]
--out_header <bool> [false]
--verbosity <integer> [0]

--in_data <string> is a list of input data files in
NetCDF format, separated by semicolons.

--in_data_list <string> is a file containing
the --in_data argument for a sequence of process-
ing operations (one per line).

--in_connect <string> is a connectivity file,
which uses a vertex list to describe the graph structure
of the input grid. This parameter is not required if the
data are on a latitude–longitude grid.

--out <string> is the output file containing the
filtered list of candidates in plain text format.

--out_file_list <string> is a file containing
the --out argument for a sequence of processing op-
erations (one per line).

--searchbymin <string> is the input variable
to use for initially selecting candidate points (defined
as local minima). By default, this is “PSL”, represent-
ing detection of surface pressure minima. Only one of
searchbymin and searchbymax may be set.

--searchbymax <string> is the input variable
to use for initially selecting candidate points (defined
as local maxima). Only one of searchbymin and
searchbymax may be set.

--minlon <double> is the minimum longitude for
candidate points.

--maxlon <double> is the maximum longitude
for candidate points.

--minlat <double> is the minimum latitude for
candidate points.

--maxlat <double> is the maximum latitude for
candidate points.

--minabslat <double> is the minimum absolute
latitude for candidate points.

--mergedist <double> merges candidate points
with distance (in degrees) shorter than the specified
value. Among two candidates within the merge dis-
tance, only the candidate with lowest searchbymin
or highest searchbymax value will be retained.

--closedcontourcmd <cmd1>;<cmd2>;...
Eliminate candidates if they do not have a closed
contour. Closed contour commands are separated by
a semicolon. Each closed contour command takes
the form var,delta,dist,minmaxdist. These
arguments are as follows.

var <variable> is the variable used for the
contour search.
dist <double> is the great-circle distance (in
degrees) from the pivot within which the closed
contour criteria must be satisfied.
delta <double> is the amount by which the
field must change from the pivot value. If positive
(negative) the field must increase (decrease) by this
value along the contour.
minmaxdist <double> is the distance away
from the candidate to search for the min-
ima/maxima. If delta is positive (negative), the
pivot is a local minimum (maximum).

--noclosedcontourcmd
<cmd1>;<cmd2>;... is the same as
closedcontourcmd, except it eliminates can-
didates if a closed contour is present.

--thresholdcmd <cmd1>;<cmd2>;... elimi-
nates candidates that do not satisfy a threshold cri-
teria (there must exist a point within a given dis-
tance of the candidate that satisfies a given equality
or inequality). Threshold commands are separated by
a semicolon. Each threshold command takes the form
var,op,value,dist. These arguments are as fol-
lows.

var <variable> is the variable used for the
contour search.
op <string> is an operator that must be satis-
fied for threshold (options include >, >=, <, <=, =,
!=).
value <double> is the value on the right-hand
side (RHS) of the comparison.
dist <double> is the great-circle distance
away from the candidate to search for a point that
satisfies the threshold (in degrees).

--outputcmd <cmd1>;<cmd2>;... includes
additional columns in the output file. Output commands
take the form var,op,dist. These arguments are as
follows.
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var <variable> is the variable used for the
contour search.

op <string> is an operator that is applied over
all points within the specified distance of the candi-
date (options include max, min, avg, maxdist,
mindist).

dist <double> is the great-circle distance
away from the candidate wherein the operator is ap-
plied (in degrees).

--timestride <integer>
only examines discrete times at the given stride (by de-
fault 1).

--regional
is used when a latitude–longitude grid is employed, to
not assume longitudinal boundaries to be periodic.

--out_header
outputs a header describing the columns of the data file.

--verbosity <integer>
sets the verbosity level (default 0).

D1 Variable specification

Quantities of type <variable> include both NetCDF vari-
ables in the input file (for example, “Z850”) and simple oper-
ations performed on those variables. By default, it is assumed
that NetCDF variables are specified in the .nc file as
float Z850(time, lat, lon) or float

Z850(time, ncol) for structured latitude–longitude
grids and unstructured grids, respectively. If variables have
no time variable, they have the related specification
float Z850(lat, lon) or float

Z850(ncol). If variables include an additional dimension,
for instance,
float Z(time, lev, lat, lon) or float

Z(time, lev, ncol) they may be specified on the
command line as Z(<lev>), where the integer index
<lev> corresponds to the first dimension (or the dimension
after time, if present).

Simple operators are also supported, including

_ABS(<variable>) absolute value of a variable,

_AVG(<variable>, <variable>) pointwise
average of variables,

_DIFF(<variable>, <variable>) pointwise
difference of variables,

_F() Coriolis parameter,

_MEAN(<variable>, <distance>) spatial
mean over a given radius,

_PLUS(<variable>, <variable>) pointwise
sum of variables, and

_VECMAG(<variable>, <variable>) two-
component vector magnitude.

For instance, the following are valid examples of
<variable> type,
_MEAN(PSL,2.0),
_VECMAG(U850, V850)
and
_DIFF(U(3),U(5)).

D2 MPI support

The DetectCyclonesUnstructured executable sup-
ports parallelization via MPI when the --in_data_list
argument is specified. When enabled, the parallelization pro-
cedure simply distributes the processing operations evenly
among available MPI threads.

Appendix E: Software documentation: StitchNodes

This section contains the software documentation for the exe-
cutable StitchNodes from the TempestExtremes package.

Usage: StitchNodes <parameter list>
Parameters:

--in <string> [""]
--out <string> [""]
--format <string> ["no,i,j,lon,lat"]
--range <double> [5.000000] (degrees)
--minlength <integer> [3]
--min_endpoint_dist <double> [0.000000]
(degrees)

--min_path_dist <double> [0.000000] (degrees)
--maxgap <integer> [0]
--threshold <string> [""]

[col,op,value,count;...]
--timestride <integer> [1]
--out_format <string> ["std"] (std|visit)

--in <string> is the input file (a list of candidates
from DetectCyclonesUnstructured).

--out <string> is the output file containing the
filtered list of candidates in plain text format.

--format <string> is the structure of the
columns of the input file.

--range <double> is the maximum distance be-
tween candidates along a path.

--minlength <integer> is the minimum length
of a path (in terms of number of discrete times).

--min_endpoint_dist <double> is the mini-
mum great-circle distance between the first candidate
on a path and the last candidate (in degrees).
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--min_path_dist <double> is the minimum
path length, defined as the sum of all great-circle dis-
tances between candidate nodes (in degrees).

--maxgap <integer> is the largest gap (miss-
ing candidate nodes) along the path (in discrete time
points).

--threshold <cmd1>;<cmd2>;...
eliminates paths that do not satisfy a threshold crite-
ria (a specified number of candidates along path must
satisfy an equality or inequality). Threshold commands
are separated by a semicolon. Each threshold command
takes the form col,op,value,count. These argu-
ments are as follows.

col <integer> is the column in the input file
to use in the threshold criteria.

op <string> is an operator used for comparison
of column value (options include >, >=, <, <=, =,
!=).

value <double> is the value on the right-hand
side of the operator.

count <integer> is the minimum number of
candidates along the path that must satisfy this cri-
teria.

--timestride <integer>
only examines discrete times at the given stride (by de-
fault 1).
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